Add ACPI_ENABLE_PCI option.
[dragonfly.git] / contrib / mpfr / sinh.c
blobc51ccb48650b9a0dc9f4c4d2cd97b3c6ae612a81
1 /* mpfr_sinh -- hyperbolic sine
3 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by the Arenaire and Cacao projects, INRIA.
6 This file is part of the GNU MPFR Library.
8 The GNU MPFR Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 2.1 of the License, or (at your
11 option) any later version.
13 The GNU MPFR Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 License for more details.
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #define MPFR_NEED_LONGLONG_H
24 #include "mpfr-impl.h"
26 /* The computation of sinh is done by
27 sinh(x) = 1/2 [e^(x)-e^(-x)] */
29 int
30 mpfr_sinh (mpfr_ptr y, mpfr_srcptr xt, mp_rnd_t rnd_mode)
32 mpfr_t x;
33 int inexact;
35 MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", xt, xt, rnd_mode),
36 ("y[%#R]=%R inexact=%d", y, y, inexact));
38 if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
40 if (MPFR_IS_NAN (xt))
42 MPFR_SET_NAN (y);
43 MPFR_RET_NAN;
45 else if (MPFR_IS_INF (xt))
47 MPFR_SET_INF (y);
48 MPFR_SET_SAME_SIGN (y, xt);
49 MPFR_RET (0);
51 else /* xt is zero */
53 MPFR_ASSERTD (MPFR_IS_ZERO (xt));
54 MPFR_SET_ZERO (y); /* sinh(0) = 0 */
55 MPFR_SET_SAME_SIGN (y, xt);
56 MPFR_RET (0);
60 /* sinh(x) = x + x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */
61 MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP(xt), 2, 1,
62 rnd_mode, {});
64 MPFR_TMP_INIT_ABS (x, xt);
67 mpfr_t t, ti;
68 mp_exp_t d;
69 mp_prec_t Nt; /* Precision of the intermediary variable */
70 long int err; /* Precision of error */
71 MPFR_ZIV_DECL (loop);
72 MPFR_SAVE_EXPO_DECL (expo);
73 MPFR_GROUP_DECL (group);
75 MPFR_SAVE_EXPO_MARK (expo);
77 /* compute the precision of intermediary variable */
78 Nt = MAX (MPFR_PREC (x), MPFR_PREC (y));
79 /* the optimal number of bits : see algorithms.ps */
80 Nt = Nt + MPFR_INT_CEIL_LOG2 (Nt) + 4;
81 /* If x is near 0, exp(x) - 1/exp(x) = 2*x+x^3/3+O(x^5) */
82 if (MPFR_GET_EXP (x) < 0)
83 Nt -= 2*MPFR_GET_EXP (x);
85 /* initialise of intermediary variables */
86 MPFR_GROUP_INIT_2 (group, Nt, t, ti);
88 /* First computation of sinh */
89 MPFR_ZIV_INIT (loop, Nt);
90 for (;;)
92 MPFR_BLOCK_DECL (flags);
94 /* compute sinh */
95 MPFR_BLOCK (flags, mpfr_exp (t, x, GMP_RNDD));
96 if (MPFR_OVERFLOW (flags))
97 /* exp(x) does overflow */
99 /* sinh(x) = 2 * sinh(x/2) * cosh(x/2) */
100 mpfr_div_2ui (ti, x, 1, GMP_RNDD); /* exact */
102 /* t <- cosh(x/2): error(t) <= 1 ulp(t) */
103 MPFR_BLOCK (flags, mpfr_cosh (t, ti, GMP_RNDD));
104 if (MPFR_OVERFLOW (flags))
105 /* when x>1 we have |sinh(x)| >= cosh(x/2), so sinh(x)
106 overflows too */
108 inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt));
109 MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
110 break;
113 /* ti <- sinh(x/2): , error(ti) <= 1 ulp(ti)
114 cannot overflow because 0 < sinh(x) < cosh(x) when x > 0 */
115 mpfr_sinh (ti, ti, GMP_RNDD);
117 /* multiplication below, error(t) <= 5 ulp(t) */
118 MPFR_BLOCK (flags, mpfr_mul (t, t, ti, GMP_RNDD));
119 if (MPFR_OVERFLOW (flags))
121 inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt));
122 MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
123 break;
126 /* doubling below, exact */
127 MPFR_BLOCK (flags, mpfr_mul_2ui (t, t, 1, GMP_RNDN));
128 if (MPFR_OVERFLOW (flags))
130 inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt));
131 MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
132 break;
135 /* we have lost at most 3 bits of precision */
136 err = Nt - 3;
137 if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, MPFR_PREC (y),
138 rnd_mode)))
140 inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (xt));
141 break;
143 err = Nt; /* double the precision */
145 else
147 d = MPFR_GET_EXP (t);
148 mpfr_ui_div (ti, 1, t, GMP_RNDU); /* 1/exp(x) */
149 mpfr_sub (t, t, ti, GMP_RNDN); /* exp(x) - 1/exp(x) */
150 mpfr_div_2ui (t, t, 1, GMP_RNDN); /* 1/2(exp(x) - 1/exp(x)) */
152 /* it may be that t is zero (in fact, it can only occur when te=1,
153 and thus ti=1 too) */
154 if (MPFR_IS_ZERO (t))
155 err = Nt; /* double the precision */
156 else
158 /* calculation of the error */
159 d = d - MPFR_GET_EXP (t) + 2;
160 /* error estimate: err = Nt-(__gmpfr_ceil_log2(1+pow(2,d)));*/
161 err = Nt - (MAX (d, 0) + 1);
162 if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, MPFR_PREC (y),
163 rnd_mode)))
165 inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (xt));
166 break;
171 /* actualisation of the precision */
172 Nt += err;
173 MPFR_ZIV_NEXT (loop, Nt);
174 MPFR_GROUP_REPREC_2 (group, Nt, t, ti);
176 MPFR_ZIV_FREE (loop);
177 MPFR_GROUP_CLEAR (group);
178 MPFR_SAVE_EXPO_FREE (expo);
181 return mpfr_check_range (y, inexact, rnd_mode);