kernel: Remove unused DIRECTIO option (see 12b70cea73eef6a67).
[dragonfly.git] / sys / platform / vkernel64 / x86_64 / cpu_regs.c
blob235e1ef404c8dde10763c37d56ca36e375f45704
1 /*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (C) 1994, David Greenman
4 * Copyright (c) 1982, 1987, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
39 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
42 #include "opt_ddb.h"
43 #include "opt_inet.h"
44 #include "opt_msgbuf.h"
45 #include "opt_swap.h"
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/sysproto.h>
50 #include <sys/signalvar.h>
51 #include <sys/kernel.h>
52 #include <sys/linker.h>
53 #include <sys/malloc.h>
54 #include <sys/proc.h>
55 #include <sys/buf.h>
56 #include <sys/reboot.h>
57 #include <sys/mbuf.h>
58 #include <sys/msgbuf.h>
59 #include <sys/sysent.h>
60 #include <sys/sysctl.h>
61 #include <sys/vmmeter.h>
62 #include <sys/bus.h>
63 #include <sys/usched.h>
64 #include <sys/reg.h>
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <sys/lock.h>
69 #include <vm/vm_kern.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pager.h>
74 #include <vm/vm_extern.h>
76 #include <sys/thread2.h>
77 #include <sys/mplock2.h>
79 #include <sys/user.h>
80 #include <sys/exec.h>
81 #include <sys/cons.h>
83 #include <ddb/ddb.h>
85 #include <machine/cpu.h>
86 #include <machine/clock.h>
87 #include <machine/specialreg.h>
88 #include <machine/md_var.h>
89 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
90 #include <machine/globaldata.h> /* CPU_prvspace */
91 #include <machine/smp.h>
92 #include <machine/cputypes.h>
94 #include <bus/isa/rtc.h>
95 #include <sys/random.h>
96 #include <sys/ptrace.h>
97 #include <machine/sigframe.h>
98 #include <unistd.h> /* umtx_* functions */
99 #include <pthread.h> /* pthread_yield() */
101 extern void dblfault_handler (void);
103 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
104 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
106 int64_t tsc_offsets[MAXCPU];
108 #if defined(SWTCH_OPTIM_STATS)
109 extern int swtch_optim_stats;
110 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
111 CTLFLAG_RD, &swtch_optim_stats, 0, "");
112 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
113 CTLFLAG_RD, &tlb_flush_count, 0, "");
114 #endif
116 static int
117 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
119 u_long pmem = ctob(physmem);
121 int error = sysctl_handle_long(oidp, &pmem, 0, req);
122 return (error);
125 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
126 0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
128 static int
129 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
131 /* JG */
132 int error = sysctl_handle_int(oidp, 0,
133 ctob((int)Maxmem - vmstats.v_wire_count), req);
134 return (error);
137 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
138 0, 0, sysctl_hw_usermem, "IU", "");
140 SYSCTL_ULONG(_hw, OID_AUTO, availpages, CTLFLAG_RD, &Maxmem, 0, "");
143 * Send an interrupt to process.
145 * Stack is set up to allow sigcode stored
146 * at top to call routine, followed by kcall
147 * to sigreturn routine below. After sigreturn
148 * resets the signal mask, the stack, and the
149 * frame pointer, it returns to the user
150 * specified pc, psl.
152 void
153 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
155 struct lwp *lp = curthread->td_lwp;
156 struct proc *p = lp->lwp_proc;
157 struct trapframe *regs;
158 struct sigacts *psp = p->p_sigacts;
159 struct sigframe sf, *sfp;
160 int oonstack;
161 char *sp;
163 regs = lp->lwp_md.md_regs;
164 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
166 /* Save user context */
167 bzero(&sf, sizeof(struct sigframe));
168 sf.sf_uc.uc_sigmask = *mask;
169 sf.sf_uc.uc_stack = lp->lwp_sigstk;
170 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
171 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
172 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
174 /* Make the size of the saved context visible to userland */
175 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
177 /* Allocate and validate space for the signal handler context. */
178 if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
179 SIGISMEMBER(psp->ps_sigonstack, sig)) {
180 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
181 sizeof(struct sigframe));
182 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
183 } else {
184 /* We take red zone into account */
185 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
188 /* Align to 16 bytes */
189 sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
191 /* Translate the signal is appropriate */
192 if (p->p_sysent->sv_sigtbl) {
193 if (sig <= p->p_sysent->sv_sigsize)
194 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
198 * Build the argument list for the signal handler.
200 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
202 regs->tf_rdi = sig; /* argument 1 */
203 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
205 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
207 * Signal handler installed with SA_SIGINFO.
209 * action(signo, siginfo, ucontext)
211 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
212 regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
213 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
215 /* fill siginfo structure */
216 sf.sf_si.si_signo = sig;
217 sf.sf_si.si_code = code;
218 sf.sf_si.si_addr = (void *)regs->tf_addr;
219 } else {
221 * Old FreeBSD-style arguments.
223 * handler (signo, code, [uc], addr)
225 regs->tf_rsi = (register_t)code; /* argument 2 */
226 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
227 sf.sf_ahu.sf_handler = catcher;
230 #if 0
232 * If we're a vm86 process, we want to save the segment registers.
233 * We also change eflags to be our emulated eflags, not the actual
234 * eflags.
236 if (regs->tf_eflags & PSL_VM) {
237 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
238 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
240 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
241 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
242 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
243 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
245 if (vm86->vm86_has_vme == 0)
246 sf.sf_uc.uc_mcontext.mc_eflags =
247 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
248 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
251 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
252 * syscalls made by the signal handler. This just avoids
253 * wasting time for our lazy fixup of such faults. PSL_NT
254 * does nothing in vm86 mode, but vm86 programs can set it
255 * almost legitimately in probes for old cpu types.
257 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
259 #endif
262 * Save the FPU state and reinit the FP unit
264 npxpush(&sf.sf_uc.uc_mcontext);
267 * Copy the sigframe out to the user's stack.
269 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
271 * Something is wrong with the stack pointer.
272 * ...Kill the process.
274 sigexit(lp, SIGILL);
277 regs->tf_rsp = (register_t)sfp;
278 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
281 * i386 abi specifies that the direction flag must be cleared
282 * on function entry
284 regs->tf_rflags &= ~(PSL_T|PSL_D);
287 * 64 bit mode has a code and stack selector but
288 * no data or extra selector. %fs and %gs are not
289 * stored in-context.
291 regs->tf_cs = _ucodesel;
292 regs->tf_ss = _udatasel;
296 * Sanitize the trapframe for a virtual kernel passing control to a custom
297 * VM context. Remove any items that would otherwise create a privilage
298 * issue.
300 * XXX at the moment we allow userland to set the resume flag. Is this a
301 * bad idea?
304 cpu_sanitize_frame(struct trapframe *frame)
306 frame->tf_cs = _ucodesel;
307 frame->tf_ss = _udatasel;
308 /* XXX VM (8086) mode not supported? */
309 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
310 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
312 return(0);
316 * Sanitize the tls so loading the descriptor does not blow up
317 * on us. For x86_64 we don't have to do anything.
320 cpu_sanitize_tls(struct savetls *tls)
322 return(0);
326 * sigreturn(ucontext_t *sigcntxp)
328 * System call to cleanup state after a signal
329 * has been taken. Reset signal mask and
330 * stack state from context left by sendsig (above).
331 * Return to previous pc and psl as specified by
332 * context left by sendsig. Check carefully to
333 * make sure that the user has not modified the
334 * state to gain improper privileges.
336 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
337 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
340 sys_sigreturn(struct sigreturn_args *uap)
342 struct lwp *lp = curthread->td_lwp;
343 struct trapframe *regs;
344 ucontext_t uc;
345 ucontext_t *ucp;
346 register_t rflags;
347 int cs;
348 int error;
351 * We have to copy the information into kernel space so userland
352 * can't modify it while we are sniffing it.
354 regs = lp->lwp_md.md_regs;
355 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
356 if (error)
357 return (error);
358 ucp = &uc;
359 rflags = ucp->uc_mcontext.mc_rflags;
361 /* VM (8086) mode not supported */
362 rflags &= ~PSL_VM_UNSUPP;
364 #if 0
365 if (eflags & PSL_VM) {
366 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
367 struct vm86_kernel *vm86;
370 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
371 * set up the vm86 area, and we can't enter vm86 mode.
373 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
374 return (EINVAL);
375 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
376 if (vm86->vm86_inited == 0)
377 return (EINVAL);
379 /* go back to user mode if both flags are set */
380 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
381 trapsignal(lp->lwp_proc, SIGBUS, 0);
383 if (vm86->vm86_has_vme) {
384 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
385 (eflags & VME_USERCHANGE) | PSL_VM;
386 } else {
387 vm86->vm86_eflags = eflags; /* save VIF, VIP */
388 eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
390 bcopy(&ucp.uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
391 tf->tf_eflags = eflags;
392 tf->tf_vm86_ds = tf->tf_ds;
393 tf->tf_vm86_es = tf->tf_es;
394 tf->tf_vm86_fs = tf->tf_fs;
395 tf->tf_vm86_gs = tf->tf_gs;
396 tf->tf_ds = _udatasel;
397 tf->tf_es = _udatasel;
398 #if 0
399 tf->tf_fs = _udatasel;
400 tf->tf_gs = _udatasel;
401 #endif
402 } else
403 #endif
406 * Don't allow users to change privileged or reserved flags.
409 * XXX do allow users to change the privileged flag PSL_RF.
410 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
411 * should sometimes set it there too. tf_eflags is kept in
412 * the signal context during signal handling and there is no
413 * other place to remember it, so the PSL_RF bit may be
414 * corrupted by the signal handler without us knowing.
415 * Corruption of the PSL_RF bit at worst causes one more or
416 * one less debugger trap, so allowing it is fairly harmless.
418 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
419 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
420 return(EINVAL);
424 * Don't allow users to load a valid privileged %cs. Let the
425 * hardware check for invalid selectors, excess privilege in
426 * other selectors, invalid %eip's and invalid %esp's.
428 cs = ucp->uc_mcontext.mc_cs;
429 if (!CS_SECURE(cs)) {
430 kprintf("sigreturn: cs = 0x%x\n", cs);
431 trapsignal(lp, SIGBUS, T_PROTFLT);
432 return(EINVAL);
434 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
438 * Restore the FPU state from the frame
440 npxpop(&ucp->uc_mcontext);
442 if (ucp->uc_mcontext.mc_onstack & 1)
443 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
444 else
445 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
447 lp->lwp_sigmask = ucp->uc_sigmask;
448 SIG_CANTMASK(lp->lwp_sigmask);
449 return(EJUSTRETURN);
453 * cpu_idle() represents the idle LWKT. You cannot return from this function
454 * (unless you want to blow things up!). Instead we look for runnable threads
455 * and loop or halt as appropriate. Giant is not held on entry to the thread.
457 * The main loop is entered with a critical section held, we must release
458 * the critical section before doing anything else. lwkt_switch() will
459 * check for pending interrupts due to entering and exiting its own
460 * critical section.
462 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
463 * to wake a HLTed cpu up.
465 static int cpu_idle_hlt = 1;
466 static int cpu_idle_hltcnt;
467 static int cpu_idle_spincnt;
468 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
469 &cpu_idle_hlt, 0, "Idle loop HLT enable");
470 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
471 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
472 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
473 &cpu_idle_spincnt, 0, "Idle loop entry spins");
475 void
476 cpu_idle(void)
478 struct thread *td = curthread;
479 struct mdglobaldata *gd = mdcpu;
480 int reqflags;
482 crit_exit();
483 KKASSERT(td->td_critcount == 0);
484 cpu_enable_intr();
486 for (;;) {
488 * See if there are any LWKTs ready to go.
490 lwkt_switch();
493 * The idle loop halts only if no threads are scheduleable
494 * and no signals have occured.
496 if (cpu_idle_hlt &&
497 (td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
498 splz();
499 if ((td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
500 #ifdef DEBUGIDLE
501 struct timeval tv1, tv2;
502 gettimeofday(&tv1, NULL);
503 #endif
504 reqflags = gd->mi.gd_reqflags &
505 ~RQF_IDLECHECK_WK_MASK;
506 KKASSERT(gd->mi.gd_processing_ipiq == 0);
507 umtx_sleep(&gd->mi.gd_reqflags, reqflags,
508 1000000);
509 #ifdef DEBUGIDLE
510 gettimeofday(&tv2, NULL);
511 if (tv2.tv_usec - tv1.tv_usec +
512 (tv2.tv_sec - tv1.tv_sec) * 1000000
513 > 500000) {
514 kprintf("cpu %d idlelock %08x %08x\n",
515 gd->mi.gd_cpuid,
516 gd->mi.gd_reqflags,
517 gd->gd_fpending);
519 #endif
521 ++cpu_idle_hltcnt;
522 } else {
523 splz();
524 __asm __volatile("pause");
525 ++cpu_idle_spincnt;
531 * Called by the spinlock code with or without a critical section held
532 * when a spinlock is found to be seriously constested.
534 * We need to enter a critical section to prevent signals from recursing
535 * into pthreads.
537 void
538 cpu_spinlock_contested(void)
540 cpu_pause();
544 * Clear registers on exec
546 void
547 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
549 struct thread *td = curthread;
550 struct lwp *lp = td->td_lwp;
551 struct pcb *pcb = td->td_pcb;
552 struct trapframe *regs = lp->lwp_md.md_regs;
554 /* was i386_user_cleanup() in NetBSD */
555 user_ldt_free(pcb);
557 bzero((char *)regs, sizeof(struct trapframe));
558 regs->tf_rip = entry;
559 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
560 regs->tf_rdi = stack; /* argv */
561 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
562 regs->tf_ss = _udatasel;
563 regs->tf_cs = _ucodesel;
564 regs->tf_rbx = ps_strings;
567 * Reset the hardware debug registers if they were in use.
568 * They won't have any meaning for the newly exec'd process.
570 if (pcb->pcb_flags & PCB_DBREGS) {
571 pcb->pcb_dr0 = 0;
572 pcb->pcb_dr1 = 0;
573 pcb->pcb_dr2 = 0;
574 pcb->pcb_dr3 = 0;
575 pcb->pcb_dr6 = 0;
576 pcb->pcb_dr7 = 0; /* JG set bit 10? */
577 if (pcb == td->td_pcb) {
579 * Clear the debug registers on the running
580 * CPU, otherwise they will end up affecting
581 * the next process we switch to.
583 reset_dbregs();
585 pcb->pcb_flags &= ~PCB_DBREGS;
589 * Initialize the math emulator (if any) for the current process.
590 * Actually, just clear the bit that says that the emulator has
591 * been initialized. Initialization is delayed until the process
592 * traps to the emulator (if it is done at all) mainly because
593 * emulators don't provide an entry point for initialization.
595 pcb->pcb_flags &= ~FP_SOFTFP;
598 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
599 * gd_npxthread. Otherwise a preemptive interrupt thread
600 * may panic in npxdna().
602 crit_enter();
603 #if 0
604 load_cr0(rcr0() | CR0_MP);
605 #endif
608 * NOTE: The MSR values must be correct so we can return to
609 * userland. gd_user_fs/gs must be correct so the switch
610 * code knows what the current MSR values are.
612 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
613 pcb->pcb_gsbase = 0;
614 /* Initialize the npx (if any) for the current process. */
615 npxinit();
616 crit_exit();
619 * note: linux emulator needs edx to be 0x0 on entry, which is
620 * handled in execve simply by setting the 64 bit syscall
621 * return value to 0.
625 void
626 cpu_setregs(void)
628 #if 0
629 unsigned int cr0;
631 cr0 = rcr0();
632 cr0 |= CR0_NE; /* Done by npxinit() */
633 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
634 cr0 |= CR0_WP | CR0_AM;
635 load_cr0(cr0);
636 load_gs(_udatasel);
637 #endif
640 static int
641 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
643 int error;
644 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
645 req);
646 if (!error && req->newptr)
647 resettodr();
648 return (error);
651 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
652 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
654 extern u_long bootdev; /* not a cdev_t - encoding is different */
655 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
656 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
659 * Initialize 386 and configure to run kernel
663 * Initialize segments & interrupt table
666 extern struct user *proc0paddr;
668 #if 0
670 extern inthand_t
671 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
672 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
673 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
674 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
675 IDTVEC(xmm), IDTVEC(dblfault),
676 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
677 #endif
680 ptrace_set_pc(struct lwp *lp, unsigned long addr)
682 lp->lwp_md.md_regs->tf_rip = addr;
683 return (0);
687 ptrace_single_step(struct lwp *lp)
689 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
690 return (0);
694 fill_regs(struct lwp *lp, struct reg *regs)
696 struct trapframe *tp;
698 if ((tp = lp->lwp_md.md_regs) == NULL)
699 return EINVAL;
700 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
701 return (0);
705 set_regs(struct lwp *lp, struct reg *regs)
707 struct trapframe *tp;
709 tp = lp->lwp_md.md_regs;
710 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
711 !CS_SECURE(regs->r_cs))
712 return (EINVAL);
713 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
714 return (0);
717 static void
718 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
720 struct env87 *penv_87 = &sv_87->sv_env;
721 struct envxmm *penv_xmm = &sv_xmm->sv_env;
722 int i;
724 /* FPU control/status */
725 penv_87->en_cw = penv_xmm->en_cw;
726 penv_87->en_sw = penv_xmm->en_sw;
727 penv_87->en_tw = penv_xmm->en_tw;
728 penv_87->en_fip = penv_xmm->en_fip;
729 penv_87->en_fcs = penv_xmm->en_fcs;
730 penv_87->en_opcode = penv_xmm->en_opcode;
731 penv_87->en_foo = penv_xmm->en_foo;
732 penv_87->en_fos = penv_xmm->en_fos;
734 /* FPU registers */
735 for (i = 0; i < 8; ++i)
736 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
739 static void
740 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
742 struct env87 *penv_87 = &sv_87->sv_env;
743 struct envxmm *penv_xmm = &sv_xmm->sv_env;
744 int i;
746 /* FPU control/status */
747 penv_xmm->en_cw = penv_87->en_cw;
748 penv_xmm->en_sw = penv_87->en_sw;
749 penv_xmm->en_tw = penv_87->en_tw;
750 penv_xmm->en_fip = penv_87->en_fip;
751 penv_xmm->en_fcs = penv_87->en_fcs;
752 penv_xmm->en_opcode = penv_87->en_opcode;
753 penv_xmm->en_foo = penv_87->en_foo;
754 penv_xmm->en_fos = penv_87->en_fos;
756 /* FPU registers */
757 for (i = 0; i < 8; ++i)
758 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
762 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
764 if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
765 return EINVAL;
766 if (cpu_fxsr) {
767 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
768 (struct save87 *)fpregs);
769 return (0);
771 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
772 return (0);
776 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
778 if (cpu_fxsr) {
779 set_fpregs_xmm((struct save87 *)fpregs,
780 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
781 return (0);
783 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
784 return (0);
788 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
790 return (ENOSYS);
794 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
796 return (ENOSYS);
799 #if 0
801 * Return > 0 if a hardware breakpoint has been hit, and the
802 * breakpoint was in user space. Return 0, otherwise.
805 user_dbreg_trap(void)
807 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
808 u_int32_t bp; /* breakpoint bits extracted from dr6 */
809 int nbp; /* number of breakpoints that triggered */
810 caddr_t addr[4]; /* breakpoint addresses */
811 int i;
813 dr7 = rdr7();
814 if ((dr7 & 0x000000ff) == 0) {
816 * all GE and LE bits in the dr7 register are zero,
817 * thus the trap couldn't have been caused by the
818 * hardware debug registers
820 return 0;
823 nbp = 0;
824 dr6 = rdr6();
825 bp = dr6 & 0x0000000f;
827 if (!bp) {
829 * None of the breakpoint bits are set meaning this
830 * trap was not caused by any of the debug registers
832 return 0;
836 * at least one of the breakpoints were hit, check to see
837 * which ones and if any of them are user space addresses
840 if (bp & 0x01) {
841 addr[nbp++] = (caddr_t)rdr0();
843 if (bp & 0x02) {
844 addr[nbp++] = (caddr_t)rdr1();
846 if (bp & 0x04) {
847 addr[nbp++] = (caddr_t)rdr2();
849 if (bp & 0x08) {
850 addr[nbp++] = (caddr_t)rdr3();
853 for (i=0; i<nbp; i++) {
854 if (addr[i] <
855 (caddr_t)VM_MAX_USER_ADDRESS) {
857 * addr[i] is in user space
859 return nbp;
864 * None of the breakpoints are in user space.
866 return 0;
869 #endif
871 void
872 identcpu(void)
874 int regs[4];
876 do_cpuid(1, regs);
877 cpu_feature = regs[3];
881 #ifndef DDB
882 void
883 Debugger(const char *msg)
885 kprintf("Debugger(\"%s\") called.\n", msg);
887 #endif /* no DDB */