ed(1): Sync with FreeBSD.
[dragonfly.git] / sys / vfs / ufs / ffs_alloc.c
blob26f588171e29d44abddb0751fb03238f7c161bc4
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
30 * $FreeBSD: src/sys/ufs/ffs/ffs_alloc.c,v 1.64.2.2 2001/09/21 19:15:21 dillon Exp $
33 #include "opt_quota.h"
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/buf.h>
38 #include <sys/conf.h>
39 #include <sys/proc.h>
40 #include <sys/vnode.h>
41 #include <sys/mount.h>
42 #include <sys/kernel.h>
43 #include <sys/sysctl.h>
44 #include <sys/syslog.h>
46 #include <sys/taskqueue.h>
47 #include <machine/inttypes.h>
49 #include <sys/buf2.h>
51 #include "quota.h"
52 #include "inode.h"
53 #include "ufs_extern.h"
54 #include "ufsmount.h"
56 #include "fs.h"
57 #include "ffs_extern.h"
59 typedef ufs_daddr_t allocfcn_t (struct inode *ip, int cg, ufs_daddr_t bpref,
60 int size);
62 static ufs_daddr_t ffs_alloccg (struct inode *, int, ufs_daddr_t, int);
63 static ufs_daddr_t
64 ffs_alloccgblk (struct inode *, struct buf *, ufs_daddr_t);
65 static void ffs_blkfree_cg(struct fs *, struct vnode *, cdev_t , ino_t,
66 uint32_t , ufs_daddr_t, long );
67 #ifdef DIAGNOSTIC
68 static int ffs_checkblk (struct inode *, ufs_daddr_t, long);
69 #endif
70 static void ffs_clusteracct (struct fs *, struct cg *, ufs_daddr_t,
71 int);
72 static ufs_daddr_t ffs_clusteralloc (struct inode *, int, ufs_daddr_t,
73 int);
74 static ino_t ffs_dirpref (struct inode *);
75 static ufs_daddr_t ffs_fragextend (struct inode *, int, long, int, int);
76 static void ffs_fserr (struct fs *, uint, char *);
77 static u_long ffs_hashalloc
78 (struct inode *, int, long, int, allocfcn_t *);
79 static ino_t ffs_nodealloccg (struct inode *, int, ufs_daddr_t, int);
80 static ufs_daddr_t ffs_mapsearch (struct fs *, struct cg *, ufs_daddr_t,
81 int);
84 * Allocate a block in the filesystem.
86 * The size of the requested block is given, which must be some
87 * multiple of fs_fsize and <= fs_bsize.
88 * A preference may be optionally specified. If a preference is given
89 * the following hierarchy is used to allocate a block:
90 * 1) allocate the requested block.
91 * 2) allocate a rotationally optimal block in the same cylinder.
92 * 3) allocate a block in the same cylinder group.
93 * 4) quadradically rehash into other cylinder groups, until an
94 * available block is located.
95 * If no block preference is given the following heirarchy is used
96 * to allocate a block:
97 * 1) allocate a block in the cylinder group that contains the
98 * inode for the file.
99 * 2) quadradically rehash into other cylinder groups, until an
100 * available block is located.
103 ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
104 struct ucred *cred, ufs_daddr_t *bnp)
106 struct fs *fs;
107 ufs_daddr_t bno;
108 int cg;
109 #ifdef QUOTA
110 int error;
111 #endif
113 *bnp = 0;
114 fs = ip->i_fs;
115 #ifdef DIAGNOSTIC
116 if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
117 kprintf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
118 devtoname(ip->i_dev), (long)fs->fs_bsize, size,
119 fs->fs_fsmnt);
120 panic("ffs_alloc: bad size");
122 if (cred == NOCRED)
123 panic("ffs_alloc: missing credential");
124 #endif /* DIAGNOSTIC */
125 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
126 goto nospace;
127 if (cred->cr_uid != 0 &&
128 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
129 goto nospace;
130 #ifdef QUOTA
131 error = ufs_chkdq(ip, (long)btodb(size), cred, 0);
132 if (error)
133 return (error);
134 #endif
135 if (bpref >= fs->fs_size)
136 bpref = 0;
137 if (bpref == 0)
138 cg = ino_to_cg(fs, ip->i_number);
139 else
140 cg = dtog(fs, bpref);
141 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
142 ffs_alloccg);
143 if (bno > 0) {
144 ip->i_blocks += btodb(size);
145 ip->i_flag |= IN_CHANGE | IN_UPDATE;
146 *bnp = bno;
147 return (0);
149 #ifdef QUOTA
151 * Restore user's disk quota because allocation failed.
153 (void) ufs_chkdq(ip, (long)-btodb(size), cred, FORCE);
154 #endif
155 nospace:
156 ffs_fserr(fs, cred->cr_uid, "filesystem full");
157 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
158 return (ENOSPC);
162 * Reallocate a fragment to a bigger size
164 * The number and size of the old block is given, and a preference
165 * and new size is also specified. The allocator attempts to extend
166 * the original block. Failing that, the regular block allocator is
167 * invoked to get an appropriate block.
170 ffs_realloccg(struct inode *ip, ufs_daddr_t lbprev, ufs_daddr_t bpref,
171 int osize, int nsize, struct ucred *cred, struct buf **bpp)
173 struct fs *fs;
174 struct buf *bp;
175 int cg, request, error;
176 ufs_daddr_t bprev, bno;
178 *bpp = NULL;
179 fs = ip->i_fs;
180 #ifdef DIAGNOSTIC
181 if ((uint)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
182 (uint)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
183 kprintf(
184 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
185 devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
186 nsize, fs->fs_fsmnt);
187 panic("ffs_realloccg: bad size");
189 if (cred == NOCRED)
190 panic("ffs_realloccg: missing credential");
191 #endif /* DIAGNOSTIC */
192 if (cred->cr_uid != 0 &&
193 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0)
194 goto nospace;
195 if ((bprev = ip->i_db[lbprev]) == 0) {
196 kprintf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
197 devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
198 fs->fs_fsmnt);
199 panic("ffs_realloccg: bad bprev");
202 * Allocate the extra space in the buffer.
204 error = bread(ITOV(ip), lblktodoff(fs, lbprev), osize, &bp);
205 if (error) {
206 brelse(bp);
207 return (error);
210 if(bp->b_bio2.bio_offset == NOOFFSET) {
211 if( lbprev >= NDADDR)
212 panic("ffs_realloccg: lbprev out of range");
213 bp->b_bio2.bio_offset = fsbtodoff(fs, bprev);
216 #ifdef QUOTA
217 error = ufs_chkdq(ip, (long)btodb(nsize - osize), cred, 0);
218 if (error) {
219 brelse(bp);
220 return (error);
222 #endif
224 * Check for extension in the existing location.
226 cg = dtog(fs, bprev);
227 bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
228 if (bno) {
229 if (bp->b_bio2.bio_offset != fsbtodoff(fs, bno))
230 panic("ffs_realloccg: bad blockno");
231 ip->i_blocks += btodb(nsize - osize);
232 ip->i_flag |= IN_CHANGE | IN_UPDATE;
233 allocbuf(bp, nsize);
234 bzero((char *)bp->b_data + osize, (uint)nsize - osize);
235 *bpp = bp;
236 return (0);
239 * Allocate a new disk location.
241 if (bpref >= fs->fs_size)
242 bpref = 0;
243 switch ((int)fs->fs_optim) {
244 case FS_OPTSPACE:
246 * Allocate an exact sized fragment. Although this makes
247 * best use of space, we will waste time relocating it if
248 * the file continues to grow. If the fragmentation is
249 * less than half of the minimum free reserve, we choose
250 * to begin optimizing for time.
252 request = nsize;
253 if (fs->fs_minfree <= 5 ||
254 fs->fs_cstotal.cs_nffree >
255 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
256 break;
257 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
258 fs->fs_fsmnt);
259 fs->fs_optim = FS_OPTTIME;
260 break;
261 case FS_OPTTIME:
263 * At this point we have discovered a file that is trying to
264 * grow a small fragment to a larger fragment. To save time,
265 * we allocate a full sized block, then free the unused portion.
266 * If the file continues to grow, the `ffs_fragextend' call
267 * above will be able to grow it in place without further
268 * copying. If aberrant programs cause disk fragmentation to
269 * grow within 2% of the free reserve, we choose to begin
270 * optimizing for space.
272 request = fs->fs_bsize;
273 if (fs->fs_cstotal.cs_nffree <
274 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
275 break;
276 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
277 fs->fs_fsmnt);
278 fs->fs_optim = FS_OPTSPACE;
279 break;
280 default:
281 kprintf("dev = %s, optim = %ld, fs = %s\n",
282 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
283 panic("ffs_realloccg: bad optim");
284 /* NOTREACHED */
286 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
287 ffs_alloccg);
288 if (bno > 0) {
289 bp->b_bio2.bio_offset = fsbtodoff(fs, bno);
290 if (!DOINGSOFTDEP(ITOV(ip)))
291 ffs_blkfree(ip, bprev, (long)osize);
292 if (nsize < request)
293 ffs_blkfree(ip, bno + numfrags(fs, nsize),
294 (long)(request - nsize));
295 ip->i_blocks += btodb(nsize - osize);
296 ip->i_flag |= IN_CHANGE | IN_UPDATE;
297 allocbuf(bp, nsize);
298 bzero((char *)bp->b_data + osize, (uint)nsize - osize);
299 *bpp = bp;
300 return (0);
302 #ifdef QUOTA
304 * Restore user's disk quota because allocation failed.
306 (void) ufs_chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
307 #endif
308 brelse(bp);
309 nospace:
311 * no space available
313 ffs_fserr(fs, cred->cr_uid, "filesystem full");
314 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
315 return (ENOSPC);
318 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
321 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
323 * The vnode and an array of buffer pointers for a range of sequential
324 * logical blocks to be made contiguous is given. The allocator attempts
325 * to find a range of sequential blocks starting as close as possible to
326 * an fs_rotdelay offset from the end of the allocation for the logical
327 * block immediately preceeding the current range. If successful, the
328 * physical block numbers in the buffer pointers and in the inode are
329 * changed to reflect the new allocation. If unsuccessful, the allocation
330 * is left unchanged. The success in doing the reallocation is returned.
331 * Note that the error return is not reflected back to the user. Rather
332 * the previous block allocation will be used.
334 static int doasyncfree = 1;
335 SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
337 static int doreallocblks = 1;
338 SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
340 #ifdef DEBUG
341 static volatile int prtrealloc = 0;
342 #endif
345 * ffs_reallocblks(struct vnode *a_vp, struct cluster_save *a_buflist)
348 ffs_reallocblks(struct vop_reallocblks_args *ap)
350 struct fs *fs;
351 struct inode *ip;
352 struct vnode *vp;
353 struct buf *sbp, *ebp;
354 ufs_daddr_t *bap, *sbap, *ebap = NULL;
355 struct cluster_save *buflist;
356 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
357 #ifdef DIAGNOSTIC
358 off_t boffset;
359 #endif
360 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
361 int i, len, slen, start_lvl, end_lvl, pref, ssize;
363 if (doreallocblks == 0)
364 return (ENOSPC);
365 vp = ap->a_vp;
366 ip = VTOI(vp);
367 fs = ip->i_fs;
368 if (fs->fs_contigsumsize <= 0)
369 return (ENOSPC);
370 buflist = ap->a_buflist;
371 len = buflist->bs_nchildren;
372 start_lbn = lblkno(fs, buflist->bs_children[0]->b_loffset);
373 end_lbn = start_lbn + len - 1;
374 #ifdef DIAGNOSTIC
375 for (i = 0; i < len; i++)
376 if (!ffs_checkblk(ip,
377 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
378 panic("ffs_reallocblks: unallocated block 1");
379 for (i = 1; i < len; i++) {
380 if (buflist->bs_children[i]->b_loffset != lblktodoff(fs, start_lbn) + lblktodoff(fs, i))
381 panic("ffs_reallocblks: non-logical cluster");
383 boffset = buflist->bs_children[0]->b_bio2.bio_offset;
384 ssize = (int)fsbtodoff(fs, fs->fs_frag);
385 for (i = 1; i < len - 1; i++)
386 if (buflist->bs_children[i]->b_bio2.bio_offset != boffset + (i * ssize))
387 panic("ffs_reallocblks: non-physical cluster %d", i);
388 #endif
390 * If the latest allocation is in a new cylinder group, assume that
391 * the filesystem has decided to move and do not force it back to
392 * the previous cylinder group.
394 if (dtog(fs, dofftofsb(fs, buflist->bs_children[0]->b_bio2.bio_offset)) !=
395 dtog(fs, dofftofsb(fs, buflist->bs_children[len - 1]->b_bio2.bio_offset)))
396 return (ENOSPC);
397 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
398 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
399 return (ENOSPC);
401 * Get the starting offset and block map for the first block and
402 * the number of blocks that will fit into sbap starting at soff.
404 if (start_lvl == 0) {
405 sbap = &ip->i_db[0];
406 soff = start_lbn;
407 slen = NDADDR - soff;
408 } else {
409 idp = &start_ap[start_lvl - 1];
410 if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &sbp)) {
411 brelse(sbp);
412 return (ENOSPC);
414 sbap = (ufs_daddr_t *)sbp->b_data;
415 soff = idp->in_off;
416 slen = fs->fs_nindir - soff;
419 * Find the preferred location for the cluster.
421 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
424 * If the block range spans two block maps, get the second map.
426 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
427 ssize = len;
428 } else {
429 #ifdef DIAGNOSTIC
430 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
431 panic("ffs_reallocblk: start == end");
432 #endif
433 ssize = len - (idp->in_off + 1);
434 if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &ebp))
435 goto fail;
436 ebap = (ufs_daddr_t *)ebp->b_data;
440 * Make sure we aren't spanning more then two blockmaps. ssize is
441 * our calculation of the span we have to scan in the first blockmap,
442 * while slen is our calculation of the number of entries available
443 * in the first blockmap (from soff).
445 if (ssize > slen) {
446 panic("ffs_reallocblks: range spans more then two blockmaps!"
447 " start_lbn %ld len %d (%d/%d)",
448 (long)start_lbn, len, slen, ssize);
451 * Search the block map looking for an allocation of the desired size.
453 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
454 len, ffs_clusteralloc)) == 0)
455 goto fail;
457 * We have found a new contiguous block.
459 * First we have to replace the old block pointers with the new
460 * block pointers in the inode and indirect blocks associated
461 * with the file.
463 #ifdef DEBUG
464 if (prtrealloc)
465 kprintf("realloc: ino %ju, lbns %d-%d\n\told:",
466 (uintmax_t)ip->i_number, start_lbn, end_lbn);
467 #endif
468 blkno = newblk;
469 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
470 if (i == ssize) {
471 bap = ebap;
472 soff = -i;
474 #ifdef DIAGNOSTIC
475 if (!ffs_checkblk(ip,
476 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
477 panic("ffs_reallocblks: unallocated block 2");
478 if (dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset) != *bap)
479 panic("ffs_reallocblks: alloc mismatch");
480 #endif
481 #ifdef DEBUG
482 if (prtrealloc)
483 kprintf(" %d,", *bap);
484 #endif
485 if (DOINGSOFTDEP(vp)) {
486 if (sbap == &ip->i_db[0] && i < ssize)
487 softdep_setup_allocdirect(ip, start_lbn + i,
488 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
489 buflist->bs_children[i]);
490 else
491 softdep_setup_allocindir_page(ip, start_lbn + i,
492 i < ssize ? sbp : ebp, soff + i, blkno,
493 *bap, buflist->bs_children[i]);
495 *bap++ = blkno;
498 * Next we must write out the modified inode and indirect blocks.
499 * For strict correctness, the writes should be synchronous since
500 * the old block values may have been written to disk. In practise
501 * they are almost never written, but if we are concerned about
502 * strict correctness, the `doasyncfree' flag should be set to zero.
504 * The test on `doasyncfree' should be changed to test a flag
505 * that shows whether the associated buffers and inodes have
506 * been written. The flag should be set when the cluster is
507 * started and cleared whenever the buffer or inode is flushed.
508 * We can then check below to see if it is set, and do the
509 * synchronous write only when it has been cleared.
511 if (sbap != &ip->i_db[0]) {
512 if (doasyncfree)
513 bdwrite(sbp);
514 else
515 bwrite(sbp);
516 } else {
517 ip->i_flag |= IN_CHANGE | IN_UPDATE;
518 if (!doasyncfree)
519 ffs_update(vp, 1);
521 if (ssize < len) {
522 if (doasyncfree)
523 bdwrite(ebp);
524 else
525 bwrite(ebp);
528 * Last, free the old blocks and assign the new blocks to the buffers.
530 #ifdef DEBUG
531 if (prtrealloc)
532 kprintf("\n\tnew:");
533 #endif
534 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
535 if (!DOINGSOFTDEP(vp) &&
536 buflist->bs_children[i]->b_bio2.bio_offset != NOOFFSET) {
537 ffs_blkfree(ip,
538 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset),
539 fs->fs_bsize);
541 buflist->bs_children[i]->b_bio2.bio_offset = fsbtodoff(fs, blkno);
542 #ifdef DIAGNOSTIC
543 if (!ffs_checkblk(ip,
544 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
545 panic("ffs_reallocblks: unallocated block 3");
546 #endif
547 #ifdef DEBUG
548 if (prtrealloc)
549 kprintf(" %d,", blkno);
550 #endif
552 #ifdef DEBUG
553 if (prtrealloc) {
554 prtrealloc--;
555 kprintf("\n");
557 #endif
558 return (0);
560 fail:
561 if (ssize < len)
562 brelse(ebp);
563 if (sbap != &ip->i_db[0])
564 brelse(sbp);
565 return (ENOSPC);
569 * Allocate an inode in the filesystem.
571 * If allocating a directory, use ffs_dirpref to select the inode.
572 * If allocating in a directory, the following hierarchy is followed:
573 * 1) allocate the preferred inode.
574 * 2) allocate an inode in the same cylinder group.
575 * 3) quadradically rehash into other cylinder groups, until an
576 * available inode is located.
577 * If no inode preference is given the following heirarchy is used
578 * to allocate an inode:
579 * 1) allocate an inode in cylinder group 0.
580 * 2) quadradically rehash into other cylinder groups, until an
581 * available inode is located.
584 ffs_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
586 struct inode *pip;
587 struct fs *fs;
588 struct inode *ip;
589 ino_t ino, ipref;
590 int cg, error;
592 *vpp = NULL;
593 pip = VTOI(pvp);
594 fs = pip->i_fs;
595 if (fs->fs_cstotal.cs_nifree == 0)
596 goto noinodes;
598 if ((mode & IFMT) == IFDIR)
599 ipref = ffs_dirpref(pip);
600 else
601 ipref = pip->i_number;
602 if (ipref >= fs->fs_ncg * fs->fs_ipg)
603 ipref = 0;
604 cg = ino_to_cg(fs, ipref);
606 * Track number of dirs created one after another
607 * in a same cg without intervening by files.
609 if ((mode & IFMT) == IFDIR) {
610 if (fs->fs_contigdirs[cg] < 255)
611 fs->fs_contigdirs[cg]++;
612 } else {
613 if (fs->fs_contigdirs[cg] > 0)
614 fs->fs_contigdirs[cg]--;
616 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
617 (allocfcn_t *)ffs_nodealloccg);
618 if (ino == 0)
619 goto noinodes;
620 error = VFS_VGET(pvp->v_mount, NULL, ino, vpp);
621 if (error) {
622 ffs_vfree(pvp, ino, mode);
623 return (error);
625 ip = VTOI(*vpp);
626 if (ip->i_mode) {
627 kprintf("mode = 0%o, inum = %lu, fs = %s\n",
628 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
629 panic("ffs_valloc: dup alloc");
631 if (ip->i_blocks) { /* XXX */
632 kprintf("free inode %s/%lu had %ld blocks\n",
633 fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
634 ip->i_blocks = 0;
636 ip->i_flags = 0;
638 * Set up a new generation number for this inode.
640 if (ip->i_gen == 0 || ++ip->i_gen == 0)
641 ip->i_gen = krandom() / 2 + 1;
642 return (0);
643 noinodes:
644 ffs_fserr(fs, cred->cr_uid, "out of inodes");
645 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
646 return (ENOSPC);
650 * Find a cylinder group to place a directory.
652 * The policy implemented by this algorithm is to allocate a
653 * directory inode in the same cylinder group as its parent
654 * directory, but also to reserve space for its files inodes
655 * and data. Restrict the number of directories which may be
656 * allocated one after another in the same cylinder group
657 * without intervening allocation of files.
659 * If we allocate a first level directory then force allocation
660 * in another cylinder group.
662 static ino_t
663 ffs_dirpref(struct inode *pip)
665 struct fs *fs;
666 int cg, prefcg, dirsize, cgsize;
667 int64_t dirsize64;
668 int avgifree, avgbfree, avgndir, curdirsize;
669 int minifree, minbfree, maxndir;
670 int mincg, minndir;
671 int maxcontigdirs;
673 fs = pip->i_fs;
675 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
676 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
677 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
680 * Force allocation in another cg if creating a first level dir.
682 if (ITOV(pip)->v_flag & VROOT) {
683 prefcg = karc4random() % fs->fs_ncg;
684 mincg = prefcg;
685 minndir = fs->fs_ipg;
686 for (cg = prefcg; cg < fs->fs_ncg; cg++)
687 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
688 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
689 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
690 mincg = cg;
691 minndir = fs->fs_cs(fs, cg).cs_ndir;
693 for (cg = 0; cg < prefcg; cg++)
694 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
695 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
696 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
697 mincg = cg;
698 minndir = fs->fs_cs(fs, cg).cs_ndir;
700 return ((ino_t)(fs->fs_ipg * mincg));
704 * Count various limits which used for
705 * optimal allocation of a directory inode.
707 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
708 minifree = avgifree - avgifree / 4;
709 if (minifree < 1)
710 minifree = 1;
711 minbfree = avgbfree - avgbfree / 4;
712 if (minbfree < 1)
713 minbfree = 1;
714 cgsize = fs->fs_fsize * fs->fs_fpg;
717 * fs_avgfilesize and fs_avgfpdir are user-settable entities and
718 * multiplying them may overflow a 32 bit integer.
720 dirsize64 = fs->fs_avgfilesize * (int64_t)fs->fs_avgfpdir;
721 if (dirsize64 > 0x7fffffff) {
722 maxcontigdirs = 1;
723 } else {
724 dirsize = (int)dirsize64;
725 curdirsize = avgndir ?
726 (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
727 if (dirsize < curdirsize)
728 dirsize = curdirsize;
729 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
730 if (fs->fs_avgfpdir > 0)
731 maxcontigdirs = min(maxcontigdirs,
732 fs->fs_ipg / fs->fs_avgfpdir);
733 if (maxcontigdirs == 0)
734 maxcontigdirs = 1;
738 * Limit number of dirs in one cg and reserve space for
739 * regular files, but only if we have no deficit in
740 * inodes or space.
742 prefcg = ino_to_cg(fs, pip->i_number);
743 for (cg = prefcg; cg < fs->fs_ncg; cg++)
744 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
745 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
746 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
747 if (fs->fs_contigdirs[cg] < maxcontigdirs)
748 return ((ino_t)(fs->fs_ipg * cg));
750 for (cg = 0; cg < prefcg; cg++)
751 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
752 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
753 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
754 if (fs->fs_contigdirs[cg] < maxcontigdirs)
755 return ((ino_t)(fs->fs_ipg * cg));
758 * This is a backstop when we have deficit in space.
760 for (cg = prefcg; cg < fs->fs_ncg; cg++)
761 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
762 return ((ino_t)(fs->fs_ipg * cg));
763 for (cg = 0; cg < prefcg; cg++)
764 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
765 break;
766 return ((ino_t)(fs->fs_ipg * cg));
770 * Select the desired position for the next block in a file. The file is
771 * logically divided into sections. The first section is composed of the
772 * direct blocks. Each additional section contains fs_maxbpg blocks.
774 * If no blocks have been allocated in the first section, the policy is to
775 * request a block in the same cylinder group as the inode that describes
776 * the file. If no blocks have been allocated in any other section, the
777 * policy is to place the section in a cylinder group with a greater than
778 * average number of free blocks. An appropriate cylinder group is found
779 * by using a rotor that sweeps the cylinder groups. When a new group of
780 * blocks is needed, the sweep begins in the cylinder group following the
781 * cylinder group from which the previous allocation was made. The sweep
782 * continues until a cylinder group with greater than the average number
783 * of free blocks is found. If the allocation is for the first block in an
784 * indirect block, the information on the previous allocation is unavailable;
785 * here a best guess is made based upon the logical block number being
786 * allocated.
788 * If a section is already partially allocated, the policy is to
789 * contiguously allocate fs_maxcontig blocks. The end of one of these
790 * contiguous blocks and the beginning of the next is physically separated
791 * so that the disk head will be in transit between them for at least
792 * fs_rotdelay milliseconds. This is to allow time for the processor to
793 * schedule another I/O transfer.
795 ufs_daddr_t
796 ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
798 struct fs *fs;
799 int cg;
800 int avgbfree, startcg;
801 ufs_daddr_t nextblk;
803 fs = ip->i_fs;
804 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
805 if (lbn < NDADDR + NINDIR(fs)) {
806 cg = ino_to_cg(fs, ip->i_number);
807 return (fs->fs_fpg * cg + fs->fs_frag);
810 * Find a cylinder with greater than average number of
811 * unused data blocks.
813 if (indx == 0 || bap[indx - 1] == 0)
814 startcg =
815 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
816 else
817 startcg = dtog(fs, bap[indx - 1]) + 1;
818 startcg %= fs->fs_ncg;
819 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
820 for (cg = startcg; cg < fs->fs_ncg; cg++)
821 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
822 fs->fs_cgrotor = cg;
823 return (fs->fs_fpg * cg + fs->fs_frag);
825 for (cg = 0; cg <= startcg; cg++)
826 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
827 fs->fs_cgrotor = cg;
828 return (fs->fs_fpg * cg + fs->fs_frag);
830 return (0);
833 * One or more previous blocks have been laid out. If less
834 * than fs_maxcontig previous blocks are contiguous, the
835 * next block is requested contiguously, otherwise it is
836 * requested rotationally delayed by fs_rotdelay milliseconds.
838 nextblk = bap[indx - 1] + fs->fs_frag;
839 if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
840 bap[indx - fs->fs_maxcontig] +
841 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
842 return (nextblk);
844 * Here we convert ms of delay to frags as:
845 * (frags) = (ms) * (rev/sec) * (sect/rev) /
846 * ((sect/frag) * (ms/sec))
847 * then round up to the next block.
849 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
850 (NSPF(fs) * 1000), fs->fs_frag);
851 return (nextblk);
855 * Implement the cylinder overflow algorithm.
857 * The policy implemented by this algorithm is:
858 * 1) allocate the block in its requested cylinder group.
859 * 2) quadradically rehash on the cylinder group number.
860 * 3) brute force search for a free block.
862 /*VARARGS5*/
863 static u_long
864 ffs_hashalloc(struct inode *ip, int cg, long pref,
865 int size, /* size for data blocks, mode for inodes */
866 allocfcn_t *allocator)
868 struct fs *fs;
869 long result; /* XXX why not same type as we return? */
870 int i, icg = cg;
872 fs = ip->i_fs;
874 * 1: preferred cylinder group
876 result = (*allocator)(ip, cg, pref, size);
877 if (result)
878 return (result);
880 * 2: quadratic rehash
882 for (i = 1; i < fs->fs_ncg; i *= 2) {
883 cg += i;
884 if (cg >= fs->fs_ncg)
885 cg -= fs->fs_ncg;
886 result = (*allocator)(ip, cg, 0, size);
887 if (result)
888 return (result);
891 * 3: brute force search
892 * Note that we start at i == 2, since 0 was checked initially,
893 * and 1 is always checked in the quadratic rehash.
895 cg = (icg + 2) % fs->fs_ncg;
896 for (i = 2; i < fs->fs_ncg; i++) {
897 result = (*allocator)(ip, cg, 0, size);
898 if (result)
899 return (result);
900 cg++;
901 if (cg == fs->fs_ncg)
902 cg = 0;
904 return (0);
908 * Determine whether a fragment can be extended.
910 * Check to see if the necessary fragments are available, and
911 * if they are, allocate them.
913 static ufs_daddr_t
914 ffs_fragextend(struct inode *ip, int cg, long bprev, int osize, int nsize)
916 struct fs *fs;
917 struct cg *cgp;
918 struct buf *bp;
919 long bno;
920 int frags, bbase;
921 int i, error;
922 uint8_t *blksfree;
924 fs = ip->i_fs;
925 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
926 return (0);
927 frags = numfrags(fs, nsize);
928 bbase = fragnum(fs, bprev);
929 if (bbase > fragnum(fs, (bprev + frags - 1))) {
930 /* cannot extend across a block boundary */
931 return (0);
933 KKASSERT(blknum(fs, bprev) == blknum(fs, bprev + frags - 1));
934 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
935 (int)fs->fs_cgsize, &bp);
936 if (error) {
937 brelse(bp);
938 return (0);
940 cgp = (struct cg *)bp->b_data;
941 if (!cg_chkmagic(cgp)) {
942 brelse(bp);
943 return (0);
945 cgp->cg_time = time_second;
946 bno = dtogd(fs, bprev);
947 blksfree = cg_blksfree(cgp);
948 for (i = numfrags(fs, osize); i < frags; i++) {
949 if (isclr(blksfree, bno + i)) {
950 brelse(bp);
951 return (0);
956 * the current fragment can be extended
957 * deduct the count on fragment being extended into
958 * increase the count on the remaining fragment (if any)
959 * allocate the extended piece
961 * ---oooooooooonnnnnnn111----
962 * [-----frags-----]
963 * ^ ^
964 * bbase fs_frag
966 for (i = frags; i < fs->fs_frag - bbase; i++) {
967 if (isclr(blksfree, bno + i))
968 break;
972 * Size of original free frag is [i - numfrags(fs, osize)]
973 * Size of remaining free frag is [i - frags]
975 cgp->cg_frsum[i - numfrags(fs, osize)]--;
976 if (i != frags)
977 cgp->cg_frsum[i - frags]++;
978 for (i = numfrags(fs, osize); i < frags; i++) {
979 clrbit(blksfree, bno + i);
980 cgp->cg_cs.cs_nffree--;
981 fs->fs_cstotal.cs_nffree--;
982 fs->fs_cs(fs, cg).cs_nffree--;
984 fs->fs_fmod = 1;
985 if (DOINGSOFTDEP(ITOV(ip)))
986 softdep_setup_blkmapdep(bp, fs, bprev);
987 bdwrite(bp);
988 return (bprev);
992 * Determine whether a block can be allocated.
994 * Check to see if a block of the appropriate size is available,
995 * and if it is, allocate it.
997 static ufs_daddr_t
998 ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
1000 struct fs *fs;
1001 struct cg *cgp;
1002 struct buf *bp;
1003 int i;
1004 ufs_daddr_t bno, blkno;
1005 int allocsiz, error, frags;
1006 uint8_t *blksfree;
1008 fs = ip->i_fs;
1009 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1010 return (0);
1011 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1012 (int)fs->fs_cgsize, &bp);
1013 if (error) {
1014 brelse(bp);
1015 return (0);
1017 cgp = (struct cg *)bp->b_data;
1018 if (!cg_chkmagic(cgp) ||
1019 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1020 brelse(bp);
1021 return (0);
1023 cgp->cg_time = time_second;
1024 if (size == fs->fs_bsize) {
1025 bno = ffs_alloccgblk(ip, bp, bpref);
1026 bdwrite(bp);
1027 return (bno);
1030 * Check to see if any fragments of sufficient size are already
1031 * available. Fit the data into a larger fragment if necessary,
1032 * before allocating a whole new block.
1034 blksfree = cg_blksfree(cgp);
1035 frags = numfrags(fs, size);
1036 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) {
1037 if (cgp->cg_frsum[allocsiz] != 0)
1038 break;
1040 if (allocsiz == fs->fs_frag) {
1042 * No fragments were available, allocate a whole block and
1043 * cut the requested fragment (of size frags) out of it.
1045 if (cgp->cg_cs.cs_nbfree == 0) {
1046 brelse(bp);
1047 return (0);
1049 bno = ffs_alloccgblk(ip, bp, bpref);
1050 bpref = dtogd(fs, bno);
1051 for (i = frags; i < fs->fs_frag; i++)
1052 setbit(blksfree, bpref + i);
1055 * Calculate the number of free frags still remaining after
1056 * we have cut out the requested allocation. Indicate that
1057 * a fragment of that size is now available for future
1058 * allocation.
1060 i = fs->fs_frag - frags;
1061 cgp->cg_cs.cs_nffree += i;
1062 fs->fs_cstotal.cs_nffree += i;
1063 fs->fs_cs(fs, cg).cs_nffree += i;
1064 fs->fs_fmod = 1;
1065 cgp->cg_frsum[i]++;
1066 bdwrite(bp);
1067 return (bno);
1071 * cg_frsum[] has told us that a free fragment of allocsiz size is
1072 * available. Find it, then clear the bitmap bits associated with
1073 * the size we want.
1075 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1076 if (bno < 0) {
1077 brelse(bp);
1078 return (0);
1080 for (i = 0; i < frags; i++)
1081 clrbit(blksfree, bno + i);
1082 cgp->cg_cs.cs_nffree -= frags;
1083 fs->fs_cstotal.cs_nffree -= frags;
1084 fs->fs_cs(fs, cg).cs_nffree -= frags;
1085 fs->fs_fmod = 1;
1088 * Account for the allocation. The original searched size that we
1089 * found is no longer available. If we cut out a smaller piece then
1090 * a smaller fragment is now available.
1092 cgp->cg_frsum[allocsiz]--;
1093 if (frags != allocsiz)
1094 cgp->cg_frsum[allocsiz - frags]++;
1095 blkno = cg * fs->fs_fpg + bno;
1096 if (DOINGSOFTDEP(ITOV(ip)))
1097 softdep_setup_blkmapdep(bp, fs, blkno);
1098 bdwrite(bp);
1099 return ((u_long)blkno);
1103 * Allocate a block in a cylinder group.
1105 * This algorithm implements the following policy:
1106 * 1) allocate the requested block.
1107 * 2) allocate a rotationally optimal block in the same cylinder.
1108 * 3) allocate the next available block on the block rotor for the
1109 * specified cylinder group.
1110 * Note that this routine only allocates fs_bsize blocks; these
1111 * blocks may be fragmented by the routine that allocates them.
1113 static ufs_daddr_t
1114 ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
1116 struct fs *fs;
1117 struct cg *cgp;
1118 ufs_daddr_t bno, blkno;
1119 int cylno, pos, delta;
1120 short *cylbp;
1121 int i;
1122 uint8_t *blksfree;
1124 fs = ip->i_fs;
1125 cgp = (struct cg *)bp->b_data;
1126 blksfree = cg_blksfree(cgp);
1127 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1128 bpref = cgp->cg_rotor;
1129 goto norot;
1131 bpref = blknum(fs, bpref);
1132 bpref = dtogd(fs, bpref);
1134 * if the requested block is available, use it
1136 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1137 bno = bpref;
1138 goto gotit;
1140 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1142 * Block layout information is not available.
1143 * Leaving bpref unchanged means we take the
1144 * next available free block following the one
1145 * we just allocated. Hopefully this will at
1146 * least hit a track cache on drives of unknown
1147 * geometry (e.g. SCSI).
1149 goto norot;
1152 * check for a block available on the same cylinder
1154 cylno = cbtocylno(fs, bpref);
1155 if (cg_blktot(cgp)[cylno] == 0)
1156 goto norot;
1158 * check the summary information to see if a block is
1159 * available in the requested cylinder starting at the
1160 * requested rotational position and proceeding around.
1162 cylbp = cg_blks(fs, cgp, cylno);
1163 pos = cbtorpos(fs, bpref);
1164 for (i = pos; i < fs->fs_nrpos; i++)
1165 if (cylbp[i] > 0)
1166 break;
1167 if (i == fs->fs_nrpos)
1168 for (i = 0; i < pos; i++)
1169 if (cylbp[i] > 0)
1170 break;
1171 if (cylbp[i] > 0) {
1173 * found a rotational position, now find the actual
1174 * block. A panic if none is actually there.
1176 pos = cylno % fs->fs_cpc;
1177 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1178 if (fs_postbl(fs, pos)[i] == -1) {
1179 kprintf("pos = %d, i = %d, fs = %s\n",
1180 pos, i, fs->fs_fsmnt);
1181 panic("ffs_alloccgblk: cyl groups corrupted");
1183 for (i = fs_postbl(fs, pos)[i];; ) {
1184 if (ffs_isblock(fs, blksfree, bno + i)) {
1185 bno = blkstofrags(fs, (bno + i));
1186 goto gotit;
1188 delta = fs_rotbl(fs)[i];
1189 if (delta <= 0 ||
1190 delta + i > fragstoblks(fs, fs->fs_fpg))
1191 break;
1192 i += delta;
1194 kprintf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1195 panic("ffs_alloccgblk: can't find blk in cyl");
1197 norot:
1199 * no blocks in the requested cylinder, so take next
1200 * available one in this cylinder group.
1202 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1203 if (bno < 0)
1204 return (0);
1205 cgp->cg_rotor = bno;
1206 gotit:
1207 blkno = fragstoblks(fs, bno);
1208 ffs_clrblock(fs, blksfree, (long)blkno);
1209 ffs_clusteracct(fs, cgp, blkno, -1);
1210 cgp->cg_cs.cs_nbfree--;
1211 fs->fs_cstotal.cs_nbfree--;
1212 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1213 cylno = cbtocylno(fs, bno);
1214 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1215 cg_blktot(cgp)[cylno]--;
1216 fs->fs_fmod = 1;
1217 blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1218 if (DOINGSOFTDEP(ITOV(ip)))
1219 softdep_setup_blkmapdep(bp, fs, blkno);
1220 return (blkno);
1224 * Determine whether a cluster can be allocated.
1226 * We do not currently check for optimal rotational layout if there
1227 * are multiple choices in the same cylinder group. Instead we just
1228 * take the first one that we find following bpref.
1230 static ufs_daddr_t
1231 ffs_clusteralloc(struct inode *ip, int cg, ufs_daddr_t bpref, int len)
1233 struct fs *fs;
1234 struct cg *cgp;
1235 struct buf *bp;
1236 int i, got, run, bno, bit, map;
1237 u_char *mapp;
1238 int32_t *lp;
1239 uint8_t *blksfree;
1241 fs = ip->i_fs;
1242 if (fs->fs_maxcluster[cg] < len)
1243 return (0);
1244 if (bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1245 (int)fs->fs_cgsize, &bp)) {
1246 goto fail;
1248 cgp = (struct cg *)bp->b_data;
1249 if (!cg_chkmagic(cgp))
1250 goto fail;
1253 * Check to see if a cluster of the needed size (or bigger) is
1254 * available in this cylinder group.
1256 lp = &cg_clustersum(cgp)[len];
1257 for (i = len; i <= fs->fs_contigsumsize; i++)
1258 if (*lp++ > 0)
1259 break;
1260 if (i > fs->fs_contigsumsize) {
1262 * This is the first time looking for a cluster in this
1263 * cylinder group. Update the cluster summary information
1264 * to reflect the true maximum sized cluster so that
1265 * future cluster allocation requests can avoid reading
1266 * the cylinder group map only to find no clusters.
1268 lp = &cg_clustersum(cgp)[len - 1];
1269 for (i = len - 1; i > 0; i--)
1270 if (*lp-- > 0)
1271 break;
1272 fs->fs_maxcluster[cg] = i;
1273 goto fail;
1276 * Search the cluster map to find a big enough cluster.
1277 * We take the first one that we find, even if it is larger
1278 * than we need as we prefer to get one close to the previous
1279 * block allocation. We do not search before the current
1280 * preference point as we do not want to allocate a block
1281 * that is allocated before the previous one (as we will
1282 * then have to wait for another pass of the elevator
1283 * algorithm before it will be read). We prefer to fail and
1284 * be recalled to try an allocation in the next cylinder group.
1286 if (dtog(fs, bpref) != cg)
1287 bpref = 0;
1288 else
1289 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1290 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1291 map = *mapp++;
1292 bit = 1 << (bpref % NBBY);
1293 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1294 if ((map & bit) == 0) {
1295 run = 0;
1296 } else {
1297 run++;
1298 if (run == len)
1299 break;
1301 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1302 bit <<= 1;
1303 } else {
1304 map = *mapp++;
1305 bit = 1;
1308 if (got >= cgp->cg_nclusterblks)
1309 goto fail;
1311 * Allocate the cluster that we have found.
1313 blksfree = cg_blksfree(cgp);
1314 for (i = 1; i <= len; i++) {
1315 if (!ffs_isblock(fs, blksfree, got - run + i))
1316 panic("ffs_clusteralloc: map mismatch");
1318 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1319 if (dtog(fs, bno) != cg)
1320 panic("ffs_clusteralloc: allocated out of group");
1321 len = blkstofrags(fs, len);
1322 for (i = 0; i < len; i += fs->fs_frag) {
1323 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1324 panic("ffs_clusteralloc: lost block");
1326 bdwrite(bp);
1327 return (bno);
1329 fail:
1330 brelse(bp);
1331 return (0);
1335 * Determine whether an inode can be allocated.
1337 * Check to see if an inode is available, and if it is,
1338 * allocate it using the following policy:
1339 * 1) allocate the requested inode.
1340 * 2) allocate the next available inode after the requested
1341 * inode in the specified cylinder group.
1342 * 3) the inode must not already be in the inode hash table. We
1343 * can encounter such a case because the vnode reclamation sequence
1344 * frees the bit
1345 * 3) the inode must not already be in the inode hash, otherwise it
1346 * may be in the process of being deallocated. This can occur
1347 * because the bitmap is updated before the inode is removed from
1348 * hash. If we were to reallocate the inode the caller could wind
1349 * up returning a vnode/inode combination which is in an indeterminate
1350 * state.
1352 static ino_t
1353 ffs_nodealloccg(struct inode *ip, int cg, ufs_daddr_t ipref, int mode)
1355 struct ufsmount *ump;
1356 struct fs *fs;
1357 struct cg *cgp;
1358 struct buf *bp;
1359 uint8_t *inosused;
1360 uint8_t map;
1361 int error, len, arraysize, i;
1362 int icheckmiss;
1363 ufs_daddr_t ibase;
1364 struct vnode *vp;
1366 vp = ITOV(ip);
1367 ump = VFSTOUFS(vp->v_mount);
1368 fs = ip->i_fs;
1369 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1370 return (0);
1371 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1372 (int)fs->fs_cgsize, &bp);
1373 if (error) {
1374 brelse(bp);
1375 return (0);
1377 cgp = (struct cg *)bp->b_data;
1378 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1379 brelse(bp);
1380 return (0);
1382 inosused = cg_inosused(cgp);
1383 icheckmiss = 0;
1386 * Quick check, reuse the most recently free inode or continue
1387 * a scan from where we left off the last time.
1389 ibase = cg * fs->fs_ipg;
1390 if (ipref) {
1391 ipref %= fs->fs_ipg;
1392 if (isclr(inosused, ipref)) {
1393 if (ufs_ihashcheck(ump, ip->i_dev, ibase + ipref) == 0)
1394 goto gotit;
1399 * Scan the inode bitmap starting at irotor, be sure to handle
1400 * the edge case by going back to the beginning of the array.
1402 * If the number of inodes is not byte-aligned, the unused bits
1403 * should be set to 1. This will be sanity checked in gotit. Note
1404 * that we have to be sure not to overlap the beginning and end
1405 * when irotor is in the middle of a byte as this will cause the
1406 * same bitmap byte to be checked twice. To solve this problem we
1407 * just convert everything to a byte index for the loop.
1409 ipref = (cgp->cg_irotor % fs->fs_ipg) >> 3; /* byte index */
1410 len = (fs->fs_ipg + 7) >> 3; /* byte size */
1411 arraysize = len;
1413 while (len > 0) {
1414 map = inosused[ipref];
1415 if (map != 255) {
1416 for (i = 0; i < NBBY; ++i) {
1418 * If we find a free bit we have to make sure
1419 * that the inode is not in the middle of
1420 * being destroyed. The inode should not exist
1421 * in the inode hash.
1423 * Adjust the rotor to try to hit the
1424 * quick-check up above.
1426 if ((map & (1 << i)) == 0) {
1427 if (ufs_ihashcheck(ump, ip->i_dev, ibase + (ipref << 3) + i) == 0) {
1428 ipref = (ipref << 3) + i;
1429 cgp->cg_irotor = (ipref + 1) % fs->fs_ipg;
1430 goto gotit;
1432 ++icheckmiss;
1438 * Setup for the next byte, start at the beginning again if
1439 * we hit the end of the array.
1441 if (++ipref == arraysize)
1442 ipref = 0;
1443 --len;
1445 if (icheckmiss == cgp->cg_cs.cs_nifree) {
1446 brelse(bp);
1447 return(0);
1449 kprintf("fs = %s\n", fs->fs_fsmnt);
1450 panic("ffs_nodealloccg: block not in map, icheckmiss/nfree %d/%d",
1451 icheckmiss, cgp->cg_cs.cs_nifree);
1452 /* NOTREACHED */
1455 * ipref is a bit index as of the gotit label.
1457 gotit:
1458 KKASSERT(ipref >= 0 && ipref < fs->fs_ipg);
1459 cgp->cg_time = time_second;
1460 if (DOINGSOFTDEP(ITOV(ip)))
1461 softdep_setup_inomapdep(bp, ip, ibase + ipref);
1462 setbit(inosused, ipref);
1463 cgp->cg_cs.cs_nifree--;
1464 fs->fs_cstotal.cs_nifree--;
1465 fs->fs_cs(fs, cg).cs_nifree--;
1466 fs->fs_fmod = 1;
1467 if ((mode & IFMT) == IFDIR) {
1468 cgp->cg_cs.cs_ndir++;
1469 fs->fs_cstotal.cs_ndir++;
1470 fs->fs_cs(fs, cg).cs_ndir++;
1472 bdwrite(bp);
1473 return (ibase + ipref);
1477 * Free a block or fragment.
1479 * The specified block or fragment is placed back in the
1480 * free map. If a fragment is deallocated, a possible
1481 * block reassembly is checked.
1483 void
1484 ffs_blkfree_cg(struct fs * fs, struct vnode * i_devvp, cdev_t i_dev, ino_t i_number,
1485 uint32_t i_din_uid, ufs_daddr_t bno, long size)
1487 struct cg *cgp;
1488 struct buf *bp;
1489 ufs_daddr_t blkno;
1490 int i, error, cg, blk, frags, bbase;
1491 uint8_t *blksfree;
1493 VOP_FREEBLKS(i_devvp, fsbtodoff(fs, bno), size);
1494 if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1495 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1496 kprintf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1497 devtoname(i_dev), (long)bno, (long)fs->fs_bsize, size,
1498 fs->fs_fsmnt);
1499 panic("ffs_blkfree: bad size");
1501 cg = dtog(fs, bno);
1502 if ((uint)bno >= fs->fs_size) {
1503 kprintf("bad block %ld, ino %lu\n",
1504 (long)bno, (u_long)i_number);
1505 ffs_fserr(fs, i_din_uid, "bad block");
1506 return;
1510 * Load the cylinder group
1512 error = bread(i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1513 (int)fs->fs_cgsize, &bp);
1514 if (error) {
1515 brelse(bp);
1516 return;
1518 cgp = (struct cg *)bp->b_data;
1519 if (!cg_chkmagic(cgp)) {
1520 brelse(bp);
1521 return;
1523 cgp->cg_time = time_second;
1524 bno = dtogd(fs, bno);
1525 blksfree = cg_blksfree(cgp);
1527 if (size == fs->fs_bsize) {
1529 * Free a whole block
1531 blkno = fragstoblks(fs, bno);
1532 if (!ffs_isfreeblock(fs, blksfree, blkno)) {
1533 kprintf("dev = %s, block = %ld, fs = %s\n",
1534 devtoname(i_dev), (long)bno, fs->fs_fsmnt);
1535 panic("ffs_blkfree: freeing free block");
1537 ffs_setblock(fs, blksfree, blkno);
1538 ffs_clusteracct(fs, cgp, blkno, 1);
1539 cgp->cg_cs.cs_nbfree++;
1540 fs->fs_cstotal.cs_nbfree++;
1541 fs->fs_cs(fs, cg).cs_nbfree++;
1542 i = cbtocylno(fs, bno);
1543 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1544 cg_blktot(cgp)[i]++;
1545 } else {
1547 * Free a fragment within a block.
1549 * bno is the starting block number of the fragment being
1550 * freed.
1552 * bbase is the starting block number for the filesystem
1553 * block containing the fragment.
1555 * blk is the current bitmap for the fragments within the
1556 * filesystem block containing the fragment.
1558 * frags is the number of fragments being freed
1560 * Call ffs_fragacct() to account for the removal of all
1561 * current fragments, then adjust the bitmap to free the
1562 * requested fragment, and finally call ffs_fragacct() again
1563 * to regenerate the accounting.
1565 bbase = bno - fragnum(fs, bno);
1566 blk = blkmap(fs, blksfree, bbase);
1567 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1568 frags = numfrags(fs, size);
1569 for (i = 0; i < frags; i++) {
1570 if (isset(blksfree, bno + i)) {
1571 kprintf("dev = %s, block = %ld, fs = %s\n",
1572 devtoname(i_dev), (long)(bno + i),
1573 fs->fs_fsmnt);
1574 panic("ffs_blkfree: freeing free frag");
1576 setbit(blksfree, bno + i);
1578 cgp->cg_cs.cs_nffree += i;
1579 fs->fs_cstotal.cs_nffree += i;
1580 fs->fs_cs(fs, cg).cs_nffree += i;
1583 * Add back in counts associated with the new frags
1585 blk = blkmap(fs, blksfree, bbase);
1586 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1589 * If a complete block has been reassembled, account for it
1591 blkno = fragstoblks(fs, bbase);
1592 if (ffs_isblock(fs, blksfree, blkno)) {
1593 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1594 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1595 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1596 ffs_clusteracct(fs, cgp, blkno, 1);
1597 cgp->cg_cs.cs_nbfree++;
1598 fs->fs_cstotal.cs_nbfree++;
1599 fs->fs_cs(fs, cg).cs_nbfree++;
1600 i = cbtocylno(fs, bbase);
1601 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1602 cg_blktot(cgp)[i]++;
1605 fs->fs_fmod = 1;
1606 bdwrite(bp);
1609 struct ffs_blkfree_trim_params {
1610 struct task task;
1611 ufs_daddr_t bno;
1612 long size;
1615 * With TRIM, inode pointer is gone in the callback but we still need
1616 * the following fields for ffs_blkfree_cg()
1618 struct vnode *i_devvp;
1619 struct fs *i_fs;
1620 cdev_t i_dev;
1621 ino_t i_number;
1622 uint32_t i_din_uid;
1626 static void
1627 ffs_blkfree_trim_task(void *ctx, int pending)
1629 struct ffs_blkfree_trim_params *tp;
1631 tp = ctx;
1632 ffs_blkfree_cg(tp->i_fs, tp->i_devvp, tp->i_dev, tp->i_number,
1633 tp->i_din_uid, tp->bno, tp->size);
1634 kfree(tp, M_TEMP);
1639 static void
1640 ffs_blkfree_trim_completed(struct bio *biop)
1642 struct buf *bp = biop->bio_buf;
1643 struct ffs_blkfree_trim_params *tp;
1645 tp = bp->b_bio1.bio_caller_info1.ptr;
1646 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
1647 tp = biop->bio_caller_info1.ptr;
1648 taskqueue_enqueue(taskqueue_swi, &tp->task);
1649 biodone(biop);
1654 * If TRIM is enabled, we TRIM the blocks first then free them. We do this
1655 * after TRIM is finished and the callback handler is called. The logic here
1656 * is that we free the blocks before updating the bitmap so that we don't
1657 * reuse a block before we actually trim it, which would result in trimming
1658 * a valid block.
1660 void
1661 ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
1663 struct mount *mp = ip->i_devvp->v_mount;
1664 struct ffs_blkfree_trim_params *tp;
1666 if (!(mp->mnt_flag & MNT_TRIM)) {
1667 ffs_blkfree_cg(ip->i_fs, ip->i_devvp,ip->i_dev,ip->i_number,
1668 ip->i_uid, bno, size);
1669 return;
1672 struct buf *bp;
1674 tp = kmalloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
1675 tp->bno = bno;
1676 tp->i_fs= ip->i_fs;
1677 tp->i_devvp = ip->i_devvp;
1678 tp->i_dev = ip->i_dev;
1679 tp->i_din_uid = ip->i_uid;
1680 tp->i_number = ip->i_number;
1681 tp->size = size;
1683 bp = getnewbuf(0, 0, 0, 1, NULL);
1684 BUF_KERNPROC(bp);
1685 bp->b_cmd = BUF_CMD_FREEBLKS;
1686 bp->b_bio1.bio_offset = fsbtodoff(ip->i_fs, bno);
1687 bp->b_bcount = size;
1688 bp->b_bio1.bio_caller_info1.ptr = tp;
1689 bp->b_bio1.bio_done = ffs_blkfree_trim_completed;
1690 vn_strategy(ip->i_devvp, &bp->b_bio1);
1693 #ifdef DIAGNOSTIC
1695 * Verify allocation of a block or fragment. Returns true if block or
1696 * fragment is allocated, false if it is free.
1698 static int
1699 ffs_checkblk(struct inode *ip, ufs_daddr_t bno, long size)
1701 struct fs *fs;
1702 struct cg *cgp;
1703 struct buf *bp;
1704 int i, error, frags, free;
1705 uint8_t *blksfree;
1707 fs = ip->i_fs;
1708 if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1709 kprintf("bsize = %ld, size = %ld, fs = %s\n",
1710 (long)fs->fs_bsize, size, fs->fs_fsmnt);
1711 panic("ffs_checkblk: bad size");
1713 if ((uint)bno >= fs->fs_size)
1714 panic("ffs_checkblk: bad block %d", bno);
1715 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, dtog(fs, bno))),
1716 (int)fs->fs_cgsize, &bp);
1717 if (error)
1718 panic("ffs_checkblk: cg bread failed");
1719 cgp = (struct cg *)bp->b_data;
1720 if (!cg_chkmagic(cgp))
1721 panic("ffs_checkblk: cg magic mismatch");
1722 blksfree = cg_blksfree(cgp);
1723 bno = dtogd(fs, bno);
1724 if (size == fs->fs_bsize) {
1725 free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1726 } else {
1727 frags = numfrags(fs, size);
1728 for (free = 0, i = 0; i < frags; i++)
1729 if (isset(blksfree, bno + i))
1730 free++;
1731 if (free != 0 && free != frags)
1732 panic("ffs_checkblk: partially free fragment");
1734 brelse(bp);
1735 return (!free);
1737 #endif /* DIAGNOSTIC */
1740 * Free an inode.
1743 ffs_vfree(struct vnode *pvp, ino_t ino, int mode)
1745 if (DOINGSOFTDEP(pvp)) {
1746 softdep_freefile(pvp, ino, mode);
1747 return (0);
1749 return (ffs_freefile(pvp, ino, mode));
1753 * Do the actual free operation.
1754 * The specified inode is placed back in the free map.
1757 ffs_freefile(struct vnode *pvp, ino_t ino, int mode)
1759 struct fs *fs;
1760 struct cg *cgp;
1761 struct inode *pip;
1762 struct buf *bp;
1763 int error, cg;
1764 uint8_t *inosused;
1766 pip = VTOI(pvp);
1767 fs = pip->i_fs;
1768 if ((uint)ino >= fs->fs_ipg * fs->fs_ncg)
1769 panic("ffs_vfree: range: dev = (%d,%d), ino = %"PRId64", fs = %s",
1770 major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1771 cg = ino_to_cg(fs, ino);
1772 error = bread(pip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1773 (int)fs->fs_cgsize, &bp);
1774 if (error) {
1775 brelse(bp);
1776 return (error);
1778 cgp = (struct cg *)bp->b_data;
1779 if (!cg_chkmagic(cgp)) {
1780 brelse(bp);
1781 return (0);
1783 cgp->cg_time = time_second;
1784 inosused = cg_inosused(cgp);
1785 ino %= fs->fs_ipg;
1786 if (isclr(inosused, ino)) {
1787 kprintf("dev = %s, ino = %lu, fs = %s\n",
1788 devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1789 if (fs->fs_ronly == 0)
1790 panic("ffs_vfree: freeing free inode");
1792 clrbit(inosused, ino);
1793 if (ino < cgp->cg_irotor)
1794 cgp->cg_irotor = ino;
1795 cgp->cg_cs.cs_nifree++;
1796 fs->fs_cstotal.cs_nifree++;
1797 fs->fs_cs(fs, cg).cs_nifree++;
1798 if ((mode & IFMT) == IFDIR) {
1799 cgp->cg_cs.cs_ndir--;
1800 fs->fs_cstotal.cs_ndir--;
1801 fs->fs_cs(fs, cg).cs_ndir--;
1803 fs->fs_fmod = 1;
1804 bdwrite(bp);
1805 return (0);
1809 * Find a block of the specified size in the specified cylinder group.
1811 * It is a panic if a request is made to find a block if none are
1812 * available.
1814 static ufs_daddr_t
1815 ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
1817 ufs_daddr_t bno;
1818 int start, len, loc, i;
1819 int blk, field, subfield, pos;
1820 uint8_t *blksfree;
1823 * find the fragment by searching through the free block
1824 * map for an appropriate bit pattern.
1826 if (bpref)
1827 start = dtogd(fs, bpref) / NBBY;
1828 else
1829 start = cgp->cg_frotor / NBBY;
1830 blksfree = cg_blksfree(cgp);
1831 len = howmany(fs->fs_fpg, NBBY) - start;
1832 loc = scanc((uint)len, (u_char *)&blksfree[start],
1833 (u_char *)fragtbl[fs->fs_frag],
1834 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1835 if (loc == 0) {
1836 len = start + 1; /* XXX why overlap here? */
1837 start = 0;
1838 loc = scanc((uint)len, (u_char *)&blksfree[0],
1839 (u_char *)fragtbl[fs->fs_frag],
1840 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1841 if (loc == 0) {
1842 kprintf("start = %d, len = %d, fs = %s\n",
1843 start, len, fs->fs_fsmnt);
1844 panic("ffs_alloccg: map corrupted");
1845 /* NOTREACHED */
1848 bno = (start + len - loc) * NBBY;
1849 cgp->cg_frotor = bno;
1851 * found the byte in the map
1852 * sift through the bits to find the selected frag
1854 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1855 blk = blkmap(fs, blksfree, bno);
1856 blk <<= 1;
1857 field = around[allocsiz];
1858 subfield = inside[allocsiz];
1859 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1860 if ((blk & field) == subfield)
1861 return (bno + pos);
1862 field <<= 1;
1863 subfield <<= 1;
1866 kprintf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1867 panic("ffs_alloccg: block not in map");
1868 return (-1);
1872 * Update the cluster map because of an allocation or free.
1874 * Cnt == 1 means free; cnt == -1 means allocating.
1876 static void
1877 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
1879 int32_t *sump;
1880 int32_t *lp;
1881 u_char *freemapp, *mapp;
1882 int i, start, end, forw, back, map, bit;
1884 if (fs->fs_contigsumsize <= 0)
1885 return;
1886 freemapp = cg_clustersfree(cgp);
1887 sump = cg_clustersum(cgp);
1889 * Allocate or clear the actual block.
1891 if (cnt > 0)
1892 setbit(freemapp, blkno);
1893 else
1894 clrbit(freemapp, blkno);
1896 * Find the size of the cluster going forward.
1898 start = blkno + 1;
1899 end = start + fs->fs_contigsumsize;
1900 if (end >= cgp->cg_nclusterblks)
1901 end = cgp->cg_nclusterblks;
1902 mapp = &freemapp[start / NBBY];
1903 map = *mapp++;
1904 bit = 1 << (start % NBBY);
1905 for (i = start; i < end; i++) {
1906 if ((map & bit) == 0)
1907 break;
1908 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1909 bit <<= 1;
1910 } else {
1911 map = *mapp++;
1912 bit = 1;
1915 forw = i - start;
1917 * Find the size of the cluster going backward.
1919 start = blkno - 1;
1920 end = start - fs->fs_contigsumsize;
1921 if (end < 0)
1922 end = -1;
1923 mapp = &freemapp[start / NBBY];
1924 map = *mapp--;
1925 bit = 1 << (start % NBBY);
1926 for (i = start; i > end; i--) {
1927 if ((map & bit) == 0)
1928 break;
1929 if ((i & (NBBY - 1)) != 0) {
1930 bit >>= 1;
1931 } else {
1932 map = *mapp--;
1933 bit = 1 << (NBBY - 1);
1936 back = start - i;
1938 * Account for old cluster and the possibly new forward and
1939 * back clusters.
1941 i = back + forw + 1;
1942 if (i > fs->fs_contigsumsize)
1943 i = fs->fs_contigsumsize;
1944 sump[i] += cnt;
1945 if (back > 0)
1946 sump[back] -= cnt;
1947 if (forw > 0)
1948 sump[forw] -= cnt;
1950 * Update cluster summary information.
1952 lp = &sump[fs->fs_contigsumsize];
1953 for (i = fs->fs_contigsumsize; i > 0; i--)
1954 if (*lp-- > 0)
1955 break;
1956 fs->fs_maxcluster[cgp->cg_cgx] = i;
1960 * Fserr prints the name of a filesystem with an error diagnostic.
1962 * The form of the error message is:
1963 * fs: error message
1965 static void
1966 ffs_fserr(struct fs *fs, uint uid, char *cp)
1968 struct thread *td = curthread;
1969 struct proc *p;
1971 if ((p = td->td_proc) != NULL) {
1972 log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1973 p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1974 } else {
1975 log(LOG_ERR, "system thread %p, uid %d on %s: %s\n",
1976 td, uid, fs->fs_fsmnt, cp);