Add ACPI_ENABLE_PCI option.
[dragonfly.git] / contrib / hostapd-0.5.8 / sha1.c
blob194db1601d1e6cd24b60a37071c91f76d4b2566d
1 /*
2 * SHA1 hash implementation and interface functions
3 * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * Alternatively, this software may be distributed under the terms of BSD
10 * license.
12 * See README and COPYING for more details.
15 #include "includes.h"
17 #include "common.h"
18 #include "sha1.h"
19 #include "md5.h"
20 #include "crypto.h"
23 /**
24 * hmac_sha1_vector - HMAC-SHA1 over data vector (RFC 2104)
25 * @key: Key for HMAC operations
26 * @key_len: Length of the key in bytes
27 * @num_elem: Number of elements in the data vector
28 * @addr: Pointers to the data areas
29 * @len: Lengths of the data blocks
30 * @mac: Buffer for the hash (20 bytes)
32 void hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
33 const u8 *addr[], const size_t *len, u8 *mac)
35 unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */
36 unsigned char tk[20];
37 const u8 *_addr[6];
38 size_t _len[6], i;
40 if (num_elem > 5) {
42 * Fixed limit on the number of fragments to avoid having to
43 * allocate memory (which could fail).
45 return;
48 /* if key is longer than 64 bytes reset it to key = SHA1(key) */
49 if (key_len > 64) {
50 sha1_vector(1, &key, &key_len, tk);
51 key = tk;
52 key_len = 20;
55 /* the HMAC_SHA1 transform looks like:
57 * SHA1(K XOR opad, SHA1(K XOR ipad, text))
59 * where K is an n byte key
60 * ipad is the byte 0x36 repeated 64 times
61 * opad is the byte 0x5c repeated 64 times
62 * and text is the data being protected */
64 /* start out by storing key in ipad */
65 os_memset(k_pad, 0, sizeof(k_pad));
66 os_memcpy(k_pad, key, key_len);
67 /* XOR key with ipad values */
68 for (i = 0; i < 64; i++)
69 k_pad[i] ^= 0x36;
71 /* perform inner SHA1 */
72 _addr[0] = k_pad;
73 _len[0] = 64;
74 for (i = 0; i < num_elem; i++) {
75 _addr[i + 1] = addr[i];
76 _len[i + 1] = len[i];
78 sha1_vector(1 + num_elem, _addr, _len, mac);
80 os_memset(k_pad, 0, sizeof(k_pad));
81 os_memcpy(k_pad, key, key_len);
82 /* XOR key with opad values */
83 for (i = 0; i < 64; i++)
84 k_pad[i] ^= 0x5c;
86 /* perform outer SHA1 */
87 _addr[0] = k_pad;
88 _len[0] = 64;
89 _addr[1] = mac;
90 _len[1] = SHA1_MAC_LEN;
91 sha1_vector(2, _addr, _len, mac);
95 /**
96 * hmac_sha1 - HMAC-SHA1 over data buffer (RFC 2104)
97 * @key: Key for HMAC operations
98 * @key_len: Length of the key in bytes
99 * @data: Pointers to the data area
100 * @data_len: Length of the data area
101 * @mac: Buffer for the hash (20 bytes)
103 void hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
104 u8 *mac)
106 hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
111 * sha1_prf - SHA1-based Pseudo-Random Function (PRF) (IEEE 802.11i, 8.5.1.1)
112 * @key: Key for PRF
113 * @key_len: Length of the key in bytes
114 * @label: A unique label for each purpose of the PRF
115 * @data: Extra data to bind into the key
116 * @data_len: Length of the data
117 * @buf: Buffer for the generated pseudo-random key
118 * @buf_len: Number of bytes of key to generate
120 * This function is used to derive new, cryptographically separate keys from a
121 * given key (e.g., PMK in IEEE 802.11i).
123 void sha1_prf(const u8 *key, size_t key_len, const char *label,
124 const u8 *data, size_t data_len, u8 *buf, size_t buf_len)
126 u8 zero = 0, counter = 0;
127 size_t pos, plen;
128 u8 hash[SHA1_MAC_LEN];
129 size_t label_len = os_strlen(label);
130 const unsigned char *addr[4];
131 size_t len[4];
133 addr[0] = (u8 *) label;
134 len[0] = label_len;
135 addr[1] = &zero;
136 len[1] = 1;
137 addr[2] = data;
138 len[2] = data_len;
139 addr[3] = &counter;
140 len[3] = 1;
142 pos = 0;
143 while (pos < buf_len) {
144 plen = buf_len - pos;
145 if (plen >= SHA1_MAC_LEN) {
146 hmac_sha1_vector(key, key_len, 4, addr, len,
147 &buf[pos]);
148 pos += SHA1_MAC_LEN;
149 } else {
150 hmac_sha1_vector(key, key_len, 4, addr, len,
151 hash);
152 os_memcpy(&buf[pos], hash, plen);
153 break;
155 counter++;
161 * sha1_t_prf - EAP-FAST Pseudo-Random Function (T-PRF)
162 * @key: Key for PRF
163 * @key_len: Length of the key in bytes
164 * @label: A unique label for each purpose of the PRF
165 * @seed: Seed value to bind into the key
166 * @seed_len: Length of the seed
167 * @buf: Buffer for the generated pseudo-random key
168 * @buf_len: Number of bytes of key to generate
170 * This function is used to derive new, cryptographically separate keys from a
171 * given key for EAP-FAST. T-PRF is defined in
172 * draft-cam-winget-eap-fast-02.txt, Appendix B.
174 void sha1_t_prf(const u8 *key, size_t key_len, const char *label,
175 const u8 *seed, size_t seed_len, u8 *buf, size_t buf_len)
177 unsigned char counter = 0;
178 size_t pos, plen;
179 u8 hash[SHA1_MAC_LEN];
180 size_t label_len = os_strlen(label);
181 u8 output_len[2];
182 const unsigned char *addr[5];
183 size_t len[5];
185 addr[0] = hash;
186 len[0] = 0;
187 addr[1] = (unsigned char *) label;
188 len[1] = label_len + 1;
189 addr[2] = seed;
190 len[2] = seed_len;
191 addr[3] = output_len;
192 len[3] = 2;
193 addr[4] = &counter;
194 len[4] = 1;
196 output_len[0] = (buf_len >> 8) & 0xff;
197 output_len[1] = buf_len & 0xff;
198 pos = 0;
199 while (pos < buf_len) {
200 counter++;
201 plen = buf_len - pos;
202 hmac_sha1_vector(key, key_len, 5, addr, len, hash);
203 if (plen >= SHA1_MAC_LEN) {
204 os_memcpy(&buf[pos], hash, SHA1_MAC_LEN);
205 pos += SHA1_MAC_LEN;
206 } else {
207 os_memcpy(&buf[pos], hash, plen);
208 break;
210 len[0] = SHA1_MAC_LEN;
216 * tls_prf - Pseudo-Random Function for TLS (TLS-PRF, RFC 2246)
217 * @secret: Key for PRF
218 * @secret_len: Length of the key in bytes
219 * @label: A unique label for each purpose of the PRF
220 * @seed: Seed value to bind into the key
221 * @seed_len: Length of the seed
222 * @out: Buffer for the generated pseudo-random key
223 * @outlen: Number of bytes of key to generate
224 * Returns: 0 on success, -1 on failure.
226 * This function is used to derive new, cryptographically separate keys from a
227 * given key in TLS. This PRF is defined in RFC 2246, Chapter 5.
229 int tls_prf(const u8 *secret, size_t secret_len, const char *label,
230 const u8 *seed, size_t seed_len, u8 *out, size_t outlen)
232 size_t L_S1, L_S2, i;
233 const u8 *S1, *S2;
234 u8 A_MD5[MD5_MAC_LEN], A_SHA1[SHA1_MAC_LEN];
235 u8 P_MD5[MD5_MAC_LEN], P_SHA1[SHA1_MAC_LEN];
236 int MD5_pos, SHA1_pos;
237 const u8 *MD5_addr[3];
238 size_t MD5_len[3];
239 const unsigned char *SHA1_addr[3];
240 size_t SHA1_len[3];
242 if (secret_len & 1)
243 return -1;
245 MD5_addr[0] = A_MD5;
246 MD5_len[0] = MD5_MAC_LEN;
247 MD5_addr[1] = (unsigned char *) label;
248 MD5_len[1] = os_strlen(label);
249 MD5_addr[2] = seed;
250 MD5_len[2] = seed_len;
252 SHA1_addr[0] = A_SHA1;
253 SHA1_len[0] = SHA1_MAC_LEN;
254 SHA1_addr[1] = (unsigned char *) label;
255 SHA1_len[1] = os_strlen(label);
256 SHA1_addr[2] = seed;
257 SHA1_len[2] = seed_len;
259 /* RFC 2246, Chapter 5
260 * A(0) = seed, A(i) = HMAC(secret, A(i-1))
261 * P_hash = HMAC(secret, A(1) + seed) + HMAC(secret, A(2) + seed) + ..
262 * PRF = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed)
265 L_S1 = L_S2 = (secret_len + 1) / 2;
266 S1 = secret;
267 S2 = secret + L_S1;
269 hmac_md5_vector(S1, L_S1, 2, &MD5_addr[1], &MD5_len[1], A_MD5);
270 hmac_sha1_vector(S2, L_S2, 2, &SHA1_addr[1], &SHA1_len[1], A_SHA1);
272 MD5_pos = MD5_MAC_LEN;
273 SHA1_pos = SHA1_MAC_LEN;
274 for (i = 0; i < outlen; i++) {
275 if (MD5_pos == MD5_MAC_LEN) {
276 hmac_md5_vector(S1, L_S1, 3, MD5_addr, MD5_len, P_MD5);
277 MD5_pos = 0;
278 hmac_md5(S1, L_S1, A_MD5, MD5_MAC_LEN, A_MD5);
280 if (SHA1_pos == SHA1_MAC_LEN) {
281 hmac_sha1_vector(S2, L_S2, 3, SHA1_addr, SHA1_len,
282 P_SHA1);
283 SHA1_pos = 0;
284 hmac_sha1(S2, L_S2, A_SHA1, SHA1_MAC_LEN, A_SHA1);
287 out[i] = P_MD5[MD5_pos] ^ P_SHA1[SHA1_pos];
289 MD5_pos++;
290 SHA1_pos++;
293 return 0;
297 static void pbkdf2_sha1_f(const char *passphrase, const char *ssid,
298 size_t ssid_len, int iterations, unsigned int count,
299 u8 *digest)
301 unsigned char tmp[SHA1_MAC_LEN], tmp2[SHA1_MAC_LEN];
302 int i, j;
303 unsigned char count_buf[4];
304 const u8 *addr[2];
305 size_t len[2];
306 size_t passphrase_len = os_strlen(passphrase);
308 addr[0] = (u8 *) ssid;
309 len[0] = ssid_len;
310 addr[1] = count_buf;
311 len[1] = 4;
313 /* F(P, S, c, i) = U1 xor U2 xor ... Uc
314 * U1 = PRF(P, S || i)
315 * U2 = PRF(P, U1)
316 * Uc = PRF(P, Uc-1)
319 count_buf[0] = (count >> 24) & 0xff;
320 count_buf[1] = (count >> 16) & 0xff;
321 count_buf[2] = (count >> 8) & 0xff;
322 count_buf[3] = count & 0xff;
323 hmac_sha1_vector((u8 *) passphrase, passphrase_len, 2, addr, len, tmp);
324 os_memcpy(digest, tmp, SHA1_MAC_LEN);
326 for (i = 1; i < iterations; i++) {
327 hmac_sha1((u8 *) passphrase, passphrase_len, tmp, SHA1_MAC_LEN,
328 tmp2);
329 os_memcpy(tmp, tmp2, SHA1_MAC_LEN);
330 for (j = 0; j < SHA1_MAC_LEN; j++)
331 digest[j] ^= tmp2[j];
337 * pbkdf2_sha1 - SHA1-based key derivation function (PBKDF2) for IEEE 802.11i
338 * @passphrase: ASCII passphrase
339 * @ssid: SSID
340 * @ssid_len: SSID length in bytes
341 * @interations: Number of iterations to run
342 * @buf: Buffer for the generated key
343 * @buflen: Length of the buffer in bytes
345 * This function is used to derive PSK for WPA-PSK. For this protocol,
346 * iterations is set to 4096 and buflen to 32. This function is described in
347 * IEEE Std 802.11-2004, Clause H.4. The main construction is from PKCS#5 v2.0.
349 void pbkdf2_sha1(const char *passphrase, const char *ssid, size_t ssid_len,
350 int iterations, u8 *buf, size_t buflen)
352 unsigned int count = 0;
353 unsigned char *pos = buf;
354 size_t left = buflen, plen;
355 unsigned char digest[SHA1_MAC_LEN];
357 while (left > 0) {
358 count++;
359 pbkdf2_sha1_f(passphrase, ssid, ssid_len, iterations, count,
360 digest);
361 plen = left > SHA1_MAC_LEN ? SHA1_MAC_LEN : left;
362 os_memcpy(pos, digest, plen);
363 pos += plen;
364 left -= plen;
369 #ifdef INTERNAL_SHA1
371 struct SHA1Context {
372 u32 state[5];
373 u32 count[2];
374 unsigned char buffer[64];
377 typedef struct SHA1Context SHA1_CTX;
379 #ifndef CONFIG_CRYPTO_INTERNAL
380 static void SHA1Init(struct SHA1Context *context);
381 static void SHA1Update(struct SHA1Context *context, const void *data, u32 len);
382 static void SHA1Final(unsigned char digest[20], struct SHA1Context *context);
383 #endif /* CONFIG_CRYPTO_INTERNAL */
384 static void SHA1Transform(u32 state[5], const unsigned char buffer[64]);
388 * sha1_vector - SHA-1 hash for data vector
389 * @num_elem: Number of elements in the data vector
390 * @addr: Pointers to the data areas
391 * @len: Lengths of the data blocks
392 * @mac: Buffer for the hash
394 void sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
395 u8 *mac)
397 SHA1_CTX ctx;
398 size_t i;
400 SHA1Init(&ctx);
401 for (i = 0; i < num_elem; i++)
402 SHA1Update(&ctx, addr[i], len[i]);
403 SHA1Final(mac, &ctx);
407 int fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, size_t xlen)
409 u8 xkey[64];
410 u32 t[5], _t[5];
411 int i, j, m, k;
412 u8 *xpos = x;
413 u32 carry;
415 if (seed_len > sizeof(xkey))
416 seed_len = sizeof(xkey);
418 /* FIPS 186-2 + change notice 1 */
420 os_memcpy(xkey, seed, seed_len);
421 os_memset(xkey + seed_len, 0, 64 - seed_len);
422 t[0] = 0x67452301;
423 t[1] = 0xEFCDAB89;
424 t[2] = 0x98BADCFE;
425 t[3] = 0x10325476;
426 t[4] = 0xC3D2E1F0;
428 m = xlen / 40;
429 for (j = 0; j < m; j++) {
430 /* XSEED_j = 0 */
431 for (i = 0; i < 2; i++) {
432 /* XVAL = (XKEY + XSEED_j) mod 2^b */
434 /* w_i = G(t, XVAL) */
435 os_memcpy(_t, t, 20);
436 SHA1Transform(_t, xkey);
437 _t[0] = host_to_be32(_t[0]);
438 _t[1] = host_to_be32(_t[1]);
439 _t[2] = host_to_be32(_t[2]);
440 _t[3] = host_to_be32(_t[3]);
441 _t[4] = host_to_be32(_t[4]);
442 os_memcpy(xpos, _t, 20);
444 /* XKEY = (1 + XKEY + w_i) mod 2^b */
445 carry = 1;
446 for (k = 19; k >= 0; k--) {
447 carry += xkey[k] + xpos[k];
448 xkey[k] = carry & 0xff;
449 carry >>= 8;
452 xpos += SHA1_MAC_LEN;
454 /* x_j = w_0|w_1 */
457 return 0;
461 /* ===== start - public domain SHA1 implementation ===== */
464 SHA-1 in C
465 By Steve Reid <sreid@sea-to-sky.net>
466 100% Public Domain
468 -----------------
469 Modified 7/98
470 By James H. Brown <jbrown@burgoyne.com>
471 Still 100% Public Domain
473 Corrected a problem which generated improper hash values on 16 bit machines
474 Routine SHA1Update changed from
475 void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int
476 len)
478 void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned
479 long len)
481 The 'len' parameter was declared an int which works fine on 32 bit machines.
482 However, on 16 bit machines an int is too small for the shifts being done
483 against
484 it. This caused the hash function to generate incorrect values if len was
485 greater than 8191 (8K - 1) due to the 'len << 3' on line 3 of SHA1Update().
487 Since the file IO in main() reads 16K at a time, any file 8K or larger would
488 be guaranteed to generate the wrong hash (e.g. Test Vector #3, a million
489 "a"s).
491 I also changed the declaration of variables i & j in SHA1Update to
492 unsigned long from unsigned int for the same reason.
494 These changes should make no difference to any 32 bit implementations since
496 int and a long are the same size in those environments.
499 I also corrected a few compiler warnings generated by Borland C.
500 1. Added #include <process.h> for exit() prototype
501 2. Removed unused variable 'j' in SHA1Final
502 3. Changed exit(0) to return(0) at end of main.
504 ALL changes I made can be located by searching for comments containing 'JHB'
505 -----------------
506 Modified 8/98
507 By Steve Reid <sreid@sea-to-sky.net>
508 Still 100% public domain
510 1- Removed #include <process.h> and used return() instead of exit()
511 2- Fixed overwriting of finalcount in SHA1Final() (discovered by Chris Hall)
512 3- Changed email address from steve@edmweb.com to sreid@sea-to-sky.net
514 -----------------
515 Modified 4/01
516 By Saul Kravitz <Saul.Kravitz@celera.com>
517 Still 100% PD
518 Modified to run on Compaq Alpha hardware.
520 -----------------
521 Modified 4/01
522 By Jouni Malinen <j@w1.fi>
523 Minor changes to match the coding style used in Dynamics.
525 Modified September 24, 2004
526 By Jouni Malinen <j@w1.fi>
527 Fixed alignment issue in SHA1Transform when SHA1HANDSOFF is defined.
532 Test Vectors (from FIPS PUB 180-1)
533 "abc"
534 A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
535 "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
536 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
537 A million repetitions of "a"
538 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
541 #define SHA1HANDSOFF
543 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
545 /* blk0() and blk() perform the initial expand. */
546 /* I got the idea of expanding during the round function from SSLeay */
547 #ifndef WORDS_BIGENDIAN
548 #define blk0(i) (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) | \
549 (rol(block->l[i], 8) & 0x00FF00FF))
550 #else
551 #define blk0(i) block->l[i]
552 #endif
553 #define blk(i) (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ \
554 block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ block->l[i & 15], 1))
556 /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
557 #define R0(v,w,x,y,z,i) \
558 z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \
559 w = rol(w, 30);
560 #define R1(v,w,x,y,z,i) \
561 z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
562 w = rol(w, 30);
563 #define R2(v,w,x,y,z,i) \
564 z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
565 #define R3(v,w,x,y,z,i) \
566 z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
567 w = rol(w, 30);
568 #define R4(v,w,x,y,z,i) \
569 z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
570 w=rol(w, 30);
573 #ifdef VERBOSE /* SAK */
574 void SHAPrintContext(SHA1_CTX *context, char *msg)
576 printf("%s (%d,%d) %x %x %x %x %x\n",
577 msg,
578 context->count[0], context->count[1],
579 context->state[0],
580 context->state[1],
581 context->state[2],
582 context->state[3],
583 context->state[4]);
585 #endif
587 /* Hash a single 512-bit block. This is the core of the algorithm. */
589 static void SHA1Transform(u32 state[5], const unsigned char buffer[64])
591 u32 a, b, c, d, e;
592 typedef union {
593 unsigned char c[64];
594 u32 l[16];
595 } CHAR64LONG16;
596 CHAR64LONG16* block;
597 #ifdef SHA1HANDSOFF
598 u32 workspace[16];
599 block = (CHAR64LONG16 *) workspace;
600 os_memcpy(block, buffer, 64);
601 #else
602 block = (CHAR64LONG16 *) buffer;
603 #endif
604 /* Copy context->state[] to working vars */
605 a = state[0];
606 b = state[1];
607 c = state[2];
608 d = state[3];
609 e = state[4];
610 /* 4 rounds of 20 operations each. Loop unrolled. */
611 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
612 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
613 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
614 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
615 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
616 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
617 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
618 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
619 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
620 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
621 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
622 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
623 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
624 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
625 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
626 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
627 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
628 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
629 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
630 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
631 /* Add the working vars back into context.state[] */
632 state[0] += a;
633 state[1] += b;
634 state[2] += c;
635 state[3] += d;
636 state[4] += e;
637 /* Wipe variables */
638 a = b = c = d = e = 0;
639 #ifdef SHA1HANDSOFF
640 os_memset(block, 0, 64);
641 #endif
645 /* SHA1Init - Initialize new context */
647 void SHA1Init(SHA1_CTX* context)
649 /* SHA1 initialization constants */
650 context->state[0] = 0x67452301;
651 context->state[1] = 0xEFCDAB89;
652 context->state[2] = 0x98BADCFE;
653 context->state[3] = 0x10325476;
654 context->state[4] = 0xC3D2E1F0;
655 context->count[0] = context->count[1] = 0;
659 /* Run your data through this. */
661 void SHA1Update(SHA1_CTX* context, const void *_data, u32 len)
663 u32 i, j;
664 const unsigned char *data = _data;
666 #ifdef VERBOSE
667 SHAPrintContext(context, "before");
668 #endif
669 j = (context->count[0] >> 3) & 63;
670 if ((context->count[0] += len << 3) < (len << 3))
671 context->count[1]++;
672 context->count[1] += (len >> 29);
673 if ((j + len) > 63) {
674 os_memcpy(&context->buffer[j], data, (i = 64-j));
675 SHA1Transform(context->state, context->buffer);
676 for ( ; i + 63 < len; i += 64) {
677 SHA1Transform(context->state, &data[i]);
679 j = 0;
681 else i = 0;
682 os_memcpy(&context->buffer[j], &data[i], len - i);
683 #ifdef VERBOSE
684 SHAPrintContext(context, "after ");
685 #endif
689 /* Add padding and return the message digest. */
691 void SHA1Final(unsigned char digest[20], SHA1_CTX* context)
693 u32 i;
694 unsigned char finalcount[8];
696 for (i = 0; i < 8; i++) {
697 finalcount[i] = (unsigned char)
698 ((context->count[(i >= 4 ? 0 : 1)] >>
699 ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
701 SHA1Update(context, (unsigned char *) "\200", 1);
702 while ((context->count[0] & 504) != 448) {
703 SHA1Update(context, (unsigned char *) "\0", 1);
705 SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform()
707 for (i = 0; i < 20; i++) {
708 digest[i] = (unsigned char)
709 ((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) &
710 255);
712 /* Wipe variables */
713 i = 0;
714 os_memset(context->buffer, 0, 64);
715 os_memset(context->state, 0, 20);
716 os_memset(context->count, 0, 8);
717 os_memset(finalcount, 0, 8);
720 /* ===== end - public domain SHA1 implementation ===== */
722 #endif /* INTERNAL_SHA1 */