2 * Copyright (c) 1994,1997 John S. Dyson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme. Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
23 * Author: John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
27 * see man buf(9) for more info. Note that man buf(9) doesn't reflect
28 * the actual buf/bio implementation in DragonFly.
31 #include <sys/param.h>
32 #include <sys/systm.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <sys/mplock2.h>
64 #include <vm/vm_page2.h>
75 BQUEUE_NONE
, /* not on any queue */
76 BQUEUE_LOCKED
, /* locked buffers */
77 BQUEUE_CLEAN
, /* non-B_DELWRI buffers */
78 BQUEUE_DIRTY
, /* B_DELWRI buffers */
79 BQUEUE_DIRTY_HW
, /* B_DELWRI buffers - heavy weight */
80 BQUEUE_EMPTY
, /* empty buffer headers */
82 BUFFER_QUEUES
/* number of buffer queues */
85 typedef enum bufq_type bufq_type_t
;
87 #define BD_WAKE_SIZE 16384
88 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
90 TAILQ_HEAD(bqueues
, buf
);
94 struct bqueues bufqueues
[BUFFER_QUEUES
];
97 struct bufpcpu bufpcpu
[MAXCPU
];
99 static MALLOC_DEFINE(M_BIOBUF
, "BIO buffer", "BIO buffer");
101 struct buf
*buf
; /* buffer header pool */
103 static void vfs_clean_pages(struct buf
*bp
);
104 static void vfs_clean_one_page(struct buf
*bp
, int pageno
, vm_page_t m
);
106 static void vfs_dirty_one_page(struct buf
*bp
, int pageno
, vm_page_t m
);
108 static void vfs_vmio_release(struct buf
*bp
);
109 static int flushbufqueues(struct buf
*marker
, bufq_type_t q
);
110 static void repurposebuf(struct buf
*bp
, int size
);
111 static vm_page_t
bio_page_alloc(struct buf
*bp
, vm_object_t obj
,
112 vm_pindex_t pg
, int deficit
);
114 static void bd_signal(long totalspace
);
115 static void buf_daemon(void);
116 static void buf_daemon_hw(void);
119 * bogus page -- for I/O to/from partially complete buffers
120 * this is a temporary solution to the problem, but it is not
121 * really that bad. it would be better to split the buffer
122 * for input in the case of buffers partially already in memory,
123 * but the code is intricate enough already.
125 vm_page_t bogus_page
;
128 * These are all static, but make the ones we export globals so we do
129 * not need to use compiler magic.
131 long bufspace
; /* atomic ops */
133 static long bufmallocspace
; /* atomic ops */
134 long maxbufmallocspace
, lobufspace
, hibufspace
;
135 static long lorunningspace
;
136 static long hirunningspace
;
137 static long dirtykvaspace
; /* atomic */
138 long dirtybufspace
; /* atomic (global for systat) */
139 static long dirtybufcount
; /* atomic */
140 static long dirtybufspacehw
; /* atomic */
141 static long dirtybufcounthw
; /* atomic */
142 static long runningbufspace
; /* atomic */
143 static long runningbufcount
; /* atomic */
144 static long repurposedspace
;
145 long lodirtybufspace
;
146 long hidirtybufspace
;
147 static int getnewbufcalls
;
148 static int recoverbufcalls
;
149 static int needsbuffer
; /* atomic */
150 static int runningbufreq
; /* atomic */
151 static int bd_request
; /* atomic */
152 static int bd_request_hw
; /* atomic */
153 static u_int bd_wake_ary
[BD_WAKE_SIZE
];
154 static u_int bd_wake_index
;
155 static u_int vm_cycle_point
= 40; /* 23-36 will migrate more act->inact */
156 static int debug_commit
;
157 static int debug_bufbio
;
158 static long bufcache_bw
= 200 * 1024 * 1024;
159 static long bufcache_bw_accum
;
160 static int bufcache_bw_ticks
;
162 static struct thread
*bufdaemon_td
;
163 static struct thread
*bufdaemonhw_td
;
164 static u_int lowmempgallocs
;
165 static u_int lowmempgfails
;
166 static u_int flushperqueue
= 1024;
169 * Sysctls for operational control of the buffer cache.
171 SYSCTL_UINT(_vfs
, OID_AUTO
, flushperqueue
, CTLFLAG_RW
, &flushperqueue
, 0,
172 "Number of buffers to flush from each per-cpu queue");
173 SYSCTL_LONG(_vfs
, OID_AUTO
, lodirtybufspace
, CTLFLAG_RW
, &lodirtybufspace
, 0,
174 "Number of dirty buffers to flush before bufdaemon becomes inactive");
175 SYSCTL_LONG(_vfs
, OID_AUTO
, hidirtybufspace
, CTLFLAG_RW
, &hidirtybufspace
, 0,
176 "High watermark used to trigger explicit flushing of dirty buffers");
177 SYSCTL_LONG(_vfs
, OID_AUTO
, lorunningspace
, CTLFLAG_RW
, &lorunningspace
, 0,
178 "Minimum amount of buffer space required for active I/O");
179 SYSCTL_LONG(_vfs
, OID_AUTO
, hirunningspace
, CTLFLAG_RW
, &hirunningspace
, 0,
180 "Maximum amount of buffer space to usable for active I/O");
181 SYSCTL_LONG(_vfs
, OID_AUTO
, bufcache_bw
, CTLFLAG_RW
, &bufcache_bw
, 0,
182 "Buffer-cache -> VM page cache transfer bandwidth");
183 SYSCTL_UINT(_vfs
, OID_AUTO
, lowmempgallocs
, CTLFLAG_RW
, &lowmempgallocs
, 0,
184 "Page allocations done during periods of very low free memory");
185 SYSCTL_UINT(_vfs
, OID_AUTO
, lowmempgfails
, CTLFLAG_RW
, &lowmempgfails
, 0,
186 "Page allocations which failed during periods of very low free memory");
187 SYSCTL_UINT(_vfs
, OID_AUTO
, vm_cycle_point
, CTLFLAG_RW
, &vm_cycle_point
, 0,
188 "Recycle pages to active or inactive queue transition pt 0-64");
190 * Sysctls determining current state of the buffer cache.
192 SYSCTL_LONG(_vfs
, OID_AUTO
, nbuf
, CTLFLAG_RD
, &nbuf
, 0,
193 "Total number of buffers in buffer cache");
194 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtykvaspace
, CTLFLAG_RD
, &dirtykvaspace
, 0,
195 "KVA reserved by dirty buffers (all)");
196 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufspace
, CTLFLAG_RD
, &dirtybufspace
, 0,
197 "Pending bytes of dirty buffers (all)");
198 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufspacehw
, CTLFLAG_RD
, &dirtybufspacehw
, 0,
199 "Pending bytes of dirty buffers (heavy weight)");
200 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufcount
, CTLFLAG_RD
, &dirtybufcount
, 0,
201 "Pending number of dirty buffers");
202 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufcounthw
, CTLFLAG_RD
, &dirtybufcounthw
, 0,
203 "Pending number of dirty buffers (heavy weight)");
204 SYSCTL_LONG(_vfs
, OID_AUTO
, runningbufspace
, CTLFLAG_RD
, &runningbufspace
, 0,
205 "I/O bytes currently in progress due to asynchronous writes");
206 SYSCTL_LONG(_vfs
, OID_AUTO
, runningbufcount
, CTLFLAG_RD
, &runningbufcount
, 0,
207 "I/O buffers currently in progress due to asynchronous writes");
208 SYSCTL_LONG(_vfs
, OID_AUTO
, repurposedspace
, CTLFLAG_RD
, &repurposedspace
, 0,
209 "Buffer-cache memory repurposed in-place");
210 SYSCTL_LONG(_vfs
, OID_AUTO
, maxbufspace
, CTLFLAG_RD
, &maxbufspace
, 0,
211 "Hard limit on maximum amount of memory usable for buffer space");
212 SYSCTL_LONG(_vfs
, OID_AUTO
, hibufspace
, CTLFLAG_RD
, &hibufspace
, 0,
213 "Soft limit on maximum amount of memory usable for buffer space");
214 SYSCTL_LONG(_vfs
, OID_AUTO
, lobufspace
, CTLFLAG_RD
, &lobufspace
, 0,
215 "Minimum amount of memory to reserve for system buffer space");
216 SYSCTL_LONG(_vfs
, OID_AUTO
, bufspace
, CTLFLAG_RD
, &bufspace
, 0,
217 "Amount of memory available for buffers");
218 SYSCTL_LONG(_vfs
, OID_AUTO
, maxmallocbufspace
, CTLFLAG_RD
, &maxbufmallocspace
,
219 0, "Maximum amount of memory reserved for buffers using malloc");
220 SYSCTL_LONG(_vfs
, OID_AUTO
, bufmallocspace
, CTLFLAG_RD
, &bufmallocspace
, 0,
221 "Amount of memory left for buffers using malloc-scheme");
222 SYSCTL_INT(_vfs
, OID_AUTO
, getnewbufcalls
, CTLFLAG_RD
, &getnewbufcalls
, 0,
223 "New buffer header acquisition requests");
224 SYSCTL_INT(_vfs
, OID_AUTO
, recoverbufcalls
, CTLFLAG_RD
, &recoverbufcalls
, 0,
225 "Recover VM space in an emergency");
226 SYSCTL_INT(_vfs
, OID_AUTO
, debug_commit
, CTLFLAG_RW
, &debug_commit
, 0, "");
227 SYSCTL_INT(_vfs
, OID_AUTO
, debug_bufbio
, CTLFLAG_RW
, &debug_bufbio
, 0, "");
228 SYSCTL_INT(_debug_sizeof
, OID_AUTO
, buf
, CTLFLAG_RD
, 0, sizeof(struct buf
),
229 "sizeof(struct buf)");
231 char *buf_wmesg
= BUF_WMESG
;
233 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
234 #define VFS_BIO_NEED_UNUSED02 0x02
235 #define VFS_BIO_NEED_UNUSED04 0x04
236 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
239 * Called when buffer space is potentially available for recovery.
240 * getnewbuf() will block on this flag when it is unable to free
241 * sufficient buffer space. Buffer space becomes recoverable when
242 * bp's get placed back in the queues.
248 * If someone is waiting for BUF space, wake them up. Even
249 * though we haven't freed the kva space yet, the waiting
250 * process will be able to now.
253 int flags
= needsbuffer
;
255 if ((flags
& VFS_BIO_NEED_BUFSPACE
) == 0)
257 if (atomic_cmpset_int(&needsbuffer
, flags
,
258 flags
& ~VFS_BIO_NEED_BUFSPACE
)) {
259 wakeup(&needsbuffer
);
269 * Accounting for I/O in progress.
273 runningbufwakeup(struct buf
*bp
)
278 if ((totalspace
= bp
->b_runningbufspace
) != 0) {
279 atomic_add_long(&runningbufspace
, -totalspace
);
280 atomic_add_long(&runningbufcount
, -1);
281 bp
->b_runningbufspace
= 0;
284 * see waitrunningbufspace() for limit test.
287 flags
= runningbufreq
;
291 if (atomic_cmpset_int(&runningbufreq
, flags
, 0)) {
292 wakeup(&runningbufreq
);
297 bd_signal(totalspace
);
304 * Called when a buffer has been added to one of the free queues to
305 * account for the buffer and to wakeup anyone waiting for free buffers.
306 * This typically occurs when large amounts of metadata are being handled
307 * by the buffer cache ( else buffer space runs out first, usually ).
318 if (atomic_cmpset_int(&needsbuffer
, flags
,
319 (flags
& ~VFS_BIO_NEED_ANY
))) {
320 wakeup(&needsbuffer
);
328 * waitrunningbufspace()
330 * If runningbufspace exceeds 4/6 hirunningspace we block until
331 * runningbufspace drops to 3/6 hirunningspace. We also block if another
332 * thread blocked here in order to be fair, even if runningbufspace
333 * is now lower than the limit.
335 * The caller may be using this function to block in a tight loop, we
336 * must block while runningbufspace is greater than at least
337 * hirunningspace * 3 / 6.
340 waitrunningbufspace(void)
342 long limit
= hirunningspace
* 4 / 6;
345 while (runningbufspace
> limit
|| runningbufreq
) {
346 tsleep_interlock(&runningbufreq
, 0);
347 flags
= atomic_fetchadd_int(&runningbufreq
, 1);
348 if (runningbufspace
> limit
|| flags
)
349 tsleep(&runningbufreq
, PINTERLOCKED
, "wdrn1", hz
);
354 * buf_dirty_count_severe:
356 * Return true if we have too many dirty buffers.
359 buf_dirty_count_severe(void)
361 return (runningbufspace
+ dirtykvaspace
>= hidirtybufspace
||
362 dirtybufcount
>= nbuf
/ 2);
366 * Return true if the amount of running I/O is severe and BIOQ should
370 buf_runningbufspace_severe(void)
372 return (runningbufspace
>= hirunningspace
* 4 / 6);
376 * vfs_buf_test_cache:
378 * Called when a buffer is extended. This function clears the B_CACHE
379 * bit if the newly extended portion of the buffer does not contain
382 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
383 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
384 * them while a clean buffer was present.
388 vfs_buf_test_cache(struct buf
*bp
,
389 vm_ooffset_t foff
, vm_offset_t off
, vm_offset_t size
,
392 if (bp
->b_flags
& B_CACHE
) {
393 int base
= (foff
+ off
) & PAGE_MASK
;
394 if (vm_page_is_valid(m
, base
, size
) == 0)
395 bp
->b_flags
&= ~B_CACHE
;
402 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
409 if (dirtykvaspace
< lodirtybufspace
&& dirtybufcount
< nbuf
/ 2)
412 if (bd_request
== 0 &&
413 (dirtykvaspace
> lodirtybufspace
/ 2 ||
414 dirtybufcount
- dirtybufcounthw
>= nbuf
/ 2)) {
415 if (atomic_fetchadd_int(&bd_request
, 1) == 0)
418 if (bd_request_hw
== 0 &&
419 (dirtykvaspace
> lodirtybufspace
/ 2 ||
420 dirtybufcounthw
>= nbuf
/ 2)) {
421 if (atomic_fetchadd_int(&bd_request_hw
, 1) == 0)
422 wakeup(&bd_request_hw
);
429 * Get the buf_daemon heated up when the number of running and dirty
430 * buffers exceeds the mid-point.
432 * Return the total number of dirty bytes past the second mid point
433 * as a measure of how much excess dirty data there is in the system.
442 mid1
= lodirtybufspace
+ (hidirtybufspace
- lodirtybufspace
) / 2;
444 totalspace
= runningbufspace
+ dirtykvaspace
;
445 if (totalspace
>= mid1
|| dirtybufcount
>= nbuf
/ 2) {
447 mid2
= mid1
+ (hidirtybufspace
- mid1
) / 2;
448 if (totalspace
>= mid2
)
449 return(totalspace
- mid2
);
457 * Wait for the buffer cache to flush (totalspace) bytes worth of
458 * buffers, then return.
460 * Regardless this function blocks while the number of dirty buffers
461 * exceeds hidirtybufspace.
464 bd_wait(long totalspace
)
471 if (curthread
== bufdaemonhw_td
|| curthread
== bufdaemon_td
)
474 while (totalspace
> 0) {
478 * Order is important. Suppliers adjust bd_wake_index after
479 * updating runningbufspace/dirtykvaspace. We want to fetch
480 * bd_wake_index before accessing. Any error should thus
483 i
= atomic_fetchadd_int(&bd_wake_index
, 0);
484 if (totalspace
> runningbufspace
+ dirtykvaspace
)
485 totalspace
= runningbufspace
+ dirtykvaspace
;
486 count
= totalspace
/ MAXBSIZE
;
487 if (count
>= BD_WAKE_SIZE
/ 2)
488 count
= BD_WAKE_SIZE
/ 2;
490 mi
= i
& BD_WAKE_MASK
;
493 * This is not a strict interlock, so we play a bit loose
494 * with locking access to dirtybufspace*. We have to re-check
495 * bd_wake_index to ensure that it hasn't passed us.
497 tsleep_interlock(&bd_wake_ary
[mi
], 0);
498 atomic_add_int(&bd_wake_ary
[mi
], 1);
499 j
= atomic_fetchadd_int(&bd_wake_index
, 0);
500 if ((int)(i
- j
) >= 0)
501 tsleep(&bd_wake_ary
[mi
], PINTERLOCKED
, "flstik", hz
);
503 totalspace
= runningbufspace
+ dirtykvaspace
- hidirtybufspace
;
510 * This function is called whenever runningbufspace or dirtykvaspace
511 * is reduced. Track threads waiting for run+dirty buffer I/O
515 bd_signal(long totalspace
)
519 if (totalspace
> 0) {
520 if (totalspace
> MAXBSIZE
* BD_WAKE_SIZE
)
521 totalspace
= MAXBSIZE
* BD_WAKE_SIZE
;
522 while (totalspace
> 0) {
523 i
= atomic_fetchadd_int(&bd_wake_index
, 1);
525 if (atomic_readandclear_int(&bd_wake_ary
[i
]))
526 wakeup(&bd_wake_ary
[i
]);
527 totalspace
-= MAXBSIZE
;
533 * BIO tracking support routines.
535 * Release a ref on a bio_track. Wakeup requests are atomically released
536 * along with the last reference so bk_active will never wind up set to
541 bio_track_rel(struct bio_track
*track
)
549 active
= track
->bk_active
;
550 if (active
== 1 && atomic_cmpset_int(&track
->bk_active
, 1, 0))
554 * Full-on. Note that the wait flag is only atomically released on
555 * the 1->0 count transition.
557 * We check for a negative count transition using bit 30 since bit 31
558 * has a different meaning.
561 desired
= (active
& 0x7FFFFFFF) - 1;
563 desired
|= active
& 0x80000000;
564 if (atomic_cmpset_int(&track
->bk_active
, active
, desired
)) {
565 if (desired
& 0x40000000)
566 panic("bio_track_rel: bad count: %p", track
);
567 if (active
& 0x80000000)
571 active
= track
->bk_active
;
576 * Wait for the tracking count to reach 0.
578 * Use atomic ops such that the wait flag is only set atomically when
579 * bk_active is non-zero.
582 bio_track_wait(struct bio_track
*track
, int slp_flags
, int slp_timo
)
591 if (track
->bk_active
== 0)
595 * Full-on. Note that the wait flag may only be atomically set if
596 * the active count is non-zero.
598 * NOTE: We cannot optimize active == desired since a wakeup could
599 * clear active prior to our tsleep_interlock().
602 while ((active
= track
->bk_active
) != 0) {
604 desired
= active
| 0x80000000;
605 tsleep_interlock(track
, slp_flags
);
606 if (atomic_cmpset_int(&track
->bk_active
, active
, desired
)) {
607 error
= tsleep(track
, slp_flags
| PINTERLOCKED
,
619 * Load time initialisation of the buffer cache, called from machine
620 * dependant initialization code.
624 bufinit(void *dummy __unused
)
626 struct bufpcpu
*pcpu
;
628 vm_offset_t bogus_offset
;
633 /* next, make a null set of free lists */
634 for (i
= 0; i
< ncpus
; ++i
) {
636 spin_init(&pcpu
->spin
, "bufinit");
637 for (j
= 0; j
< BUFFER_QUEUES
; j
++)
638 TAILQ_INIT(&pcpu
->bufqueues
[j
]);
642 * Finally, initialize each buffer header and stick on empty q.
643 * Each buffer gets its own KVA reservation.
648 for (n
= 0; n
< nbuf
; n
++) {
650 bzero(bp
, sizeof *bp
);
651 bp
->b_flags
= B_INVAL
; /* we're just an empty header */
652 bp
->b_cmd
= BUF_CMD_DONE
;
653 bp
->b_qindex
= BQUEUE_EMPTY
;
655 bp
->b_kvabase
= (void *)(vm_map_min(&buffer_map
) +
657 bp
->b_kvasize
= MAXBSIZE
;
659 xio_init(&bp
->b_xio
);
661 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
669 * maxbufspace is the absolute maximum amount of buffer space we are
670 * allowed to reserve in KVM and in real terms. The absolute maximum
671 * is nominally used by buf_daemon. hibufspace is the nominal maximum
672 * used by most other processes. The differential is required to
673 * ensure that buf_daemon is able to run when other processes might
674 * be blocked waiting for buffer space.
676 * Calculate hysteresis (lobufspace, hibufspace). Don't make it
677 * too large or we might lockup a cpu for too long a period of
678 * time in our tight loop.
680 maxbufspace
= nbuf
* NBUFCALCSIZE
;
681 hibufspace
= lmax(3 * maxbufspace
/ 4, maxbufspace
- MAXBSIZE
* 10);
682 lobufspace
= hibufspace
* 7 / 8;
683 if (hibufspace
- lobufspace
> 64 * 1024 * 1024)
684 lobufspace
= hibufspace
- 64 * 1024 * 1024;
685 if (lobufspace
> hibufspace
- MAXBSIZE
)
686 lobufspace
= hibufspace
- MAXBSIZE
;
688 lorunningspace
= 512 * 1024;
689 /* hirunningspace -- see below */
692 * Limit the amount of malloc memory since it is wired permanently
693 * into the kernel space. Even though this is accounted for in
694 * the buffer allocation, we don't want the malloced region to grow
695 * uncontrolled. The malloc scheme improves memory utilization
696 * significantly on average (small) directories.
698 maxbufmallocspace
= hibufspace
/ 20;
701 * Reduce the chance of a deadlock occuring by limiting the number
702 * of delayed-write dirty buffers we allow to stack up.
704 * We don't want too much actually queued to the device at once
705 * (XXX this needs to be per-mount!), because the buffers will
706 * wind up locked for a very long period of time while the I/O
709 hidirtybufspace
= hibufspace
/ 2; /* dirty + running */
710 hirunningspace
= hibufspace
/ 16; /* locked & queued to device */
711 if (hirunningspace
< 1024 * 1024)
712 hirunningspace
= 1024 * 1024;
718 lodirtybufspace
= hidirtybufspace
/ 2;
721 * Maximum number of async ops initiated per buf_daemon loop. This is
722 * somewhat of a hack at the moment, we really need to limit ourselves
723 * based on the number of bytes of I/O in-transit that were initiated
727 bogus_offset
= kmem_alloc_pageable(&kernel_map
, PAGE_SIZE
);
728 vm_object_hold(&kernel_object
);
729 bogus_page
= vm_page_alloc(&kernel_object
,
730 (bogus_offset
>> PAGE_SHIFT
),
732 vm_object_drop(&kernel_object
);
733 vmstats
.v_wire_count
++;
737 SYSINIT(do_bufinit
, SI_BOOT2_MACHDEP
, SI_ORDER_FIRST
, bufinit
, NULL
);
740 * Initialize the embedded bio structures, typically used by
741 * deprecated code which tries to allocate its own struct bufs.
744 initbufbio(struct buf
*bp
)
746 bp
->b_bio1
.bio_buf
= bp
;
747 bp
->b_bio1
.bio_prev
= NULL
;
748 bp
->b_bio1
.bio_offset
= NOOFFSET
;
749 bp
->b_bio1
.bio_next
= &bp
->b_bio2
;
750 bp
->b_bio1
.bio_done
= NULL
;
751 bp
->b_bio1
.bio_flags
= 0;
753 bp
->b_bio2
.bio_buf
= bp
;
754 bp
->b_bio2
.bio_prev
= &bp
->b_bio1
;
755 bp
->b_bio2
.bio_offset
= NOOFFSET
;
756 bp
->b_bio2
.bio_next
= NULL
;
757 bp
->b_bio2
.bio_done
= NULL
;
758 bp
->b_bio2
.bio_flags
= 0;
764 * Reinitialize the embedded bio structures as well as any additional
765 * translation cache layers.
768 reinitbufbio(struct buf
*bp
)
772 for (bio
= &bp
->b_bio1
; bio
; bio
= bio
->bio_next
) {
773 bio
->bio_done
= NULL
;
774 bio
->bio_offset
= NOOFFSET
;
779 * Undo the effects of an initbufbio().
782 uninitbufbio(struct buf
*bp
)
789 * Push another BIO layer onto an existing BIO and return it. The new
790 * BIO layer may already exist, holding cached translation data.
793 push_bio(struct bio
*bio
)
797 if ((nbio
= bio
->bio_next
) == NULL
) {
798 int index
= bio
- &bio
->bio_buf
->b_bio_array
[0];
799 if (index
>= NBUF_BIO
- 1) {
800 panic("push_bio: too many layers %d for bp %p",
801 index
, bio
->bio_buf
);
803 nbio
= &bio
->bio_buf
->b_bio_array
[index
+ 1];
804 bio
->bio_next
= nbio
;
805 nbio
->bio_prev
= bio
;
806 nbio
->bio_buf
= bio
->bio_buf
;
807 nbio
->bio_offset
= NOOFFSET
;
808 nbio
->bio_done
= NULL
;
809 nbio
->bio_next
= NULL
;
811 KKASSERT(nbio
->bio_done
== NULL
);
816 * Pop a BIO translation layer, returning the previous layer. The
817 * must have been previously pushed.
820 pop_bio(struct bio
*bio
)
822 return(bio
->bio_prev
);
826 clearbiocache(struct bio
*bio
)
829 bio
->bio_offset
= NOOFFSET
;
835 * Remove the buffer from the appropriate free list.
836 * (caller must be locked)
839 _bremfree(struct buf
*bp
)
841 struct bufpcpu
*pcpu
= &bufpcpu
[bp
->b_qcpu
];
843 if (bp
->b_qindex
!= BQUEUE_NONE
) {
844 KASSERT(BUF_REFCNTNB(bp
) == 1,
845 ("bremfree: bp %p not locked",bp
));
846 TAILQ_REMOVE(&pcpu
->bufqueues
[bp
->b_qindex
], bp
, b_freelist
);
847 bp
->b_qindex
= BQUEUE_NONE
;
849 if (BUF_REFCNTNB(bp
) <= 1)
850 panic("bremfree: removing a buffer not on a queue");
855 * bremfree() - must be called with a locked buffer
858 bremfree(struct buf
*bp
)
860 struct bufpcpu
*pcpu
= &bufpcpu
[bp
->b_qcpu
];
862 spin_lock(&pcpu
->spin
);
864 spin_unlock(&pcpu
->spin
);
868 * bremfree_locked - must be called with pcpu->spin locked
871 bremfree_locked(struct buf
*bp
)
877 * This version of bread issues any required I/O asyncnronously and
878 * makes a callback on completion.
880 * The callback must check whether BIO_DONE is set in the bio and issue
881 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing
882 * BIO_DONE and disposing of the I/O (bqrelse()ing it).
885 breadcb(struct vnode
*vp
, off_t loffset
, int size
,
886 void (*func
)(struct bio
*), void *arg
)
890 bp
= getblk(vp
, loffset
, size
, 0, 0);
892 /* if not found in cache, do some I/O */
893 if ((bp
->b_flags
& B_CACHE
) == 0) {
894 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
| B_INVAL
);
895 bp
->b_cmd
= BUF_CMD_READ
;
896 bp
->b_bio1
.bio_done
= func
;
897 bp
->b_bio1
.bio_caller_info1
.ptr
= arg
;
898 vfs_busy_pages(vp
, bp
);
900 vn_strategy(vp
, &bp
->b_bio1
);
903 * Since we are issuing the callback synchronously it cannot
904 * race the BIO_DONE, so no need for atomic ops here.
906 /*bp->b_bio1.bio_done = func;*/
907 bp
->b_bio1
.bio_caller_info1
.ptr
= arg
;
908 bp
->b_bio1
.bio_flags
|= BIO_DONE
;
916 * breadnx() - Terminal function for bread() and breadn().
918 * This function will start asynchronous I/O on read-ahead blocks as well
919 * as satisfy the primary request.
921 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is
922 * set, the buffer is valid and we do not have to do anything.
925 breadnx(struct vnode
*vp
, off_t loffset
, int size
, off_t
*raoffset
,
926 int *rabsize
, int cnt
, struct buf
**bpp
)
928 struct buf
*bp
, *rabp
;
930 int rv
= 0, readwait
= 0;
935 *bpp
= bp
= getblk(vp
, loffset
, size
, 0, 0);
937 /* if not found in cache, do some I/O */
938 if ((bp
->b_flags
& B_CACHE
) == 0) {
939 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
| B_INVAL
);
940 bp
->b_cmd
= BUF_CMD_READ
;
941 bp
->b_bio1
.bio_done
= biodone_sync
;
942 bp
->b_bio1
.bio_flags
|= BIO_SYNC
;
943 vfs_busy_pages(vp
, bp
);
944 vn_strategy(vp
, &bp
->b_bio1
);
948 for (i
= 0; i
< cnt
; i
++, raoffset
++, rabsize
++) {
949 if (inmem(vp
, *raoffset
))
951 rabp
= getblk(vp
, *raoffset
, *rabsize
, 0, 0);
953 if ((rabp
->b_flags
& B_CACHE
) == 0) {
954 rabp
->b_flags
&= ~(B_ERROR
| B_EINTR
| B_INVAL
);
955 rabp
->b_cmd
= BUF_CMD_READ
;
956 vfs_busy_pages(vp
, rabp
);
958 vn_strategy(vp
, &rabp
->b_bio1
);
964 rv
= biowait(&bp
->b_bio1
, "biord");
971 * Synchronous write, waits for completion.
973 * Write, release buffer on completion. (Done by iodone
974 * if async). Do not bother writing anything if the buffer
977 * Note that we set B_CACHE here, indicating that buffer is
978 * fully valid and thus cacheable. This is true even of NFS
979 * now so we set it generally. This could be set either here
980 * or in biodone() since the I/O is synchronous. We put it
984 bwrite(struct buf
*bp
)
988 if (bp
->b_flags
& B_INVAL
) {
992 if (BUF_REFCNTNB(bp
) == 0)
993 panic("bwrite: buffer is not busy???");
996 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
997 * call because it will remove the buffer from the vnode's
998 * dirty buffer list prematurely and possibly cause filesystem
999 * checks to race buffer flushes. This is now handled in
1002 * bundirty(bp); REMOVED
1005 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
);
1006 bp
->b_flags
|= B_CACHE
;
1007 bp
->b_cmd
= BUF_CMD_WRITE
;
1008 bp
->b_bio1
.bio_done
= biodone_sync
;
1009 bp
->b_bio1
.bio_flags
|= BIO_SYNC
;
1010 vfs_busy_pages(bp
->b_vp
, bp
);
1013 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1014 * valid for vnode-backed buffers.
1016 bsetrunningbufspace(bp
, bp
->b_bufsize
);
1017 vn_strategy(bp
->b_vp
, &bp
->b_bio1
);
1018 error
= biowait(&bp
->b_bio1
, "biows");
1027 * Asynchronous write. Start output on a buffer, but do not wait for
1028 * it to complete. The buffer is released when the output completes.
1030 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1031 * B_INVAL buffers. Not us.
1034 bawrite(struct buf
*bp
)
1036 if (bp
->b_flags
& B_INVAL
) {
1040 if (BUF_REFCNTNB(bp
) == 0)
1041 panic("bawrite: buffer is not busy???");
1044 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1045 * call because it will remove the buffer from the vnode's
1046 * dirty buffer list prematurely and possibly cause filesystem
1047 * checks to race buffer flushes. This is now handled in
1050 * bundirty(bp); REMOVED
1052 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
);
1053 bp
->b_flags
|= B_CACHE
;
1054 bp
->b_cmd
= BUF_CMD_WRITE
;
1055 KKASSERT(bp
->b_bio1
.bio_done
== NULL
);
1056 vfs_busy_pages(bp
->b_vp
, bp
);
1059 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1060 * valid for vnode-backed buffers.
1062 bsetrunningbufspace(bp
, bp
->b_bufsize
);
1064 vn_strategy(bp
->b_vp
, &bp
->b_bio1
);
1070 * Ordered write. Start output on a buffer, and flag it so that the
1071 * device will write it in the order it was queued. The buffer is
1072 * released when the output completes. bwrite() ( or the VOP routine
1073 * anyway ) is responsible for handling B_INVAL buffers.
1076 bowrite(struct buf
*bp
)
1078 bp
->b_flags
|= B_ORDERED
;
1086 * Delayed write. (Buffer is marked dirty). Do not bother writing
1087 * anything if the buffer is marked invalid.
1089 * Note that since the buffer must be completely valid, we can safely
1090 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1091 * biodone() in order to prevent getblk from writing the buffer
1092 * out synchronously.
1095 bdwrite(struct buf
*bp
)
1097 if (BUF_REFCNTNB(bp
) == 0)
1098 panic("bdwrite: buffer is not busy");
1100 if (bp
->b_flags
& B_INVAL
) {
1106 dsched_buf_enter(bp
); /* might stack */
1109 * Set B_CACHE, indicating that the buffer is fully valid. This is
1110 * true even of NFS now.
1112 bp
->b_flags
|= B_CACHE
;
1115 * This bmap keeps the system from needing to do the bmap later,
1116 * perhaps when the system is attempting to do a sync. Since it
1117 * is likely that the indirect block -- or whatever other datastructure
1118 * that the filesystem needs is still in memory now, it is a good
1119 * thing to do this. Note also, that if the pageout daemon is
1120 * requesting a sync -- there might not be enough memory to do
1121 * the bmap then... So, this is important to do.
1123 if (bp
->b_bio2
.bio_offset
== NOOFFSET
) {
1124 VOP_BMAP(bp
->b_vp
, bp
->b_loffset
, &bp
->b_bio2
.bio_offset
,
1125 NULL
, NULL
, BUF_CMD_WRITE
);
1129 * Because the underlying pages may still be mapped and
1130 * writable trying to set the dirty buffer (b_dirtyoff/end)
1131 * range here will be inaccurate.
1133 * However, we must still clean the pages to satisfy the
1134 * vnode_pager and pageout daemon, so they think the pages
1135 * have been "cleaned". What has really occured is that
1136 * they've been earmarked for later writing by the buffer
1139 * So we get the b_dirtyoff/end update but will not actually
1140 * depend on it (NFS that is) until the pages are busied for
1143 vfs_clean_pages(bp
);
1147 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1148 * due to the softdep code.
1153 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1154 * This is used by tmpfs.
1156 * It is important for any VFS using this routine to NOT use it for
1157 * IO_SYNC or IO_ASYNC operations which occur when the system really
1158 * wants to flush VM pages to backing store.
1161 buwrite(struct buf
*bp
)
1167 * Only works for VMIO buffers. If the buffer is already
1168 * marked for delayed-write we can't avoid the bdwrite().
1170 if ((bp
->b_flags
& B_VMIO
) == 0 || (bp
->b_flags
& B_DELWRI
)) {
1176 * Mark as needing a commit.
1178 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1179 m
= bp
->b_xio
.xio_pages
[i
];
1180 vm_page_need_commit(m
);
1188 * Turn buffer into delayed write request by marking it B_DELWRI.
1189 * B_RELBUF and B_NOCACHE must be cleared.
1191 * We reassign the buffer to itself to properly update it in the
1192 * dirty/clean lists.
1194 * Must be called from a critical section.
1195 * The buffer must be on BQUEUE_NONE.
1198 bdirty(struct buf
*bp
)
1200 KASSERT(bp
->b_qindex
== BQUEUE_NONE
,
1201 ("bdirty: buffer %p still on queue %d", bp
, bp
->b_qindex
));
1202 if (bp
->b_flags
& B_NOCACHE
) {
1203 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp
);
1204 bp
->b_flags
&= ~B_NOCACHE
;
1206 if (bp
->b_flags
& B_INVAL
) {
1207 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp
);
1209 bp
->b_flags
&= ~B_RELBUF
;
1211 if ((bp
->b_flags
& B_DELWRI
) == 0) {
1212 lwkt_gettoken(&bp
->b_vp
->v_token
);
1213 bp
->b_flags
|= B_DELWRI
;
1215 lwkt_reltoken(&bp
->b_vp
->v_token
);
1217 atomic_add_long(&dirtybufcount
, 1);
1218 atomic_add_long(&dirtykvaspace
, bp
->b_kvasize
);
1219 atomic_add_long(&dirtybufspace
, bp
->b_bufsize
);
1220 if (bp
->b_flags
& B_HEAVY
) {
1221 atomic_add_long(&dirtybufcounthw
, 1);
1222 atomic_add_long(&dirtybufspacehw
, bp
->b_bufsize
);
1229 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1230 * needs to be flushed with a different buf_daemon thread to avoid
1231 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1234 bheavy(struct buf
*bp
)
1236 if ((bp
->b_flags
& B_HEAVY
) == 0) {
1237 bp
->b_flags
|= B_HEAVY
;
1238 if (bp
->b_flags
& B_DELWRI
) {
1239 atomic_add_long(&dirtybufcounthw
, 1);
1240 atomic_add_long(&dirtybufspacehw
, bp
->b_bufsize
);
1248 * Clear B_DELWRI for buffer.
1250 * Must be called from a critical section.
1252 * The buffer is typically on BQUEUE_NONE but there is one case in
1253 * brelse() that calls this function after placing the buffer on
1254 * a different queue.
1257 bundirty(struct buf
*bp
)
1259 if (bp
->b_flags
& B_DELWRI
) {
1260 lwkt_gettoken(&bp
->b_vp
->v_token
);
1261 bp
->b_flags
&= ~B_DELWRI
;
1263 lwkt_reltoken(&bp
->b_vp
->v_token
);
1265 atomic_add_long(&dirtybufcount
, -1);
1266 atomic_add_long(&dirtykvaspace
, -bp
->b_kvasize
);
1267 atomic_add_long(&dirtybufspace
, -bp
->b_bufsize
);
1268 if (bp
->b_flags
& B_HEAVY
) {
1269 atomic_add_long(&dirtybufcounthw
, -1);
1270 atomic_add_long(&dirtybufspacehw
, -bp
->b_bufsize
);
1272 bd_signal(bp
->b_bufsize
);
1275 * Since it is now being written, we can clear its deferred write flag.
1277 bp
->b_flags
&= ~B_DEFERRED
;
1281 * Set the b_runningbufspace field, used to track how much I/O is
1282 * in progress at any given moment.
1285 bsetrunningbufspace(struct buf
*bp
, int bytes
)
1287 bp
->b_runningbufspace
= bytes
;
1289 atomic_add_long(&runningbufspace
, bytes
);
1290 atomic_add_long(&runningbufcount
, 1);
1297 * Release a busy buffer and, if requested, free its resources. The
1298 * buffer will be stashed in the appropriate bufqueue[] allowing it
1299 * to be accessed later as a cache entity or reused for other purposes.
1302 brelse(struct buf
*bp
)
1304 struct bufpcpu
*pcpu
;
1306 int saved_flags
= bp
->b_flags
;
1309 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)),
1310 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
1313 * If B_NOCACHE is set we are being asked to destroy the buffer and
1314 * its backing store. Clear B_DELWRI.
1316 * B_NOCACHE is set in two cases: (1) when the caller really wants
1317 * to destroy the buffer and backing store and (2) when the caller
1318 * wants to destroy the buffer and backing store after a write
1321 if ((bp
->b_flags
& (B_NOCACHE
|B_DELWRI
)) == (B_NOCACHE
|B_DELWRI
)) {
1325 if ((bp
->b_flags
& (B_INVAL
| B_DELWRI
)) == B_DELWRI
) {
1327 * A re-dirtied buffer is only subject to destruction
1328 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1330 /* leave buffer intact */
1331 } else if ((bp
->b_flags
& (B_NOCACHE
| B_INVAL
| B_ERROR
)) ||
1332 (bp
->b_bufsize
<= 0)) {
1334 * Either a failed read or we were asked to free or not
1335 * cache the buffer. This path is reached with B_DELWRI
1336 * set only if B_INVAL is already set. B_NOCACHE governs
1337 * backing store destruction.
1339 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1340 * buffer cannot be immediately freed.
1342 bp
->b_flags
|= B_INVAL
;
1343 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
1345 if (bp
->b_flags
& B_DELWRI
) {
1346 atomic_add_long(&dirtybufcount
, -1);
1347 atomic_add_long(&dirtykvaspace
, -bp
->b_kvasize
);
1348 atomic_add_long(&dirtybufspace
, -bp
->b_bufsize
);
1349 if (bp
->b_flags
& B_HEAVY
) {
1350 atomic_add_long(&dirtybufcounthw
, -1);
1351 atomic_add_long(&dirtybufspacehw
,
1354 bd_signal(bp
->b_bufsize
);
1356 bp
->b_flags
&= ~(B_DELWRI
| B_CACHE
);
1360 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1361 * or if b_refs is non-zero.
1363 * If vfs_vmio_release() is called with either bit set, the
1364 * underlying pages may wind up getting freed causing a previous
1365 * write (bdwrite()) to get 'lost' because pages associated with
1366 * a B_DELWRI bp are marked clean. Pages associated with a
1367 * B_LOCKED buffer may be mapped by the filesystem.
1369 * If we want to release the buffer ourselves (rather then the
1370 * originator asking us to release it), give the originator a
1371 * chance to countermand the release by setting B_LOCKED.
1373 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1374 * if B_DELWRI is set.
1376 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1377 * on pages to return pages to the VM page queues.
1379 if ((bp
->b_flags
& (B_DELWRI
| B_LOCKED
)) || bp
->b_refs
) {
1380 bp
->b_flags
&= ~B_RELBUF
;
1381 } else if (vm_page_count_min(0)) {
1382 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
1383 buf_deallocate(bp
); /* can set B_LOCKED */
1384 if (bp
->b_flags
& (B_DELWRI
| B_LOCKED
))
1385 bp
->b_flags
&= ~B_RELBUF
;
1387 bp
->b_flags
|= B_RELBUF
;
1391 * Make sure b_cmd is clear. It may have already been cleared by
1394 * At this point destroying the buffer is governed by the B_INVAL
1395 * or B_RELBUF flags.
1397 bp
->b_cmd
= BUF_CMD_DONE
;
1398 dsched_buf_exit(bp
);
1401 * VMIO buffer rundown. Make sure the VM page array is restored
1402 * after an I/O may have replaces some of the pages with bogus pages
1403 * in order to not destroy dirty pages in a fill-in read.
1405 * Note that due to the code above, if a buffer is marked B_DELWRI
1406 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1407 * B_INVAL may still be set, however.
1409 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1410 * but not the backing store. B_NOCACHE will destroy the backing
1413 * Note that dirty NFS buffers contain byte-granular write ranges
1414 * and should not be destroyed w/ B_INVAL even if the backing store
1417 if (bp
->b_flags
& B_VMIO
) {
1419 * Rundown for VMIO buffers which are not dirty NFS buffers.
1431 * Get the base offset and length of the buffer. Note that
1432 * in the VMIO case if the buffer block size is not
1433 * page-aligned then b_data pointer may not be page-aligned.
1434 * But our b_xio.xio_pages array *IS* page aligned.
1436 * block sizes less then DEV_BSIZE (usually 512) are not
1437 * supported due to the page granularity bits (m->valid,
1438 * m->dirty, etc...).
1440 * See man buf(9) for more information
1443 resid
= bp
->b_bufsize
;
1444 foff
= bp
->b_loffset
;
1446 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1447 m
= bp
->b_xio
.xio_pages
[i
];
1448 vm_page_flag_clear(m
, PG_ZERO
);
1450 * If we hit a bogus page, fixup *all* of them
1451 * now. Note that we left these pages wired
1452 * when we removed them so they had better exist,
1453 * and they cannot be ripped out from under us so
1454 * no critical section protection is necessary.
1456 if (m
== bogus_page
) {
1458 poff
= OFF_TO_IDX(bp
->b_loffset
);
1460 vm_object_hold(obj
);
1461 for (j
= i
; j
< bp
->b_xio
.xio_npages
; j
++) {
1464 mtmp
= bp
->b_xio
.xio_pages
[j
];
1465 if (mtmp
== bogus_page
) {
1466 mtmp
= vm_page_lookup(obj
, poff
+ j
);
1468 panic("brelse: page missing");
1470 bp
->b_xio
.xio_pages
[j
] = mtmp
;
1473 bp
->b_flags
&= ~B_HASBOGUS
;
1474 vm_object_drop(obj
);
1476 if ((bp
->b_flags
& B_INVAL
) == 0) {
1477 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
1478 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
1480 m
= bp
->b_xio
.xio_pages
[i
];
1484 * Invalidate the backing store if B_NOCACHE is set
1485 * (e.g. used with vinvalbuf()). If this is NFS
1486 * we impose a requirement that the block size be
1487 * a multiple of PAGE_SIZE and create a temporary
1488 * hack to basically invalidate the whole page. The
1489 * problem is that NFS uses really odd buffer sizes
1490 * especially when tracking piecemeal writes and
1491 * it also vinvalbuf()'s a lot, which would result
1492 * in only partial page validation and invalidation
1493 * here. If the file page is mmap()'d, however,
1494 * all the valid bits get set so after we invalidate
1495 * here we would end up with weird m->valid values
1496 * like 0xfc. nfs_getpages() can't handle this so
1497 * we clear all the valid bits for the NFS case
1498 * instead of just some of them.
1500 * The real bug is the VM system having to set m->valid
1501 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1502 * itself is an artifact of the whole 512-byte
1503 * granular mess that exists to support odd block
1504 * sizes and UFS meta-data block sizes (e.g. 6144).
1505 * A complete rewrite is required.
1509 if (bp
->b_flags
& (B_NOCACHE
|B_ERROR
)) {
1510 int poffset
= foff
& PAGE_MASK
;
1513 presid
= PAGE_SIZE
- poffset
;
1514 if (bp
->b_vp
->v_tag
== VT_NFS
&&
1515 bp
->b_vp
->v_type
== VREG
) {
1517 } else if (presid
> resid
) {
1520 KASSERT(presid
>= 0, ("brelse: extra page"));
1521 vm_page_set_invalid(m
, poffset
, presid
);
1524 * Also make sure any swap cache is removed
1525 * as it is now stale (HAMMER in particular
1526 * uses B_NOCACHE to deal with buffer
1529 swap_pager_unswapped(m
);
1531 resid
-= PAGE_SIZE
- (foff
& PAGE_MASK
);
1532 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
1534 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
))
1535 vfs_vmio_release(bp
);
1538 * Rundown for non-VMIO buffers.
1540 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
)) {
1543 KKASSERT (LIST_FIRST(&bp
->b_dep
) == NULL
);
1549 if (bp
->b_qindex
!= BQUEUE_NONE
)
1550 panic("brelse: free buffer onto another queue???");
1551 if (BUF_REFCNTNB(bp
) > 1) {
1552 /* Temporary panic to verify exclusive locking */
1553 /* This panic goes away when we allow shared refs */
1554 panic("brelse: multiple refs");
1560 * Figure out the correct queue to place the cleaned up buffer on.
1561 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1562 * disassociated from their vnode.
1564 * Return the buffer to its original pcpu area
1566 pcpu
= &bufpcpu
[bp
->b_qcpu
];
1567 spin_lock(&pcpu
->spin
);
1569 if (bp
->b_flags
& B_LOCKED
) {
1571 * Buffers that are locked are placed in the locked queue
1572 * immediately, regardless of their state.
1574 bp
->b_qindex
= BQUEUE_LOCKED
;
1575 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1577 } else if (bp
->b_bufsize
== 0) {
1579 * Buffers with no memory. Due to conditionals near the top
1580 * of brelse() such buffers should probably already be
1581 * marked B_INVAL and disassociated from their vnode.
1583 bp
->b_flags
|= B_INVAL
;
1584 KASSERT(bp
->b_vp
== NULL
,
1585 ("bp1 %p flags %08x/%08x vnode %p "
1586 "unexpectededly still associated!",
1587 bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1588 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1589 bp
->b_qindex
= BQUEUE_EMPTY
;
1590 TAILQ_INSERT_HEAD(&pcpu
->bufqueues
[bp
->b_qindex
],
1592 } else if (bp
->b_flags
& (B_INVAL
| B_NOCACHE
| B_RELBUF
)) {
1594 * Buffers with junk contents. Again these buffers had better
1595 * already be disassociated from their vnode.
1597 KASSERT(bp
->b_vp
== NULL
,
1598 ("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1599 "still associated!",
1600 bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1601 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1602 bp
->b_flags
|= B_INVAL
;
1603 bp
->b_qindex
= BQUEUE_CLEAN
;
1604 TAILQ_INSERT_HEAD(&pcpu
->bufqueues
[bp
->b_qindex
],
1608 * Remaining buffers. These buffers are still associated with
1611 switch(bp
->b_flags
& (B_DELWRI
|B_HEAVY
)) {
1613 bp
->b_qindex
= BQUEUE_DIRTY
;
1614 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1617 case B_DELWRI
| B_HEAVY
:
1618 bp
->b_qindex
= BQUEUE_DIRTY_HW
;
1619 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1624 * NOTE: Buffers are always placed at the end of the
1625 * queue. If B_AGE is not set the buffer will cycle
1626 * through the queue twice.
1628 bp
->b_qindex
= BQUEUE_CLEAN
;
1629 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1634 spin_unlock(&pcpu
->spin
);
1637 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1638 * on the correct queue but we have not yet unlocked it.
1640 if ((bp
->b_flags
& (B_INVAL
|B_DELWRI
)) == (B_INVAL
|B_DELWRI
))
1644 * The bp is on an appropriate queue unless locked. If it is not
1645 * locked or dirty we can wakeup threads waiting for buffer space.
1647 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1648 * if B_INVAL is set ).
1650 if ((bp
->b_flags
& (B_LOCKED
|B_DELWRI
)) == 0)
1654 * Something we can maybe free or reuse
1656 if (bp
->b_bufsize
|| bp
->b_kvasize
)
1660 * Clean up temporary flags and unlock the buffer.
1662 bp
->b_flags
&= ~(B_ORDERED
| B_NOCACHE
| B_RELBUF
| B_DIRECT
);
1669 * Release a buffer back to the appropriate queue but do not try to free
1670 * it. The buffer is expected to be used again soon.
1672 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1673 * biodone() to requeue an async I/O on completion. It is also used when
1674 * known good buffers need to be requeued but we think we may need the data
1677 * XXX we should be able to leave the B_RELBUF hint set on completion.
1680 bqrelse(struct buf
*bp
)
1682 struct bufpcpu
*pcpu
;
1684 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)),
1685 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
1687 if (bp
->b_qindex
!= BQUEUE_NONE
)
1688 panic("bqrelse: free buffer onto another queue???");
1689 if (BUF_REFCNTNB(bp
) > 1) {
1690 /* do not release to free list */
1691 panic("bqrelse: multiple refs");
1695 buf_act_advance(bp
);
1697 pcpu
= &bufpcpu
[bp
->b_qcpu
];
1698 spin_lock(&pcpu
->spin
);
1700 if (bp
->b_flags
& B_LOCKED
) {
1702 * Locked buffers are released to the locked queue. However,
1703 * if the buffer is dirty it will first go into the dirty
1704 * queue and later on after the I/O completes successfully it
1705 * will be released to the locked queue.
1707 bp
->b_qindex
= BQUEUE_LOCKED
;
1708 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1710 } else if (bp
->b_flags
& B_DELWRI
) {
1711 bp
->b_qindex
= (bp
->b_flags
& B_HEAVY
) ?
1712 BQUEUE_DIRTY_HW
: BQUEUE_DIRTY
;
1713 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1715 } else if (vm_page_count_min(0)) {
1717 * We are too low on memory, we have to try to free the
1718 * buffer (most importantly: the wired pages making up its
1719 * backing store) *now*.
1721 spin_unlock(&pcpu
->spin
);
1725 bp
->b_qindex
= BQUEUE_CLEAN
;
1726 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1729 spin_unlock(&pcpu
->spin
);
1732 * We have now placed the buffer on the proper queue, but have yet
1735 if ((bp
->b_flags
& B_LOCKED
) == 0 &&
1736 ((bp
->b_flags
& B_INVAL
) || (bp
->b_flags
& B_DELWRI
) == 0)) {
1741 * Something we can maybe free or reuse.
1743 if (bp
->b_bufsize
&& !(bp
->b_flags
& B_DELWRI
))
1747 * Final cleanup and unlock. Clear bits that are only used while a
1748 * buffer is actively locked.
1750 bp
->b_flags
&= ~(B_ORDERED
| B_NOCACHE
| B_RELBUF
);
1751 dsched_buf_exit(bp
);
1756 * Hold a buffer, preventing it from being reused. This will prevent
1757 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1758 * operations. If a B_INVAL operation occurs the buffer will remain held
1759 * but the underlying pages may get ripped out.
1761 * These functions are typically used in VOP_READ/VOP_WRITE functions
1762 * to hold a buffer during a copyin or copyout, preventing deadlocks
1763 * or recursive lock panics when read()/write() is used over mmap()'d
1766 * NOTE: bqhold() requires that the buffer be locked at the time of the
1767 * hold. bqdrop() has no requirements other than the buffer having
1768 * previously been held.
1771 bqhold(struct buf
*bp
)
1773 atomic_add_int(&bp
->b_refs
, 1);
1777 bqdrop(struct buf
*bp
)
1779 KKASSERT(bp
->b_refs
> 0);
1780 atomic_add_int(&bp
->b_refs
, -1);
1784 * Return backing pages held by the buffer 'bp' back to the VM system.
1785 * This routine is called when the bp is invalidated, released, or
1788 * The KVA mapping (b_data) for the underlying pages is removed by
1791 * WARNING! This routine is integral to the low memory critical path
1792 * when a buffer is B_RELBUF'd. If the system has a severe page
1793 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1794 * queues so they can be reused in the current pageout daemon
1798 vfs_vmio_release(struct buf
*bp
)
1803 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1804 m
= bp
->b_xio
.xio_pages
[i
];
1805 bp
->b_xio
.xio_pages
[i
] = NULL
;
1808 * We need to own the page in order to safely unwire it.
1810 vm_page_busy_wait(m
, FALSE
, "vmiopg");
1813 * The VFS is telling us this is not a meta-data buffer
1814 * even if it is backed by a block device.
1816 if (bp
->b_flags
& B_NOTMETA
)
1817 vm_page_flag_set(m
, PG_NOTMETA
);
1820 * This is a very important bit of code. We try to track
1821 * VM page use whether the pages are wired into the buffer
1822 * cache or not. While wired into the buffer cache the
1823 * bp tracks the act_count.
1825 * We can choose to place unwired pages on the inactive
1826 * queue (0) or active queue (1). If we place too many
1827 * on the active queue the queue will cycle the act_count
1828 * on pages we'd like to keep, just from single-use pages
1829 * (such as when doing a tar-up or file scan).
1831 if (bp
->b_act_count
< vm_cycle_point
)
1832 vm_page_unwire(m
, 0);
1834 vm_page_unwire(m
, 1);
1837 * If the wire_count has dropped to 0 we may need to take
1838 * further action before unbusying the page.
1840 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1842 if (m
->wire_count
== 0) {
1843 vm_page_flag_clear(m
, PG_ZERO
);
1845 if (bp
->b_flags
& B_DIRECT
) {
1847 * Attempt to free the page if B_DIRECT is
1848 * set, the caller does not desire the page
1852 vm_page_try_to_free(m
);
1853 } else if ((bp
->b_flags
& B_NOTMETA
) ||
1854 vm_page_count_min(0)) {
1856 * Attempt to move the page to PQ_CACHE
1857 * if B_NOTMETA is set. This flag is set
1858 * by HAMMER to remove one of the two pages
1859 * present when double buffering is enabled.
1861 * Attempt to move the page to PQ_CACHE
1862 * If we have a severe page deficit. This
1863 * will cause buffer cache operations related
1864 * to pageouts to recycle the related pages
1865 * in order to avoid a low memory deadlock.
1867 m
->act_count
= bp
->b_act_count
;
1869 vm_page_try_to_cache(m
);
1872 * Nominal case, leave the page on the
1873 * queue the original unwiring placed it on
1874 * (active or inactive).
1876 m
->act_count
= bp
->b_act_count
;
1884 pmap_qremove(trunc_page((vm_offset_t
) bp
->b_data
),
1885 bp
->b_xio
.xio_npages
);
1886 if (bp
->b_bufsize
) {
1887 atomic_add_long(&bufspace
, -bp
->b_bufsize
);
1891 bp
->b_xio
.xio_npages
= 0;
1892 bp
->b_flags
&= ~B_VMIO
;
1893 KKASSERT (LIST_FIRST(&bp
->b_dep
) == NULL
);
1899 * Find and initialize a new buffer header, freeing up existing buffers
1900 * in the bufqueues as necessary. The new buffer is returned locked.
1902 * If repurpose is non-NULL getnewbuf() is allowed to re-purpose an existing
1903 * buffer. The buffer will be disassociated, its page and page mappings
1904 * left intact, and returned with *repurpose set to 1. Else *repurpose is set
1905 * to 0. If 1, the caller must repurpose the underlying VM pages.
1907 * If repurpose is NULL getnewbuf() is not allowed to re-purpose an
1908 * existing buffer. That is, it must completely initialize the returned
1911 * Important: B_INVAL is not set. If the caller wishes to throw the
1912 * buffer away, the caller must set B_INVAL prior to calling brelse().
1915 * We have insufficient buffer headers
1916 * We have insufficient buffer space
1918 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1919 * Instead we ask the buf daemon to do it for us. We attempt to
1920 * avoid piecemeal wakeups of the pageout daemon.
1923 getnewbuf(int blkflags
, int slptimeo
, int size
, int maxsize
,
1924 struct vm_object
**repurposep
)
1926 struct bufpcpu
*pcpu
;
1931 int slpflags
= (blkflags
& GETBLK_PCATCH
) ? PCATCH
: 0;
1932 int maxloops
= 200000;
1933 int restart_reason
= 0;
1934 struct buf
*restart_bp
= NULL
;
1935 static char flushingbufs
[MAXCPU
];
1939 * We can't afford to block since we might be holding a vnode lock,
1940 * which may prevent system daemons from running. We deal with
1941 * low-memory situations by proactively returning memory and running
1942 * async I/O rather then sync I/O.
1946 nqcpu
= mycpu
->gd_cpuid
;
1947 flushingp
= &flushingbufs
[nqcpu
];
1949 if (bufspace
< lobufspace
)
1952 if (debug_bufbio
&& --maxloops
== 0)
1953 panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1954 mycpu
->gd_cpuid
, restart_reason
, restart_bp
);
1957 * Setup for scan. If we do not have enough free buffers,
1958 * we setup a degenerate case that immediately fails. Note
1959 * that if we are specially marked process, we are allowed to
1960 * dip into our reserves.
1962 * The scanning sequence is nominally: EMPTY->CLEAN
1964 pcpu
= &bufpcpu
[nqcpu
];
1965 spin_lock(&pcpu
->spin
);
1968 * Determine if repurposing should be disallowed. Generally speaking
1969 * do not repurpose buffers if the buffer cache hasn't capped. Also
1970 * control repurposing based on buffer-cache -> main-memory bandwidth.
1971 * That is, we want to recycle buffers normally up until the buffer
1972 * cache bandwidth (new-buffer bw) exceeds bufcache_bw.
1974 * (This is heuristical, SMP collisions are ok)
1977 int delta
= ticks
- bufcache_bw_ticks
;
1978 if (delta
< 0 || delta
>= hz
) {
1979 atomic_swap_long(&bufcache_bw_accum
, 0);
1980 atomic_swap_int(&bufcache_bw_ticks
, ticks
);
1982 atomic_add_long(&bufcache_bw_accum
, size
);
1983 if (bufspace
< lobufspace
) {
1985 } else if (bufcache_bw_accum
< bufcache_bw
) {
1991 * Prime the scan for this cpu. Locate the first buffer to
1992 * check. If we are flushing buffers we must skip the
1995 nqindex
= BQUEUE_EMPTY
;
1996 nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_EMPTY
]);
1997 if (nbp
== NULL
|| *flushingp
|| repurposep
) {
1998 nqindex
= BQUEUE_CLEAN
;
1999 nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_CLEAN
]);
2003 * Run scan, possibly freeing data and/or kva mappings on the fly,
2006 * WARNING! spin is held!
2008 while ((bp
= nbp
) != NULL
) {
2009 int qindex
= nqindex
;
2011 nbp
= TAILQ_NEXT(bp
, b_freelist
);
2014 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2015 * cycles through the queue twice before being selected.
2017 if (qindex
== BQUEUE_CLEAN
&&
2018 (bp
->b_flags
& B_AGE
) == 0 && nbp
) {
2019 bp
->b_flags
|= B_AGE
;
2020 TAILQ_REMOVE(&pcpu
->bufqueues
[qindex
],
2022 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[qindex
],
2028 * Calculate next bp ( we can only use it if we do not block
2029 * or do other fancy things ).
2034 nqindex
= BQUEUE_CLEAN
;
2035 if ((nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_CLEAN
])))
2049 KASSERT(bp
->b_qindex
== qindex
,
2050 ("getnewbuf: inconsistent queue %d bp %p", qindex
, bp
));
2053 * Note: we no longer distinguish between VMIO and non-VMIO
2056 KASSERT((bp
->b_flags
& B_DELWRI
) == 0,
2057 ("delwri buffer %p found in queue %d", bp
, qindex
));
2060 * Do not try to reuse a buffer with a non-zero b_refs.
2061 * This is an unsynchronized test. A synchronized test
2062 * is also performed after we lock the buffer.
2068 * Start freeing the bp. This is somewhat involved. nbp
2069 * remains valid only for BQUEUE_EMPTY bp's. Buffers
2070 * on the clean list must be disassociated from their
2071 * current vnode. Buffers on the empty lists have
2072 * already been disassociated.
2074 * b_refs is checked after locking along with queue changes.
2075 * We must check here to deal with zero->nonzero transitions
2076 * made by the owner of the buffer lock, which is used by
2077 * VFS's to hold the buffer while issuing an unlocked
2078 * uiomove()s. We cannot invalidate the buffer's pages
2079 * for this case. Once we successfully lock a buffer the
2080 * only 0->1 transitions of b_refs will occur via findblk().
2082 * We must also check for queue changes after successful
2083 * locking as the current lock holder may dispose of the
2084 * buffer and change its queue.
2086 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
) != 0) {
2087 spin_unlock(&pcpu
->spin
);
2088 tsleep(&bd_request
, 0, "gnbxxx", (hz
+ 99) / 100);
2093 if (bp
->b_qindex
!= qindex
|| bp
->b_refs
) {
2094 spin_unlock(&pcpu
->spin
);
2100 bremfree_locked(bp
);
2101 spin_unlock(&pcpu
->spin
);
2104 * Dependancies must be handled before we disassociate the
2107 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2108 * be immediately disassociated. HAMMER then becomes
2109 * responsible for releasing the buffer.
2111 * NOTE: spin is UNLOCKED now.
2113 if (LIST_FIRST(&bp
->b_dep
) != NULL
) {
2115 if (bp
->b_flags
& B_LOCKED
) {
2121 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
2125 * CLEAN buffers have content or associations that must be
2126 * cleaned out if not repurposing.
2128 if (qindex
== BQUEUE_CLEAN
) {
2129 if (bp
->b_flags
& B_VMIO
) {
2130 if (repurposep
&& bp
->b_bufsize
&&
2131 (bp
->b_flags
& (B_DELWRI
| B_MALLOC
)) == 0) {
2132 *repurposep
= bp
->b_vp
->v_object
;
2133 vm_object_hold(*repurposep
);
2135 vfs_vmio_release(bp
);
2143 * NOTE: nbp is now entirely invalid. We can only restart
2144 * the scan from this point on.
2146 * Get the rest of the buffer freed up. b_kva* is still
2147 * valid after this operation.
2149 KASSERT(bp
->b_vp
== NULL
,
2150 ("bp3 %p flags %08x vnode %p qindex %d "
2151 "unexpectededly still associated!",
2152 bp
, bp
->b_flags
, bp
->b_vp
, qindex
));
2153 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
2155 if (repurposep
== NULL
|| *repurposep
== NULL
) {
2160 if (bp
->b_flags
& (B_VNDIRTY
| B_VNCLEAN
| B_HASHED
)) {
2161 kprintf("getnewbuf: caught bug vp queue "
2162 "%p/%08x qidx %d\n",
2163 bp
, bp
->b_flags
, qindex
);
2166 bp
->b_flags
= B_BNOCLIP
;
2167 bp
->b_cmd
= BUF_CMD_DONE
;
2172 if (repurposep
== NULL
|| *repurposep
== NULL
)
2173 bp
->b_xio
.xio_npages
= 0;
2174 bp
->b_dirtyoff
= bp
->b_dirtyend
= 0;
2175 bp
->b_act_count
= ACT_INIT
;
2177 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
2179 if (blkflags
& GETBLK_BHEAVY
)
2180 bp
->b_flags
|= B_HEAVY
;
2182 if (bufspace
>= hibufspace
)
2184 if (bufspace
< lobufspace
)
2187 if (repurposep
&& *repurposep
!= NULL
) {
2188 bp
->b_flags
|= B_VMIO
;
2189 vfs_vmio_release(bp
);
2192 vm_object_drop(*repurposep
);
2195 bp
->b_flags
|= B_INVAL
;
2203 * b_refs can transition to a non-zero value while we hold
2204 * the buffer locked due to a findblk(). Our brelvp() above
2205 * interlocked any future possible transitions due to
2208 * If we find b_refs to be non-zero we can destroy the
2209 * buffer's contents but we cannot yet reuse the buffer.
2212 if (repurposep
&& *repurposep
!= NULL
) {
2213 bp
->b_flags
|= B_VMIO
;
2214 vfs_vmio_release(bp
);
2217 vm_object_drop(*repurposep
);
2220 bp
->b_flags
|= B_INVAL
;
2229 * We found our buffer!
2235 * If we exhausted our list, iterate other cpus. If that fails,
2236 * sleep as appropriate. We may have to wakeup various daemons
2237 * and write out some dirty buffers.
2239 * Generally we are sleeping due to insufficient buffer space.
2241 * NOTE: spin is held if bp is NULL, else it is not held.
2247 spin_unlock(&pcpu
->spin
);
2249 nqcpu
= (nqcpu
+ 1) % ncpus
;
2250 if (nqcpu
!= mycpu
->gd_cpuid
) {
2256 if (bufspace
>= hibufspace
) {
2258 flags
= VFS_BIO_NEED_BUFSPACE
;
2261 flags
= VFS_BIO_NEED_ANY
;
2264 bd_speedup(); /* heeeelp */
2265 atomic_set_int(&needsbuffer
, flags
);
2266 while (needsbuffer
& flags
) {
2269 tsleep_interlock(&needsbuffer
, 0);
2270 value
= atomic_fetchadd_int(&needsbuffer
, 0);
2271 if (value
& flags
) {
2272 if (tsleep(&needsbuffer
, PINTERLOCKED
|slpflags
,
2273 waitmsg
, slptimeo
)) {
2280 * We finally have a valid bp. Reset b_data.
2282 * (spin is not held)
2284 bp
->b_data
= bp
->b_kvabase
;
2292 * Buffer flushing daemon. Buffers are normally flushed by the
2293 * update daemon but if it cannot keep up this process starts to
2294 * take the load in an attempt to prevent getnewbuf() from blocking.
2296 * Once a flush is initiated it does not stop until the number
2297 * of buffers falls below lodirtybuffers, but we will wake up anyone
2298 * waiting at the mid-point.
2300 static struct kproc_desc buf_kp
= {
2305 SYSINIT(bufdaemon
, SI_SUB_KTHREAD_BUF
, SI_ORDER_FIRST
,
2306 kproc_start
, &buf_kp
);
2308 static struct kproc_desc bufhw_kp
= {
2313 SYSINIT(bufdaemon_hw
, SI_SUB_KTHREAD_BUF
, SI_ORDER_FIRST
,
2314 kproc_start
, &bufhw_kp
);
2317 buf_daemon1(struct thread
*td
, int queue
, int (*buf_limit_fn
)(long),
2323 marker
= kmalloc(sizeof(*marker
), M_BIOBUF
, M_WAITOK
| M_ZERO
);
2324 marker
->b_flags
|= B_MARKER
;
2325 marker
->b_qindex
= BQUEUE_NONE
;
2329 * This process needs to be suspended prior to shutdown sync.
2331 EVENTHANDLER_REGISTER(shutdown_pre_sync
, shutdown_kproc
,
2332 td
, SHUTDOWN_PRI_LAST
);
2333 curthread
->td_flags
|= TDF_SYSTHREAD
;
2336 * This process is allowed to take the buffer cache to the limit
2339 kproc_suspend_loop();
2342 * Do the flush as long as the number of dirty buffers
2343 * (including those running) exceeds lodirtybufspace.
2345 * When flushing limit running I/O to hirunningspace
2346 * Do the flush. Limit the amount of in-transit I/O we
2347 * allow to build up, otherwise we would completely saturate
2348 * the I/O system. Wakeup any waiting processes before we
2349 * normally would so they can run in parallel with our drain.
2351 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2352 * but because we split the operation into two threads we
2353 * have to cut it in half for each thread.
2355 waitrunningbufspace();
2356 limit
= lodirtybufspace
/ 2;
2357 while (buf_limit_fn(limit
)) {
2358 if (flushbufqueues(marker
, queue
) == 0)
2360 if (runningbufspace
< hirunningspace
)
2362 waitrunningbufspace();
2366 * We reached our low water mark, reset the
2367 * request and sleep until we are needed again.
2368 * The sleep is just so the suspend code works.
2370 tsleep_interlock(bd_req
, 0);
2371 if (atomic_swap_int(bd_req
, 0) == 0)
2372 tsleep(bd_req
, PINTERLOCKED
, "psleep", hz
);
2375 /*kfree(marker, M_BIOBUF);*/
2379 buf_daemon_limit(long limit
)
2381 return (runningbufspace
+ dirtykvaspace
> limit
||
2382 dirtybufcount
- dirtybufcounthw
>= nbuf
/ 2);
2386 buf_daemon_hw_limit(long limit
)
2388 return (runningbufspace
+ dirtykvaspace
> limit
||
2389 dirtybufcounthw
>= nbuf
/ 2);
2395 buf_daemon1(bufdaemon_td
, BQUEUE_DIRTY
, buf_daemon_limit
,
2402 buf_daemon1(bufdaemonhw_td
, BQUEUE_DIRTY_HW
, buf_daemon_hw_limit
,
2407 * Flush up to (flushperqueue) buffers in the dirty queue. Each cpu has a
2408 * localized version of the queue. Each call made to this function iterates
2409 * to another cpu. It is desireable to flush several buffers from the same
2410 * cpu's queue at once, as these are likely going to be linear.
2412 * We must be careful to free up B_INVAL buffers instead of write them, which
2413 * NFS is particularly sensitive to.
2415 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate that we
2416 * really want to try to get the buffer out and reuse it due to the write
2417 * load on the machine.
2419 * We must lock the buffer in order to check its validity before we can mess
2420 * with its contents. spin isn't enough.
2423 flushbufqueues(struct buf
*marker
, bufq_type_t q
)
2425 struct bufpcpu
*pcpu
;
2428 u_int loops
= flushperqueue
;
2429 int lcpu
= marker
->b_qcpu
;
2431 KKASSERT(marker
->b_qindex
== BQUEUE_NONE
);
2432 KKASSERT(marker
->b_flags
& B_MARKER
);
2436 * Spinlock needed to perform operations on the queue and may be
2437 * held through a non-blocking BUF_LOCK(), but cannot be held when
2438 * BUF_UNLOCK()ing or through any other major operation.
2440 pcpu
= &bufpcpu
[marker
->b_qcpu
];
2441 spin_lock(&pcpu
->spin
);
2442 marker
->b_qindex
= q
;
2443 TAILQ_INSERT_HEAD(&pcpu
->bufqueues
[q
], marker
, b_freelist
);
2446 while ((bp
= TAILQ_NEXT(bp
, b_freelist
)) != NULL
) {
2448 * NOTE: spinlock is always held at the top of the loop
2450 if (bp
->b_flags
& B_MARKER
)
2452 if ((bp
->b_flags
& B_DELWRI
) == 0) {
2453 kprintf("Unexpected clean buffer %p\n", bp
);
2456 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
))
2458 KKASSERT(bp
->b_qcpu
== marker
->b_qcpu
&& bp
->b_qindex
== q
);
2461 * Once the buffer is locked we will have no choice but to
2462 * unlock the spinlock around a later BUF_UNLOCK and re-set
2463 * bp = marker when looping. Move the marker now to make
2466 TAILQ_REMOVE(&pcpu
->bufqueues
[q
], marker
, b_freelist
);
2467 TAILQ_INSERT_AFTER(&pcpu
->bufqueues
[q
], bp
, marker
, b_freelist
);
2470 * Must recheck B_DELWRI after successfully locking
2473 if ((bp
->b_flags
& B_DELWRI
) == 0) {
2474 spin_unlock(&pcpu
->spin
);
2476 spin_lock(&pcpu
->spin
);
2482 * Remove the buffer from its queue. We still own the
2488 * Disposing of an invalid buffer counts as a flush op
2490 if (bp
->b_flags
& B_INVAL
) {
2491 spin_unlock(&pcpu
->spin
);
2497 * Release the spinlock for the more complex ops we
2498 * are now going to do.
2500 spin_unlock(&pcpu
->spin
);
2504 * This is a bit messy
2506 if (LIST_FIRST(&bp
->b_dep
) != NULL
&&
2507 (bp
->b_flags
& B_DEFERRED
) == 0 &&
2508 buf_countdeps(bp
, 0)) {
2509 spin_lock(&pcpu
->spin
);
2510 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[q
], bp
, b_freelist
);
2512 bp
->b_flags
|= B_DEFERRED
;
2513 spin_unlock(&pcpu
->spin
);
2515 spin_lock(&pcpu
->spin
);
2521 * spinlock not held here.
2523 * If the buffer has a dependancy, buf_checkwrite() must
2524 * also return 0 for us to be able to initate the write.
2526 * If the buffer is flagged B_ERROR it may be requeued
2527 * over and over again, we try to avoid a live lock.
2529 if (LIST_FIRST(&bp
->b_dep
) != NULL
&& buf_checkwrite(bp
)) {
2531 } else if (bp
->b_flags
& B_ERROR
) {
2532 tsleep(bp
, 0, "bioer", 1);
2533 bp
->b_flags
&= ~B_AGE
;
2536 bp
->b_flags
|= B_AGE
;
2539 /* bp invalid but needs to be NULL-tested if we break out */
2541 spin_lock(&pcpu
->spin
);
2547 /* bp is invalid here but can be NULL-tested to advance */
2549 TAILQ_REMOVE(&pcpu
->bufqueues
[q
], marker
, b_freelist
);
2550 marker
->b_qindex
= BQUEUE_NONE
;
2551 spin_unlock(&pcpu
->spin
);
2554 * Advance the marker to be fair.
2556 marker
->b_qcpu
= (marker
->b_qcpu
+ 1) % ncpus
;
2558 if (marker
->b_qcpu
!= lcpu
)
2568 * Returns true if no I/O is needed to access the associated VM object.
2569 * This is like findblk except it also hunts around in the VM system for
2572 * Note that we ignore vm_page_free() races from interrupts against our
2573 * lookup, since if the caller is not protected our return value will not
2574 * be any more valid then otherwise once we exit the critical section.
2577 inmem(struct vnode
*vp
, off_t loffset
)
2580 vm_offset_t toff
, tinc
, size
;
2584 if (findblk(vp
, loffset
, FINDBLK_TEST
))
2586 if (vp
->v_mount
== NULL
)
2588 if ((obj
= vp
->v_object
) == NULL
)
2592 if (size
> vp
->v_mount
->mnt_stat
.f_iosize
)
2593 size
= vp
->v_mount
->mnt_stat
.f_iosize
;
2595 vm_object_hold(obj
);
2596 for (toff
= 0; toff
< vp
->v_mount
->mnt_stat
.f_iosize
; toff
+= tinc
) {
2597 m
= vm_page_lookup(obj
, OFF_TO_IDX(loffset
+ toff
));
2603 if (tinc
> PAGE_SIZE
- ((toff
+ loffset
) & PAGE_MASK
))
2604 tinc
= PAGE_SIZE
- ((toff
+ loffset
) & PAGE_MASK
);
2605 if (vm_page_is_valid(m
,
2606 (vm_offset_t
) ((toff
+ loffset
) & PAGE_MASK
), tinc
) == 0) {
2611 vm_object_drop(obj
);
2618 * Locate and return the specified buffer. Unless flagged otherwise,
2619 * a locked buffer will be returned if it exists or NULL if it does not.
2621 * findblk()'d buffers are still on the bufqueues and if you intend
2622 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2623 * and possibly do other stuff to it.
2625 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2626 * for locking the buffer and ensuring that it remains
2627 * the desired buffer after locking.
2629 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2630 * to acquire the lock we return NULL, even if the
2633 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal
2634 * reuse by getnewbuf() but does not prevent
2635 * disassociation (B_INVAL). Used to avoid deadlocks
2636 * against random (vp,loffset)s due to reassignment.
2638 * (0) - Lock the buffer blocking.
2641 findblk(struct vnode
*vp
, off_t loffset
, int flags
)
2646 lkflags
= LK_EXCLUSIVE
;
2647 if (flags
& FINDBLK_NBLOCK
)
2648 lkflags
|= LK_NOWAIT
;
2652 * Lookup. Ref the buf while holding v_token to prevent
2653 * reuse (but does not prevent diassociation).
2655 lwkt_gettoken_shared(&vp
->v_token
);
2656 bp
= buf_rb_hash_RB_LOOKUP(&vp
->v_rbhash_tree
, loffset
);
2658 lwkt_reltoken(&vp
->v_token
);
2662 lwkt_reltoken(&vp
->v_token
);
2665 * If testing only break and return bp, do not lock.
2667 if (flags
& FINDBLK_TEST
)
2671 * Lock the buffer, return an error if the lock fails.
2672 * (only FINDBLK_NBLOCK can cause the lock to fail).
2674 if (BUF_LOCK(bp
, lkflags
)) {
2675 atomic_subtract_int(&bp
->b_refs
, 1);
2676 /* bp = NULL; not needed */
2681 * Revalidate the locked buf before allowing it to be
2684 if (bp
->b_vp
== vp
&& bp
->b_loffset
== loffset
)
2686 atomic_subtract_int(&bp
->b_refs
, 1);
2693 if ((flags
& FINDBLK_REF
) == 0)
2694 atomic_subtract_int(&bp
->b_refs
, 1);
2701 * Similar to getblk() except only returns the buffer if it is
2702 * B_CACHE and requires no other manipulation. Otherwise NULL
2703 * is returned. NULL is also returned if GETBLK_NOWAIT is set
2704 * and the getblk() would block.
2706 * If B_RAM is set the buffer might be just fine, but we return
2707 * NULL anyway because we want the code to fall through to the
2708 * cluster read to issue more read-aheads. Otherwise read-ahead breaks.
2710 * If blksize is 0 the buffer cache buffer must already be fully
2713 * If blksize is non-zero getblk() will be used, allowing a buffer
2714 * to be reinstantiated from its VM backing store. The buffer must
2715 * still be fully cached after reinstantiation to be returned.
2718 getcacheblk(struct vnode
*vp
, off_t loffset
, int blksize
, int blkflags
)
2721 int fndflags
= (blkflags
& GETBLK_NOWAIT
) ? FINDBLK_NBLOCK
: 0;
2724 bp
= getblk(vp
, loffset
, blksize
, blkflags
, 0);
2726 if ((bp
->b_flags
& (B_INVAL
| B_CACHE
)) == B_CACHE
) {
2727 bp
->b_flags
&= ~B_AGE
;
2728 if (bp
->b_flags
& B_RAM
) {
2738 bp
= findblk(vp
, loffset
, fndflags
);
2740 if ((bp
->b_flags
& (B_INVAL
| B_CACHE
| B_RAM
)) ==
2742 bp
->b_flags
&= ~B_AGE
;
2756 * Get a block given a specified block and offset into a file/device.
2757 * B_INVAL may or may not be set on return. The caller should clear
2758 * B_INVAL prior to initiating a READ.
2760 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2761 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2762 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2763 * without doing any of those things the system will likely believe
2764 * the buffer to be valid (especially if it is not B_VMIO), and the
2765 * next getblk() will return the buffer with B_CACHE set.
2767 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2768 * an existing buffer.
2770 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2771 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2772 * and then cleared based on the backing VM. If the previous buffer is
2773 * non-0-sized but invalid, B_CACHE will be cleared.
2775 * If getblk() must create a new buffer, the new buffer is returned with
2776 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2777 * case it is returned with B_INVAL clear and B_CACHE set based on the
2780 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2781 * B_CACHE bit is clear.
2783 * What this means, basically, is that the caller should use B_CACHE to
2784 * determine whether the buffer is fully valid or not and should clear
2785 * B_INVAL prior to issuing a read. If the caller intends to validate
2786 * the buffer by loading its data area with something, the caller needs
2787 * to clear B_INVAL. If the caller does this without issuing an I/O,
2788 * the caller should set B_CACHE ( as an optimization ), else the caller
2789 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2790 * a write attempt or if it was a successfull read. If the caller
2791 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2792 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2796 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2797 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2800 getblk(struct vnode
*vp
, off_t loffset
, int size
, int blkflags
, int slptimeo
)
2803 int slpflags
= (blkflags
& GETBLK_PCATCH
) ? PCATCH
: 0;
2807 if (size
> MAXBSIZE
)
2808 panic("getblk: size(%d) > MAXBSIZE(%d)", size
, MAXBSIZE
);
2809 if (vp
->v_object
== NULL
)
2810 panic("getblk: vnode %p has no object!", vp
);
2813 if ((bp
= findblk(vp
, loffset
, FINDBLK_REF
| FINDBLK_TEST
)) != NULL
) {
2815 * The buffer was found in the cache, but we need to lock it.
2816 * We must acquire a ref on the bp to prevent reuse, but
2817 * this will not prevent disassociation (brelvp()) so we
2818 * must recheck (vp,loffset) after acquiring the lock.
2820 * Without the ref the buffer could potentially be reused
2821 * before we acquire the lock and create a deadlock
2822 * situation between the thread trying to reuse the buffer
2823 * and us due to the fact that we would wind up blocking
2824 * on a random (vp,loffset).
2826 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
2827 if (blkflags
& GETBLK_NOWAIT
) {
2831 lkflags
= LK_EXCLUSIVE
| LK_SLEEPFAIL
;
2832 if (blkflags
& GETBLK_PCATCH
)
2833 lkflags
|= LK_PCATCH
;
2834 error
= BUF_TIMELOCK(bp
, lkflags
, "getblk", slptimeo
);
2837 if (error
== ENOLCK
)
2841 /* buffer may have changed on us */
2846 * Once the buffer has been locked, make sure we didn't race
2847 * a buffer recyclement. Buffers that are no longer hashed
2848 * will have b_vp == NULL, so this takes care of that check
2851 if (bp
->b_vp
!= vp
|| bp
->b_loffset
!= loffset
) {
2853 kprintf("Warning buffer %p (vp %p loffset %lld) "
2855 bp
, vp
, (long long)loffset
);
2862 * If SZMATCH any pre-existing buffer must be of the requested
2863 * size or NULL is returned. The caller absolutely does not
2864 * want getblk() to bwrite() the buffer on a size mismatch.
2866 if ((blkflags
& GETBLK_SZMATCH
) && size
!= bp
->b_bcount
) {
2872 * All vnode-based buffers must be backed by a VM object.
2874 KKASSERT(bp
->b_flags
& B_VMIO
);
2875 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
2876 bp
->b_flags
&= ~B_AGE
;
2879 * Make sure that B_INVAL buffers do not have a cached
2880 * block number translation.
2882 if ((bp
->b_flags
& B_INVAL
) && (bp
->b_bio2
.bio_offset
!= NOOFFSET
)) {
2883 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2884 " did not have cleared bio_offset cache\n",
2885 bp
, vp
, (long long)loffset
);
2886 clearbiocache(&bp
->b_bio2
);
2890 * The buffer is locked. B_CACHE is cleared if the buffer is
2893 if (bp
->b_flags
& B_INVAL
)
2894 bp
->b_flags
&= ~B_CACHE
;
2898 * Any size inconsistancy with a dirty buffer or a buffer
2899 * with a softupdates dependancy must be resolved. Resizing
2900 * the buffer in such circumstances can lead to problems.
2902 * Dirty or dependant buffers are written synchronously.
2903 * Other types of buffers are simply released and
2904 * reconstituted as they may be backed by valid, dirty VM
2905 * pages (but not marked B_DELWRI).
2907 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2908 * and may be left over from a prior truncation (and thus
2909 * no longer represent the actual EOF point), so we
2910 * definitely do not want to B_NOCACHE the backing store.
2912 if (size
!= bp
->b_bcount
) {
2913 if (bp
->b_flags
& B_DELWRI
) {
2914 bp
->b_flags
|= B_RELBUF
;
2916 } else if (LIST_FIRST(&bp
->b_dep
)) {
2917 bp
->b_flags
|= B_RELBUF
;
2920 bp
->b_flags
|= B_RELBUF
;
2925 KKASSERT(size
<= bp
->b_kvasize
);
2926 KASSERT(bp
->b_loffset
!= NOOFFSET
,
2927 ("getblk: no buffer offset"));
2930 * A buffer with B_DELWRI set and B_CACHE clear must
2931 * be committed before we can return the buffer in
2932 * order to prevent the caller from issuing a read
2933 * ( due to B_CACHE not being set ) and overwriting
2936 * Most callers, including NFS and FFS, need this to
2937 * operate properly either because they assume they
2938 * can issue a read if B_CACHE is not set, or because
2939 * ( for example ) an uncached B_DELWRI might loop due
2940 * to softupdates re-dirtying the buffer. In the latter
2941 * case, B_CACHE is set after the first write completes,
2942 * preventing further loops.
2944 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2945 * above while extending the buffer, we cannot allow the
2946 * buffer to remain with B_CACHE set after the write
2947 * completes or it will represent a corrupt state. To
2948 * deal with this we set B_NOCACHE to scrap the buffer
2951 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2952 * I'm not even sure this state is still possible
2953 * now that getblk() writes out any dirty buffers
2956 * We might be able to do something fancy, like setting
2957 * B_CACHE in bwrite() except if B_DELWRI is already set,
2958 * so the below call doesn't set B_CACHE, but that gets real
2959 * confusing. This is much easier.
2962 if ((bp
->b_flags
& (B_CACHE
|B_DELWRI
)) == B_DELWRI
) {
2963 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2964 "and CACHE clear, b_flags %08x\n",
2965 bp
, (uintmax_t)bp
->b_loffset
, bp
->b_flags
);
2966 bp
->b_flags
|= B_NOCACHE
;
2972 * Buffer is not in-core, create new buffer. The buffer
2973 * returned by getnewbuf() is locked. Note that the returned
2974 * buffer is also considered valid (not marked B_INVAL).
2976 * Calculating the offset for the I/O requires figuring out
2977 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2978 * the mount's f_iosize otherwise. If the vnode does not
2979 * have an associated mount we assume that the passed size is
2982 * Note that vn_isdisk() cannot be used here since it may
2983 * return a failure for numerous reasons. Note that the
2984 * buffer size may be larger then the block size (the caller
2985 * will use block numbers with the proper multiple). Beware
2986 * of using any v_* fields which are part of unions. In
2987 * particular, in DragonFly the mount point overloading
2988 * mechanism uses the namecache only and the underlying
2989 * directory vnode is not a special case.
2992 vm_object_t repurpose
;
2994 if (vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
)
2996 else if (vp
->v_mount
)
2997 bsize
= vp
->v_mount
->mnt_stat
.f_iosize
;
3001 maxsize
= size
+ (loffset
& PAGE_MASK
);
3002 maxsize
= imax(maxsize
, bsize
);
3006 * Allow repurposing. The returned buffer may contain VM
3007 * pages associated with its previous incarnation. These
3008 * pages must be repurposed for the new buffer (hopefully
3009 * without disturbing the KVM mapping).
3011 * WARNING! If repurpose != NULL on return, the buffer will
3012 * still contain some data from its prior
3013 * incarnation. We MUST properly dispose of this
3016 bp
= getnewbuf(blkflags
, slptimeo
, size
, maxsize
, &repurpose
);
3018 if (slpflags
|| slptimeo
)
3024 * Atomically insert the buffer into the hash, so that it can
3025 * be found by findblk().
3027 * If bgetvp() returns non-zero a collision occured, and the
3028 * bp will not be associated with the vnode.
3030 * Make sure the translation layer has been cleared.
3032 bp
->b_loffset
= loffset
;
3033 bp
->b_bio2
.bio_offset
= NOOFFSET
;
3034 /* bp->b_bio2.bio_next = NULL; */
3036 if (bgetvp(vp
, bp
, size
)) {
3038 bp
->b_flags
|= B_VMIO
;
3039 repurposebuf(bp
, 0);
3040 vm_object_drop(repurpose
);
3042 bp
->b_flags
|= B_INVAL
;
3048 * All vnode-based buffers must be backed by a VM object.
3050 KKASSERT(vp
->v_object
!= NULL
);
3051 bp
->b_flags
|= B_VMIO
;
3052 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
3055 * If we allowed repurposing of the buffer it will contain
3056 * free-but-held vm_page's, already kmapped, that can be
3057 * repurposed. The repurposebuf() code handles reassigning
3058 * those pages to the new (object, offsets) and dealing with
3059 * the case where the pages already exist.
3062 repurposebuf(bp
, size
);
3063 vm_object_drop(repurpose
);
3074 * Reacquire a buffer that was previously released to the locked queue,
3075 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3076 * set B_LOCKED (which handles the acquisition race).
3078 * To this end, either B_LOCKED must be set or the dependancy list must be
3082 regetblk(struct buf
*bp
)
3084 KKASSERT((bp
->b_flags
& B_LOCKED
) || LIST_FIRST(&bp
->b_dep
) != NULL
);
3085 BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_RETRY
);
3092 * Get an empty, disassociated buffer of given size. The buffer is
3093 * initially set to B_INVAL.
3095 * critical section protection is not required for the allocbuf()
3096 * call because races are impossible here.
3103 while ((bp
= getnewbuf(0, 0, size
, MAXBSIZE
, NULL
)) == NULL
)
3106 bp
->b_flags
|= B_INVAL
; /* b_dep cleared by getnewbuf() */
3114 * This code constitutes the buffer memory from either anonymous system
3115 * memory (in the case of non-VMIO operations) or from an associated
3116 * VM object (in the case of VMIO operations). This code is able to
3117 * resize a buffer up or down.
3119 * Note that this code is tricky, and has many complications to resolve
3120 * deadlock or inconsistant data situations. Tread lightly!!!
3121 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3122 * the caller. Calling this code willy nilly can result in the loss of
3125 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3126 * B_CACHE for the non-VMIO case.
3128 * This routine does not need to be called from a critical section but you
3129 * must own the buffer.
3132 allocbuf(struct buf
*bp
, int size
)
3134 int newbsize
, mbsize
;
3137 if (BUF_REFCNT(bp
) == 0)
3138 panic("allocbuf: buffer not busy");
3140 if (bp
->b_kvasize
< size
)
3141 panic("allocbuf: buffer too small");
3143 if ((bp
->b_flags
& B_VMIO
) == 0) {
3147 * Just get anonymous memory from the kernel. Don't
3148 * mess with B_CACHE.
3150 mbsize
= roundup2(size
, DEV_BSIZE
);
3151 if (bp
->b_flags
& B_MALLOC
)
3154 newbsize
= round_page(size
);
3156 if (newbsize
< bp
->b_bufsize
) {
3158 * Malloced buffers are not shrunk
3160 if (bp
->b_flags
& B_MALLOC
) {
3162 bp
->b_bcount
= size
;
3164 kfree(bp
->b_data
, M_BIOBUF
);
3165 if (bp
->b_bufsize
) {
3166 atomic_subtract_long(&bufmallocspace
, bp
->b_bufsize
);
3170 bp
->b_data
= bp
->b_kvabase
;
3172 bp
->b_flags
&= ~B_MALLOC
;
3178 (vm_offset_t
) bp
->b_data
+ newbsize
,
3179 (vm_offset_t
) bp
->b_data
+ bp
->b_bufsize
);
3180 } else if (newbsize
> bp
->b_bufsize
) {
3182 * We only use malloced memory on the first allocation.
3183 * and revert to page-allocated memory when the buffer
3186 if ((bufmallocspace
< maxbufmallocspace
) &&
3187 (bp
->b_bufsize
== 0) &&
3188 (mbsize
<= PAGE_SIZE
/2)) {
3190 bp
->b_data
= kmalloc(mbsize
, M_BIOBUF
, M_WAITOK
);
3191 bp
->b_bufsize
= mbsize
;
3192 bp
->b_bcount
= size
;
3193 bp
->b_flags
|= B_MALLOC
;
3194 atomic_add_long(&bufmallocspace
, mbsize
);
3200 * If the buffer is growing on its other-than-first
3201 * allocation, then we revert to the page-allocation
3204 if (bp
->b_flags
& B_MALLOC
) {
3205 origbuf
= bp
->b_data
;
3206 origbufsize
= bp
->b_bufsize
;
3207 bp
->b_data
= bp
->b_kvabase
;
3208 if (bp
->b_bufsize
) {
3209 atomic_subtract_long(&bufmallocspace
,
3214 bp
->b_flags
&= ~B_MALLOC
;
3215 newbsize
= round_page(newbsize
);
3219 (vm_offset_t
) bp
->b_data
+ bp
->b_bufsize
,
3220 (vm_offset_t
) bp
->b_data
+ newbsize
);
3222 bcopy(origbuf
, bp
->b_data
, origbufsize
);
3223 kfree(origbuf
, M_BIOBUF
);
3230 newbsize
= roundup2(size
, DEV_BSIZE
);
3231 desiredpages
= ((int)(bp
->b_loffset
& PAGE_MASK
) +
3232 newbsize
+ PAGE_MASK
) >> PAGE_SHIFT
;
3233 KKASSERT(desiredpages
<= XIO_INTERNAL_PAGES
);
3235 if (bp
->b_flags
& B_MALLOC
)
3236 panic("allocbuf: VMIO buffer can't be malloced");
3238 * Set B_CACHE initially if buffer is 0 length or will become
3241 if (size
== 0 || bp
->b_bufsize
== 0)
3242 bp
->b_flags
|= B_CACHE
;
3244 if (newbsize
< bp
->b_bufsize
) {
3246 * DEV_BSIZE aligned new buffer size is less then the
3247 * DEV_BSIZE aligned existing buffer size. Figure out
3248 * if we have to remove any pages.
3250 if (desiredpages
< bp
->b_xio
.xio_npages
) {
3251 for (i
= desiredpages
; i
< bp
->b_xio
.xio_npages
; i
++) {
3253 * the page is not freed here -- it
3254 * is the responsibility of
3255 * vnode_pager_setsize
3257 m
= bp
->b_xio
.xio_pages
[i
];
3258 KASSERT(m
!= bogus_page
,
3259 ("allocbuf: bogus page found"));
3260 vm_page_busy_wait(m
, TRUE
, "biodep");
3261 bp
->b_xio
.xio_pages
[i
] = NULL
;
3262 vm_page_unwire(m
, 0);
3265 pmap_qremove((vm_offset_t
) trunc_page((vm_offset_t
)bp
->b_data
) +
3266 (desiredpages
<< PAGE_SHIFT
), (bp
->b_xio
.xio_npages
- desiredpages
));
3267 bp
->b_xio
.xio_npages
= desiredpages
;
3269 } else if (size
> bp
->b_bcount
) {
3271 * We are growing the buffer, possibly in a
3272 * byte-granular fashion.
3280 * Step 1, bring in the VM pages from the object,
3281 * allocating them if necessary. We must clear
3282 * B_CACHE if these pages are not valid for the
3283 * range covered by the buffer.
3288 vm_object_hold(obj
);
3289 while (bp
->b_xio
.xio_npages
< desiredpages
) {
3294 pi
= OFF_TO_IDX(bp
->b_loffset
) +
3295 bp
->b_xio
.xio_npages
;
3298 * Blocking on m->busy might lead to a
3301 * vm_fault->getpages->cluster_read->allocbuf
3303 m
= vm_page_lookup_busy_try(obj
, pi
, FALSE
,
3306 vm_page_sleep_busy(m
, FALSE
, "pgtblk");
3311 * note: must allocate system pages
3312 * since blocking here could intefere
3313 * with paging I/O, no matter which
3316 m
= bio_page_alloc(bp
, obj
, pi
, desiredpages
- bp
->b_xio
.xio_npages
);
3319 vm_page_flag_clear(m
, PG_ZERO
);
3321 bp
->b_flags
&= ~B_CACHE
;
3322 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
3323 ++bp
->b_xio
.xio_npages
;
3329 * We found a page and were able to busy it.
3331 vm_page_flag_clear(m
, PG_ZERO
);
3334 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
3335 ++bp
->b_xio
.xio_npages
;
3336 if (bp
->b_act_count
< m
->act_count
)
3337 bp
->b_act_count
= m
->act_count
;
3339 vm_object_drop(obj
);
3342 * Step 2. We've loaded the pages into the buffer,
3343 * we have to figure out if we can still have B_CACHE
3344 * set. Note that B_CACHE is set according to the
3345 * byte-granular range ( bcount and size ), not the
3346 * aligned range ( newbsize ).
3348 * The VM test is against m->valid, which is DEV_BSIZE
3349 * aligned. Needless to say, the validity of the data
3350 * needs to also be DEV_BSIZE aligned. Note that this
3351 * fails with NFS if the server or some other client
3352 * extends the file's EOF. If our buffer is resized,
3353 * B_CACHE may remain set! XXX
3356 toff
= bp
->b_bcount
;
3357 tinc
= PAGE_SIZE
- ((bp
->b_loffset
+ toff
) & PAGE_MASK
);
3359 while ((bp
->b_flags
& B_CACHE
) && toff
< size
) {
3362 if (tinc
> (size
- toff
))
3365 pi
= ((bp
->b_loffset
& PAGE_MASK
) + toff
) >>
3373 bp
->b_xio
.xio_pages
[pi
]
3380 * Step 3, fixup the KVM pmap. Remember that
3381 * bp->b_data is relative to bp->b_loffset, but
3382 * bp->b_loffset may be offset into the first page.
3384 bp
->b_data
= (caddr_t
)
3385 trunc_page((vm_offset_t
)bp
->b_data
);
3386 pmap_qenter((vm_offset_t
)bp
->b_data
,
3387 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
3388 bp
->b_data
= (caddr_t
)((vm_offset_t
)bp
->b_data
|
3389 (vm_offset_t
)(bp
->b_loffset
& PAGE_MASK
));
3391 atomic_add_long(&bufspace
, newbsize
- bp
->b_bufsize
);
3394 /* adjust space use on already-dirty buffer */
3395 if (bp
->b_flags
& B_DELWRI
) {
3396 /* dirtykvaspace unchanged */
3397 atomic_add_long(&dirtybufspace
, newbsize
- bp
->b_bufsize
);
3398 if (bp
->b_flags
& B_HEAVY
) {
3399 atomic_add_long(&dirtybufspacehw
,
3400 newbsize
- bp
->b_bufsize
);
3403 bp
->b_bufsize
= newbsize
; /* actual buffer allocation */
3404 bp
->b_bcount
= size
; /* requested buffer size */
3409 * repurposebuf() (VMIO only)
3411 * This performs a function similar to allocbuf() but the passed-in buffer
3412 * may contain some detrius from its previous incarnation in the form of
3413 * the page array. We try to repurpose the underlying pages.
3415 * This code is nominally called to recycle buffer cache buffers AND (if
3416 * they are clean) to also recycle their underlying pages. We currently
3417 * can only recycle unmapped, clean pages. The code is called when buffer
3418 * cache 'newbuf' bandwidth exceeds (bufrate_cache) bytes per second.
3422 repurposebuf(struct buf
*bp
, int size
)
3431 int must_reenter
= 0;
3432 long deaccumulate
= 0;
3435 KKASSERT((bp
->b_flags
& (B_VMIO
| B_DELWRI
| B_MALLOC
)) == B_VMIO
);
3436 if (BUF_REFCNT(bp
) == 0)
3437 panic("repurposebuf: buffer not busy");
3439 if (bp
->b_kvasize
< size
)
3440 panic("repurposebuf: buffer too small");
3442 newbsize
= roundup2(size
, DEV_BSIZE
);
3443 desiredpages
= ((int)(bp
->b_loffset
& PAGE_MASK
) +
3444 newbsize
+ PAGE_MASK
) >> PAGE_SHIFT
;
3445 KKASSERT(desiredpages
<= XIO_INTERNAL_PAGES
);
3448 * Buffer starts out 0-length with B_CACHE set. We will clear
3449 * As we check the backing store we will clear B_CACHE if necessary.
3451 atomic_add_long(&bufspace
, newbsize
- bp
->b_bufsize
);
3454 bp
->b_flags
|= B_CACHE
;
3457 obj
= bp
->b_vp
->v_object
;
3458 vm_object_hold(obj
);
3464 * Step 1, bring in the VM pages from the object, repurposing or
3465 * allocating them if necessary. We must clear B_CACHE if these
3466 * pages are not valid for the range covered by the buffer.
3468 * We are growing the buffer, possibly in a byte-granular fashion.
3470 for (i
= 0; i
< desiredpages
; ++i
) {
3475 pi
= OFF_TO_IDX(bp
->b_loffset
) + i
;
3478 * Blocking on m->busy might lead to a
3481 * vm_fault->getpages->cluster_read->allocbuf
3483 m
= (i
< bp
->b_xio
.xio_npages
) ? bp
->b_xio
.xio_pages
[i
] : NULL
;
3484 bp
->b_xio
.xio_pages
[i
] = NULL
;
3485 KASSERT(m
!= bogus_page
, ("repurposebuf: bogus page found"));
3486 m
= vm_page_repurpose(obj
, pi
, FALSE
, &error
, m
,
3487 &must_reenter
, &iswired
);
3490 vm_page_sleep_busy(m
, FALSE
, "pgtblk");
3496 * note: must allocate system pages
3497 * since blocking here could intefere
3498 * with paging I/O, no matter which
3502 m
= bio_page_alloc(bp
, obj
, pi
, desiredpages
- i
);
3505 vm_page_flag_clear(m
, PG_ZERO
);
3507 bp
->b_flags
&= ~B_CACHE
;
3508 bp
->b_xio
.xio_pages
[i
] = m
;
3510 deaccumulate
+= PAGE_SIZE
;
3517 deaccumulate
+= PAGE_SIZE
;
3520 * We found a page and were able to busy it.
3522 vm_page_flag_clear(m
, PG_ZERO
);
3526 bp
->b_xio
.xio_pages
[i
] = m
;
3527 if (bp
->b_act_count
< m
->act_count
)
3528 bp
->b_act_count
= m
->act_count
;
3531 vm_object_drop(obj
);
3534 * Even though its a new buffer, any pages already in the VM
3535 * page cache should not count towards I/O bandwidth.
3538 atomic_add_long(&bufcache_bw_accum
, -deaccumulate
);
3541 * Clean-up any loose pages.
3543 while (i
< bp
->b_xio
.xio_npages
) {
3544 m
= bp
->b_xio
.xio_pages
[i
];
3545 KASSERT(m
!= bogus_page
, ("repurposebuf: bogus page found"));
3546 vm_page_busy_wait(m
, TRUE
, "biodep");
3547 bp
->b_xio
.xio_pages
[i
] = NULL
;
3548 vm_page_unwire(m
, 0);
3552 if (desiredpages
< bp
->b_xio
.xio_npages
) {
3553 pmap_qremove((vm_offset_t
)trunc_page((vm_offset_t
)bp
->b_data
) +
3554 (desiredpages
<< PAGE_SHIFT
),
3555 (bp
->b_xio
.xio_npages
- desiredpages
));
3557 bp
->b_xio
.xio_npages
= desiredpages
;
3560 * Step 2. We've loaded the pages into the buffer,
3561 * we have to figure out if we can still have B_CACHE
3562 * set. Note that B_CACHE is set according to the
3563 * byte-granular range ( bcount and size ), not the
3564 * aligned range ( newbsize ).
3566 * The VM test is against m->valid, which is DEV_BSIZE
3567 * aligned. Needless to say, the validity of the data
3568 * needs to also be DEV_BSIZE aligned. Note that this
3569 * fails with NFS if the server or some other client
3570 * extends the file's EOF. If our buffer is resized,
3571 * B_CACHE may remain set! XXX
3573 toff
= bp
->b_bcount
;
3574 tinc
= PAGE_SIZE
- ((bp
->b_loffset
+ toff
) & PAGE_MASK
);
3576 while ((bp
->b_flags
& B_CACHE
) && toff
< size
) {
3579 if (tinc
> (size
- toff
))
3582 pi
= ((bp
->b_loffset
& PAGE_MASK
) + toff
) >> PAGE_SHIFT
;
3584 vfs_buf_test_cache(bp
, bp
->b_loffset
, toff
,
3585 tinc
, bp
->b_xio
.xio_pages
[pi
]);
3591 * Step 3, fixup the KVM pmap. Remember that
3592 * bp->b_data is relative to bp->b_loffset, but
3593 * bp->b_loffset may be offset into the first page.
3595 bp
->b_data
= (caddr_t
)trunc_page((vm_offset_t
)bp
->b_data
);
3597 pmap_qenter((vm_offset_t
)bp
->b_data
,
3598 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
3600 atomic_add_long(&repurposedspace
, newbsize
);
3602 bp
->b_data
= (caddr_t
)((vm_offset_t
)bp
->b_data
|
3603 (vm_offset_t
)(bp
->b_loffset
& PAGE_MASK
));
3605 if (newbsize
< bp
->b_bufsize
)
3607 bp
->b_bufsize
= newbsize
; /* actual buffer allocation */
3608 bp
->b_bcount
= size
; /* requested buffer size */
3614 * Wait for buffer I/O completion, returning error status. B_EINTR
3615 * is converted into an EINTR error but not cleared (since a chain
3616 * of biowait() calls may occur).
3618 * On return bpdone() will have been called but the buffer will remain
3619 * locked and will not have been brelse()'d.
3621 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3622 * likely still in progress on return.
3624 * NOTE! This operation is on a BIO, not a BUF.
3626 * NOTE! BIO_DONE is cleared by vn_strategy()
3629 _biowait(struct bio
*bio
, const char *wmesg
, int to
)
3631 struct buf
*bp
= bio
->bio_buf
;
3636 KKASSERT(bio
== &bp
->b_bio1
);
3638 flags
= bio
->bio_flags
;
3639 if (flags
& BIO_DONE
)
3641 nflags
= flags
| BIO_WANT
;
3642 tsleep_interlock(bio
, 0);
3643 if (atomic_cmpset_int(&bio
->bio_flags
, flags
, nflags
)) {
3645 error
= tsleep(bio
, PINTERLOCKED
, wmesg
, to
);
3646 else if (bp
->b_cmd
== BUF_CMD_READ
)
3647 error
= tsleep(bio
, PINTERLOCKED
, "biord", to
);
3649 error
= tsleep(bio
, PINTERLOCKED
, "biowr", to
);
3651 kprintf("tsleep error biowait %d\n", error
);
3660 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
3661 bio
->bio_flags
&= ~(BIO_DONE
| BIO_SYNC
);
3662 if (bp
->b_flags
& B_EINTR
)
3664 if (bp
->b_flags
& B_ERROR
)
3665 return (bp
->b_error
? bp
->b_error
: EIO
);
3670 biowait(struct bio
*bio
, const char *wmesg
)
3672 return(_biowait(bio
, wmesg
, 0));
3676 biowait_timeout(struct bio
*bio
, const char *wmesg
, int to
)
3678 return(_biowait(bio
, wmesg
, to
));
3682 * This associates a tracking count with an I/O. vn_strategy() and
3683 * dev_dstrategy() do this automatically but there are a few cases
3684 * where a vnode or device layer is bypassed when a block translation
3685 * is cached. In such cases bio_start_transaction() may be called on
3686 * the bypassed layers so the system gets an I/O in progress indication
3687 * for those higher layers.
3690 bio_start_transaction(struct bio
*bio
, struct bio_track
*track
)
3692 bio
->bio_track
= track
;
3693 bio_track_ref(track
);
3694 dsched_buf_enter(bio
->bio_buf
); /* might stack */
3698 * Initiate I/O on a vnode.
3700 * SWAPCACHE OPERATION:
3702 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3703 * devfs also uses b_vp for fake buffers so we also have to check
3704 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3705 * underlying block device. The swap assignments are related to the
3706 * buffer cache buffer's b_vp, not the passed vp.
3708 * The passed vp == bp->b_vp only in the case where the strategy call
3709 * is made on the vp itself for its own buffers (a regular file or
3710 * block device vp). The filesystem usually then re-calls vn_strategy()
3711 * after translating the request to an underlying device.
3713 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3714 * underlying buffer cache buffers.
3716 * We can only deal with page-aligned buffers at the moment, because
3717 * we can't tell what the real dirty state for pages straddling a buffer
3720 * In order to call swap_pager_strategy() we must provide the VM object
3721 * and base offset for the underlying buffer cache pages so it can find
3725 vn_strategy(struct vnode
*vp
, struct bio
*bio
)
3727 struct bio_track
*track
;
3728 struct buf
*bp
= bio
->bio_buf
;
3730 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
3733 * Set when an I/O is issued on the bp. Cleared by consumers
3734 * (aka HAMMER), allowing the consumer to determine if I/O had
3735 * actually occurred.
3737 bp
->b_flags
|= B_IOISSUED
;
3740 * Handle the swap cache intercept.
3742 if (vn_cache_strategy(vp
, bio
))
3746 * Otherwise do the operation through the filesystem
3748 if (bp
->b_cmd
== BUF_CMD_READ
)
3749 track
= &vp
->v_track_read
;
3751 track
= &vp
->v_track_write
;
3752 KKASSERT((bio
->bio_flags
& BIO_DONE
) == 0);
3753 bio
->bio_track
= track
;
3754 bio_track_ref(track
);
3755 dsched_buf_enter(bp
); /* might stack */
3756 vop_strategy(*vp
->v_ops
, vp
, bio
);
3759 static void vn_cache_strategy_callback(struct bio
*bio
);
3762 vn_cache_strategy(struct vnode
*vp
, struct bio
*bio
)
3764 struct buf
*bp
= bio
->bio_buf
;
3771 * Stop using swapcache if paniced, dumping, or dumped
3773 if (panicstr
|| dumping
)
3777 * Is this buffer cache buffer suitable for reading from
3780 if (vm_swapcache_read_enable
== 0 ||
3781 bp
->b_cmd
!= BUF_CMD_READ
||
3782 ((bp
->b_flags
& B_CLUSTER
) == 0 &&
3783 (bp
->b_vp
== NULL
|| (bp
->b_flags
& B_PAGING
))) ||
3784 ((int)bp
->b_loffset
& PAGE_MASK
) != 0 ||
3785 (bp
->b_bcount
& PAGE_MASK
) != 0) {
3790 * Figure out the original VM object (it will match the underlying
3791 * VM pages). Note that swap cached data uses page indices relative
3792 * to that object, not relative to bio->bio_offset.
3794 if (bp
->b_flags
& B_CLUSTER
)
3795 object
= vp
->v_object
;
3797 object
= bp
->b_vp
->v_object
;
3800 * In order to be able to use the swap cache all underlying VM
3801 * pages must be marked as such, and we can't have any bogus pages.
3803 for (i
= 0; i
< bp
->b_xio
.xio_npages
; ++i
) {
3804 m
= bp
->b_xio
.xio_pages
[i
];
3805 if ((m
->flags
& PG_SWAPPED
) == 0)
3807 if (m
== bogus_page
)
3812 * If we are good then issue the I/O using swap_pager_strategy().
3814 * We can only do this if the buffer actually supports object-backed
3815 * I/O. If it doesn't npages will be 0.
3817 if (i
&& i
== bp
->b_xio
.xio_npages
) {
3818 m
= bp
->b_xio
.xio_pages
[0];
3819 nbio
= push_bio(bio
);
3820 nbio
->bio_done
= vn_cache_strategy_callback
;
3821 nbio
->bio_offset
= ptoa(m
->pindex
);
3822 KKASSERT(m
->object
== object
);
3823 swap_pager_strategy(object
, nbio
);
3830 * This is a bit of a hack but since the vn_cache_strategy() function can
3831 * override a VFS's strategy function we must make sure that the bio, which
3832 * is probably bio2, doesn't leak an unexpected offset value back to the
3833 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the
3834 * bio went through its own file strategy function and the the bio2 offset
3835 * is a cached disk offset when, in fact, it isn't.
3838 vn_cache_strategy_callback(struct bio
*bio
)
3840 bio
->bio_offset
= NOOFFSET
;
3841 biodone(pop_bio(bio
));
3847 * Finish I/O on a buffer after all BIOs have been processed.
3848 * Called when the bio chain is exhausted or by biowait. If called
3849 * by biowait, elseit is typically 0.
3851 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3852 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3853 * assuming B_INVAL is clear.
3855 * For the VMIO case, we set B_CACHE if the op was a read and no
3856 * read error occured, or if the op was a write. B_CACHE is never
3857 * set if the buffer is invalid or otherwise uncacheable.
3859 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3860 * initiator to leave B_INVAL set to brelse the buffer out of existance
3861 * in the biodone routine.
3863 * bpdone is responsible for calling bundirty() on the buffer after a
3864 * successful write. We previously did this prior to initiating the
3865 * write under the assumption that the buffer might be dirtied again
3866 * while the write was in progress, however doing it before-hand creates
3867 * a race condition prior to the call to vn_strategy() where the
3868 * filesystem may not be aware that a dirty buffer is present.
3869 * It should not be possible for the buffer or its underlying pages to
3870 * be redirtied prior to bpdone()'s unbusying of the underlying VM
3874 bpdone(struct buf
*bp
, int elseit
)
3878 KASSERT(BUF_REFCNTNB(bp
) > 0,
3879 ("bpdone: bp %p not busy %d", bp
, BUF_REFCNTNB(bp
)));
3880 KASSERT(bp
->b_cmd
!= BUF_CMD_DONE
,
3881 ("bpdone: bp %p already done!", bp
));
3884 * No more BIOs are left. All completion functions have been dealt
3885 * with, now we clean up the buffer.
3888 bp
->b_cmd
= BUF_CMD_DONE
;
3891 * Only reads and writes are processed past this point.
3893 if (cmd
!= BUF_CMD_READ
&& cmd
!= BUF_CMD_WRITE
) {
3894 if (cmd
== BUF_CMD_FREEBLKS
)
3895 bp
->b_flags
|= B_NOCACHE
;
3902 * A failed write must re-dirty the buffer unless B_INVAL
3905 * A successful write must clear the dirty flag. This is done after
3906 * the write to ensure that the buffer remains on the vnode's dirty
3907 * list for filesystem interlocks / checks until the write is actually
3908 * complete. HAMMER2 is sensitive to this issue.
3910 * Only applicable to normal buffers (with VPs). vinum buffers may
3913 * Must be done prior to calling buf_complete() as the callback might
3914 * re-dirty the buffer.
3916 if (cmd
== BUF_CMD_WRITE
) {
3917 if ((bp
->b_flags
& (B_ERROR
| B_INVAL
)) == B_ERROR
) {
3918 bp
->b_flags
&= ~B_NOCACHE
;
3928 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3929 * a lot worse. XXX - move this above the clearing of b_cmd
3931 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
3934 if (bp
->b_flags
& B_VMIO
) {
3940 struct vnode
*vp
= bp
->b_vp
;
3944 #if defined(VFS_BIO_DEBUG)
3945 if (vp
->v_auxrefs
== 0)
3946 panic("bpdone: zero vnode hold count");
3947 if ((vp
->v_flag
& VOBJBUF
) == 0)
3948 panic("bpdone: vnode is not setup for merged cache");
3951 foff
= bp
->b_loffset
;
3952 KASSERT(foff
!= NOOFFSET
, ("bpdone: no buffer offset"));
3953 KASSERT(obj
!= NULL
, ("bpdone: missing VM object"));
3955 #if defined(VFS_BIO_DEBUG)
3956 if (obj
->paging_in_progress
< bp
->b_xio
.xio_npages
) {
3957 kprintf("bpdone: paging in progress(%d) < "
3958 "bp->b_xio.xio_npages(%d)\n",
3959 obj
->paging_in_progress
,
3960 bp
->b_xio
.xio_npages
);
3965 * Set B_CACHE if the op was a normal read and no error
3966 * occured. B_CACHE is set for writes in the b*write()
3969 iosize
= bp
->b_bcount
- bp
->b_resid
;
3970 if (cmd
== BUF_CMD_READ
&&
3971 (bp
->b_flags
& (B_INVAL
|B_NOCACHE
|B_ERROR
)) == 0) {
3972 bp
->b_flags
|= B_CACHE
;
3975 vm_object_hold(obj
);
3976 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3980 resid
= ((foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
) - foff
;
3985 * cleanup bogus pages, restoring the originals. Since
3986 * the originals should still be wired, we don't have
3987 * to worry about interrupt/freeing races destroying
3988 * the VM object association.
3990 m
= bp
->b_xio
.xio_pages
[i
];
3991 if (m
== bogus_page
) {
3993 m
= vm_page_lookup(obj
, OFF_TO_IDX(foff
));
3995 panic("bpdone: page disappeared");
3996 bp
->b_xio
.xio_pages
[i
] = m
;
3997 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
3998 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
4000 #if defined(VFS_BIO_DEBUG)
4001 if (OFF_TO_IDX(foff
) != m
->pindex
) {
4002 kprintf("bpdone: foff(%lu)/m->pindex(%ld) "
4004 (unsigned long)foff
, (long)m
->pindex
);
4009 * In the write case, the valid and clean bits are
4010 * already changed correctly (see bdwrite()), so we
4011 * only need to do this here in the read case.
4013 vm_page_busy_wait(m
, FALSE
, "bpdpgw");
4014 if (cmd
== BUF_CMD_READ
&& !bogusflag
&& resid
> 0) {
4015 vfs_clean_one_page(bp
, i
, m
);
4017 vm_page_flag_clear(m
, PG_ZERO
);
4020 * when debugging new filesystems or buffer I/O
4021 * methods, this is the most common error that pops
4022 * up. if you see this, you have not set the page
4023 * busy flag correctly!!!
4026 kprintf("bpdone: page busy < 0, "
4027 "pindex: %d, foff: 0x(%x,%x), "
4028 "resid: %d, index: %d\n",
4029 (int) m
->pindex
, (int)(foff
>> 32),
4030 (int) foff
& 0xffffffff, resid
, i
);
4031 if (!vn_isdisk(vp
, NULL
))
4032 kprintf(" iosize: %ld, loffset: %lld, "
4033 "flags: 0x%08x, npages: %d\n",
4034 bp
->b_vp
->v_mount
->mnt_stat
.f_iosize
,
4035 (long long)bp
->b_loffset
,
4036 bp
->b_flags
, bp
->b_xio
.xio_npages
);
4038 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
4039 (long long)bp
->b_loffset
,
4040 bp
->b_flags
, bp
->b_xio
.xio_npages
);
4041 kprintf(" valid: 0x%x, dirty: 0x%x, "
4045 panic("bpdone: page busy < 0");
4047 vm_page_io_finish(m
);
4049 vm_object_pip_wakeup(obj
);
4050 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
4053 bp
->b_flags
&= ~B_HASBOGUS
;
4054 vm_object_drop(obj
);
4058 * Finish up by releasing the buffer. There are no more synchronous
4059 * or asynchronous completions, those were handled by bio_done
4063 if (bp
->b_flags
& (B_NOCACHE
|B_INVAL
|B_ERROR
|B_RELBUF
))
4074 biodone(struct bio
*bio
)
4076 struct buf
*bp
= bio
->bio_buf
;
4078 runningbufwakeup(bp
);
4081 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
4084 biodone_t
*done_func
;
4085 struct bio_track
*track
;
4088 * BIO tracking. Most but not all BIOs are tracked.
4090 if ((track
= bio
->bio_track
) != NULL
) {
4091 bio_track_rel(track
);
4092 bio
->bio_track
= NULL
;
4096 * A bio_done function terminates the loop. The function
4097 * will be responsible for any further chaining and/or
4098 * buffer management.
4100 * WARNING! The done function can deallocate the buffer!
4102 if ((done_func
= bio
->bio_done
) != NULL
) {
4103 bio
->bio_done
= NULL
;
4107 bio
= bio
->bio_prev
;
4111 * If we've run out of bio's do normal [a]synchronous completion.
4117 * Synchronous biodone - this terminates a synchronous BIO.
4119 * bpdone() is called with elseit=FALSE, leaving the buffer completed
4120 * but still locked. The caller must brelse() the buffer after waiting
4124 biodone_sync(struct bio
*bio
)
4126 struct buf
*bp
= bio
->bio_buf
;
4130 KKASSERT(bio
== &bp
->b_bio1
);
4134 flags
= bio
->bio_flags
;
4135 nflags
= (flags
| BIO_DONE
) & ~BIO_WANT
;
4137 if (atomic_cmpset_int(&bio
->bio_flags
, flags
, nflags
)) {
4138 if (flags
& BIO_WANT
)
4148 * This routine is called in lieu of iodone in the case of
4149 * incomplete I/O. This keeps the busy status for pages
4153 vfs_unbusy_pages(struct buf
*bp
)
4157 runningbufwakeup(bp
);
4159 if (bp
->b_flags
& B_VMIO
) {
4160 struct vnode
*vp
= bp
->b_vp
;
4164 vm_object_hold(obj
);
4166 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4167 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
4170 * When restoring bogus changes the original pages
4171 * should still be wired, so we are in no danger of
4172 * losing the object association and do not need
4173 * critical section protection particularly.
4175 if (m
== bogus_page
) {
4176 m
= vm_page_lookup(obj
, OFF_TO_IDX(bp
->b_loffset
) + i
);
4178 panic("vfs_unbusy_pages: page missing");
4180 bp
->b_xio
.xio_pages
[i
] = m
;
4181 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
4182 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
4184 vm_page_busy_wait(m
, FALSE
, "bpdpgw");
4185 vm_page_flag_clear(m
, PG_ZERO
);
4186 vm_page_io_finish(m
);
4188 vm_object_pip_wakeup(obj
);
4190 bp
->b_flags
&= ~B_HASBOGUS
;
4191 vm_object_drop(obj
);
4198 * This routine is called before a device strategy routine.
4199 * It is used to tell the VM system that paging I/O is in
4200 * progress, and treat the pages associated with the buffer
4201 * almost as being PG_BUSY. Also the object 'paging_in_progress'
4202 * flag is handled to make sure that the object doesn't become
4205 * Since I/O has not been initiated yet, certain buffer flags
4206 * such as B_ERROR or B_INVAL may be in an inconsistant state
4207 * and should be ignored.
4210 vfs_busy_pages(struct vnode
*vp
, struct buf
*bp
)
4213 struct lwp
*lp
= curthread
->td_lwp
;
4216 * The buffer's I/O command must already be set. If reading,
4217 * B_CACHE must be 0 (double check against callers only doing
4218 * I/O when B_CACHE is 0).
4220 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
4221 KKASSERT(bp
->b_cmd
== BUF_CMD_WRITE
|| (bp
->b_flags
& B_CACHE
) == 0);
4223 if (bp
->b_flags
& B_VMIO
) {
4227 KASSERT(bp
->b_loffset
!= NOOFFSET
,
4228 ("vfs_busy_pages: no buffer offset"));
4231 * Busy all the pages. We have to busy them all at once
4232 * to avoid deadlocks.
4235 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4236 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
4238 if (vm_page_busy_try(m
, FALSE
)) {
4239 vm_page_sleep_busy(m
, FALSE
, "vbpage");
4241 vm_page_wakeup(bp
->b_xio
.xio_pages
[i
]);
4247 * Setup for I/O, soft-busy the page right now because
4248 * the next loop may block.
4250 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4251 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
4253 vm_page_flag_clear(m
, PG_ZERO
);
4254 if ((bp
->b_flags
& B_CLUSTER
) == 0) {
4255 vm_object_pip_add(obj
, 1);
4256 vm_page_io_start(m
);
4261 * Adjust protections for I/O and do bogus-page mapping.
4262 * Assume that vm_page_protect() can block (it can block
4263 * if VM_PROT_NONE, don't take any chances regardless).
4265 * In particular note that for writes we must incorporate
4266 * page dirtyness from the VM system into the buffer's
4269 * For reads we theoretically must incorporate page dirtyness
4270 * from the VM system to determine if the page needs bogus
4271 * replacement, but we shortcut the test by simply checking
4272 * that all m->valid bits are set, indicating that the page
4273 * is fully valid and does not need to be re-read. For any
4274 * VM system dirtyness the page will also be fully valid
4275 * since it was mapped at one point.
4278 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4279 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
4281 vm_page_flag_clear(m
, PG_ZERO
); /* XXX */
4282 if (bp
->b_cmd
== BUF_CMD_WRITE
) {
4284 * When readying a vnode-backed buffer for
4285 * a write we must zero-fill any invalid
4286 * portions of the backing VM pages, mark
4287 * it valid and clear related dirty bits.
4289 * vfs_clean_one_page() incorporates any
4290 * VM dirtyness and updates the b_dirtyoff
4291 * range (after we've made the page RO).
4293 * It is also expected that the pmap modified
4294 * bit has already been cleared by the
4295 * vm_page_protect(). We may not be able
4296 * to clear all dirty bits for a page if it
4297 * was also memory mapped (NFS).
4299 * Finally be sure to unassign any swap-cache
4300 * backing store as it is now stale.
4302 vm_page_protect(m
, VM_PROT_READ
);
4303 vfs_clean_one_page(bp
, i
, m
);
4304 swap_pager_unswapped(m
);
4305 } else if (m
->valid
== VM_PAGE_BITS_ALL
) {
4307 * When readying a vnode-backed buffer for
4308 * read we must replace any dirty pages with
4309 * a bogus page so dirty data is not destroyed
4310 * when filling gaps.
4312 * To avoid testing whether the page is
4313 * dirty we instead test that the page was
4314 * at some point mapped (m->valid fully
4315 * valid) with the understanding that
4316 * this also covers the dirty case.
4318 bp
->b_xio
.xio_pages
[i
] = bogus_page
;
4319 bp
->b_flags
|= B_HASBOGUS
;
4321 } else if (m
->valid
& m
->dirty
) {
4323 * This case should not occur as partial
4324 * dirtyment can only happen if the buffer
4325 * is B_CACHE, and this code is not entered
4326 * if the buffer is B_CACHE.
4328 kprintf("Warning: vfs_busy_pages - page not "
4329 "fully valid! loff=%jx bpf=%08x "
4330 "idx=%d val=%02x dir=%02x\n",
4331 (uintmax_t)bp
->b_loffset
, bp
->b_flags
,
4332 i
, m
->valid
, m
->dirty
);
4333 vm_page_protect(m
, VM_PROT_NONE
);
4336 * The page is not valid and can be made
4339 vm_page_protect(m
, VM_PROT_NONE
);
4344 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
4345 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
4350 * This is the easiest place to put the process accounting for the I/O
4354 if (bp
->b_cmd
== BUF_CMD_READ
)
4355 lp
->lwp_ru
.ru_inblock
++;
4357 lp
->lwp_ru
.ru_oublock
++;
4362 * Tell the VM system that the pages associated with this buffer
4363 * are clean. This is used for delayed writes where the data is
4364 * going to go to disk eventually without additional VM intevention.
4366 * NOTE: While we only really need to clean through to b_bcount, we
4367 * just go ahead and clean through to b_bufsize.
4370 vfs_clean_pages(struct buf
*bp
)
4375 if ((bp
->b_flags
& B_VMIO
) == 0)
4378 KASSERT(bp
->b_loffset
!= NOOFFSET
,
4379 ("vfs_clean_pages: no buffer offset"));
4381 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4382 m
= bp
->b_xio
.xio_pages
[i
];
4383 vfs_clean_one_page(bp
, i
, m
);
4388 * vfs_clean_one_page:
4390 * Set the valid bits and clear the dirty bits in a page within a
4391 * buffer. The range is restricted to the buffer's size and the
4392 * buffer's logical offset might index into the first page.
4394 * The caller has busied or soft-busied the page and it is not mapped,
4395 * test and incorporate the dirty bits into b_dirtyoff/end before
4396 * clearing them. Note that we need to clear the pmap modified bits
4397 * after determining the the page was dirty, vm_page_set_validclean()
4398 * does not do it for us.
4400 * This routine is typically called after a read completes (dirty should
4401 * be zero in that case as we are not called on bogus-replace pages),
4402 * or before a write is initiated.
4405 vfs_clean_one_page(struct buf
*bp
, int pageno
, vm_page_t m
)
4413 * Calculate offset range within the page but relative to buffer's
4414 * loffset. loffset might be offset into the first page.
4416 xoff
= (int)bp
->b_loffset
& PAGE_MASK
; /* loffset offset into pg 0 */
4417 bcount
= bp
->b_bcount
+ xoff
; /* offset adjusted */
4423 soff
= (pageno
<< PAGE_SHIFT
);
4424 eoff
= soff
+ PAGE_SIZE
;
4432 * Test dirty bits and adjust b_dirtyoff/end.
4434 * If dirty pages are incorporated into the bp any prior
4435 * B_NEEDCOMMIT state (NFS) must be cleared because the
4436 * caller has not taken into account the new dirty data.
4438 * If the page was memory mapped the dirty bits might go beyond the
4439 * end of the buffer, but we can't really make the assumption that
4440 * a file EOF straddles the buffer (even though this is the case for
4441 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4442 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4443 * This also saves some console spam.
4445 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4446 * NFS can handle huge commits but not huge writes.
4448 vm_page_test_dirty(m
);
4450 if ((bp
->b_flags
& B_NEEDCOMMIT
) &&
4451 (m
->dirty
& vm_page_bits(soff
& PAGE_MASK
, eoff
- soff
))) {
4453 kprintf("Warning: vfs_clean_one_page: bp %p "
4454 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4455 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4457 bp
, (uintmax_t)bp
->b_loffset
, bp
->b_bcount
,
4458 bp
->b_flags
, bp
->b_cmd
,
4459 m
->valid
, m
->dirty
, xoff
, soff
, eoff
,
4460 bp
->b_dirtyoff
, bp
->b_dirtyend
);
4461 bp
->b_flags
&= ~(B_NEEDCOMMIT
| B_CLUSTEROK
);
4463 print_backtrace(-1);
4466 * Only clear the pmap modified bits if ALL the dirty bits
4467 * are set, otherwise the system might mis-clear portions
4470 if (m
->dirty
== VM_PAGE_BITS_ALL
&&
4471 (bp
->b_flags
& B_NEEDCOMMIT
) == 0) {
4472 pmap_clear_modify(m
);
4474 if (bp
->b_dirtyoff
> soff
- xoff
)
4475 bp
->b_dirtyoff
= soff
- xoff
;
4476 if (bp
->b_dirtyend
< eoff
- xoff
)
4477 bp
->b_dirtyend
= eoff
- xoff
;
4481 * Set related valid bits, clear related dirty bits.
4482 * Does not mess with the pmap modified bit.
4484 * WARNING! We cannot just clear all of m->dirty here as the
4485 * buffer cache buffers may use a DEV_BSIZE'd aligned
4486 * block size, or have an odd size (e.g. NFS at file EOF).
4487 * The putpages code can clear m->dirty to 0.
4489 * If a VOP_WRITE generates a buffer cache buffer which
4490 * covers the same space as mapped writable pages the
4491 * buffer flush might not be able to clear all the dirty
4492 * bits and still require a putpages from the VM system
4495 * WARNING! vm_page_set_validclean() currently assumes vm_token
4496 * is held. The page might not be busied (bdwrite() case).
4497 * XXX remove this comment once we've validated that this
4498 * is no longer an issue.
4500 vm_page_set_validclean(m
, soff
& PAGE_MASK
, eoff
- soff
);
4505 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4506 * The page data is assumed to be valid (there is no zeroing here).
4509 vfs_dirty_one_page(struct buf
*bp
, int pageno
, vm_page_t m
)
4517 * Calculate offset range within the page but relative to buffer's
4518 * loffset. loffset might be offset into the first page.
4520 xoff
= (int)bp
->b_loffset
& PAGE_MASK
; /* loffset offset into pg 0 */
4521 bcount
= bp
->b_bcount
+ xoff
; /* offset adjusted */
4527 soff
= (pageno
<< PAGE_SHIFT
);
4528 eoff
= soff
+ PAGE_SIZE
;
4534 vm_page_set_validdirty(m
, soff
& PAGE_MASK
, eoff
- soff
);
4541 * Clear a buffer. This routine essentially fakes an I/O, so we need
4542 * to clear B_ERROR and B_INVAL.
4544 * Note that while we only theoretically need to clear through b_bcount,
4545 * we go ahead and clear through b_bufsize.
4549 vfs_bio_clrbuf(struct buf
*bp
)
4553 if ((bp
->b_flags
& (B_VMIO
| B_MALLOC
)) == B_VMIO
) {
4554 bp
->b_flags
&= ~(B_INVAL
| B_EINTR
| B_ERROR
);
4555 if ((bp
->b_xio
.xio_npages
== 1) && (bp
->b_bufsize
< PAGE_SIZE
) &&
4556 (bp
->b_loffset
& PAGE_MASK
) == 0) {
4557 mask
= (1 << (bp
->b_bufsize
/ DEV_BSIZE
)) - 1;
4558 if ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == mask
) {
4562 if (((bp
->b_xio
.xio_pages
[0]->flags
& PG_ZERO
) == 0) &&
4563 ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == 0)) {
4564 bzero(bp
->b_data
, bp
->b_bufsize
);
4565 bp
->b_xio
.xio_pages
[0]->valid
|= mask
;
4571 for(i
=0;i
<bp
->b_xio
.xio_npages
;i
++,sa
=ea
) {
4572 int j
= ((vm_offset_t
)sa
& PAGE_MASK
) / DEV_BSIZE
;
4573 ea
= (caddr_t
)trunc_page((vm_offset_t
)sa
+ PAGE_SIZE
);
4574 ea
= (caddr_t
)(vm_offset_t
)ulmin(
4575 (u_long
)(vm_offset_t
)ea
,
4576 (u_long
)(vm_offset_t
)bp
->b_data
+ bp
->b_bufsize
);
4577 mask
= ((1 << ((ea
- sa
) / DEV_BSIZE
)) - 1) << j
;
4578 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == mask
)
4580 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == 0) {
4581 if ((bp
->b_xio
.xio_pages
[i
]->flags
& PG_ZERO
) == 0) {
4585 for (; sa
< ea
; sa
+= DEV_BSIZE
, j
++) {
4586 if (((bp
->b_xio
.xio_pages
[i
]->flags
& PG_ZERO
) == 0) &&
4587 (bp
->b_xio
.xio_pages
[i
]->valid
& (1<<j
)) == 0)
4588 bzero(sa
, DEV_BSIZE
);
4591 bp
->b_xio
.xio_pages
[i
]->valid
|= mask
;
4592 vm_page_flag_clear(bp
->b_xio
.xio_pages
[i
], PG_ZERO
);
4601 * vm_hold_load_pages:
4603 * Load pages into the buffer's address space. The pages are
4604 * allocated from the kernel object in order to reduce interference
4605 * with the any VM paging I/O activity. The range of loaded
4606 * pages will be wired.
4608 * If a page cannot be allocated, the 'pagedaemon' is woken up to
4609 * retrieve the full range (to - from) of pages.
4612 vm_hold_load_pages(struct buf
*bp
, vm_offset_t from
, vm_offset_t to
)
4618 to
= round_page(to
);
4619 from
= round_page(from
);
4620 index
= (from
- trunc_page((vm_offset_t
)bp
->b_data
)) >> PAGE_SHIFT
;
4625 * Note: must allocate system pages since blocking here
4626 * could intefere with paging I/O, no matter which
4629 vm_object_hold(&kernel_object
);
4630 p
= bio_page_alloc(bp
, &kernel_object
, pg
>> PAGE_SHIFT
,
4631 (vm_pindex_t
)((to
- pg
) >> PAGE_SHIFT
));
4632 vm_object_drop(&kernel_object
);
4635 p
->valid
= VM_PAGE_BITS_ALL
;
4636 vm_page_flag_clear(p
, PG_ZERO
);
4637 pmap_kenter_noinval(pg
, VM_PAGE_TO_PHYS(p
));
4638 bp
->b_xio
.xio_pages
[index
] = p
;
4645 pmap_invalidate_range(&kernel_pmap
, from
, to
);
4646 bp
->b_xio
.xio_npages
= index
;
4650 * Allocate a page for a buffer cache buffer.
4652 * If NULL is returned the caller is expected to retry (typically check if
4653 * the page already exists on retry before trying to allocate one).
4655 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This
4656 * function will use the system reserve with the hope that the page
4657 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4658 * is done with the buffer.
4660 * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4661 * to TMPFS doesn't clean the page. For TMPFS, only the pagedaemon
4662 * is capable of retiring pages (to swap). For TMPFS we don't dig
4663 * into the system reserve because doing so could stall out pretty
4664 * much every process running on the system.
4668 bio_page_alloc(struct buf
*bp
, vm_object_t obj
, vm_pindex_t pg
, int deficit
)
4670 int vmflags
= VM_ALLOC_NORMAL
| VM_ALLOC_NULL_OK
;
4673 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj
));
4676 * Try a normal allocation first.
4678 p
= vm_page_alloc(obj
, pg
, vmflags
);
4681 if (vm_page_lookup(obj
, pg
))
4683 vm_pageout_deficit
+= deficit
;
4686 * Try again, digging into the system reserve.
4688 * Trying to recover pages from the buffer cache here can deadlock
4689 * against other threads trying to busy underlying pages so we
4690 * depend on the code in brelse() and bqrelse() to free/cache the
4691 * underlying buffer cache pages when memory is low.
4693 if (curthread
->td_flags
& TDF_SYSTHREAD
)
4694 vmflags
|= VM_ALLOC_SYSTEM
| VM_ALLOC_INTERRUPT
;
4695 else if (bp
->b_vp
&& bp
->b_vp
->v_tag
== VT_TMPFS
)
4698 vmflags
|= VM_ALLOC_SYSTEM
;
4700 /*recoverbufpages();*/
4701 p
= vm_page_alloc(obj
, pg
, vmflags
);
4704 if (vm_page_lookup(obj
, pg
))
4708 * Wait for memory to free up and try again
4710 if (vm_page_count_severe())
4712 vm_wait(hz
/ 20 + 1);
4714 p
= vm_page_alloc(obj
, pg
, vmflags
);
4717 if (vm_page_lookup(obj
, pg
))
4721 * Ok, now we are really in trouble.
4724 static struct krate biokrate
= { .freq
= 1 };
4725 krateprintf(&biokrate
,
4726 "Warning: bio_page_alloc: memory exhausted "
4727 "during buffer cache page allocation from %s\n",
4728 curthread
->td_comm
);
4730 if (curthread
->td_flags
& TDF_SYSTHREAD
)
4731 vm_wait(hz
/ 20 + 1);
4733 vm_wait(hz
/ 2 + 1);
4738 * vm_hold_free_pages:
4740 * Return pages associated with the buffer back to the VM system.
4742 * The range of pages underlying the buffer's address space will
4743 * be unmapped and un-wired.
4746 vm_hold_free_pages(struct buf
*bp
, vm_offset_t from
, vm_offset_t to
)
4750 int index
, newnpages
;
4752 from
= round_page(from
);
4753 to
= round_page(to
);
4754 index
= (from
- trunc_page((vm_offset_t
)bp
->b_data
)) >> PAGE_SHIFT
;
4757 for (pg
= from
; pg
< to
; pg
+= PAGE_SIZE
, index
++) {
4758 p
= bp
->b_xio
.xio_pages
[index
];
4759 if (p
&& (index
< bp
->b_xio
.xio_npages
)) {
4761 kprintf("vm_hold_free_pages: doffset: %lld, "
4763 (long long)bp
->b_bio2
.bio_offset
,
4764 (long long)bp
->b_loffset
);
4766 bp
->b_xio
.xio_pages
[index
] = NULL
;
4767 pmap_kremove_noinval(pg
);
4768 vm_page_busy_wait(p
, FALSE
, "vmhldpg");
4769 vm_page_unwire(p
, 0);
4773 pmap_invalidate_range(&kernel_pmap
, from
, to
);
4774 bp
->b_xio
.xio_npages
= newnpages
;
4780 * Map a user buffer into KVM via a pbuf. On return the buffer's
4781 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4785 vmapbuf(struct buf
*bp
, caddr_t udata
, int bytes
)
4796 * bp had better have a command and it better be a pbuf.
4798 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
4799 KKASSERT(bp
->b_flags
& B_PAGING
);
4800 KKASSERT(bp
->b_kvabase
);
4806 * Map the user data into KVM. Mappings have to be page-aligned.
4808 addr
= (caddr_t
)trunc_page((vm_offset_t
)udata
);
4811 vmprot
= VM_PROT_READ
;
4812 if (bp
->b_cmd
== BUF_CMD_READ
)
4813 vmprot
|= VM_PROT_WRITE
;
4815 while (addr
< udata
+ bytes
) {
4817 * Do the vm_fault if needed; do the copy-on-write thing
4818 * when reading stuff off device into memory.
4820 * vm_fault_page*() returns a held VM page.
4822 va
= (addr
>= udata
) ? (vm_offset_t
)addr
: (vm_offset_t
)udata
;
4823 va
= trunc_page(va
);
4825 m
= vm_fault_page_quick(va
, vmprot
, &error
);
4827 for (i
= 0; i
< pidx
; ++i
) {
4828 vm_page_unhold(bp
->b_xio
.xio_pages
[i
]);
4829 bp
->b_xio
.xio_pages
[i
] = NULL
;
4833 bp
->b_xio
.xio_pages
[pidx
] = m
;
4839 * Map the page array and set the buffer fields to point to
4840 * the mapped data buffer.
4842 if (pidx
> btoc(MAXPHYS
))
4843 panic("vmapbuf: mapped more than MAXPHYS");
4844 pmap_qenter((vm_offset_t
)bp
->b_kvabase
, bp
->b_xio
.xio_pages
, pidx
);
4846 bp
->b_xio
.xio_npages
= pidx
;
4847 bp
->b_data
= bp
->b_kvabase
+ ((int)(intptr_t)udata
& PAGE_MASK
);
4848 bp
->b_bcount
= bytes
;
4849 bp
->b_bufsize
= bytes
;
4857 * Free the io map PTEs associated with this IO operation.
4858 * We also invalidate the TLB entries and restore the original b_addr.
4861 vunmapbuf(struct buf
*bp
)
4866 KKASSERT(bp
->b_flags
& B_PAGING
);
4868 npages
= bp
->b_xio
.xio_npages
;
4869 pmap_qremove(trunc_page((vm_offset_t
)bp
->b_data
), npages
);
4870 for (pidx
= 0; pidx
< npages
; ++pidx
) {
4871 vm_page_unhold(bp
->b_xio
.xio_pages
[pidx
]);
4872 bp
->b_xio
.xio_pages
[pidx
] = NULL
;
4874 bp
->b_xio
.xio_npages
= 0;
4875 bp
->b_data
= bp
->b_kvabase
;
4879 * Scan all buffers in the system and issue the callback.
4882 scan_all_buffers(int (*callback
)(struct buf
*, void *), void *info
)
4888 for (n
= 0; n
< nbuf
; ++n
) {
4889 if ((error
= callback(&buf
[n
], info
)) < 0) {
4899 * nestiobuf_iodone: biodone callback for nested buffers and propagate
4900 * completion to the master buffer.
4903 nestiobuf_iodone(struct bio
*bio
)
4906 struct buf
*mbp
, *bp
;
4907 struct devstat
*stats
;
4912 mbio
= bio
->bio_caller_info1
.ptr
;
4913 stats
= bio
->bio_caller_info2
.ptr
;
4914 mbp
= mbio
->bio_buf
;
4916 KKASSERT(bp
->b_bcount
<= bp
->b_bufsize
);
4917 KKASSERT(mbp
!= bp
);
4919 error
= bp
->b_error
;
4920 if (bp
->b_error
== 0 &&
4921 (bp
->b_bcount
< bp
->b_bufsize
|| bp
->b_resid
> 0)) {
4923 * Not all got transfered, raise an error. We have no way to
4924 * propagate these conditions to mbp.
4929 donebytes
= bp
->b_bufsize
;
4933 nestiobuf_done(mbio
, donebytes
, error
, stats
);
4937 nestiobuf_done(struct bio
*mbio
, int donebytes
, int error
, struct devstat
*stats
)
4941 mbp
= mbio
->bio_buf
;
4943 KKASSERT((int)(intptr_t)mbio
->bio_driver_info
> 0);
4946 * If an error occured, propagate it to the master buffer.
4948 * Several biodone()s may wind up running concurrently so
4949 * use an atomic op to adjust b_flags.
4952 mbp
->b_error
= error
;
4953 atomic_set_int(&mbp
->b_flags
, B_ERROR
);
4957 * Decrement the operations in progress counter and terminate the
4958 * I/O if this was the last bit.
4960 if (atomic_fetchadd_int((int *)&mbio
->bio_driver_info
, -1) == 1) {
4963 devstat_end_transaction_buf(stats
, mbp
);
4969 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent
4970 * the mbio from being biodone()'d while we are still adding sub-bios to
4974 nestiobuf_init(struct bio
*bio
)
4976 bio
->bio_driver_info
= (void *)1;
4980 * The BIOs added to the nestedio have already been started, remove the
4981 * count that placeheld our mbio and biodone() it if the count would
4985 nestiobuf_start(struct bio
*mbio
)
4987 struct buf
*mbp
= mbio
->bio_buf
;
4990 * Decrement the operations in progress counter and terminate the
4991 * I/O if this was the last bit.
4993 if (atomic_fetchadd_int((int *)&mbio
->bio_driver_info
, -1) == 1) {
4994 if (mbp
->b_flags
& B_ERROR
)
4995 mbp
->b_resid
= mbp
->b_bcount
;
5003 * Set an intermediate error prior to calling nestiobuf_start()
5006 nestiobuf_error(struct bio
*mbio
, int error
)
5008 struct buf
*mbp
= mbio
->bio_buf
;
5011 mbp
->b_error
= error
;
5012 atomic_set_int(&mbp
->b_flags
, B_ERROR
);
5017 * nestiobuf_add: setup a "nested" buffer.
5019 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
5020 * => 'bp' should be a buffer allocated by getiobuf.
5021 * => 'offset' is a byte offset in the master buffer.
5022 * => 'size' is a size in bytes of this nested buffer.
5025 nestiobuf_add(struct bio
*mbio
, struct buf
*bp
, int offset
, size_t size
, struct devstat
*stats
)
5027 struct buf
*mbp
= mbio
->bio_buf
;
5028 struct vnode
*vp
= mbp
->b_vp
;
5030 KKASSERT(mbp
->b_bcount
>= offset
+ size
);
5032 atomic_add_int((int *)&mbio
->bio_driver_info
, 1);
5034 /* kernel needs to own the lock for it to be released in biodone */
5037 bp
->b_cmd
= mbp
->b_cmd
;
5038 bp
->b_bio1
.bio_done
= nestiobuf_iodone
;
5039 bp
->b_data
= (char *)mbp
->b_data
+ offset
;
5040 bp
->b_resid
= bp
->b_bcount
= size
;
5041 bp
->b_bufsize
= bp
->b_bcount
;
5043 bp
->b_bio1
.bio_track
= NULL
;
5044 bp
->b_bio1
.bio_caller_info1
.ptr
= mbio
;
5045 bp
->b_bio1
.bio_caller_info2
.ptr
= stats
;
5050 DB_SHOW_COMMAND(buffer
, db_show_buffer
)
5053 struct buf
*bp
= (struct buf
*)addr
;
5056 db_printf("usage: show buffer <addr>\n");
5060 db_printf("b_flags = 0x%b\n", (u_int
)bp
->b_flags
, PRINT_BUF_FLAGS
);
5061 db_printf("b_cmd = %d\n", bp
->b_cmd
);
5062 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
5063 "b_resid = %d\n, b_data = %p, "
5064 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
5065 bp
->b_error
, bp
->b_bufsize
, bp
->b_bcount
, bp
->b_resid
,
5067 (long long)bp
->b_bio2
.bio_offset
,
5068 (long long)(bp
->b_bio2
.bio_next
?
5069 bp
->b_bio2
.bio_next
->bio_offset
: (off_t
)-1));
5070 if (bp
->b_xio
.xio_npages
) {
5072 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
5073 bp
->b_xio
.xio_npages
);
5074 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
5076 m
= bp
->b_xio
.xio_pages
[i
];
5077 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m
->object
,
5078 (u_long
)m
->pindex
, (u_long
)VM_PAGE_TO_PHYS(m
));
5079 if ((i
+ 1) < bp
->b_xio
.xio_npages
)