Zero out the start of the disk.
[dragonfly.git] / sys / platform / pc64 / amd64 / pmap.c
blob3e5637f1fc88ff0525790c05e8df5270f46ec19a
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2008 The DragonFly Project.
6 * Copyright (c) 2008 Jordan Gordeev.
7 * All rights reserved.
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
41 * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
42 * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
43 * $DragonFly: src/sys/platform/pc64/amd64/pmap.c,v 1.3 2008/08/29 17:07:10 dillon Exp $
47 * Manages physical address maps.
49 * In addition to hardware address maps, this
50 * module is called upon to provide software-use-only
51 * maps which may or may not be stored in the same
52 * form as hardware maps. These pseudo-maps are
53 * used to store intermediate results from copy
54 * operations to and from address spaces.
56 * Since the information managed by this module is
57 * also stored by the logical address mapping module,
58 * this module may throw away valid virtual-to-physical
59 * mappings at almost any time. However, invalidations
60 * of virtual-to-physical mappings must be done as
61 * requested.
63 * In order to cope with hardware architectures which
64 * make virtual-to-physical map invalidates expensive,
65 * this module may delay invalidate or reduced protection
66 * operations until such time as they are actually
67 * necessary. This module is given full information as
68 * to which processors are currently using which maps,
69 * and to when physical maps must be made correct.
72 #if JG
73 #include "opt_disable_pse.h"
74 #include "opt_pmap.h"
75 #endif
76 #include "opt_msgbuf.h"
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/proc.h>
82 #include <sys/msgbuf.h>
83 #include <sys/vmmeter.h>
84 #include <sys/mman.h>
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <sys/sysctl.h>
89 #include <sys/lock.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_zone.h>
99 #include <sys/user.h>
100 #include <sys/thread2.h>
101 #include <sys/sysref2.h>
103 #include <machine/cputypes.h>
104 #include <machine/md_var.h>
105 #include <machine/specialreg.h>
106 #include <machine/smp.h>
107 #include <machine_base/apic/apicreg.h>
108 #include <machine/globaldata.h>
109 #include <machine/pmap.h>
110 #include <machine/pmap_inval.h>
112 #include <ddb/ddb.h>
114 #define PMAP_KEEP_PDIRS
115 #ifndef PMAP_SHPGPERPROC
116 #define PMAP_SHPGPERPROC 200
117 #endif
119 #if defined(DIAGNOSTIC)
120 #define PMAP_DIAGNOSTIC
121 #endif
123 #define MINPV 2048
125 #if !defined(PMAP_DIAGNOSTIC)
126 #define PMAP_INLINE __inline
127 #else
128 #define PMAP_INLINE
129 #endif
132 * Get PDEs and PTEs for user/kernel address space
134 #define pmap_pde(m, v) (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
135 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
137 #define pmap_pde_v(pte) ((*(pd_entry_t *)pte & PG_V) != 0)
138 #define pmap_pte_w(pte) ((*(pt_entry_t *)pte & PG_W) != 0)
139 #define pmap_pte_m(pte) ((*(pt_entry_t *)pte & PG_M) != 0)
140 #define pmap_pte_u(pte) ((*(pt_entry_t *)pte & PG_A) != 0)
141 #define pmap_pte_v(pte) ((*(pt_entry_t *)pte & PG_V) != 0)
145 * Given a map and a machine independent protection code,
146 * convert to a vax protection code.
148 #define pte_prot(m, p) \
149 (protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
150 static int protection_codes[8];
152 struct pmap kernel_pmap;
153 static TAILQ_HEAD(,pmap) pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
155 vm_paddr_t avail_start; /* PA of first available physical page */
156 vm_paddr_t avail_end; /* PA of last available physical page */
157 vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
158 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
159 vm_offset_t KvaStart; /* VA start of KVA space */
160 vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
161 vm_offset_t KvaSize; /* max size of kernel virtual address space */
162 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
163 static int pgeflag; /* PG_G or-in */
164 static int pseflag; /* PG_PS or-in */
166 static vm_object_t kptobj;
168 static int nkpt;
169 vm_offset_t kernel_vm_end;
172 * Data for the pv entry allocation mechanism
174 static vm_zone_t pvzone;
175 static struct vm_zone pvzone_store;
176 static struct vm_object pvzone_obj;
177 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
178 static int pmap_pagedaemon_waken = 0;
179 static struct pv_entry *pvinit;
182 * All those kernel PT submaps that BSD is so fond of
184 pt_entry_t *CMAP1 = 0, *ptmmap;
185 caddr_t CADDR1 = 0, ptvmmap = 0;
186 static pt_entry_t *msgbufmap;
187 struct msgbuf *msgbufp=0;
190 * Crashdump maps.
192 static pt_entry_t *pt_crashdumpmap;
193 static caddr_t crashdumpmap;
195 extern uint64_t KPTphys;
196 extern pt_entry_t *SMPpt;
197 extern uint64_t SMPptpa;
199 #define DISABLE_PSE
201 static PMAP_INLINE void free_pv_entry (pv_entry_t pv);
202 static pt_entry_t * get_ptbase (pmap_t pmap);
203 static pv_entry_t get_pv_entry (void);
204 static void i386_protection_init (void);
205 static __inline void pmap_clearbit (vm_page_t m, int bit);
207 static void pmap_remove_all (vm_page_t m);
208 static void pmap_enter_quick (pmap_t pmap, vm_offset_t va, vm_page_t m);
209 static int pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
210 vm_offset_t sva, pmap_inval_info_t info);
211 static void pmap_remove_page (struct pmap *pmap,
212 vm_offset_t va, pmap_inval_info_t info);
213 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
214 vm_offset_t va, pmap_inval_info_t info);
215 static boolean_t pmap_testbit (vm_page_t m, int bit);
216 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
217 vm_page_t mpte, vm_page_t m);
219 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
221 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
222 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
223 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
224 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
225 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t, pmap_inval_info_t);
226 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
228 static unsigned pdir4mb;
231 * Move the kernel virtual free pointer to the next
232 * 4MB. This is used to help improve performance
233 * by using a large (4MB) page for much of the kernel
234 * (.text, .data, .bss)
236 static vm_offset_t
237 pmap_kmem_choose(vm_offset_t addr)
239 vm_offset_t newaddr = addr;
240 #ifndef DISABLE_PSE
241 if (cpu_feature & CPUID_PSE) {
242 newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
244 #endif
245 return newaddr;
249 * pmap_pte:
251 * Extract the page table entry associated with the given map/virtual
252 * pair.
254 * This function may NOT be called from an interrupt.
256 PMAP_INLINE pt_entry_t *
257 pmap_pte(pmap_t pmap, vm_offset_t va)
259 pd_entry_t *pdeaddr;
261 if (pmap) {
262 pdeaddr = pmap_pde(pmap, va);
263 if (*pdeaddr & PG_PS)
264 return pdeaddr;
265 if (*pdeaddr) {
266 return get_ptbase(pmap) + amd64_btop(va);
269 return (0);
273 * pmap_pte_quick:
275 * Super fast pmap_pte routine best used when scanning the pv lists.
276 * This eliminates many course-grained invltlb calls. Note that many of
277 * the pv list scans are across different pmaps and it is very wasteful
278 * to do an entire invltlb when checking a single mapping.
280 * Should only be called while in a critical section.
282 static pt_entry_t *
283 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
285 struct mdglobaldata *gd = mdcpu;
286 pd_entry_t pde, newpf;
288 if ((pde = pmap->pm_pdir[va >> PDRSHIFT]) != 0) {
289 pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
290 vm_pindex_t index = amd64_btop(va);
291 /* are we current address space or kernel? */
292 if ((pmap == &kernel_pmap) ||
293 (frame == (PTDpde & PG_FRAME))) {
294 return (pt_entry_t *) PTmap + index;
296 newpf = pde & PG_FRAME;
297 if ( ((* (pt_entry_t *) gd->gd_PMAP1) & PG_FRAME) != newpf) {
298 * (pt_entry_t *) gd->gd_PMAP1 = newpf | PG_RW | PG_V;
299 cpu_invlpg(gd->gd_PADDR1);
301 return gd->gd_PADDR1 + (index & (NPTEPG - 1));
303 return (0);
307 static u_int64_t
308 allocpages(vm_paddr_t *firstaddr, int n)
310 u_int64_t ret;
312 ret = *firstaddr;
313 bzero((void *)ret, n * PAGE_SIZE);
314 *firstaddr += n * PAGE_SIZE;
315 return (ret);
318 void
319 create_pagetables(vm_paddr_t *firstaddr)
321 int i;
322 int count;
323 uint64_t cpu0pp, cpu0idlestk;
324 int idlestk_page_offset = offsetof(struct privatespace, idlestack) / PAGE_SIZE;
326 /* we are running (mostly) V=P at this point */
328 common_lvl4_phys = allocpages(firstaddr, 1); /* 512 512G mappings */
329 common_lvl3_phys = allocpages(firstaddr, 1); /* 512 1G mappings */
330 KPTphys = allocpages(firstaddr, NKPT); /* kernel page table */
331 IdlePTD = allocpages(firstaddr, 1); /* kernel page dir */
332 cpu0pp = allocpages(firstaddr, MDGLOBALDATA_BASEALLOC_PAGES);
333 cpu0idlestk = allocpages(firstaddr, UPAGES);
334 SMPptpa = allocpages(firstaddr, 1);
335 SMPpt = (void *)(SMPptpa + KERNBASE);
339 * Load kernel page table with kernel memory mappings
341 for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
342 ((pt_entry_t *)KPTphys)[i] = i << PAGE_SHIFT;
343 ((pt_entry_t *)KPTphys)[i] |= PG_RW | PG_V;
346 #ifndef JG
347 for (i = 0; i < NKPT; i++) {
348 ((pd_entry_t *)IdlePTD)[i] = KPTphys + (i << PAGE_SHIFT);
349 ((pd_entry_t *)IdlePTD)[i] |= PG_RW | PG_V;
351 #endif
354 * Set up the kernel page table itself.
356 for (i = 0; i < NKPT; i++) {
357 ((pd_entry_t *)IdlePTD)[KPTDI + i] = KPTphys + (i << PAGE_SHIFT);
358 ((pd_entry_t *)IdlePTD)[KPTDI + i] |= PG_RW | PG_V;
361 #ifndef JG
362 count = ISA_HOLE_LENGTH >> PAGE_SHIFT;
363 for (i = 0; i < count; i++) {
364 ((pt_entry_t *)KPTphys)[amd64_btop(ISA_HOLE_START) + i] = \
365 (ISA_HOLE_START + i * PAGE_SIZE) | PG_RW | PG_V;
367 #endif
370 * Self-mapping
372 ((pd_entry_t *)IdlePTD)[PTDPTDI] = (pd_entry_t)IdlePTD | PG_RW | PG_V;
375 * Map CPU_prvspace[0].mdglobaldata
377 for (i = 0; i < MDGLOBALDATA_BASEALLOC_PAGES; i++) {
378 ((pt_entry_t *)SMPptpa)[i] = \
379 (cpu0pp + i * PAGE_SIZE) | PG_RW | PG_V;
383 * Map CPU_prvspace[0].idlestack
385 for (i = 0; i < UPAGES; i++) {
386 ((pt_entry_t *)SMPptpa)[idlestk_page_offset + i] = \
387 (cpu0idlestk + i * PAGE_SIZE) | PG_RW | PG_V;
391 * Link SMPpt.
393 ((pd_entry_t *)IdlePTD)[MPPTDI] = SMPptpa | PG_RW | PG_V;
396 * PML4 maps level 3
398 ((pml4_entry_t *)common_lvl4_phys)[LINKPML4I] = common_lvl3_phys | PG_RW | PG_V | PG_U;
401 * location of "virtual CR3" - a PDP entry that is loaded
402 * with a PD physical address (+ page attributes).
403 * Matt: location of user page directory entry (representing 1G)
405 link_pdpe = &((pdp_entry_t *)common_lvl3_phys)[LINKPDPI];
408 void
409 init_paging(vm_paddr_t *firstaddr) {
410 create_pagetables(firstaddr);
412 /* switch to the newly created page table */
413 *link_pdpe = IdlePTD | PG_RW | PG_V | PG_U;
414 load_cr3(common_lvl4_phys);
415 link_pdpe = (void *)((char *)link_pdpe + KERNBASE);
417 KvaStart = (vm_offset_t)VADDR(PTDPTDI, 0);
418 KvaEnd = (vm_offset_t)VADDR(APTDPTDI, 0);
419 KvaSize = KvaEnd - KvaStart;
423 * Bootstrap the system enough to run with virtual memory.
425 * On the i386 this is called after mapping has already been enabled
426 * and just syncs the pmap module with what has already been done.
427 * [We can't call it easily with mapping off since the kernel is not
428 * mapped with PA == VA, hence we would have to relocate every address
429 * from the linked base (virtual) address "KERNBASE" to the actual
430 * (physical) address starting relative to 0]
432 void
433 pmap_bootstrap(vm_paddr_t *firstaddr, vm_paddr_t loadaddr)
435 vm_offset_t va;
436 pt_entry_t *pte;
437 struct mdglobaldata *gd;
438 int i;
439 int pg;
441 avail_start = *firstaddr;
444 * XXX The calculation of virtual_start is wrong. It's NKPT*PAGE_SIZE
445 * too large. It should instead be correctly calculated in locore.s and
446 * not based on 'first' (which is a physical address, not a virtual
447 * address, for the start of unused physical memory). The kernel
448 * page tables are NOT double mapped and thus should not be included
449 * in this calculation.
451 virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
452 virtual_start = pmap_kmem_choose(virtual_start);
453 virtual_end = VADDR(KPTDI+NKPDE-1, NPTEPG-1);
456 * Initialize protection array.
458 i386_protection_init();
461 * The kernel's pmap is statically allocated so we don't have to use
462 * pmap_create, which is unlikely to work correctly at this part of
463 * the boot sequence (XXX and which no longer exists).
465 kernel_pmap.pm_pdir = (pd_entry_t *)(PTOV_OFFSET + (uint64_t)IdlePTD);
466 kernel_pmap.pm_count = 1;
467 kernel_pmap.pm_active = (cpumask_t)-1; /* don't allow deactivation */
468 TAILQ_INIT(&kernel_pmap.pm_pvlist);
469 nkpt = NKPT;
472 * Reserve some special page table entries/VA space for temporary
473 * mapping of pages.
475 #define SYSMAP(c, p, v, n) \
476 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
478 va = virtual_start;
479 pte = (pt_entry_t *) pmap_pte(&kernel_pmap, va);
482 * CMAP1/CMAP2 are used for zeroing and copying pages.
484 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
487 * Crashdump maps.
489 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
492 * ptvmmap is used for reading arbitrary physical pages via
493 * /dev/mem.
495 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
498 * msgbufp is used to map the system message buffer.
499 * XXX msgbufmap is not used.
501 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
502 atop(round_page(MSGBUF_SIZE)))
504 virtual_start = va;
506 *CMAP1 = 0;
507 for (i = 0; i < NKPT; i++)
508 PTD[i] = 0;
511 * PG_G is terribly broken on SMP because we IPI invltlb's in some
512 * cases rather then invl1pg. Actually, I don't even know why it
513 * works under UP because self-referential page table mappings
515 #ifdef SMP
516 pgeflag = 0;
517 #else
518 if (cpu_feature & CPUID_PGE)
519 pgeflag = PG_G;
520 #endif
523 * Initialize the 4MB page size flag
525 pseflag = 0;
527 * The 4MB page version of the initial
528 * kernel page mapping.
530 pdir4mb = 0;
532 #if !defined(DISABLE_PSE)
533 if (cpu_feature & CPUID_PSE) {
534 pt_entry_t ptditmp;
536 * Note that we have enabled PSE mode
538 pseflag = PG_PS;
539 ptditmp = *(PTmap + amd64_btop(KERNBASE));
540 ptditmp &= ~(NBPDR - 1);
541 ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
542 pdir4mb = ptditmp;
544 #ifndef SMP
546 * Enable the PSE mode. If we are SMP we can't do this
547 * now because the APs will not be able to use it when
548 * they boot up.
550 load_cr4(rcr4() | CR4_PSE);
553 * We can do the mapping here for the single processor
554 * case. We simply ignore the old page table page from
555 * now on.
558 * For SMP, we still need 4K pages to bootstrap APs,
559 * PSE will be enabled as soon as all APs are up.
561 PTD[KPTDI] = (pd_entry_t)ptditmp;
562 kernel_pmap.pm_pdir[KPTDI] = (pd_entry_t)ptditmp;
563 cpu_invltlb();
564 #endif
566 #endif
567 #ifdef SMP
568 if (cpu_apic_address == 0)
569 panic("pmap_bootstrap: no local apic!");
571 /* local apic is mapped on last page */
572 SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
573 (cpu_apic_address & PG_FRAME));
574 #endif
577 * We need to finish setting up the globaldata page for the BSP.
578 * locore has already populated the page table for the mdglobaldata
579 * portion.
581 pg = MDGLOBALDATA_BASEALLOC_PAGES;
582 gd = &CPU_prvspace[0].mdglobaldata;
583 gd->gd_CMAP1 = &SMPpt[pg + 0];
584 gd->gd_CMAP2 = &SMPpt[pg + 1];
585 gd->gd_CMAP3 = &SMPpt[pg + 2];
586 gd->gd_PMAP1 = &SMPpt[pg + 3];
587 gd->gd_CADDR1 = CPU_prvspace[0].CPAGE1;
588 gd->gd_CADDR2 = CPU_prvspace[0].CPAGE2;
589 gd->gd_CADDR3 = CPU_prvspace[0].CPAGE3;
590 gd->gd_PADDR1 = (pt_entry_t *)CPU_prvspace[0].PPAGE1;
592 cpu_invltlb();
595 #ifdef SMP
597 * Set 4mb pdir for mp startup
599 void
600 pmap_set_opt(void)
602 if (pseflag && (cpu_feature & CPUID_PSE)) {
603 load_cr4(rcr4() | CR4_PSE);
604 if (pdir4mb && mycpu->gd_cpuid == 0) { /* only on BSP */
605 kernel_pmap.pm_pdir[KPTDI] =
606 PTD[KPTDI] = (pd_entry_t)pdir4mb;
607 cpu_invltlb();
611 #endif
614 * Initialize the pmap module.
615 * Called by vm_init, to initialize any structures that the pmap
616 * system needs to map virtual memory.
617 * pmap_init has been enhanced to support in a fairly consistant
618 * way, discontiguous physical memory.
620 void
621 pmap_init(void)
623 int i;
624 int initial_pvs;
627 * object for kernel page table pages
629 kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
632 * Allocate memory for random pmap data structures. Includes the
633 * pv_head_table.
636 for(i = 0; i < vm_page_array_size; i++) {
637 vm_page_t m;
639 m = &vm_page_array[i];
640 TAILQ_INIT(&m->md.pv_list);
641 m->md.pv_list_count = 0;
645 * init the pv free list
647 initial_pvs = vm_page_array_size;
648 if (initial_pvs < MINPV)
649 initial_pvs = MINPV;
650 pvzone = &pvzone_store;
651 pvinit = (struct pv_entry *) kmem_alloc(&kernel_map,
652 initial_pvs * sizeof (struct pv_entry));
653 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
654 initial_pvs);
657 * Now it is safe to enable pv_table recording.
659 pmap_initialized = TRUE;
663 * Initialize the address space (zone) for the pv_entries. Set a
664 * high water mark so that the system can recover from excessive
665 * numbers of pv entries.
667 void
668 pmap_init2(void)
670 int shpgperproc = PMAP_SHPGPERPROC;
672 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
673 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
674 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
675 pv_entry_high_water = 9 * (pv_entry_max / 10);
676 zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
680 /***************************************************
681 * Low level helper routines.....
682 ***************************************************/
684 #if defined(PMAP_DIAGNOSTIC)
687 * This code checks for non-writeable/modified pages.
688 * This should be an invalid condition.
690 static int
691 pmap_nw_modified(pt_entry_t ptea)
693 int pte;
695 pte = (int) ptea;
697 if ((pte & (PG_M|PG_RW)) == PG_M)
698 return 1;
699 else
700 return 0;
702 #endif
706 * this routine defines the region(s) of memory that should
707 * not be tested for the modified bit.
709 static PMAP_INLINE int
710 pmap_track_modified(vm_offset_t va)
712 if ((va < clean_sva) || (va >= clean_eva))
713 return 1;
714 else
715 return 0;
718 static pt_entry_t *
719 get_ptbase(pmap_t pmap)
721 pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
722 struct globaldata *gd = mycpu;
724 /* are we current address space or kernel? */
725 if (pmap == &kernel_pmap || frame == (PTDpde & PG_FRAME)) {
726 return (pt_entry_t *) PTmap;
729 /* otherwise, we are alternate address space */
730 KKASSERT(gd->gd_intr_nesting_level == 0 &&
731 (gd->gd_curthread->td_flags & TDF_INTTHREAD) == 0);
733 if (frame != (((pd_entry_t) APTDpde) & PG_FRAME)) {
734 APTDpde = (pd_entry_t)(frame | PG_RW | PG_V);
735 /* The page directory is not shared between CPUs */
736 cpu_invltlb();
738 return (pt_entry_t *) APTmap;
742 * pmap_extract:
744 * Extract the physical page address associated with the map/VA pair.
746 * This function may not be called from an interrupt if the pmap is
747 * not kernel_pmap.
749 vm_paddr_t
750 pmap_extract(pmap_t pmap, vm_offset_t va)
752 vm_offset_t rtval;
753 vm_offset_t pdirindex;
755 pdirindex = va >> PDRSHIFT;
756 if (pmap && (rtval = pmap->pm_pdir[pdirindex])) {
757 pt_entry_t *pte;
758 if ((rtval & PG_PS) != 0) {
759 rtval &= ~(NBPDR - 1);
760 rtval |= va & (NBPDR - 1);
761 return rtval;
763 pte = get_ptbase(pmap) + amd64_btop(va);
764 rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
765 return rtval;
767 return 0;
770 /***************************************************
771 * Low level mapping routines.....
772 ***************************************************/
775 * Routine: pmap_kenter
776 * Function:
777 * Add a wired page to the KVA
778 * NOTE! note that in order for the mapping to take effect -- you
779 * should do an invltlb after doing the pmap_kenter().
781 void
782 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
784 pt_entry_t *pte;
785 pt_entry_t npte;
786 pmap_inval_info info;
788 pmap_inval_init(&info);
789 npte = pa | PG_RW | PG_V | pgeflag;
790 pte = vtopte(va);
791 pmap_inval_add(&info, &kernel_pmap, va);
792 *pte = npte;
793 pmap_inval_flush(&info);
797 * Routine: pmap_kenter_quick
798 * Function:
799 * Similar to pmap_kenter(), except we only invalidate the
800 * mapping on the current CPU.
802 void
803 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
805 pt_entry_t *pte;
806 pt_entry_t npte;
808 npte = pa | PG_RW | PG_V | pgeflag;
809 pte = vtopte(va);
810 *pte = npte;
811 cpu_invlpg((void *)va);
814 void
815 pmap_kenter_sync(vm_offset_t va)
817 pmap_inval_info info;
819 pmap_inval_init(&info);
820 pmap_inval_add(&info, &kernel_pmap, va);
821 pmap_inval_flush(&info);
824 void
825 pmap_kenter_sync_quick(vm_offset_t va)
827 cpu_invlpg((void *)va);
831 * remove a page from the kernel pagetables
833 void
834 pmap_kremove(vm_offset_t va)
836 pt_entry_t *pte;
837 pmap_inval_info info;
839 pmap_inval_init(&info);
840 pte = vtopte(va);
841 pmap_inval_add(&info, &kernel_pmap, va);
842 *pte = 0;
843 pmap_inval_flush(&info);
846 void
847 pmap_kremove_quick(vm_offset_t va)
849 pt_entry_t *pte;
850 pte = vtopte(va);
851 *pte = 0;
852 cpu_invlpg((void *)va);
856 * XXX these need to be recoded. They are not used in any critical path.
858 void
859 pmap_kmodify_rw(vm_offset_t va)
861 *vtopte(va) |= PG_RW;
862 cpu_invlpg((void *)va);
865 void
866 pmap_kmodify_nc(vm_offset_t va)
868 *vtopte(va) |= PG_N;
869 cpu_invlpg((void *)va);
873 * Used to map a range of physical addresses into kernel
874 * virtual address space.
876 * For now, VM is already on, we only need to map the
877 * specified memory.
879 vm_offset_t
880 pmap_map(vm_offset_t virt, vm_paddr_t start, vm_paddr_t end, int prot)
882 while (start < end) {
883 pmap_kenter(virt, start);
884 virt += PAGE_SIZE;
885 start += PAGE_SIZE;
887 return (virt);
892 * Add a list of wired pages to the kva
893 * this routine is only used for temporary
894 * kernel mappings that do not need to have
895 * page modification or references recorded.
896 * Note that old mappings are simply written
897 * over. The page *must* be wired.
899 void
900 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
902 vm_offset_t end_va;
904 end_va = va + count * PAGE_SIZE;
906 while (va < end_va) {
907 pt_entry_t *pte;
909 pte = vtopte(va);
910 *pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
911 cpu_invlpg((void *)va);
912 va += PAGE_SIZE;
913 m++;
915 #ifdef SMP
916 smp_invltlb(); /* XXX */
917 #endif
920 void
921 pmap_qenter2(vm_offset_t va, vm_page_t *m, int count, cpumask_t *mask)
923 vm_offset_t end_va;
924 cpumask_t cmask = mycpu->gd_cpumask;
926 end_va = va + count * PAGE_SIZE;
928 while (va < end_va) {
929 pt_entry_t *pte;
930 pt_entry_t pteval;
933 * Install the new PTE. If the pte changed from the prior
934 * mapping we must reset the cpu mask and invalidate the page.
935 * If the pte is the same but we have not seen it on the
936 * current cpu, invlpg the existing mapping. Otherwise the
937 * entry is optimal and no invalidation is required.
939 pte = vtopte(va);
940 pteval = VM_PAGE_TO_PHYS(*m) | PG_A | PG_RW | PG_V | pgeflag;
941 if (*pte != pteval) {
942 *mask = 0;
943 *pte = pteval;
944 cpu_invlpg((void *)va);
945 } else if ((*mask & cmask) == 0) {
946 cpu_invlpg((void *)va);
948 va += PAGE_SIZE;
949 m++;
951 *mask |= cmask;
955 * this routine jerks page mappings from the
956 * kernel -- it is meant only for temporary mappings.
958 void
959 pmap_qremove(vm_offset_t va, int count)
961 vm_offset_t end_va;
963 end_va = va + count*PAGE_SIZE;
965 while (va < end_va) {
966 pt_entry_t *pte;
968 pte = vtopte(va);
969 *pte = 0;
970 cpu_invlpg((void *)va);
971 va += PAGE_SIZE;
973 #ifdef SMP
974 smp_invltlb();
975 #endif
979 * This routine works like vm_page_lookup() but also blocks as long as the
980 * page is busy. This routine does not busy the page it returns.
982 * Unless the caller is managing objects whos pages are in a known state,
983 * the call should be made with a critical section held so the page's object
984 * association remains valid on return.
986 static vm_page_t
987 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
989 vm_page_t m;
991 do {
992 m = vm_page_lookup(object, pindex);
993 } while (m && vm_page_sleep_busy(m, FALSE, "pplookp"));
995 return(m);
999 * Create a new thread and optionally associate it with a (new) process.
1000 * NOTE! the new thread's cpu may not equal the current cpu.
1002 void
1003 pmap_init_thread(thread_t td)
1005 /* enforce pcb placement */
1006 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1007 td->td_savefpu = &td->td_pcb->pcb_save;
1008 td->td_sp = (char *)td->td_pcb - 16;
1012 * This routine directly affects the fork perf for a process.
1014 void
1015 pmap_init_proc(struct proc *p)
1020 * Dispose the UPAGES for a process that has exited.
1021 * This routine directly impacts the exit perf of a process.
1023 void
1024 pmap_dispose_proc(struct proc *p)
1026 KASSERT(p->p_lock == 0, ("attempt to dispose referenced proc! %p", p));
1029 /***************************************************
1030 * Page table page management routines.....
1031 ***************************************************/
1034 * This routine unholds page table pages, and if the hold count
1035 * drops to zero, then it decrements the wire count.
1037 static int
1038 _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, pmap_inval_info_t info)
1041 * Wait until we can busy the page ourselves. We cannot have
1042 * any active flushes if we block.
1044 if (m->flags & PG_BUSY) {
1045 pmap_inval_flush(info);
1046 while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1049 KASSERT(m->queue == PQ_NONE,
1050 ("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
1052 if (m->hold_count == 1) {
1054 * Unmap the page table page
1056 vm_page_busy(m);
1057 pmap_inval_add(info, pmap, -1);
1058 pmap->pm_pdir[m->pindex] = 0;
1060 KKASSERT(pmap->pm_stats.resident_count > 0);
1061 --pmap->pm_stats.resident_count;
1063 if (pmap->pm_ptphint == m)
1064 pmap->pm_ptphint = NULL;
1067 * This was our last hold, the page had better be unwired
1068 * after we decrement wire_count.
1070 * FUTURE NOTE: shared page directory page could result in
1071 * multiple wire counts.
1073 vm_page_unhold(m);
1074 --m->wire_count;
1075 KKASSERT(m->wire_count == 0);
1076 --vmstats.v_wire_count;
1077 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1078 vm_page_flash(m);
1079 vm_page_free_zero(m);
1080 return 1;
1081 } else {
1082 KKASSERT(m->hold_count > 1);
1083 vm_page_unhold(m);
1084 return 0;
1088 static PMAP_INLINE int
1089 pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, pmap_inval_info_t info)
1091 KKASSERT(m->hold_count > 0);
1092 if (m->hold_count > 1) {
1093 vm_page_unhold(m);
1094 return 0;
1095 } else {
1096 return _pmap_unwire_pte_hold(pmap, m, info);
1101 * After removing a page table entry, this routine is used to
1102 * conditionally free the page, and manage the hold/wire counts.
1104 static int
1105 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
1106 pmap_inval_info_t info)
1108 vm_pindex_t ptepindex;
1109 if (va >= UPT_MIN_ADDRESS)
1110 return 0;
1112 if (mpte == NULL) {
1113 ptepindex = (va >> PDRSHIFT);
1114 if (pmap->pm_ptphint &&
1115 (pmap->pm_ptphint->pindex == ptepindex)) {
1116 mpte = pmap->pm_ptphint;
1117 } else {
1118 pmap_inval_flush(info);
1119 mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1120 pmap->pm_ptphint = mpte;
1124 return pmap_unwire_pte_hold(pmap, mpte, info);
1128 * Initialize pmap0/vmspace0. This pmap is not added to pmap_list because
1129 * it, and IdlePTD, represents the template used to update all other pmaps.
1131 * On architectures where the kernel pmap is not integrated into the user
1132 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1133 * kernel_pmap should be used to directly access the kernel_pmap.
1135 void
1136 pmap_pinit0(struct pmap *pmap)
1138 pmap->pm_pdir =
1139 (pd_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1140 pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t) IdlePTD);
1141 pmap->pm_count = 1;
1142 pmap->pm_active = 0;
1143 pmap->pm_ptphint = NULL;
1144 TAILQ_INIT(&pmap->pm_pvlist);
1145 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1149 * Initialize a preallocated and zeroed pmap structure,
1150 * such as one in a vmspace structure.
1152 void
1153 pmap_pinit(struct pmap *pmap)
1155 vm_page_t ptdpg;
1158 * No need to allocate page table space yet but we do need a valid
1159 * page directory table.
1161 if (pmap->pm_pdir == NULL) {
1162 pmap->pm_pdir =
1163 (pd_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1167 * Allocate an object for the ptes
1169 if (pmap->pm_pteobj == NULL)
1170 pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1173 * Allocate the page directory page, unless we already have
1174 * one cached. If we used the cached page the wire_count will
1175 * already be set appropriately.
1177 if ((ptdpg = pmap->pm_pdirm) == NULL) {
1178 ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1179 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1180 pmap->pm_pdirm = ptdpg;
1181 vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY);
1182 ptdpg->valid = VM_PAGE_BITS_ALL;
1183 ptdpg->wire_count = 1;
1184 ++vmstats.v_wire_count;
1185 pmap_kenter((vm_offset_t)pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1187 if ((ptdpg->flags & PG_ZERO) == 0)
1188 bzero(pmap->pm_pdir, PAGE_SIZE);
1190 pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1192 /* install self-referential address mapping entry */
1193 *(pd_entry_t *) (pmap->pm_pdir + PTDPTDI) =
1194 VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1196 pmap->pm_count = 1;
1197 pmap->pm_active = 0;
1198 pmap->pm_ptphint = NULL;
1199 TAILQ_INIT(&pmap->pm_pvlist);
1200 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1201 pmap->pm_stats.resident_count = 1;
1205 * Clean up a pmap structure so it can be physically freed. This routine
1206 * is called by the vmspace dtor function. A great deal of pmap data is
1207 * left passively mapped to improve vmspace management so we have a bit
1208 * of cleanup work to do here.
1210 void
1211 pmap_puninit(pmap_t pmap)
1213 vm_page_t p;
1215 KKASSERT(pmap->pm_active == 0);
1216 if ((p = pmap->pm_pdirm) != NULL) {
1217 KKASSERT(pmap->pm_pdir != NULL);
1218 pmap_kremove((vm_offset_t)pmap->pm_pdir);
1219 p->wire_count--;
1220 vmstats.v_wire_count--;
1221 KKASSERT((p->flags & PG_BUSY) == 0);
1222 vm_page_busy(p);
1223 vm_page_free_zero(p);
1224 pmap->pm_pdirm = NULL;
1226 if (pmap->pm_pdir) {
1227 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pdir, PAGE_SIZE);
1228 pmap->pm_pdir = NULL;
1230 if (pmap->pm_pteobj) {
1231 vm_object_deallocate(pmap->pm_pteobj);
1232 pmap->pm_pteobj = NULL;
1237 * Wire in kernel global address entries. To avoid a race condition
1238 * between pmap initialization and pmap_growkernel, this procedure
1239 * adds the pmap to the master list (which growkernel scans to update),
1240 * then copies the template.
1242 void
1243 pmap_pinit2(struct pmap *pmap)
1245 crit_enter();
1246 TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1247 /* XXX copies current process, does not fill in MPPTDI */
1248 bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1249 crit_exit();
1253 * Attempt to release and free a vm_page in a pmap. Returns 1 on success,
1254 * 0 on failure (if the procedure had to sleep).
1256 * When asked to remove the page directory page itself, we actually just
1257 * leave it cached so we do not have to incur the SMP inval overhead of
1258 * removing the kernel mapping. pmap_puninit() will take care of it.
1260 static int
1261 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1263 pd_entry_t *pde = (pd_entry_t *) pmap->pm_pdir;
1265 * This code optimizes the case of freeing non-busy
1266 * page-table pages. Those pages are zero now, and
1267 * might as well be placed directly into the zero queue.
1269 if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1270 return 0;
1272 vm_page_busy(p);
1275 * Remove the page table page from the processes address space.
1277 pde[p->pindex] = 0;
1278 KKASSERT(pmap->pm_stats.resident_count > 0);
1279 --pmap->pm_stats.resident_count;
1281 if (p->hold_count) {
1282 panic("pmap_release: freeing held page table page");
1284 if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1285 pmap->pm_ptphint = NULL;
1288 * We leave the page directory page cached, wired, and mapped in
1289 * the pmap until the dtor function (pmap_puninit()) gets called.
1290 * However, still clean it up so we can set PG_ZERO.
1292 if (p->pindex == PTDPTDI) {
1293 bzero(pde + KPTDI, nkpt * PTESIZE);
1294 pde[MPPTDI] = 0;
1295 pde[APTDPTDI] = 0;
1296 vm_page_flag_set(p, PG_ZERO);
1297 vm_page_wakeup(p);
1298 } else {
1299 p->wire_count--;
1300 vmstats.v_wire_count--;
1301 vm_page_free_zero(p);
1303 return 1;
1307 * this routine is called if the page table page is not
1308 * mapped correctly.
1310 static vm_page_t
1311 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1313 vm_offset_t pteva, ptepa;
1314 vm_page_t m;
1317 * Find or fabricate a new pagetable page
1319 m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1320 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1322 KASSERT(m->queue == PQ_NONE,
1323 ("_pmap_allocpte: %p->queue != PQ_NONE", m));
1326 * Increment the hold count for the page we will be returning to
1327 * the caller.
1329 m->hold_count++;
1332 * It is possible that someone else got in and mapped by the page
1333 * directory page while we were blocked, if so just unbusy and
1334 * return the held page.
1336 if ((ptepa = pmap->pm_pdir[ptepindex]) != 0) {
1337 KKASSERT((ptepa & PG_FRAME) == VM_PAGE_TO_PHYS(m));
1338 vm_page_wakeup(m);
1339 return(m);
1342 if (m->wire_count == 0)
1343 vmstats.v_wire_count++;
1344 m->wire_count++;
1348 * Map the pagetable page into the process address space, if
1349 * it isn't already there.
1352 ++pmap->pm_stats.resident_count;
1354 ptepa = VM_PAGE_TO_PHYS(m);
1355 pmap->pm_pdir[ptepindex] =
1356 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1359 * Set the page table hint
1361 pmap->pm_ptphint = m;
1364 * Try to use the new mapping, but if we cannot, then
1365 * do it with the routine that maps the page explicitly.
1367 if ((m->flags & PG_ZERO) == 0) {
1368 if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1369 (((pd_entry_t) PTDpde) & PG_FRAME)) {
1370 pteva = UPT_MIN_ADDRESS + amd64_ptob(ptepindex);
1371 bzero((caddr_t) pteva, PAGE_SIZE);
1372 } else {
1373 pmap_zero_page(ptepa);
1377 m->valid = VM_PAGE_BITS_ALL;
1378 vm_page_flag_clear(m, PG_ZERO);
1379 vm_page_flag_set(m, PG_MAPPED);
1380 vm_page_wakeup(m);
1382 return m;
1385 static vm_page_t
1386 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1388 vm_pindex_t ptepindex;
1389 vm_offset_t ptepa;
1390 vm_page_t m;
1393 * Calculate pagetable page index
1395 ptepindex = va >> PDRSHIFT;
1398 * Get the page directory entry
1400 ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1403 * This supports switching from a 4MB page to a
1404 * normal 4K page.
1406 if (ptepa & PG_PS) {
1407 pmap->pm_pdir[ptepindex] = 0;
1408 ptepa = 0;
1409 cpu_invltlb();
1410 smp_invltlb();
1414 * If the page table page is mapped, we just increment the
1415 * hold count, and activate it.
1417 if (ptepa) {
1419 * In order to get the page table page, try the
1420 * hint first.
1422 if (pmap->pm_ptphint &&
1423 (pmap->pm_ptphint->pindex == ptepindex)) {
1424 m = pmap->pm_ptphint;
1425 } else {
1426 m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1427 pmap->pm_ptphint = m;
1429 m->hold_count++;
1430 return m;
1433 * Here if the pte page isn't mapped, or if it has been deallocated.
1435 return _pmap_allocpte(pmap, ptepindex);
1439 /***************************************************
1440 * Pmap allocation/deallocation routines.
1441 ***************************************************/
1444 * Release any resources held by the given physical map.
1445 * Called when a pmap initialized by pmap_pinit is being released.
1446 * Should only be called if the map contains no valid mappings.
1448 static int pmap_release_callback(struct vm_page *p, void *data);
1450 void
1451 pmap_release(struct pmap *pmap)
1453 vm_object_t object = pmap->pm_pteobj;
1454 struct rb_vm_page_scan_info info;
1456 KASSERT(pmap->pm_active == 0, ("pmap still active! %08x", pmap->pm_active));
1457 #if defined(DIAGNOSTIC)
1458 if (object->ref_count != 1)
1459 panic("pmap_release: pteobj reference count != 1");
1460 #endif
1462 info.pmap = pmap;
1463 info.object = object;
1464 crit_enter();
1465 TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1466 crit_exit();
1468 do {
1469 crit_enter();
1470 info.error = 0;
1471 info.mpte = NULL;
1472 info.limit = object->generation;
1474 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1475 pmap_release_callback, &info);
1476 if (info.error == 0 && info.mpte) {
1477 if (!pmap_release_free_page(pmap, info.mpte))
1478 info.error = 1;
1480 crit_exit();
1481 } while (info.error);
1484 static int
1485 pmap_release_callback(struct vm_page *p, void *data)
1487 struct rb_vm_page_scan_info *info = data;
1489 if (p->pindex == PTDPTDI) {
1490 info->mpte = p;
1491 return(0);
1493 if (!pmap_release_free_page(info->pmap, p)) {
1494 info->error = 1;
1495 return(-1);
1497 if (info->object->generation != info->limit) {
1498 info->error = 1;
1499 return(-1);
1501 return(0);
1505 * Grow the number of kernel page table entries, if needed.
1508 void
1509 pmap_growkernel(vm_offset_t addr)
1511 struct pmap *pmap;
1512 vm_offset_t ptppaddr;
1513 vm_page_t nkpg;
1514 pd_entry_t newpdir;
1516 crit_enter();
1517 if (kernel_vm_end == 0) {
1518 kernel_vm_end = KERNBASE;
1519 nkpt = 0;
1520 while (pdir_pde(PTD, kernel_vm_end)) {
1521 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1522 nkpt++;
1525 addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1526 while (kernel_vm_end < addr) {
1527 if (pdir_pde(PTD, kernel_vm_end)) {
1528 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1529 continue;
1533 * This index is bogus, but out of the way
1535 nkpg = vm_page_alloc(kptobj, nkpt,
1536 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT);
1537 if (nkpg == NULL)
1538 panic("pmap_growkernel: no memory to grow kernel");
1540 vm_page_wire(nkpg);
1541 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1542 pmap_zero_page(ptppaddr);
1543 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1544 pdir_pde(PTD, kernel_vm_end) = newpdir;
1545 *pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1546 nkpt++;
1549 * This update must be interlocked with pmap_pinit2.
1551 TAILQ_FOREACH(pmap, &pmap_list, pm_pmnode) {
1552 *pmap_pde(pmap, kernel_vm_end) = newpdir;
1554 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1555 ~(PAGE_SIZE * NPTEPG - 1);
1557 crit_exit();
1561 * Retire the given physical map from service.
1562 * Should only be called if the map contains
1563 * no valid mappings.
1565 void
1566 pmap_destroy(pmap_t pmap)
1568 int count;
1570 if (pmap == NULL)
1571 return;
1573 count = --pmap->pm_count;
1574 if (count == 0) {
1575 pmap_release(pmap);
1576 panic("destroying a pmap is not yet implemented");
1581 * Add a reference to the specified pmap.
1583 void
1584 pmap_reference(pmap_t pmap)
1586 if (pmap != NULL) {
1587 pmap->pm_count++;
1591 /***************************************************
1592 * page management routines.
1593 ***************************************************/
1596 * free the pv_entry back to the free list. This function may be
1597 * called from an interrupt.
1599 static PMAP_INLINE void
1600 free_pv_entry(pv_entry_t pv)
1602 pv_entry_count--;
1603 zfree(pvzone, pv);
1607 * get a new pv_entry, allocating a block from the system
1608 * when needed. This function may be called from an interrupt.
1610 static pv_entry_t
1611 get_pv_entry(void)
1613 pv_entry_count++;
1614 if (pv_entry_high_water &&
1615 (pv_entry_count > pv_entry_high_water) &&
1616 (pmap_pagedaemon_waken == 0)) {
1617 pmap_pagedaemon_waken = 1;
1618 wakeup (&vm_pages_needed);
1620 return zalloc(pvzone);
1624 * This routine is very drastic, but can save the system
1625 * in a pinch.
1627 void
1628 pmap_collect(void)
1630 int i;
1631 vm_page_t m;
1632 static int warningdone=0;
1634 if (pmap_pagedaemon_waken == 0)
1635 return;
1636 pmap_pagedaemon_waken = 0;
1638 if (warningdone < 5) {
1639 kprintf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1640 warningdone++;
1643 for(i = 0; i < vm_page_array_size; i++) {
1644 m = &vm_page_array[i];
1645 if (m->wire_count || m->hold_count || m->busy ||
1646 (m->flags & PG_BUSY))
1647 continue;
1648 pmap_remove_all(m);
1654 * If it is the first entry on the list, it is actually
1655 * in the header and we must copy the following entry up
1656 * to the header. Otherwise we must search the list for
1657 * the entry. In either case we free the now unused entry.
1659 static int
1660 pmap_remove_entry(struct pmap *pmap, vm_page_t m,
1661 vm_offset_t va, pmap_inval_info_t info)
1663 pv_entry_t pv;
1664 int rtval;
1666 crit_enter();
1667 if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1668 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1669 if (pmap == pv->pv_pmap && va == pv->pv_va)
1670 break;
1672 } else {
1673 TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1674 if (va == pv->pv_va)
1675 break;
1679 rtval = 0;
1680 if (pv) {
1681 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1682 m->md.pv_list_count--;
1683 if (TAILQ_EMPTY(&m->md.pv_list))
1684 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1685 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1686 ++pmap->pm_generation;
1687 rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem, info);
1688 free_pv_entry(pv);
1690 crit_exit();
1691 return rtval;
1695 * Create a pv entry for page at pa for
1696 * (pmap, va).
1698 static void
1699 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1701 pv_entry_t pv;
1703 crit_enter();
1704 pv = get_pv_entry();
1705 pv->pv_va = va;
1706 pv->pv_pmap = pmap;
1707 pv->pv_ptem = mpte;
1709 TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1710 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1711 m->md.pv_list_count++;
1713 crit_exit();
1717 * pmap_remove_pte: do the things to unmap a page in a process
1719 static int
1720 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
1721 pmap_inval_info_t info)
1723 pt_entry_t oldpte;
1724 vm_page_t m;
1726 pmap_inval_add(info, pmap, va);
1727 oldpte = pte_load_clear(ptq);
1728 if (oldpte & PG_W)
1729 pmap->pm_stats.wired_count -= 1;
1731 * Machines that don't support invlpg, also don't support
1732 * PG_G. XXX PG_G is disabled for SMP so don't worry about
1733 * the SMP case.
1735 if (oldpte & PG_G)
1736 cpu_invlpg((void *)va);
1737 KKASSERT(pmap->pm_stats.resident_count > 0);
1738 --pmap->pm_stats.resident_count;
1739 if (oldpte & PG_MANAGED) {
1740 m = PHYS_TO_VM_PAGE(oldpte);
1741 if (oldpte & PG_M) {
1742 #if defined(PMAP_DIAGNOSTIC)
1743 if (pmap_nw_modified((pt_entry_t) oldpte)) {
1744 kprintf(
1745 "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1746 va, oldpte);
1748 #endif
1749 if (pmap_track_modified(va))
1750 vm_page_dirty(m);
1752 if (oldpte & PG_A)
1753 vm_page_flag_set(m, PG_REFERENCED);
1754 return pmap_remove_entry(pmap, m, va, info);
1755 } else {
1756 return pmap_unuse_pt(pmap, va, NULL, info);
1759 return 0;
1763 * pmap_remove_page:
1765 * Remove a single page from a process address space.
1767 * This function may not be called from an interrupt if the pmap is
1768 * not kernel_pmap.
1770 static void
1771 pmap_remove_page(struct pmap *pmap, vm_offset_t va, pmap_inval_info_t info)
1773 pt_entry_t *ptq;
1776 * if there is no pte for this address, just skip it!!! Otherwise
1777 * get a local va for mappings for this pmap and remove the entry.
1779 if (*pmap_pde(pmap, va) != 0) {
1780 ptq = get_ptbase(pmap) + amd64_btop(va);
1781 if (*ptq) {
1782 pmap_remove_pte(pmap, ptq, va, info);
1788 * pmap_remove:
1790 * Remove the given range of addresses from the specified map.
1792 * It is assumed that the start and end are properly
1793 * rounded to the page size.
1795 * This function may not be called from an interrupt if the pmap is
1796 * not kernel_pmap.
1798 void
1799 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1801 pt_entry_t *ptbase;
1802 vm_offset_t pdnxt;
1803 vm_offset_t ptpaddr;
1804 vm_offset_t sindex, eindex;
1805 struct pmap_inval_info info;
1807 if (pmap == NULL)
1808 return;
1810 if (pmap->pm_stats.resident_count == 0)
1811 return;
1813 pmap_inval_init(&info);
1816 * special handling of removing one page. a very
1817 * common operation and easy to short circuit some
1818 * code.
1820 if (((sva + PAGE_SIZE) == eva) &&
1821 ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1822 pmap_remove_page(pmap, sva, &info);
1823 pmap_inval_flush(&info);
1824 return;
1828 * Get a local virtual address for the mappings that are being
1829 * worked with.
1831 sindex = amd64_btop(sva);
1832 eindex = amd64_btop(eva);
1834 for (; sindex < eindex; sindex = pdnxt) {
1835 vm_pindex_t pdirindex;
1838 * Calculate index for next page table.
1840 pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1841 if (pmap->pm_stats.resident_count == 0)
1842 break;
1844 pdirindex = sindex / NPDEPG;
1845 if (((ptpaddr = pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1846 pmap_inval_add(&info, pmap, -1);
1847 pmap->pm_pdir[pdirindex] = 0;
1848 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1849 continue;
1853 * Weed out invalid mappings. Note: we assume that the page
1854 * directory table is always allocated, and in kernel virtual.
1856 if (ptpaddr == 0)
1857 continue;
1860 * Limit our scan to either the end of the va represented
1861 * by the current page table page, or to the end of the
1862 * range being removed.
1864 if (pdnxt > eindex) {
1865 pdnxt = eindex;
1869 * NOTE: pmap_remove_pte() can block.
1871 for (; sindex != pdnxt; sindex++) {
1872 vm_offset_t va;
1874 ptbase = get_ptbase(pmap);
1875 if (ptbase[sindex] == 0)
1876 continue;
1877 va = amd64_ptob(sindex);
1878 if (pmap_remove_pte(pmap, ptbase + sindex, va, &info))
1879 break;
1882 pmap_inval_flush(&info);
1886 * pmap_remove_all:
1888 * Removes this physical page from all physical maps in which it resides.
1889 * Reflects back modify bits to the pager.
1891 * This routine may not be called from an interrupt.
1894 static void
1895 pmap_remove_all(vm_page_t m)
1897 struct pmap_inval_info info;
1898 pt_entry_t *pte, tpte;
1899 pv_entry_t pv;
1901 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1902 return;
1904 pmap_inval_init(&info);
1905 crit_enter();
1906 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1907 KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
1908 --pv->pv_pmap->pm_stats.resident_count;
1910 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1911 pmap_inval_add(&info, pv->pv_pmap, pv->pv_va);
1912 tpte = pte_load_clear(pte);
1914 if (tpte & PG_W)
1915 pv->pv_pmap->pm_stats.wired_count--;
1917 if (tpte & PG_A)
1918 vm_page_flag_set(m, PG_REFERENCED);
1921 * Update the vm_page_t clean and reference bits.
1923 if (tpte & PG_M) {
1924 #if defined(PMAP_DIAGNOSTIC)
1925 if (pmap_nw_modified((pt_entry_t) tpte)) {
1926 kprintf(
1927 "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1928 pv->pv_va, tpte);
1930 #endif
1931 if (pmap_track_modified(pv->pv_va))
1932 vm_page_dirty(m);
1934 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1935 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1936 ++pv->pv_pmap->pm_generation;
1937 m->md.pv_list_count--;
1938 if (TAILQ_EMPTY(&m->md.pv_list))
1939 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1940 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem, &info);
1941 free_pv_entry(pv);
1943 crit_exit();
1944 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
1945 pmap_inval_flush(&info);
1949 * pmap_protect:
1951 * Set the physical protection on the specified range of this map
1952 * as requested.
1954 * This function may not be called from an interrupt if the map is
1955 * not the kernel_pmap.
1957 void
1958 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1960 pt_entry_t *ptbase;
1961 vm_offset_t pdnxt, ptpaddr;
1962 vm_pindex_t sindex, eindex;
1963 pmap_inval_info info;
1965 if (pmap == NULL)
1966 return;
1968 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1969 pmap_remove(pmap, sva, eva);
1970 return;
1973 if (prot & VM_PROT_WRITE)
1974 return;
1976 pmap_inval_init(&info);
1978 ptbase = get_ptbase(pmap);
1980 sindex = amd64_btop(sva);
1981 eindex = amd64_btop(eva);
1983 for (; sindex < eindex; sindex = pdnxt) {
1985 vm_pindex_t pdirindex;
1987 pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1989 pdirindex = sindex / NPDEPG;
1990 if (((ptpaddr = pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1991 pmap_inval_add(&info, pmap, -1);
1992 pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1993 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1994 continue;
1998 * Weed out invalid mappings. Note: we assume that the page
1999 * directory table is always allocated, and in kernel virtual.
2001 if (ptpaddr == 0)
2002 continue;
2004 if (pdnxt > eindex) {
2005 pdnxt = eindex;
2008 for (; sindex != pdnxt; sindex++) {
2010 pt_entry_t pbits;
2011 vm_page_t m;
2014 * XXX non-optimal. Note also that there can be
2015 * no pmap_inval_flush() calls until after we modify
2016 * ptbase[sindex] (or otherwise we have to do another
2017 * pmap_inval_add() call).
2019 pmap_inval_add(&info, pmap, amd64_ptob(sindex));
2020 pbits = ptbase[sindex];
2022 if (pbits & PG_MANAGED) {
2023 m = NULL;
2024 if (pbits & PG_A) {
2025 m = PHYS_TO_VM_PAGE(pbits);
2026 vm_page_flag_set(m, PG_REFERENCED);
2027 pbits &= ~PG_A;
2029 if (pbits & PG_M) {
2030 if (pmap_track_modified(amd64_ptob(sindex))) {
2031 if (m == NULL)
2032 m = PHYS_TO_VM_PAGE(pbits);
2033 vm_page_dirty(m);
2034 pbits &= ~PG_M;
2039 pbits &= ~PG_RW;
2041 if (pbits != ptbase[sindex]) {
2042 ptbase[sindex] = pbits;
2046 pmap_inval_flush(&info);
2050 * Insert the given physical page (p) at
2051 * the specified virtual address (v) in the
2052 * target physical map with the protection requested.
2054 * If specified, the page will be wired down, meaning
2055 * that the related pte can not be reclaimed.
2057 * NB: This is the only routine which MAY NOT lazy-evaluate
2058 * or lose information. That is, this routine must actually
2059 * insert this page into the given map NOW.
2061 void
2062 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2063 boolean_t wired)
2065 vm_paddr_t pa;
2066 pt_entry_t *pte;
2067 vm_paddr_t opa;
2068 vm_offset_t origpte, newpte;
2069 vm_page_t mpte;
2070 pmap_inval_info info;
2072 if (pmap == NULL)
2073 return;
2075 va &= PG_FRAME;
2076 #ifdef PMAP_DIAGNOSTIC
2077 if (va >= KvaEnd)
2078 panic("pmap_enter: toobig");
2079 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2080 panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2081 #endif
2082 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2083 kprintf("Warning: pmap_enter called on UVA with kernel_pmap\n");
2084 #ifdef DDB
2085 db_print_backtrace();
2086 #endif
2088 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2089 kprintf("Warning: pmap_enter called on KVA without kernel_pmap\n");
2090 #ifdef DDB
2091 db_print_backtrace();
2092 #endif
2096 * In the case that a page table page is not
2097 * resident, we are creating it here.
2099 if (va < UPT_MIN_ADDRESS)
2100 mpte = pmap_allocpte(pmap, va);
2101 else
2102 mpte = NULL;
2104 pmap_inval_init(&info);
2105 pte = pmap_pte(pmap, va);
2108 * Page Directory table entry not valid, we need a new PT page
2110 if (pte == NULL) {
2111 panic("pmap_enter: invalid page directory pdir=%x, va=0x%x\n",
2112 pmap->pm_pdir[PTDPTDI], va);
2115 pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2116 origpte = *(vm_offset_t *)pte;
2117 opa = origpte & PG_FRAME;
2119 if (origpte & PG_PS)
2120 panic("pmap_enter: attempted pmap_enter on 4MB page");
2123 * Mapping has not changed, must be protection or wiring change.
2125 if (origpte && (opa == pa)) {
2127 * Wiring change, just update stats. We don't worry about
2128 * wiring PT pages as they remain resident as long as there
2129 * are valid mappings in them. Hence, if a user page is wired,
2130 * the PT page will be also.
2132 if (wired && ((origpte & PG_W) == 0))
2133 pmap->pm_stats.wired_count++;
2134 else if (!wired && (origpte & PG_W))
2135 pmap->pm_stats.wired_count--;
2137 #if defined(PMAP_DIAGNOSTIC)
2138 if (pmap_nw_modified((pt_entry_t) origpte)) {
2139 kprintf(
2140 "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2141 va, origpte);
2143 #endif
2146 * Remove the extra pte reference. Note that we cannot
2147 * optimize the RO->RW case because we have adjusted the
2148 * wiring count above and may need to adjust the wiring
2149 * bits below.
2151 if (mpte)
2152 mpte->hold_count--;
2155 * We might be turning off write access to the page,
2156 * so we go ahead and sense modify status.
2158 if (origpte & PG_MANAGED) {
2159 if ((origpte & PG_M) && pmap_track_modified(va)) {
2160 vm_page_t om;
2161 om = PHYS_TO_VM_PAGE(opa);
2162 vm_page_dirty(om);
2164 pa |= PG_MANAGED;
2165 KKASSERT(m->flags & PG_MAPPED);
2167 goto validate;
2170 * Mapping has changed, invalidate old range and fall through to
2171 * handle validating new mapping.
2173 if (opa) {
2174 int err;
2175 err = pmap_remove_pte(pmap, pte, va, &info);
2176 if (err)
2177 panic("pmap_enter: pte vanished, va: 0x%x", va);
2181 * Enter on the PV list if part of our managed memory. Note that we
2182 * raise IPL while manipulating pv_table since pmap_enter can be
2183 * called at interrupt time.
2185 if (pmap_initialized &&
2186 (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2187 pmap_insert_entry(pmap, va, mpte, m);
2188 pa |= PG_MANAGED;
2189 vm_page_flag_set(m, PG_MAPPED);
2193 * Increment counters
2195 ++pmap->pm_stats.resident_count;
2196 if (wired)
2197 pmap->pm_stats.wired_count++;
2199 validate:
2201 * Now validate mapping with desired protection/wiring.
2203 newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2205 if (wired)
2206 newpte |= PG_W;
2207 if (va < UPT_MIN_ADDRESS)
2208 newpte |= PG_U;
2209 if (pmap == &kernel_pmap)
2210 newpte |= pgeflag;
2213 * if the mapping or permission bits are different, we need
2214 * to update the pte.
2216 if ((origpte & ~(PG_M|PG_A)) != newpte) {
2217 pmap_inval_add(&info, pmap, va);
2218 *pte = newpte | PG_A;
2219 if (newpte & PG_RW)
2220 vm_page_flag_set(m, PG_WRITEABLE);
2222 KKASSERT((newpte & PG_MANAGED) == 0 || (m->flags & PG_MAPPED));
2223 pmap_inval_flush(&info);
2227 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2228 * This code also assumes that the pmap has no pre-existing entry for this
2229 * VA.
2231 * This code currently may only be used on user pmaps, not kernel_pmap.
2233 static void
2234 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2236 pt_entry_t *pte;
2237 vm_paddr_t pa;
2238 vm_page_t mpte;
2239 vm_pindex_t ptepindex;
2240 vm_offset_t ptepa;
2241 pmap_inval_info info;
2243 pmap_inval_init(&info);
2245 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2246 kprintf("Warning: pmap_enter_quick called on UVA with kernel_pmap\n");
2247 #ifdef DDB
2248 db_print_backtrace();
2249 #endif
2251 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2252 kprintf("Warning: pmap_enter_quick called on KVA without kernel_pmap\n");
2253 #ifdef DDB
2254 db_print_backtrace();
2255 #endif
2258 KKASSERT(va < UPT_MIN_ADDRESS); /* assert used on user pmaps only */
2261 * Calculate the page table page (mpte), allocating it if necessary.
2263 * A held page table page (mpte), or NULL, is passed onto the
2264 * section following.
2266 if (va < UPT_MIN_ADDRESS) {
2268 * Calculate pagetable page index
2270 ptepindex = va >> PDRSHIFT;
2272 do {
2274 * Get the page directory entry
2276 ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2279 * If the page table page is mapped, we just increment
2280 * the hold count, and activate it.
2282 if (ptepa) {
2283 if (ptepa & PG_PS)
2284 panic("pmap_enter_quick: unexpected mapping into 4MB page");
2285 if (pmap->pm_ptphint &&
2286 (pmap->pm_ptphint->pindex == ptepindex)) {
2287 mpte = pmap->pm_ptphint;
2288 } else {
2289 mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2290 pmap->pm_ptphint = mpte;
2292 if (mpte)
2293 mpte->hold_count++;
2294 } else {
2295 mpte = _pmap_allocpte(pmap, ptepindex);
2297 } while (mpte == NULL);
2298 } else {
2299 mpte = NULL;
2300 /* this code path is not yet used */
2304 * With a valid (and held) page directory page, we can just use
2305 * vtopte() to get to the pte. If the pte is already present
2306 * we do not disturb it.
2308 pte = vtopte(va);
2309 if (*pte & PG_V) {
2310 if (mpte)
2311 pmap_unwire_pte_hold(pmap, mpte, &info);
2312 pa = VM_PAGE_TO_PHYS(m);
2313 KKASSERT(((*pte ^ pa) & PG_FRAME) == 0);
2314 return;
2318 * Enter on the PV list if part of our managed memory
2320 if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2321 pmap_insert_entry(pmap, va, mpte, m);
2322 vm_page_flag_set(m, PG_MAPPED);
2326 * Increment counters
2328 ++pmap->pm_stats.resident_count;
2330 pa = VM_PAGE_TO_PHYS(m);
2333 * Now validate mapping with RO protection
2335 if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2336 *pte = pa | PG_V | PG_U;
2337 else
2338 *pte = pa | PG_V | PG_U | PG_MANAGED;
2339 /* pmap_inval_add(&info, pmap, va); shouldn't be needed inval->valid */
2340 pmap_inval_flush(&info);
2344 * Make a temporary mapping for a physical address. This is only intended
2345 * to be used for panic dumps.
2347 void *
2348 pmap_kenter_temporary(vm_paddr_t pa, int i)
2350 pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2351 return ((void *)crashdumpmap);
2354 #define MAX_INIT_PT (96)
2357 * This routine preloads the ptes for a given object into the specified pmap.
2358 * This eliminates the blast of soft faults on process startup and
2359 * immediately after an mmap.
2361 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2363 void
2364 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2365 vm_object_t object, vm_pindex_t pindex,
2366 vm_size_t size, int limit)
2368 struct rb_vm_page_scan_info info;
2369 struct lwp *lp;
2370 int psize;
2373 * We can't preinit if read access isn't set or there is no pmap
2374 * or object.
2376 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2377 return;
2380 * We can't preinit if the pmap is not the current pmap
2382 lp = curthread->td_lwp;
2383 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2384 return;
2386 psize = amd64_btop(size);
2388 if ((object->type != OBJT_VNODE) ||
2389 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2390 (object->resident_page_count > MAX_INIT_PT))) {
2391 return;
2394 if (psize + pindex > object->size) {
2395 if (object->size < pindex)
2396 return;
2397 psize = object->size - pindex;
2400 if (psize == 0)
2401 return;
2404 * Use a red-black scan to traverse the requested range and load
2405 * any valid pages found into the pmap.
2407 * We cannot safely scan the object's memq unless we are in a
2408 * critical section since interrupts can remove pages from objects.
2410 info.start_pindex = pindex;
2411 info.end_pindex = pindex + psize - 1;
2412 info.limit = limit;
2413 info.mpte = NULL;
2414 info.addr = addr;
2415 info.pmap = pmap;
2417 crit_enter();
2418 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2419 pmap_object_init_pt_callback, &info);
2420 crit_exit();
2423 static
2425 pmap_object_init_pt_callback(vm_page_t p, void *data)
2427 struct rb_vm_page_scan_info *info = data;
2428 vm_pindex_t rel_index;
2430 * don't allow an madvise to blow away our really
2431 * free pages allocating pv entries.
2433 if ((info->limit & MAP_PREFAULT_MADVISE) &&
2434 vmstats.v_free_count < vmstats.v_free_reserved) {
2435 return(-1);
2437 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2438 (p->busy == 0) && (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2439 if ((p->queue - p->pc) == PQ_CACHE)
2440 vm_page_deactivate(p);
2441 vm_page_busy(p);
2442 rel_index = p->pindex - info->start_pindex;
2443 pmap_enter_quick(info->pmap,
2444 info->addr + amd64_ptob(rel_index), p);
2445 vm_page_wakeup(p);
2447 return(0);
2451 * pmap_prefault provides a quick way of clustering pagefaults into a
2452 * processes address space. It is a "cousin" of pmap_object_init_pt,
2453 * except it runs at page fault time instead of mmap time.
2455 #define PFBAK 4
2456 #define PFFOR 4
2457 #define PAGEORDER_SIZE (PFBAK+PFFOR)
2459 static int pmap_prefault_pageorder[] = {
2460 -PAGE_SIZE, PAGE_SIZE,
2461 -2 * PAGE_SIZE, 2 * PAGE_SIZE,
2462 -3 * PAGE_SIZE, 3 * PAGE_SIZE,
2463 -4 * PAGE_SIZE, 4 * PAGE_SIZE
2466 void
2467 pmap_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
2469 int i;
2470 vm_offset_t starta;
2471 vm_offset_t addr;
2472 vm_pindex_t pindex;
2473 vm_page_t m;
2474 vm_object_t object;
2475 struct lwp *lp;
2478 * We do not currently prefault mappings that use virtual page
2479 * tables. We do not prefault foreign pmaps.
2481 if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2482 return;
2483 lp = curthread->td_lwp;
2484 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2485 return;
2487 object = entry->object.vm_object;
2489 starta = addra - PFBAK * PAGE_SIZE;
2490 if (starta < entry->start)
2491 starta = entry->start;
2492 else if (starta > addra)
2493 starta = 0;
2496 * critical section protection is required to maintain the
2497 * page/object association, interrupts can free pages and remove
2498 * them from their objects.
2500 crit_enter();
2501 for (i = 0; i < PAGEORDER_SIZE; i++) {
2502 vm_object_t lobject;
2503 pt_entry_t *pte;
2505 addr = addra + pmap_prefault_pageorder[i];
2506 if (addr > addra + (PFFOR * PAGE_SIZE))
2507 addr = 0;
2509 if (addr < starta || addr >= entry->end)
2510 continue;
2512 if ((*pmap_pde(pmap, addr)) == 0)
2513 continue;
2515 pte = vtopte(addr);
2516 if (*pte)
2517 continue;
2519 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2520 lobject = object;
2522 for (m = vm_page_lookup(lobject, pindex);
2523 (!m && (lobject->type == OBJT_DEFAULT) &&
2524 (lobject->backing_object));
2525 lobject = lobject->backing_object
2527 if (lobject->backing_object_offset & PAGE_MASK)
2528 break;
2529 pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2530 m = vm_page_lookup(lobject->backing_object, pindex);
2534 * give-up when a page is not in memory
2536 if (m == NULL)
2537 break;
2539 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2540 (m->busy == 0) &&
2541 (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2543 if ((m->queue - m->pc) == PQ_CACHE) {
2544 vm_page_deactivate(m);
2546 vm_page_busy(m);
2547 pmap_enter_quick(pmap, addr, m);
2548 vm_page_wakeup(m);
2551 crit_exit();
2555 * Routine: pmap_change_wiring
2556 * Function: Change the wiring attribute for a map/virtual-address
2557 * pair.
2558 * In/out conditions:
2559 * The mapping must already exist in the pmap.
2561 void
2562 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2564 pt_entry_t *pte;
2566 if (pmap == NULL)
2567 return;
2569 pte = pmap_pte(pmap, va);
2571 if (wired && !pmap_pte_w(pte))
2572 pmap->pm_stats.wired_count++;
2573 else if (!wired && pmap_pte_w(pte))
2574 pmap->pm_stats.wired_count--;
2577 * Wiring is not a hardware characteristic so there is no need to
2578 * invalidate TLB. However, in an SMP environment we must use
2579 * a locked bus cycle to update the pte (if we are not using
2580 * the pmap_inval_*() API that is)... it's ok to do this for simple
2581 * wiring changes.
2583 #ifdef SMP
2584 if (wired)
2585 atomic_set_int(pte, PG_W);
2586 else
2587 atomic_clear_int(pte, PG_W);
2588 #else
2589 if (wired)
2590 atomic_set_int_nonlocked(pte, PG_W);
2591 else
2592 atomic_clear_int_nonlocked(pte, PG_W);
2593 #endif
2599 * Copy the range specified by src_addr/len
2600 * from the source map to the range dst_addr/len
2601 * in the destination map.
2603 * This routine is only advisory and need not do anything.
2605 void
2606 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2607 vm_size_t len, vm_offset_t src_addr)
2609 pmap_inval_info info;
2610 vm_offset_t addr;
2611 vm_offset_t end_addr = src_addr + len;
2612 vm_offset_t pdnxt;
2613 pd_entry_t src_frame, dst_frame;
2614 vm_page_t m;
2616 if (dst_addr != src_addr)
2617 return;
2619 * XXX BUGGY. Amoung other things srcmpte is assumed to remain
2620 * valid through blocking calls, and that's just not going to
2621 * be the case.
2623 * FIXME!
2625 return;
2627 src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2628 if (src_frame != (PTDpde & PG_FRAME)) {
2629 return;
2632 dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2633 if (dst_frame != (APTDpde & PG_FRAME)) {
2634 APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2635 /* The page directory is not shared between CPUs */
2636 cpu_invltlb();
2638 pmap_inval_init(&info);
2639 pmap_inval_add(&info, dst_pmap, -1);
2640 pmap_inval_add(&info, src_pmap, -1);
2643 * critical section protection is required to maintain the page/object
2644 * association, interrupts can free pages and remove them from
2645 * their objects.
2647 crit_enter();
2648 for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2649 pt_entry_t *src_pte, *dst_pte;
2650 vm_page_t dstmpte, srcmpte;
2651 vm_offset_t srcptepaddr;
2652 vm_pindex_t ptepindex;
2654 if (addr >= UPT_MIN_ADDRESS)
2655 panic("pmap_copy: invalid to pmap_copy page tables\n");
2658 * Don't let optional prefaulting of pages make us go
2659 * way below the low water mark of free pages or way
2660 * above high water mark of used pv entries.
2662 if (vmstats.v_free_count < vmstats.v_free_reserved ||
2663 pv_entry_count > pv_entry_high_water)
2664 break;
2666 pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2667 ptepindex = addr >> PDRSHIFT;
2669 srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2670 if (srcptepaddr == 0)
2671 continue;
2673 if (srcptepaddr & PG_PS) {
2674 if (dst_pmap->pm_pdir[ptepindex] == 0) {
2675 dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
2676 dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2678 continue;
2681 srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2682 if ((srcmpte == NULL) || (srcmpte->hold_count == 0) ||
2683 (srcmpte->flags & PG_BUSY)) {
2684 continue;
2687 if (pdnxt > end_addr)
2688 pdnxt = end_addr;
2690 src_pte = vtopte(addr);
2691 dst_pte = avtopte(addr);
2692 while (addr < pdnxt) {
2693 pt_entry_t ptetemp;
2695 ptetemp = *src_pte;
2697 * we only virtual copy managed pages
2699 if ((ptetemp & PG_MANAGED) != 0) {
2701 * We have to check after allocpte for the
2702 * pte still being around... allocpte can
2703 * block.
2705 * pmap_allocpte() can block. If we lose
2706 * our page directory mappings we stop.
2708 dstmpte = pmap_allocpte(dst_pmap, addr);
2710 if (src_frame != (PTDpde & PG_FRAME) ||
2711 dst_frame != (APTDpde & PG_FRAME)
2713 kprintf("WARNING: pmap_copy: detected and corrected race\n");
2714 pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
2715 goto failed;
2716 } else if ((*dst_pte == 0) &&
2717 (ptetemp = *src_pte) != 0 &&
2718 (ptetemp & PG_MANAGED)) {
2720 * Clear the modified and
2721 * accessed (referenced) bits
2722 * during the copy.
2724 m = PHYS_TO_VM_PAGE(ptetemp);
2725 *dst_pte = ptetemp & ~(PG_M | PG_A);
2726 ++dst_pmap->pm_stats.resident_count;
2727 pmap_insert_entry(dst_pmap, addr,
2728 dstmpte, m);
2729 KKASSERT(m->flags & PG_MAPPED);
2730 } else {
2731 kprintf("WARNING: pmap_copy: dst_pte race detected and corrected\n");
2732 pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
2733 goto failed;
2735 if (dstmpte->hold_count >= srcmpte->hold_count)
2736 break;
2738 addr += PAGE_SIZE;
2739 src_pte++;
2740 dst_pte++;
2743 failed:
2744 crit_exit();
2745 pmap_inval_flush(&info);
2749 * pmap_zero_page:
2751 * Zero the specified PA by mapping the page into KVM and clearing its
2752 * contents.
2754 * This function may be called from an interrupt and no locking is
2755 * required.
2757 void
2758 pmap_zero_page(vm_paddr_t phys)
2760 struct mdglobaldata *gd = mdcpu;
2762 crit_enter();
2763 if (*gd->gd_CMAP3)
2764 panic("pmap_zero_page: CMAP3 busy");
2765 *gd->gd_CMAP3 =
2766 PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2767 cpu_invlpg(gd->gd_CADDR3);
2769 #if defined(I686_CPU)
2770 if (cpu_class == CPUCLASS_686)
2771 i686_pagezero(gd->gd_CADDR3);
2772 else
2773 #endif
2774 bzero(gd->gd_CADDR3, PAGE_SIZE);
2775 *gd->gd_CMAP3 = 0;
2776 crit_exit();
2780 * pmap_page_assertzero:
2782 * Assert that a page is empty, panic if it isn't.
2784 void
2785 pmap_page_assertzero(vm_paddr_t phys)
2787 struct mdglobaldata *gd = mdcpu;
2788 int i;
2790 crit_enter();
2791 if (*gd->gd_CMAP3)
2792 panic("pmap_zero_page: CMAP3 busy");
2793 *gd->gd_CMAP3 =
2794 PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2795 cpu_invlpg(gd->gd_CADDR3);
2796 for (i = 0; i < PAGE_SIZE; i += sizeof(int)) {
2797 if (*(int *)((char *)gd->gd_CADDR3 + i) != 0) {
2798 panic("pmap_page_assertzero() @ %p not zero!\n",
2799 (void *)gd->gd_CADDR3);
2802 *gd->gd_CMAP3 = 0;
2803 crit_exit();
2807 * pmap_zero_page:
2809 * Zero part of a physical page by mapping it into memory and clearing
2810 * its contents with bzero.
2812 * off and size may not cover an area beyond a single hardware page.
2814 void
2815 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2817 struct mdglobaldata *gd = mdcpu;
2819 crit_enter();
2820 if (*gd->gd_CMAP3)
2821 panic("pmap_zero_page: CMAP3 busy");
2822 *gd->gd_CMAP3 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2823 cpu_invlpg(gd->gd_CADDR3);
2825 #if defined(I686_CPU)
2826 if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2827 i686_pagezero(gd->gd_CADDR3);
2828 else
2829 #endif
2830 bzero((char *)gd->gd_CADDR3 + off, size);
2831 *gd->gd_CMAP3 = 0;
2832 crit_exit();
2836 * pmap_copy_page:
2838 * Copy the physical page from the source PA to the target PA.
2839 * This function may be called from an interrupt. No locking
2840 * is required.
2842 void
2843 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2845 struct mdglobaldata *gd = mdcpu;
2847 crit_enter();
2848 if (*gd->gd_CMAP1)
2849 panic("pmap_copy_page: CMAP1 busy");
2850 if (*gd->gd_CMAP2)
2851 panic("pmap_copy_page: CMAP2 busy");
2853 *gd->gd_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2854 *gd->gd_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2856 cpu_invlpg(gd->gd_CADDR1);
2857 cpu_invlpg(gd->gd_CADDR2);
2859 bcopy(gd->gd_CADDR1, gd->gd_CADDR2, PAGE_SIZE);
2861 *gd->gd_CMAP1 = 0;
2862 *gd->gd_CMAP2 = 0;
2863 crit_exit();
2867 * pmap_copy_page_frag:
2869 * Copy the physical page from the source PA to the target PA.
2870 * This function may be called from an interrupt. No locking
2871 * is required.
2873 void
2874 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2876 struct mdglobaldata *gd = mdcpu;
2878 crit_enter();
2879 if (*gd->gd_CMAP1)
2880 panic("pmap_copy_page: CMAP1 busy");
2881 if (*gd->gd_CMAP2)
2882 panic("pmap_copy_page: CMAP2 busy");
2884 *gd->gd_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2885 *gd->gd_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2887 cpu_invlpg(gd->gd_CADDR1);
2888 cpu_invlpg(gd->gd_CADDR2);
2890 bcopy((char *)gd->gd_CADDR1 + (src & PAGE_MASK),
2891 (char *)gd->gd_CADDR2 + (dst & PAGE_MASK),
2892 bytes);
2894 *gd->gd_CMAP1 = 0;
2895 *gd->gd_CMAP2 = 0;
2896 crit_exit();
2900 * Returns true if the pmap's pv is one of the first
2901 * 16 pvs linked to from this page. This count may
2902 * be changed upwards or downwards in the future; it
2903 * is only necessary that true be returned for a small
2904 * subset of pmaps for proper page aging.
2906 boolean_t
2907 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2909 pv_entry_t pv;
2910 int loops = 0;
2912 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2913 return FALSE;
2915 crit_enter();
2917 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2918 if (pv->pv_pmap == pmap) {
2919 crit_exit();
2920 return TRUE;
2922 loops++;
2923 if (loops >= 16)
2924 break;
2926 crit_exit();
2927 return (FALSE);
2931 * Remove all pages from specified address space
2932 * this aids process exit speeds. Also, this code
2933 * is special cased for current process only, but
2934 * can have the more generic (and slightly slower)
2935 * mode enabled. This is much faster than pmap_remove
2936 * in the case of running down an entire address space.
2938 void
2939 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2941 struct lwp *lp;
2942 pt_entry_t *pte, tpte;
2943 pv_entry_t pv, npv;
2944 vm_page_t m;
2945 pmap_inval_info info;
2946 int iscurrentpmap;
2947 int32_t save_generation;
2949 lp = curthread->td_lwp;
2950 if (lp && pmap == vmspace_pmap(lp->lwp_vmspace))
2951 iscurrentpmap = 1;
2952 else
2953 iscurrentpmap = 0;
2955 pmap_inval_init(&info);
2956 crit_enter();
2957 for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2958 if (pv->pv_va >= eva || pv->pv_va < sva) {
2959 npv = TAILQ_NEXT(pv, pv_plist);
2960 continue;
2963 KKASSERT(pmap == pv->pv_pmap);
2965 if (iscurrentpmap)
2966 pte = vtopte(pv->pv_va);
2967 else
2968 pte = pmap_pte_quick(pmap, pv->pv_va);
2969 if (pmap->pm_active)
2970 pmap_inval_add(&info, pmap, pv->pv_va);
2973 * We cannot remove wired pages from a process' mapping
2974 * at this time
2976 if (*pte & PG_W) {
2977 npv = TAILQ_NEXT(pv, pv_plist);
2978 continue;
2980 tpte = pte_load_clear(pte);
2982 m = PHYS_TO_VM_PAGE(tpte);
2984 KASSERT(m < &vm_page_array[vm_page_array_size],
2985 ("pmap_remove_pages: bad tpte %x", tpte));
2987 KKASSERT(pmap->pm_stats.resident_count > 0);
2988 --pmap->pm_stats.resident_count;
2991 * Update the vm_page_t clean and reference bits.
2993 if (tpte & PG_M) {
2994 vm_page_dirty(m);
2997 npv = TAILQ_NEXT(pv, pv_plist);
2998 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2999 save_generation = ++pmap->pm_generation;
3001 m->md.pv_list_count--;
3002 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3003 if (TAILQ_EMPTY(&m->md.pv_list))
3004 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3006 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem, &info);
3007 free_pv_entry(pv);
3010 * Restart the scan if we blocked during the unuse or free
3011 * calls and other removals were made.
3013 if (save_generation != pmap->pm_generation) {
3014 kprintf("Warning: pmap_remove_pages race-A avoided\n");
3015 pv = TAILQ_FIRST(&pmap->pm_pvlist);
3018 pmap_inval_flush(&info);
3019 crit_exit();
3023 * pmap_testbit tests bits in pte's
3024 * note that the testbit/clearbit routines are inline,
3025 * and a lot of things compile-time evaluate.
3027 static boolean_t
3028 pmap_testbit(vm_page_t m, int bit)
3030 pv_entry_t pv;
3031 pt_entry_t *pte;
3033 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3034 return FALSE;
3036 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3037 return FALSE;
3039 crit_enter();
3041 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3043 * if the bit being tested is the modified bit, then
3044 * mark clean_map and ptes as never
3045 * modified.
3047 if (bit & (PG_A|PG_M)) {
3048 if (!pmap_track_modified(pv->pv_va))
3049 continue;
3052 #if defined(PMAP_DIAGNOSTIC)
3053 if (!pv->pv_pmap) {
3054 kprintf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3055 continue;
3057 #endif
3058 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3059 if (*pte & bit) {
3060 crit_exit();
3061 return TRUE;
3064 crit_exit();
3065 return (FALSE);
3069 * this routine is used to modify bits in ptes
3071 static __inline void
3072 pmap_clearbit(vm_page_t m, int bit)
3074 struct pmap_inval_info info;
3075 pv_entry_t pv;
3076 pt_entry_t *pte;
3077 pt_entry_t pbits;
3079 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3080 return;
3082 pmap_inval_init(&info);
3083 crit_enter();
3086 * Loop over all current mappings setting/clearing as appropos If
3087 * setting RO do we need to clear the VAC?
3089 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3091 * don't write protect pager mappings
3093 if (bit == PG_RW) {
3094 if (!pmap_track_modified(pv->pv_va))
3095 continue;
3098 #if defined(PMAP_DIAGNOSTIC)
3099 if (!pv->pv_pmap) {
3100 kprintf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3101 continue;
3103 #endif
3106 * Careful here. We can use a locked bus instruction to
3107 * clear PG_A or PG_M safely but we need to synchronize
3108 * with the target cpus when we mess with PG_RW.
3110 * We do not have to force synchronization when clearing
3111 * PG_M even for PTEs generated via virtual memory maps,
3112 * because the virtual kernel will invalidate the pmap
3113 * entry when/if it needs to resynchronize the Modify bit.
3115 if (bit & PG_RW)
3116 pmap_inval_add(&info, pv->pv_pmap, pv->pv_va);
3117 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3118 again:
3119 pbits = *pte;
3120 if (pbits & bit) {
3121 if (bit == PG_RW) {
3122 if (pbits & PG_M) {
3123 vm_page_dirty(m);
3124 atomic_clear_int(pte, PG_M|PG_RW);
3125 } else {
3127 * The cpu may be trying to set PG_M
3128 * simultaniously with our clearing
3129 * of PG_RW.
3131 if (!atomic_cmpset_int(pte, pbits,
3132 pbits & ~PG_RW))
3133 goto again;
3135 } else if (bit == PG_M) {
3137 * We could also clear PG_RW here to force
3138 * a fault on write to redetect PG_M for
3139 * virtual kernels, but it isn't necessary
3140 * since virtual kernels invalidate the pte
3141 * when they clear the VPTE_M bit in their
3142 * virtual page tables.
3144 atomic_clear_int(pte, PG_M);
3145 } else {
3146 atomic_clear_int(pte, bit);
3150 pmap_inval_flush(&info);
3151 crit_exit();
3155 * pmap_page_protect:
3157 * Lower the permission for all mappings to a given page.
3159 void
3160 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3162 if ((prot & VM_PROT_WRITE) == 0) {
3163 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3164 pmap_clearbit(m, PG_RW);
3165 vm_page_flag_clear(m, PG_WRITEABLE);
3166 } else {
3167 pmap_remove_all(m);
3172 vm_paddr_t
3173 pmap_phys_address(vm_pindex_t ppn)
3175 return (amd64_ptob(ppn));
3179 * pmap_ts_referenced:
3181 * Return a count of reference bits for a page, clearing those bits.
3182 * It is not necessary for every reference bit to be cleared, but it
3183 * is necessary that 0 only be returned when there are truly no
3184 * reference bits set.
3186 * XXX: The exact number of bits to check and clear is a matter that
3187 * should be tested and standardized at some point in the future for
3188 * optimal aging of shared pages.
3191 pmap_ts_referenced(vm_page_t m)
3193 pv_entry_t pv, pvf, pvn;
3194 pt_entry_t *pte;
3195 int rtval = 0;
3197 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3198 return (rtval);
3200 crit_enter();
3202 if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3204 pvf = pv;
3206 do {
3207 pvn = TAILQ_NEXT(pv, pv_list);
3209 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3211 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3213 if (!pmap_track_modified(pv->pv_va))
3214 continue;
3216 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3218 if (pte && (*pte & PG_A)) {
3219 #ifdef SMP
3220 atomic_clear_int(pte, PG_A);
3221 #else
3222 atomic_clear_int_nonlocked(pte, PG_A);
3223 #endif
3224 rtval++;
3225 if (rtval > 4) {
3226 break;
3229 } while ((pv = pvn) != NULL && pv != pvf);
3231 crit_exit();
3233 return (rtval);
3237 * pmap_is_modified:
3239 * Return whether or not the specified physical page was modified
3240 * in any physical maps.
3242 boolean_t
3243 pmap_is_modified(vm_page_t m)
3245 return pmap_testbit(m, PG_M);
3249 * Clear the modify bits on the specified physical page.
3251 void
3252 pmap_clear_modify(vm_page_t m)
3254 pmap_clearbit(m, PG_M);
3258 * pmap_clear_reference:
3260 * Clear the reference bit on the specified physical page.
3262 void
3263 pmap_clear_reference(vm_page_t m)
3265 pmap_clearbit(m, PG_A);
3269 * Miscellaneous support routines follow
3272 static void
3273 i386_protection_init(void)
3275 int *kp, prot;
3277 kp = protection_codes;
3278 for (prot = 0; prot < 8; prot++) {
3279 switch (prot) {
3280 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3282 * Read access is also 0. There isn't any execute bit,
3283 * so just make it readable.
3285 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3286 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3287 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3288 *kp++ = 0;
3289 break;
3290 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3291 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3292 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3293 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3294 *kp++ = PG_RW;
3295 break;
3301 * Map a set of physical memory pages into the kernel virtual
3302 * address space. Return a pointer to where it is mapped. This
3303 * routine is intended to be used for mapping device memory,
3304 * NOT real memory.
3306 * NOTE: we can't use pgeflag unless we invalidate the pages one at
3307 * a time.
3309 void *
3310 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3312 vm_offset_t va, tmpva, offset;
3313 pt_entry_t *pte;
3315 offset = pa & PAGE_MASK;
3316 size = roundup(offset + size, PAGE_SIZE);
3318 va = kmem_alloc_nofault(&kernel_map, size);
3319 if (!va)
3320 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3322 pa = pa & PG_FRAME;
3323 for (tmpva = va; size > 0;) {
3324 pte = vtopte(tmpva);
3325 *pte = pa | PG_RW | PG_V; /* | pgeflag; */
3326 size -= PAGE_SIZE;
3327 tmpva += PAGE_SIZE;
3328 pa += PAGE_SIZE;
3330 cpu_invltlb();
3331 smp_invltlb();
3333 return ((void *)(va + offset));
3336 void
3337 pmap_unmapdev(vm_offset_t va, vm_size_t size)
3339 vm_offset_t base, offset;
3341 base = va & PG_FRAME;
3342 offset = va & PAGE_MASK;
3343 size = roundup(offset + size, PAGE_SIZE);
3344 pmap_qremove(va, size >> PAGE_SHIFT);
3345 kmem_free(&kernel_map, base, size);
3349 * perform the pmap work for mincore
3352 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3354 pt_entry_t *ptep, pte;
3355 vm_page_t m;
3356 int val = 0;
3358 ptep = pmap_pte(pmap, addr);
3359 if (ptep == 0) {
3360 return 0;
3363 if ((pte = *ptep) != 0) {
3364 vm_offset_t pa;
3366 val = MINCORE_INCORE;
3367 if ((pte & PG_MANAGED) == 0)
3368 return val;
3370 pa = pte & PG_FRAME;
3372 m = PHYS_TO_VM_PAGE(pa);
3375 * Modified by us
3377 if (pte & PG_M)
3378 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3380 * Modified by someone
3382 else if (m->dirty || pmap_is_modified(m))
3383 val |= MINCORE_MODIFIED_OTHER;
3385 * Referenced by us
3387 if (pte & PG_A)
3388 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3391 * Referenced by someone
3393 else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3394 val |= MINCORE_REFERENCED_OTHER;
3395 vm_page_flag_set(m, PG_REFERENCED);
3398 return val;
3402 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
3403 * vmspace will be ref'd and the old one will be deref'd.
3405 * The vmspace for all lwps associated with the process will be adjusted
3406 * and cr3 will be reloaded if any lwp is the current lwp.
3408 void
3409 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3411 struct vmspace *oldvm;
3412 struct lwp *lp;
3414 crit_enter();
3415 oldvm = p->p_vmspace;
3416 if (oldvm != newvm) {
3417 p->p_vmspace = newvm;
3418 KKASSERT(p->p_nthreads == 1);
3419 lp = RB_ROOT(&p->p_lwp_tree);
3420 pmap_setlwpvm(lp, newvm);
3421 if (adjrefs) {
3422 sysref_get(&newvm->vm_sysref);
3423 sysref_put(&oldvm->vm_sysref);
3426 crit_exit();
3430 * Set the vmspace for a LWP. The vmspace is almost universally set the
3431 * same as the process vmspace, but virtual kernels need to swap out contexts
3432 * on a per-lwp basis.
3434 void
3435 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3437 struct vmspace *oldvm;
3438 struct pmap *pmap;
3440 crit_enter();
3441 oldvm = lp->lwp_vmspace;
3443 if (oldvm != newvm) {
3444 lp->lwp_vmspace = newvm;
3445 if (curthread->td_lwp == lp) {
3446 pmap = vmspace_pmap(newvm);
3447 #if defined(SMP)
3448 atomic_set_int(&pmap->pm_active, 1 << mycpu->gd_cpuid);
3449 #else
3450 pmap->pm_active |= 1;
3451 #endif
3452 #if defined(SWTCH_OPTIM_STATS)
3453 tlb_flush_count++;
3454 #endif
3455 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pdir);
3456 curthread->td_pcb->pcb_cr3 |= PG_RW | PG_U | PG_V;
3457 *link_pdpe = curthread->td_pcb->pcb_cr3 | PG_RW | PG_U | PG_V;
3458 load_cr3(common_lvl4_phys);
3459 pmap = vmspace_pmap(oldvm);
3460 #if defined(SMP)
3461 atomic_clear_int(&pmap->pm_active,
3462 1 << mycpu->gd_cpuid);
3463 #else
3464 pmap->pm_active &= ~1;
3465 #endif
3468 crit_exit();
3471 vm_offset_t
3472 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3475 if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3476 return addr;
3479 addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3480 return addr;
3484 #if defined(DEBUG)
3486 static void pads (pmap_t pm);
3487 void pmap_pvdump (vm_paddr_t pa);
3489 /* print address space of pmap*/
3490 static void
3491 pads(pmap_t pm)
3493 vm_offset_t va;
3494 unsigned i, j;
3495 pt_entry_t *ptep;
3497 if (pm == &kernel_pmap)
3498 return;
3499 crit_enter();
3500 for (i = 0; i < NPDEPG; i++) {
3501 if (pm->pm_pdir[i]) {
3502 for (j = 0; j < NPTEPG; j++) {
3503 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3504 if (pm == &kernel_pmap && va < KERNBASE)
3505 continue;
3506 if (pm != &kernel_pmap && va > UPT_MAX_ADDRESS)
3507 continue;
3508 ptep = pmap_pte_quick(pm, va);
3509 if (pmap_pte_v(ptep))
3510 kprintf("%lx:%lx ", va, *ptep);
3514 crit_exit();
3518 void
3519 pmap_pvdump(vm_paddr_t pa)
3521 pv_entry_t pv;
3522 vm_page_t m;
3524 kprintf("pa %08llx", (long long)pa);
3525 m = PHYS_TO_VM_PAGE(pa);
3526 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3527 #ifdef used_to_be
3528 kprintf(" -> pmap %p, va %x, flags %x",
3529 (void *)pv->pv_pmap, pv->pv_va, pv->pv_flags);
3530 #endif
3531 kprintf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3532 pads(pv->pv_pmap);
3534 kprintf(" ");
3536 #endif