kernel - SWAP CACHE part 1/many - Convert swblock to a Red-Black tree
[dragonfly.git] / sys / vm / vm_object.c
blob0885e332d1dc6187072149c49ce28fc06688d9c9
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
64 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65 * $DragonFly: src/sys/vm/vm_object.c,v 1.33 2008/05/09 07:24:48 dillon Exp $
69 * Virtual memory object module.
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h> /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
95 #define EASY_SCAN_FACTOR 8
97 static void vm_object_qcollapse(vm_object_t object);
98 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
99 int pagerflags);
102 * Virtual memory objects maintain the actual data
103 * associated with allocated virtual memory. A given
104 * page of memory exists within exactly one object.
106 * An object is only deallocated when all "references"
107 * are given up. Only one "reference" to a given
108 * region of an object should be writeable.
110 * Associated with each object is a list of all resident
111 * memory pages belonging to that object; this list is
112 * maintained by the "vm_page" module, and locked by the object's
113 * lock.
115 * Each object also records a "pager" routine which is
116 * used to retrieve (and store) pages to the proper backing
117 * storage. In addition, objects may be backed by other
118 * objects from which they were virtual-copied.
120 * The only items within the object structure which are
121 * modified after time of creation are:
122 * reference count locked by object's lock
123 * pager routine locked by object's lock
127 struct object_q vm_object_list;
128 struct vm_object kernel_object;
130 static long vm_object_count; /* count of all objects */
131 extern int vm_pageout_page_count;
133 static long object_collapses;
134 static long object_bypasses;
135 static int next_index;
136 static vm_zone_t obj_zone;
137 static struct vm_zone obj_zone_store;
138 static int object_hash_rand;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
142 void
143 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
145 int incr;
146 RB_INIT(&object->rb_memq);
147 LIST_INIT(&object->shadow_head);
149 object->type = type;
150 object->size = size;
151 object->ref_count = 1;
152 object->flags = 0;
153 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
154 vm_object_set_flag(object, OBJ_ONEMAPPING);
155 object->paging_in_progress = 0;
156 object->resident_page_count = 0;
157 object->shadow_count = 0;
158 object->pg_color = next_index;
159 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
160 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
161 else
162 incr = size;
163 next_index = (next_index + incr) & PQ_L2_MASK;
164 object->handle = NULL;
165 object->backing_object = NULL;
166 object->backing_object_offset = (vm_ooffset_t) 0;
168 * Try to generate a number that will spread objects out in the
169 * hash table. We 'wipe' new objects across the hash in 128 page
170 * increments plus 1 more to offset it a little more by the time
171 * it wraps around.
173 object->hash_rand = object_hash_rand - 129;
175 object->generation++;
176 object->swblock_count = 0;
177 RB_INIT(&object->swblock_root);
179 crit_enter();
180 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
181 vm_object_count++;
182 object_hash_rand = object->hash_rand;
183 crit_exit();
187 * vm_object_init:
189 * Initialize the VM objects module.
191 void
192 vm_object_init(void)
194 TAILQ_INIT(&vm_object_list);
196 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
197 &kernel_object);
199 obj_zone = &obj_zone_store;
200 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
201 vm_objects_init, VM_OBJECTS_INIT);
204 void
205 vm_object_init2(void)
207 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
211 * vm_object_allocate:
213 * Returns a new object with the given size.
216 vm_object_t
217 vm_object_allocate(objtype_t type, vm_size_t size)
219 vm_object_t result;
221 result = (vm_object_t) zalloc(obj_zone);
223 _vm_object_allocate(type, size, result);
225 return (result);
230 * vm_object_reference:
232 * Gets another reference to the given object.
234 void
235 vm_object_reference(vm_object_t object)
237 if (object == NULL)
238 return;
240 object->ref_count++;
241 if (object->type == OBJT_VNODE) {
242 vref(object->handle);
243 /* XXX what if the vnode is being destroyed? */
247 static void
248 vm_object_vndeallocate(vm_object_t object)
250 struct vnode *vp = (struct vnode *) object->handle;
252 KASSERT(object->type == OBJT_VNODE,
253 ("vm_object_vndeallocate: not a vnode object"));
254 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
255 #ifdef INVARIANTS
256 if (object->ref_count == 0) {
257 vprint("vm_object_vndeallocate", vp);
258 panic("vm_object_vndeallocate: bad object reference count");
260 #endif
262 object->ref_count--;
263 if (object->ref_count == 0)
264 vclrflags(vp, VTEXT);
265 vrele(vp);
269 * vm_object_deallocate:
271 * Release a reference to the specified object,
272 * gained either through a vm_object_allocate
273 * or a vm_object_reference call. When all references
274 * are gone, storage associated with this object
275 * may be relinquished.
277 * No object may be locked.
279 void
280 vm_object_deallocate(vm_object_t object)
282 vm_object_t temp;
284 while (object != NULL) {
285 if (object->type == OBJT_VNODE) {
286 vm_object_vndeallocate(object);
287 return;
290 if (object->ref_count == 0) {
291 panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
292 } else if (object->ref_count > 2) {
293 object->ref_count--;
294 return;
298 * Here on ref_count of one or two, which are special cases for
299 * objects.
301 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
302 vm_object_set_flag(object, OBJ_ONEMAPPING);
303 object->ref_count--;
304 return;
305 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
306 object->ref_count--;
307 if ((object->handle == NULL) &&
308 (object->type == OBJT_DEFAULT ||
309 object->type == OBJT_SWAP)) {
310 vm_object_t robject;
312 robject = LIST_FIRST(&object->shadow_head);
313 KASSERT(robject != NULL,
314 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
315 object->ref_count,
316 object->shadow_count));
317 if ((robject->handle == NULL) &&
318 (robject->type == OBJT_DEFAULT ||
319 robject->type == OBJT_SWAP)) {
321 robject->ref_count++;
323 while (
324 robject->paging_in_progress ||
325 object->paging_in_progress
327 vm_object_pip_sleep(robject, "objde1");
328 vm_object_pip_sleep(object, "objde2");
331 if (robject->ref_count == 1) {
332 robject->ref_count--;
333 object = robject;
334 goto doterm;
337 object = robject;
338 vm_object_collapse(object);
339 continue;
343 return;
345 } else {
346 object->ref_count--;
347 if (object->ref_count != 0)
348 return;
351 doterm:
353 temp = object->backing_object;
354 if (temp) {
355 LIST_REMOVE(object, shadow_list);
356 temp->shadow_count--;
357 temp->generation++;
358 object->backing_object = NULL;
362 * Don't double-terminate, we could be in a termination
363 * recursion due to the terminate having to sync data
364 * to disk.
366 if ((object->flags & OBJ_DEAD) == 0)
367 vm_object_terminate(object);
368 object = temp;
373 * vm_object_terminate actually destroys the specified object, freeing
374 * up all previously used resources.
376 * The object must be locked.
377 * This routine may block.
379 static int vm_object_terminate_callback(vm_page_t p, void *data);
381 void
382 vm_object_terminate(vm_object_t object)
385 * Make sure no one uses us.
387 vm_object_set_flag(object, OBJ_DEAD);
390 * wait for the pageout daemon to be done with the object
392 vm_object_pip_wait(object, "objtrm");
394 KASSERT(!object->paging_in_progress,
395 ("vm_object_terminate: pageout in progress"));
398 * Clean and free the pages, as appropriate. All references to the
399 * object are gone, so we don't need to lock it.
401 if (object->type == OBJT_VNODE) {
402 struct vnode *vp;
405 * Clean pages and flush buffers.
407 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
409 vp = (struct vnode *) object->handle;
410 vinvalbuf(vp, V_SAVE, 0, 0);
414 * Wait for any I/O to complete, after which there had better not
415 * be any references left on the object.
417 vm_object_pip_wait(object, "objtrm");
419 if (object->ref_count != 0)
420 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
423 * Now free any remaining pages. For internal objects, this also
424 * removes them from paging queues. Don't free wired pages, just
425 * remove them from the object.
427 crit_enter();
428 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
429 vm_object_terminate_callback, NULL);
430 crit_exit();
433 * Let the pager know object is dead.
435 vm_pager_deallocate(object);
438 * Remove the object from the global object list.
440 crit_enter();
441 TAILQ_REMOVE(&vm_object_list, object, object_list);
442 vm_object_count--;
443 crit_exit();
445 vm_object_dead_wakeup(object);
446 if (object->ref_count != 0)
447 panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
450 * Free the space for the object.
452 zfree(obj_zone, object);
455 static int
456 vm_object_terminate_callback(vm_page_t p, void *data __unused)
458 if (p->busy || (p->flags & PG_BUSY))
459 panic("vm_object_terminate: freeing busy page %p", p);
460 if (p->wire_count == 0) {
461 vm_page_busy(p);
462 vm_page_free(p);
463 mycpu->gd_cnt.v_pfree++;
464 } else {
465 if (p->queue != PQ_NONE)
466 kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
467 vm_page_busy(p);
468 vm_page_remove(p);
469 vm_page_wakeup(p);
471 return(0);
475 * The object is dead but still has an object<->pager association. Sleep
476 * and return. The caller typically retests the association in a loop.
478 void
479 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
481 crit_enter();
482 if (object->handle) {
483 vm_object_set_flag(object, OBJ_DEADWNT);
484 tsleep(object, 0, wmesg, 0);
486 crit_exit();
490 * Wakeup anyone waiting for the object<->pager disassociation on
491 * a dead object.
493 void
494 vm_object_dead_wakeup(vm_object_t object)
496 if (object->flags & OBJ_DEADWNT) {
497 vm_object_clear_flag(object, OBJ_DEADWNT);
498 wakeup(object);
503 * vm_object_page_clean
505 * Clean all dirty pages in the specified range of object. Leaves page
506 * on whatever queue it is currently on. If NOSYNC is set then do not
507 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
508 * leaving the object dirty.
510 * When stuffing pages asynchronously, allow clustering. XXX we need a
511 * synchronous clustering mode implementation.
513 * Odd semantics: if start == end, we clean everything.
515 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
516 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
518 void
519 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
520 int flags)
522 struct rb_vm_page_scan_info info;
523 struct vnode *vp;
524 int wholescan;
525 int pagerflags;
526 int curgeneration;
528 if (object->type != OBJT_VNODE ||
529 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
530 return;
532 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
533 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
534 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
536 vp = object->handle;
539 * Interlock other major object operations. This allows us to
540 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
542 crit_enter();
543 vm_object_set_flag(object, OBJ_CLEANING);
546 * Handle 'entire object' case
548 info.start_pindex = start;
549 if (end == 0) {
550 info.end_pindex = object->size - 1;
551 } else {
552 info.end_pindex = end - 1;
554 wholescan = (start == 0 && info.end_pindex == object->size - 1);
555 info.limit = flags;
556 info.pagerflags = pagerflags;
557 info.object = object;
560 * If cleaning the entire object do a pass to mark the pages read-only.
561 * If everything worked out ok, clear OBJ_WRITEABLE and
562 * OBJ_MIGHTBEDIRTY.
564 if (wholescan) {
565 info.error = 0;
566 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
567 vm_object_page_clean_pass1, &info);
568 if (info.error == 0) {
569 vm_object_clear_flag(object,
570 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
571 if (object->type == OBJT_VNODE &&
572 (vp = (struct vnode *)object->handle) != NULL) {
573 if (vp->v_flag & VOBJDIRTY)
574 vclrflags(vp, VOBJDIRTY);
580 * Do a pass to clean all the dirty pages we find.
582 do {
583 info.error = 0;
584 curgeneration = object->generation;
585 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
586 vm_object_page_clean_pass2, &info);
587 } while (info.error || curgeneration != object->generation);
589 vm_object_clear_flag(object, OBJ_CLEANING);
590 crit_exit();
593 static
595 vm_object_page_clean_pass1(struct vm_page *p, void *data)
597 struct rb_vm_page_scan_info *info = data;
599 vm_page_flag_set(p, PG_CLEANCHK);
600 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
601 info->error = 1;
602 else
603 vm_page_protect(p, VM_PROT_READ); /* must not block */
604 return(0);
607 static
609 vm_object_page_clean_pass2(struct vm_page *p, void *data)
611 struct rb_vm_page_scan_info *info = data;
612 int n;
615 * Do not mess with pages that were inserted after we started
616 * the cleaning pass.
618 if ((p->flags & PG_CLEANCHK) == 0)
619 return(0);
622 * Before wasting time traversing the pmaps, check for trivial
623 * cases where the page cannot be dirty.
625 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
626 KKASSERT((p->dirty & p->valid) == 0);
627 return(0);
631 * Check whether the page is dirty or not. The page has been set
632 * to be read-only so the check will not race a user dirtying the
633 * page.
635 vm_page_test_dirty(p);
636 if ((p->dirty & p->valid) == 0) {
637 vm_page_flag_clear(p, PG_CLEANCHK);
638 return(0);
642 * If we have been asked to skip nosync pages and this is a
643 * nosync page, skip it. Note that the object flags were
644 * not cleared in this case (because pass1 will have returned an
645 * error), so we do not have to set them.
647 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
648 vm_page_flag_clear(p, PG_CLEANCHK);
649 return(0);
653 * Flush as many pages as we can. PG_CLEANCHK will be cleared on
654 * the pages that get successfully flushed. Set info->error if
655 * we raced an object modification.
657 n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
658 if (n == 0)
659 info->error = 1;
660 return(0);
664 * This routine must be called within a critical section to properly avoid
665 * an interrupt unbusy/free race that can occur prior to the busy check.
667 * Using the object generation number here to detect page ripout is not
668 * the best idea in the world. XXX
670 * NOTE: we operate under the assumption that a page found to not be busy
671 * will not be ripped out from under us by an interrupt. XXX we should
672 * recode this to explicitly busy the pages.
674 static int
675 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
677 int runlen;
678 int maxf;
679 int chkb;
680 int maxb;
681 int i;
682 int curgeneration;
683 vm_pindex_t pi;
684 vm_page_t maf[vm_pageout_page_count];
685 vm_page_t mab[vm_pageout_page_count];
686 vm_page_t ma[vm_pageout_page_count];
688 curgeneration = object->generation;
690 pi = p->pindex;
691 while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
692 if (object->generation != curgeneration) {
693 return(0);
696 KKASSERT(p->object == object && p->pindex == pi);
698 maxf = 0;
699 for(i = 1; i < vm_pageout_page_count; i++) {
700 vm_page_t tp;
702 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
703 if ((tp->flags & PG_BUSY) ||
704 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
705 (tp->flags & PG_CLEANCHK) == 0) ||
706 (tp->busy != 0))
707 break;
708 if((tp->queue - tp->pc) == PQ_CACHE) {
709 vm_page_flag_clear(tp, PG_CLEANCHK);
710 break;
712 vm_page_test_dirty(tp);
713 if ((tp->dirty & tp->valid) == 0) {
714 vm_page_flag_clear(tp, PG_CLEANCHK);
715 break;
717 maf[ i - 1 ] = tp;
718 maxf++;
719 continue;
721 break;
724 maxb = 0;
725 chkb = vm_pageout_page_count - maxf;
726 if (chkb) {
727 for(i = 1; i < chkb;i++) {
728 vm_page_t tp;
730 if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
731 if ((tp->flags & PG_BUSY) ||
732 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
733 (tp->flags & PG_CLEANCHK) == 0) ||
734 (tp->busy != 0))
735 break;
736 if((tp->queue - tp->pc) == PQ_CACHE) {
737 vm_page_flag_clear(tp, PG_CLEANCHK);
738 break;
740 vm_page_test_dirty(tp);
741 if ((tp->dirty & tp->valid) == 0) {
742 vm_page_flag_clear(tp, PG_CLEANCHK);
743 break;
745 mab[ i - 1 ] = tp;
746 maxb++;
747 continue;
749 break;
753 for(i = 0; i < maxb; i++) {
754 int index = (maxb - i) - 1;
755 ma[index] = mab[i];
756 vm_page_flag_clear(ma[index], PG_CLEANCHK);
758 vm_page_flag_clear(p, PG_CLEANCHK);
759 ma[maxb] = p;
760 for(i = 0; i < maxf; i++) {
761 int index = (maxb + i) + 1;
762 ma[index] = maf[i];
763 vm_page_flag_clear(ma[index], PG_CLEANCHK);
765 runlen = maxb + maxf + 1;
767 vm_pageout_flush(ma, runlen, pagerflags);
768 for (i = 0; i < runlen; i++) {
769 if (ma[i]->valid & ma[i]->dirty) {
770 vm_page_protect(ma[i], VM_PROT_READ);
771 vm_page_flag_set(ma[i], PG_CLEANCHK);
774 * maxf will end up being the actual number of pages
775 * we wrote out contiguously, non-inclusive of the
776 * first page. We do not count look-behind pages.
778 if (i >= maxb + 1 && (maxf > i - maxb - 1))
779 maxf = i - maxb - 1;
782 return(maxf + 1);
785 #ifdef not_used
786 /* XXX I cannot tell if this should be an exported symbol */
788 * vm_object_deactivate_pages
790 * Deactivate all pages in the specified object. (Keep its pages
791 * in memory even though it is no longer referenced.)
793 * The object must be locked.
795 static int vm_object_deactivate_pages_callback(vm_page_t p, void *data);
797 static void
798 vm_object_deactivate_pages(vm_object_t object)
800 crit_enter();
801 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
802 vm_object_deactivate_pages_callback, NULL);
803 crit_exit();
806 static int
807 vm_object_deactivate_pages_callback(vm_page_t p, void *data __unused)
809 vm_page_deactivate(p);
810 return(0);
813 #endif
816 * Same as vm_object_pmap_copy, except range checking really
817 * works, and is meant for small sections of an object.
819 * This code protects resident pages by making them read-only
820 * and is typically called on a fork or split when a page
821 * is converted to copy-on-write.
823 * NOTE: If the page is already at VM_PROT_NONE, calling
824 * vm_page_protect will have no effect.
826 void
827 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
829 vm_pindex_t idx;
830 vm_page_t p;
832 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
833 return;
836 * spl protection needed to prevent races between the lookup,
837 * an interrupt unbusy/free, and our protect call.
839 crit_enter();
840 for (idx = start; idx < end; idx++) {
841 p = vm_page_lookup(object, idx);
842 if (p == NULL)
843 continue;
844 vm_page_protect(p, VM_PROT_READ);
846 crit_exit();
850 * vm_object_pmap_remove:
852 * Removes all physical pages in the specified
853 * object range from all physical maps.
855 * The object must *not* be locked.
858 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
860 void
861 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
863 struct rb_vm_page_scan_info info;
865 if (object == NULL)
866 return;
867 info.start_pindex = start;
868 info.end_pindex = end - 1;
869 crit_enter();
870 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
871 vm_object_pmap_remove_callback, &info);
872 if (start == 0 && end == object->size)
873 vm_object_clear_flag(object, OBJ_WRITEABLE);
874 crit_exit();
877 static int
878 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
880 vm_page_protect(p, VM_PROT_NONE);
881 return(0);
885 * vm_object_madvise:
887 * Implements the madvise function at the object/page level.
889 * MADV_WILLNEED (any object)
891 * Activate the specified pages if they are resident.
893 * MADV_DONTNEED (any object)
895 * Deactivate the specified pages if they are resident.
897 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
898 * OBJ_ONEMAPPING only)
900 * Deactivate and clean the specified pages if they are
901 * resident. This permits the process to reuse the pages
902 * without faulting or the kernel to reclaim the pages
903 * without I/O.
905 void
906 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
908 vm_pindex_t end, tpindex;
909 vm_object_t tobject;
910 vm_page_t m;
912 if (object == NULL)
913 return;
915 end = pindex + count;
918 * Locate and adjust resident pages
921 for (; pindex < end; pindex += 1) {
922 relookup:
923 tobject = object;
924 tpindex = pindex;
925 shadowlookup:
927 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
928 * and those pages must be OBJ_ONEMAPPING.
930 if (advise == MADV_FREE) {
931 if ((tobject->type != OBJT_DEFAULT &&
932 tobject->type != OBJT_SWAP) ||
933 (tobject->flags & OBJ_ONEMAPPING) == 0) {
934 continue;
939 * spl protection is required to avoid a race between the
940 * lookup, an interrupt unbusy/free, and our busy check.
943 crit_enter();
944 m = vm_page_lookup(tobject, tpindex);
946 if (m == NULL) {
948 * There may be swap even if there is no backing page
950 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
951 swap_pager_freespace(tobject, tpindex, 1);
954 * next object
956 crit_exit();
957 if (tobject->backing_object == NULL)
958 continue;
959 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
960 tobject = tobject->backing_object;
961 goto shadowlookup;
965 * If the page is busy or not in a normal active state,
966 * we skip it. If the page is not managed there are no
967 * page queues to mess with. Things can break if we mess
968 * with pages in any of the below states.
970 if (
971 m->hold_count ||
972 m->wire_count ||
973 (m->flags & PG_UNMANAGED) ||
974 m->valid != VM_PAGE_BITS_ALL
976 crit_exit();
977 continue;
980 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
981 crit_exit();
982 goto relookup;
984 crit_exit();
987 * Theoretically once a page is known not to be busy, an
988 * interrupt cannot come along and rip it out from under us.
991 if (advise == MADV_WILLNEED) {
992 vm_page_activate(m);
993 } else if (advise == MADV_DONTNEED) {
994 vm_page_dontneed(m);
995 } else if (advise == MADV_FREE) {
997 * Mark the page clean. This will allow the page
998 * to be freed up by the system. However, such pages
999 * are often reused quickly by malloc()/free()
1000 * so we do not do anything that would cause
1001 * a page fault if we can help it.
1003 * Specifically, we do not try to actually free
1004 * the page now nor do we try to put it in the
1005 * cache (which would cause a page fault on reuse).
1007 * But we do make the page is freeable as we
1008 * can without actually taking the step of unmapping
1009 * it.
1011 pmap_clear_modify(m);
1012 m->dirty = 0;
1013 m->act_count = 0;
1014 vm_page_dontneed(m);
1015 if (tobject->type == OBJT_SWAP)
1016 swap_pager_freespace(tobject, tpindex, 1);
1022 * vm_object_shadow:
1024 * Create a new object which is backed by the
1025 * specified existing object range. The source
1026 * object reference is deallocated.
1028 * The new object and offset into that object
1029 * are returned in the source parameters.
1032 void
1033 vm_object_shadow(vm_object_t *object, /* IN/OUT */
1034 vm_ooffset_t *offset, /* IN/OUT */
1035 vm_size_t length)
1037 vm_object_t source;
1038 vm_object_t result;
1040 source = *object;
1043 * Don't create the new object if the old object isn't shared.
1046 if (source != NULL &&
1047 source->ref_count == 1 &&
1048 source->handle == NULL &&
1049 (source->type == OBJT_DEFAULT ||
1050 source->type == OBJT_SWAP))
1051 return;
1054 * Allocate a new object with the given length
1057 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1058 panic("vm_object_shadow: no object for shadowing");
1061 * The new object shadows the source object, adding a reference to it.
1062 * Our caller changes his reference to point to the new object,
1063 * removing a reference to the source object. Net result: no change
1064 * of reference count.
1066 * Try to optimize the result object's page color when shadowing
1067 * in order to maintain page coloring consistency in the combined
1068 * shadowed object.
1070 result->backing_object = source;
1071 if (source) {
1072 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1073 source->shadow_count++;
1074 source->generation++;
1075 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1079 * Store the offset into the source object, and fix up the offset into
1080 * the new object.
1083 result->backing_object_offset = *offset;
1086 * Return the new things
1089 *offset = 0;
1090 *object = result;
1093 #define OBSC_TEST_ALL_SHADOWED 0x0001
1094 #define OBSC_COLLAPSE_NOWAIT 0x0002
1095 #define OBSC_COLLAPSE_WAIT 0x0004
1097 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1099 static __inline int
1100 vm_object_backing_scan(vm_object_t object, int op)
1102 struct rb_vm_page_scan_info info;
1103 vm_object_t backing_object;
1106 * spl protection is required to avoid races between the memq/lookup,
1107 * an interrupt doing an unbusy/free, and our busy check. Amoung
1108 * other things.
1110 crit_enter();
1112 backing_object = object->backing_object;
1113 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1116 * Initial conditions
1119 if (op & OBSC_TEST_ALL_SHADOWED) {
1121 * We do not want to have to test for the existence of
1122 * swap pages in the backing object. XXX but with the
1123 * new swapper this would be pretty easy to do.
1125 * XXX what about anonymous MAP_SHARED memory that hasn't
1126 * been ZFOD faulted yet? If we do not test for this, the
1127 * shadow test may succeed! XXX
1129 if (backing_object->type != OBJT_DEFAULT) {
1130 crit_exit();
1131 return(0);
1134 if (op & OBSC_COLLAPSE_WAIT) {
1135 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1136 vm_object_set_flag(backing_object, OBJ_DEAD);
1140 * Our scan. We have to retry if a negative error code is returned,
1141 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that
1142 * the scan had to be stopped because the parent does not completely
1143 * shadow the child.
1145 info.object = object;
1146 info.backing_object = backing_object;
1147 info.limit = op;
1148 do {
1149 info.error = 1;
1150 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1151 vm_object_backing_scan_callback,
1152 &info);
1153 } while (info.error < 0);
1154 crit_exit();
1155 return(info.error);
1158 static int
1159 vm_object_backing_scan_callback(vm_page_t p, void *data)
1161 struct rb_vm_page_scan_info *info = data;
1162 vm_object_t backing_object;
1163 vm_object_t object;
1164 vm_pindex_t new_pindex;
1165 vm_pindex_t backing_offset_index;
1166 int op;
1168 new_pindex = p->pindex - info->backing_offset_index;
1169 op = info->limit;
1170 object = info->object;
1171 backing_object = info->backing_object;
1172 backing_offset_index = info->backing_offset_index;
1174 if (op & OBSC_TEST_ALL_SHADOWED) {
1175 vm_page_t pp;
1178 * Ignore pages outside the parent object's range
1179 * and outside the parent object's mapping of the
1180 * backing object.
1182 * note that we do not busy the backing object's
1183 * page.
1185 if (
1186 p->pindex < backing_offset_index ||
1187 new_pindex >= object->size
1189 return(0);
1193 * See if the parent has the page or if the parent's
1194 * object pager has the page. If the parent has the
1195 * page but the page is not valid, the parent's
1196 * object pager must have the page.
1198 * If this fails, the parent does not completely shadow
1199 * the object and we might as well give up now.
1202 pp = vm_page_lookup(object, new_pindex);
1203 if ((pp == NULL || pp->valid == 0) &&
1204 !vm_pager_has_page(object, new_pindex)
1206 info->error = 0; /* problemo */
1207 return(-1); /* stop the scan */
1212 * Check for busy page
1215 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1216 vm_page_t pp;
1218 if (op & OBSC_COLLAPSE_NOWAIT) {
1219 if (
1220 (p->flags & PG_BUSY) ||
1221 !p->valid ||
1222 p->hold_count ||
1223 p->wire_count ||
1224 p->busy
1226 return(0);
1228 } else if (op & OBSC_COLLAPSE_WAIT) {
1229 if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1231 * If we slept, anything could have
1232 * happened. Ask that the scan be restarted.
1234 * Since the object is marked dead, the
1235 * backing offset should not have changed.
1237 info->error = -1;
1238 return(-1);
1243 * Busy the page
1245 vm_page_busy(p);
1247 KASSERT(
1248 p->object == backing_object,
1249 ("vm_object_qcollapse(): object mismatch")
1253 * Destroy any associated swap
1255 if (backing_object->type == OBJT_SWAP) {
1256 swap_pager_freespace(
1257 backing_object,
1258 p->pindex,
1263 if (
1264 p->pindex < backing_offset_index ||
1265 new_pindex >= object->size
1268 * Page is out of the parent object's range, we
1269 * can simply destroy it.
1271 vm_page_protect(p, VM_PROT_NONE);
1272 vm_page_free(p);
1273 return(0);
1276 pp = vm_page_lookup(object, new_pindex);
1277 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1279 * page already exists in parent OR swap exists
1280 * for this location in the parent. Destroy
1281 * the original page from the backing object.
1283 * Leave the parent's page alone
1285 vm_page_protect(p, VM_PROT_NONE);
1286 vm_page_free(p);
1287 return(0);
1291 * Page does not exist in parent, rename the
1292 * page from the backing object to the main object.
1294 * If the page was mapped to a process, it can remain
1295 * mapped through the rename.
1297 if ((p->queue - p->pc) == PQ_CACHE)
1298 vm_page_deactivate(p);
1300 vm_page_rename(p, object, new_pindex);
1301 /* page automatically made dirty by rename */
1303 return(0);
1307 * this version of collapse allows the operation to occur earlier and
1308 * when paging_in_progress is true for an object... This is not a complete
1309 * operation, but should plug 99.9% of the rest of the leaks.
1311 static void
1312 vm_object_qcollapse(vm_object_t object)
1314 vm_object_t backing_object = object->backing_object;
1316 if (backing_object->ref_count != 1)
1317 return;
1319 backing_object->ref_count += 2;
1321 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1323 backing_object->ref_count -= 2;
1327 * vm_object_collapse:
1329 * Collapse an object with the object backing it.
1330 * Pages in the backing object are moved into the
1331 * parent, and the backing object is deallocated.
1333 void
1334 vm_object_collapse(vm_object_t object)
1336 while (TRUE) {
1337 vm_object_t backing_object;
1340 * Verify that the conditions are right for collapse:
1342 * The object exists and the backing object exists.
1344 if (object == NULL)
1345 break;
1347 if ((backing_object = object->backing_object) == NULL)
1348 break;
1351 * we check the backing object first, because it is most likely
1352 * not collapsable.
1354 if (backing_object->handle != NULL ||
1355 (backing_object->type != OBJT_DEFAULT &&
1356 backing_object->type != OBJT_SWAP) ||
1357 (backing_object->flags & OBJ_DEAD) ||
1358 object->handle != NULL ||
1359 (object->type != OBJT_DEFAULT &&
1360 object->type != OBJT_SWAP) ||
1361 (object->flags & OBJ_DEAD)) {
1362 break;
1365 if (
1366 object->paging_in_progress != 0 ||
1367 backing_object->paging_in_progress != 0
1369 vm_object_qcollapse(object);
1370 break;
1374 * We know that we can either collapse the backing object (if
1375 * the parent is the only reference to it) or (perhaps) have
1376 * the parent bypass the object if the parent happens to shadow
1377 * all the resident pages in the entire backing object.
1379 * This is ignoring pager-backed pages such as swap pages.
1380 * vm_object_backing_scan fails the shadowing test in this
1381 * case.
1384 if (backing_object->ref_count == 1) {
1386 * If there is exactly one reference to the backing
1387 * object, we can collapse it into the parent.
1389 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1392 * Move the pager from backing_object to object.
1395 if (backing_object->type == OBJT_SWAP) {
1396 vm_object_pip_add(backing_object, 1);
1399 * scrap the paging_offset junk and do a
1400 * discrete copy. This also removes major
1401 * assumptions about how the swap-pager
1402 * works from where it doesn't belong. The
1403 * new swapper is able to optimize the
1404 * destroy-source case.
1407 vm_object_pip_add(object, 1);
1408 swap_pager_copy(
1409 backing_object,
1410 object,
1411 OFF_TO_IDX(object->backing_object_offset), TRUE);
1412 vm_object_pip_wakeup(object);
1414 vm_object_pip_wakeup(backing_object);
1417 * Object now shadows whatever backing_object did.
1418 * Note that the reference to
1419 * backing_object->backing_object moves from within
1420 * backing_object to within object.
1423 LIST_REMOVE(object, shadow_list);
1424 object->backing_object->shadow_count--;
1425 object->backing_object->generation++;
1426 if (backing_object->backing_object) {
1427 LIST_REMOVE(backing_object, shadow_list);
1428 backing_object->backing_object->shadow_count--;
1429 backing_object->backing_object->generation++;
1431 object->backing_object = backing_object->backing_object;
1432 if (object->backing_object) {
1433 LIST_INSERT_HEAD(
1434 &object->backing_object->shadow_head,
1435 object,
1436 shadow_list
1438 object->backing_object->shadow_count++;
1439 object->backing_object->generation++;
1442 object->backing_object_offset +=
1443 backing_object->backing_object_offset;
1446 * Discard backing_object.
1448 * Since the backing object has no pages, no pager left,
1449 * and no object references within it, all that is
1450 * necessary is to dispose of it.
1453 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1454 KASSERT(RB_EMPTY(&backing_object->rb_memq), ("backing_object %p somehow has left over pages during collapse!", backing_object));
1455 crit_enter();
1456 TAILQ_REMOVE(
1457 &vm_object_list,
1458 backing_object,
1459 object_list
1461 vm_object_count--;
1462 crit_exit();
1464 zfree(obj_zone, backing_object);
1466 object_collapses++;
1467 } else {
1468 vm_object_t new_backing_object;
1471 * If we do not entirely shadow the backing object,
1472 * there is nothing we can do so we give up.
1475 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1476 break;
1480 * Make the parent shadow the next object in the
1481 * chain. Deallocating backing_object will not remove
1482 * it, since its reference count is at least 2.
1485 LIST_REMOVE(object, shadow_list);
1486 backing_object->shadow_count--;
1487 backing_object->generation++;
1489 new_backing_object = backing_object->backing_object;
1490 if ((object->backing_object = new_backing_object) != NULL) {
1491 vm_object_reference(new_backing_object);
1492 LIST_INSERT_HEAD(
1493 &new_backing_object->shadow_head,
1494 object,
1495 shadow_list
1497 new_backing_object->shadow_count++;
1498 new_backing_object->generation++;
1499 object->backing_object_offset +=
1500 backing_object->backing_object_offset;
1504 * Drop the reference count on backing_object. Since
1505 * its ref_count was at least 2, it will not vanish;
1506 * so we don't need to call vm_object_deallocate, but
1507 * we do anyway.
1509 vm_object_deallocate(backing_object);
1510 object_bypasses++;
1514 * Try again with this object's new backing object.
1520 * vm_object_page_remove: [internal]
1522 * Removes all physical pages in the specified
1523 * object range from the object's list of pages.
1525 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1527 void
1528 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1529 boolean_t clean_only)
1531 struct rb_vm_page_scan_info info;
1532 int all;
1535 * Degenerate cases and assertions
1537 if (object == NULL || object->resident_page_count == 0)
1538 return;
1539 KASSERT(object->type != OBJT_PHYS,
1540 ("attempt to remove pages from a physical object"));
1543 * Indicate that paging is occuring on the object
1545 crit_enter();
1546 vm_object_pip_add(object, 1);
1549 * Figure out the actual removal range and whether we are removing
1550 * the entire contents of the object or not. If removing the entire
1551 * contents, be sure to get all pages, even those that might be
1552 * beyond the end of the object.
1554 info.start_pindex = start;
1555 if (end == 0)
1556 info.end_pindex = (vm_pindex_t)-1;
1557 else
1558 info.end_pindex = end - 1;
1559 info.limit = clean_only;
1560 all = (start == 0 && info.end_pindex >= object->size - 1);
1563 * Loop until we are sure we have gotten them all.
1565 do {
1566 info.error = 0;
1567 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1568 vm_object_page_remove_callback, &info);
1569 } while (info.error);
1572 * Cleanup
1574 vm_object_pip_wakeup(object);
1575 crit_exit();
1578 static int
1579 vm_object_page_remove_callback(vm_page_t p, void *data)
1581 struct rb_vm_page_scan_info *info = data;
1584 * Wired pages cannot be destroyed, but they can be invalidated
1585 * and we do so if clean_only (limit) is not set.
1587 * WARNING! The page may be wired due to being part of a buffer
1588 * cache buffer, and the buffer might be marked B_CACHE.
1589 * This is fine as part of a truncation but VFSs must be
1590 * sure to fix the buffer up when re-extending the file.
1592 if (p->wire_count != 0) {
1593 vm_page_protect(p, VM_PROT_NONE);
1594 if (info->limit == 0)
1595 p->valid = 0;
1596 return(0);
1600 * The busy flags are only cleared at
1601 * interrupt -- minimize the spl transitions
1604 if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1605 info->error = 1;
1606 return(0);
1610 * limit is our clean_only flag. If set and the page is dirty, do
1611 * not free it. If set and the page is being held by someone, do
1612 * not free it.
1614 if (info->limit && p->valid) {
1615 vm_page_test_dirty(p);
1616 if (p->valid & p->dirty)
1617 return(0);
1618 if (p->hold_count)
1619 return(0);
1623 * Destroy the page
1625 vm_page_busy(p);
1626 vm_page_protect(p, VM_PROT_NONE);
1627 vm_page_free(p);
1628 return(0);
1632 * Routine: vm_object_coalesce
1633 * Function: Coalesces two objects backing up adjoining
1634 * regions of memory into a single object.
1636 * returns TRUE if objects were combined.
1638 * NOTE: Only works at the moment if the second object is NULL -
1639 * if it's not, which object do we lock first?
1641 * Parameters:
1642 * prev_object First object to coalesce
1643 * prev_offset Offset into prev_object
1644 * next_object Second object into coalesce
1645 * next_offset Offset into next_object
1647 * prev_size Size of reference to prev_object
1648 * next_size Size of reference to next_object
1650 * Conditions:
1651 * The object must *not* be locked.
1653 boolean_t
1654 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1655 vm_size_t prev_size, vm_size_t next_size)
1657 vm_pindex_t next_pindex;
1659 if (prev_object == NULL) {
1660 return (TRUE);
1663 if (prev_object->type != OBJT_DEFAULT &&
1664 prev_object->type != OBJT_SWAP) {
1665 return (FALSE);
1669 * Try to collapse the object first
1671 vm_object_collapse(prev_object);
1674 * Can't coalesce if: . more than one reference . paged out . shadows
1675 * another object . has a copy elsewhere (any of which mean that the
1676 * pages not mapped to prev_entry may be in use anyway)
1679 if (prev_object->backing_object != NULL) {
1680 return (FALSE);
1683 prev_size >>= PAGE_SHIFT;
1684 next_size >>= PAGE_SHIFT;
1685 next_pindex = prev_pindex + prev_size;
1687 if ((prev_object->ref_count > 1) &&
1688 (prev_object->size != next_pindex)) {
1689 return (FALSE);
1693 * Remove any pages that may still be in the object from a previous
1694 * deallocation.
1696 if (next_pindex < prev_object->size) {
1697 vm_object_page_remove(prev_object,
1698 next_pindex,
1699 next_pindex + next_size, FALSE);
1700 if (prev_object->type == OBJT_SWAP)
1701 swap_pager_freespace(prev_object,
1702 next_pindex, next_size);
1706 * Extend the object if necessary.
1708 if (next_pindex + next_size > prev_object->size)
1709 prev_object->size = next_pindex + next_size;
1711 return (TRUE);
1714 void
1715 vm_object_set_writeable_dirty(vm_object_t object)
1717 struct vnode *vp;
1719 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1720 if (object->type == OBJT_VNODE &&
1721 (vp = (struct vnode *)object->handle) != NULL) {
1722 if ((vp->v_flag & VOBJDIRTY) == 0) {
1723 vsetflags(vp, VOBJDIRTY);
1730 #include "opt_ddb.h"
1731 #ifdef DDB
1732 #include <sys/kernel.h>
1734 #include <sys/cons.h>
1736 #include <ddb/ddb.h>
1738 static int _vm_object_in_map (vm_map_t map, vm_object_t object,
1739 vm_map_entry_t entry);
1740 static int vm_object_in_map (vm_object_t object);
1742 static int
1743 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1745 vm_map_t tmpm;
1746 vm_map_entry_t tmpe;
1747 vm_object_t obj;
1748 int entcount;
1750 if (map == 0)
1751 return 0;
1752 if (entry == 0) {
1753 tmpe = map->header.next;
1754 entcount = map->nentries;
1755 while (entcount-- && (tmpe != &map->header)) {
1756 if( _vm_object_in_map(map, object, tmpe)) {
1757 return 1;
1759 tmpe = tmpe->next;
1761 return (0);
1763 switch(entry->maptype) {
1764 case VM_MAPTYPE_SUBMAP:
1765 tmpm = entry->object.sub_map;
1766 tmpe = tmpm->header.next;
1767 entcount = tmpm->nentries;
1768 while (entcount-- && tmpe != &tmpm->header) {
1769 if( _vm_object_in_map(tmpm, object, tmpe)) {
1770 return 1;
1772 tmpe = tmpe->next;
1774 break;
1775 case VM_MAPTYPE_NORMAL:
1776 case VM_MAPTYPE_VPAGETABLE:
1777 obj = entry->object.vm_object;
1778 while (obj) {
1779 if (obj == object)
1780 return 1;
1781 obj = obj->backing_object;
1783 break;
1784 default:
1785 break;
1787 return 0;
1790 static int vm_object_in_map_callback(struct proc *p, void *data);
1792 struct vm_object_in_map_info {
1793 vm_object_t object;
1794 int rv;
1797 static int
1798 vm_object_in_map(vm_object_t object)
1800 struct vm_object_in_map_info info;
1802 info.rv = 0;
1803 info.object = object;
1805 allproc_scan(vm_object_in_map_callback, &info);
1806 if (info.rv)
1807 return 1;
1808 if( _vm_object_in_map(&kernel_map, object, 0))
1809 return 1;
1810 if( _vm_object_in_map(&pager_map, object, 0))
1811 return 1;
1812 if( _vm_object_in_map(&buffer_map, object, 0))
1813 return 1;
1814 return 0;
1817 static int
1818 vm_object_in_map_callback(struct proc *p, void *data)
1820 struct vm_object_in_map_info *info = data;
1822 if (p->p_vmspace) {
1823 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1824 info->rv = 1;
1825 return -1;
1828 return (0);
1831 DB_SHOW_COMMAND(vmochk, vm_object_check)
1833 vm_object_t object;
1836 * make sure that internal objs are in a map somewhere
1837 * and none have zero ref counts.
1839 for (object = TAILQ_FIRST(&vm_object_list);
1840 object != NULL;
1841 object = TAILQ_NEXT(object, object_list)) {
1842 if (object->handle == NULL &&
1843 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1844 if (object->ref_count == 0) {
1845 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1846 (long)object->size);
1848 if (!vm_object_in_map(object)) {
1849 db_printf(
1850 "vmochk: internal obj is not in a map: "
1851 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1852 object->ref_count, (u_long)object->size,
1853 (u_long)object->size,
1854 (void *)object->backing_object);
1861 * vm_object_print: [ debug ]
1863 DB_SHOW_COMMAND(object, vm_object_print_static)
1865 /* XXX convert args. */
1866 vm_object_t object = (vm_object_t)addr;
1867 boolean_t full = have_addr;
1869 vm_page_t p;
1871 /* XXX count is an (unused) arg. Avoid shadowing it. */
1872 #define count was_count
1874 int count;
1876 if (object == NULL)
1877 return;
1879 db_iprintf(
1880 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1881 object, (int)object->type, (u_long)object->size,
1882 object->resident_page_count, object->ref_count, object->flags);
1884 * XXX no %qd in kernel. Truncate object->backing_object_offset.
1886 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1887 object->shadow_count,
1888 object->backing_object ? object->backing_object->ref_count : 0,
1889 object->backing_object, (long)object->backing_object_offset);
1891 if (!full)
1892 return;
1894 db_indent += 2;
1895 count = 0;
1896 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1897 if (count == 0)
1898 db_iprintf("memory:=");
1899 else if (count == 6) {
1900 db_printf("\n");
1901 db_iprintf(" ...");
1902 count = 0;
1903 } else
1904 db_printf(",");
1905 count++;
1907 db_printf("(off=0x%lx,page=0x%lx)",
1908 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1910 if (count != 0)
1911 db_printf("\n");
1912 db_indent -= 2;
1915 /* XXX. */
1916 #undef count
1918 /* XXX need this non-static entry for calling from vm_map_print. */
1919 void
1920 vm_object_print(/* db_expr_t */ long addr,
1921 boolean_t have_addr,
1922 /* db_expr_t */ long count,
1923 char *modif)
1925 vm_object_print_static(addr, have_addr, count, modif);
1928 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1930 vm_object_t object;
1931 int nl = 0;
1932 int c;
1933 for (object = TAILQ_FIRST(&vm_object_list);
1934 object != NULL;
1935 object = TAILQ_NEXT(object, object_list)) {
1936 vm_pindex_t idx, fidx;
1937 vm_pindex_t osize;
1938 vm_paddr_t pa = -1, padiff;
1939 int rcount;
1940 vm_page_t m;
1942 db_printf("new object: %p\n", (void *)object);
1943 if ( nl > 18) {
1944 c = cngetc();
1945 if (c != ' ')
1946 return;
1947 nl = 0;
1949 nl++;
1950 rcount = 0;
1951 fidx = 0;
1952 osize = object->size;
1953 if (osize > 128)
1954 osize = 128;
1955 for (idx = 0; idx < osize; idx++) {
1956 m = vm_page_lookup(object, idx);
1957 if (m == NULL) {
1958 if (rcount) {
1959 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1960 (long)fidx, rcount, (long)pa);
1961 if ( nl > 18) {
1962 c = cngetc();
1963 if (c != ' ')
1964 return;
1965 nl = 0;
1967 nl++;
1968 rcount = 0;
1970 continue;
1974 if (rcount &&
1975 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1976 ++rcount;
1977 continue;
1979 if (rcount) {
1980 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1981 padiff >>= PAGE_SHIFT;
1982 padiff &= PQ_L2_MASK;
1983 if (padiff == 0) {
1984 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1985 ++rcount;
1986 continue;
1988 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1989 (long)fidx, rcount, (long)pa);
1990 db_printf("pd(%ld)\n", (long)padiff);
1991 if ( nl > 18) {
1992 c = cngetc();
1993 if (c != ' ')
1994 return;
1995 nl = 0;
1997 nl++;
1999 fidx = idx;
2000 pa = VM_PAGE_TO_PHYS(m);
2001 rcount = 1;
2003 if (rcount) {
2004 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2005 (long)fidx, rcount, (long)pa);
2006 if ( nl > 18) {
2007 c = cngetc();
2008 if (c != ' ')
2009 return;
2010 nl = 0;
2012 nl++;
2016 #endif /* DDB */