2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2008 The DragonFly Project.
6 * Copyright (c) 2008 Jordan Gordeev.
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
42 * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
43 * $DragonFly: src/sys/platform/pc64/amd64/pmap.c,v 1.3 2008/08/29 17:07:10 dillon Exp $
47 * Manages physical address maps.
49 * In addition to hardware address maps, this
50 * module is called upon to provide software-use-only
51 * maps which may or may not be stored in the same
52 * form as hardware maps. These pseudo-maps are
53 * used to store intermediate results from copy
54 * operations to and from address spaces.
56 * Since the information managed by this module is
57 * also stored by the logical address mapping module,
58 * this module may throw away valid virtual-to-physical
59 * mappings at almost any time. However, invalidations
60 * of virtual-to-physical mappings must be done as
63 * In order to cope with hardware architectures which
64 * make virtual-to-physical map invalidates expensive,
65 * this module may delay invalidate or reduced protection
66 * operations until such time as they are actually
67 * necessary. This module is given full information as
68 * to which processors are currently using which maps,
69 * and to when physical maps must be made correct.
73 #include "opt_disable_pse.h"
76 #include "opt_msgbuf.h"
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
82 #include <sys/msgbuf.h>
83 #include <sys/vmmeter.h>
87 #include <vm/vm_param.h>
88 #include <sys/sysctl.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_zone.h>
100 #include <sys/thread2.h>
101 #include <sys/sysref2.h>
103 #include <machine/cputypes.h>
104 #include <machine/md_var.h>
105 #include <machine/specialreg.h>
106 #include <machine/smp.h>
107 #include <machine_base/apic/apicreg.h>
108 #include <machine/globaldata.h>
109 #include <machine/pmap.h>
110 #include <machine/pmap_inval.h>
114 #define PMAP_KEEP_PDIRS
115 #ifndef PMAP_SHPGPERPROC
116 #define PMAP_SHPGPERPROC 200
119 #if defined(DIAGNOSTIC)
120 #define PMAP_DIAGNOSTIC
125 #if !defined(PMAP_DIAGNOSTIC)
126 #define PMAP_INLINE __inline
132 * Get PDEs and PTEs for user/kernel address space
134 #define pmap_pde(m, v) (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
135 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
137 #define pmap_pde_v(pte) ((*(pd_entry_t *)pte & PG_V) != 0)
138 #define pmap_pte_w(pte) ((*(pt_entry_t *)pte & PG_W) != 0)
139 #define pmap_pte_m(pte) ((*(pt_entry_t *)pte & PG_M) != 0)
140 #define pmap_pte_u(pte) ((*(pt_entry_t *)pte & PG_A) != 0)
141 #define pmap_pte_v(pte) ((*(pt_entry_t *)pte & PG_V) != 0)
145 * Given a map and a machine independent protection code,
146 * convert to a vax protection code.
148 #define pte_prot(m, p) \
149 (protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
150 static int protection_codes
[8];
152 struct pmap kernel_pmap
;
153 static TAILQ_HEAD(,pmap
) pmap_list
= TAILQ_HEAD_INITIALIZER(pmap_list
);
155 vm_paddr_t avail_start
; /* PA of first available physical page */
156 vm_paddr_t avail_end
; /* PA of last available physical page */
157 vm_offset_t virtual_start
; /* VA of first avail page (after kernel bss) */
158 vm_offset_t virtual_end
; /* VA of last avail page (end of kernel AS) */
159 vm_offset_t KvaStart
; /* VA start of KVA space */
160 vm_offset_t KvaEnd
; /* VA end of KVA space (non-inclusive) */
161 vm_offset_t KvaSize
; /* max size of kernel virtual address space */
162 static boolean_t pmap_initialized
= FALSE
; /* Has pmap_init completed? */
163 static int pgeflag
; /* PG_G or-in */
164 static int pseflag
; /* PG_PS or-in */
166 static vm_object_t kptobj
;
169 vm_offset_t kernel_vm_end
;
172 * Data for the pv entry allocation mechanism
174 static vm_zone_t pvzone
;
175 static struct vm_zone pvzone_store
;
176 static struct vm_object pvzone_obj
;
177 static int pv_entry_count
=0, pv_entry_max
=0, pv_entry_high_water
=0;
178 static int pmap_pagedaemon_waken
= 0;
179 static struct pv_entry
*pvinit
;
182 * All those kernel PT submaps that BSD is so fond of
184 pt_entry_t
*CMAP1
= 0, *ptmmap
;
185 caddr_t CADDR1
= 0, ptvmmap
= 0;
186 static pt_entry_t
*msgbufmap
;
187 struct msgbuf
*msgbufp
=0;
192 static pt_entry_t
*pt_crashdumpmap
;
193 static caddr_t crashdumpmap
;
195 extern uint64_t KPTphys
;
196 extern pt_entry_t
*SMPpt
;
197 extern uint64_t SMPptpa
;
201 static PMAP_INLINE
void free_pv_entry (pv_entry_t pv
);
202 static pt_entry_t
* get_ptbase (pmap_t pmap
);
203 static pv_entry_t
get_pv_entry (void);
204 static void i386_protection_init (void);
205 static __inline
void pmap_clearbit (vm_page_t m
, int bit
);
207 static void pmap_remove_all (vm_page_t m
);
208 static void pmap_enter_quick (pmap_t pmap
, vm_offset_t va
, vm_page_t m
);
209 static int pmap_remove_pte (struct pmap
*pmap
, pt_entry_t
*ptq
,
210 vm_offset_t sva
, pmap_inval_info_t info
);
211 static void pmap_remove_page (struct pmap
*pmap
,
212 vm_offset_t va
, pmap_inval_info_t info
);
213 static int pmap_remove_entry (struct pmap
*pmap
, vm_page_t m
,
214 vm_offset_t va
, pmap_inval_info_t info
);
215 static boolean_t
pmap_testbit (vm_page_t m
, int bit
);
216 static void pmap_insert_entry (pmap_t pmap
, vm_offset_t va
,
217 vm_page_t mpte
, vm_page_t m
);
219 static vm_page_t
pmap_allocpte (pmap_t pmap
, vm_offset_t va
);
221 static int pmap_release_free_page (pmap_t pmap
, vm_page_t p
);
222 static vm_page_t
_pmap_allocpte (pmap_t pmap
, vm_pindex_t ptepindex
);
223 static pt_entry_t
* pmap_pte_quick (pmap_t pmap
, vm_offset_t va
);
224 static vm_page_t
pmap_page_lookup (vm_object_t object
, vm_pindex_t pindex
);
225 static int pmap_unuse_pt (pmap_t
, vm_offset_t
, vm_page_t
, pmap_inval_info_t
);
226 static vm_offset_t
pmap_kmem_choose(vm_offset_t addr
);
228 static unsigned pdir4mb
;
231 * Move the kernel virtual free pointer to the next
232 * 4MB. This is used to help improve performance
233 * by using a large (4MB) page for much of the kernel
234 * (.text, .data, .bss)
237 pmap_kmem_choose(vm_offset_t addr
)
239 vm_offset_t newaddr
= addr
;
241 if (cpu_feature
& CPUID_PSE
) {
242 newaddr
= (addr
+ (NBPDR
- 1)) & ~(NBPDR
- 1);
251 * Extract the page table entry associated with the given map/virtual
254 * This function may NOT be called from an interrupt.
256 PMAP_INLINE pt_entry_t
*
257 pmap_pte(pmap_t pmap
, vm_offset_t va
)
262 pdeaddr
= pmap_pde(pmap
, va
);
263 if (*pdeaddr
& PG_PS
)
266 return get_ptbase(pmap
) + amd64_btop(va
);
275 * Super fast pmap_pte routine best used when scanning the pv lists.
276 * This eliminates many course-grained invltlb calls. Note that many of
277 * the pv list scans are across different pmaps and it is very wasteful
278 * to do an entire invltlb when checking a single mapping.
280 * Should only be called while in a critical section.
283 pmap_pte_quick(pmap_t pmap
, vm_offset_t va
)
285 struct mdglobaldata
*gd
= mdcpu
;
286 pd_entry_t pde
, newpf
;
288 if ((pde
= pmap
->pm_pdir
[va
>> PDRSHIFT
]) != 0) {
289 pd_entry_t frame
= pmap
->pm_pdir
[PTDPTDI
] & PG_FRAME
;
290 vm_pindex_t index
= amd64_btop(va
);
291 /* are we current address space or kernel? */
292 if ((pmap
== &kernel_pmap
) ||
293 (frame
== (PTDpde
& PG_FRAME
))) {
294 return (pt_entry_t
*) PTmap
+ index
;
296 newpf
= pde
& PG_FRAME
;
297 if ( ((* (pt_entry_t
*) gd
->gd_PMAP1
) & PG_FRAME
) != newpf
) {
298 * (pt_entry_t
*) gd
->gd_PMAP1
= newpf
| PG_RW
| PG_V
;
299 cpu_invlpg(gd
->gd_PADDR1
);
301 return gd
->gd_PADDR1
+ (index
& (NPTEPG
- 1));
308 allocpages(vm_paddr_t
*firstaddr
, int n
)
313 bzero((void *)ret
, n
* PAGE_SIZE
);
314 *firstaddr
+= n
* PAGE_SIZE
;
319 create_pagetables(vm_paddr_t
*firstaddr
)
323 uint64_t cpu0pp
, cpu0idlestk
;
324 int idlestk_page_offset
= offsetof(struct privatespace
, idlestack
) / PAGE_SIZE
;
326 /* we are running (mostly) V=P at this point */
328 common_lvl4_phys
= allocpages(firstaddr
, 1); /* 512 512G mappings */
329 common_lvl3_phys
= allocpages(firstaddr
, 1); /* 512 1G mappings */
330 KPTphys
= allocpages(firstaddr
, NKPT
); /* kernel page table */
331 IdlePTD
= allocpages(firstaddr
, 1); /* kernel page dir */
332 cpu0pp
= allocpages(firstaddr
, MDGLOBALDATA_BASEALLOC_PAGES
);
333 cpu0idlestk
= allocpages(firstaddr
, UPAGES
);
334 SMPptpa
= allocpages(firstaddr
, 1);
335 SMPpt
= (void *)(SMPptpa
+ KERNBASE
);
339 * Load kernel page table with kernel memory mappings
341 for (i
= 0; (i
<< PAGE_SHIFT
) < *firstaddr
; i
++) {
342 ((pt_entry_t
*)KPTphys
)[i
] = i
<< PAGE_SHIFT
;
343 ((pt_entry_t
*)KPTphys
)[i
] |= PG_RW
| PG_V
;
347 for (i
= 0; i
< NKPT
; i
++) {
348 ((pd_entry_t
*)IdlePTD
)[i
] = KPTphys
+ (i
<< PAGE_SHIFT
);
349 ((pd_entry_t
*)IdlePTD
)[i
] |= PG_RW
| PG_V
;
354 * Set up the kernel page table itself.
356 for (i
= 0; i
< NKPT
; i
++) {
357 ((pd_entry_t
*)IdlePTD
)[KPTDI
+ i
] = KPTphys
+ (i
<< PAGE_SHIFT
);
358 ((pd_entry_t
*)IdlePTD
)[KPTDI
+ i
] |= PG_RW
| PG_V
;
362 count
= ISA_HOLE_LENGTH
>> PAGE_SHIFT
;
363 for (i
= 0; i
< count
; i
++) {
364 ((pt_entry_t
*)KPTphys
)[amd64_btop(ISA_HOLE_START
) + i
] = \
365 (ISA_HOLE_START
+ i
* PAGE_SIZE
) | PG_RW
| PG_V
;
372 ((pd_entry_t
*)IdlePTD
)[PTDPTDI
] = (pd_entry_t
)IdlePTD
| PG_RW
| PG_V
;
375 * Map CPU_prvspace[0].mdglobaldata
377 for (i
= 0; i
< MDGLOBALDATA_BASEALLOC_PAGES
; i
++) {
378 ((pt_entry_t
*)SMPptpa
)[i
] = \
379 (cpu0pp
+ i
* PAGE_SIZE
) | PG_RW
| PG_V
;
383 * Map CPU_prvspace[0].idlestack
385 for (i
= 0; i
< UPAGES
; i
++) {
386 ((pt_entry_t
*)SMPptpa
)[idlestk_page_offset
+ i
] = \
387 (cpu0idlestk
+ i
* PAGE_SIZE
) | PG_RW
| PG_V
;
393 ((pd_entry_t
*)IdlePTD
)[MPPTDI
] = SMPptpa
| PG_RW
| PG_V
;
398 ((pml4_entry_t
*)common_lvl4_phys
)[LINKPML4I
] = common_lvl3_phys
| PG_RW
| PG_V
| PG_U
;
401 * location of "virtual CR3" - a PDP entry that is loaded
402 * with a PD physical address (+ page attributes).
403 * Matt: location of user page directory entry (representing 1G)
405 link_pdpe
= &((pdp_entry_t
*)common_lvl3_phys
)[LINKPDPI
];
409 init_paging(vm_paddr_t
*firstaddr
) {
410 create_pagetables(firstaddr
);
412 /* switch to the newly created page table */
413 *link_pdpe
= IdlePTD
| PG_RW
| PG_V
| PG_U
;
414 load_cr3(common_lvl4_phys
);
415 link_pdpe
= (void *)((char *)link_pdpe
+ KERNBASE
);
417 KvaStart
= (vm_offset_t
)VADDR(PTDPTDI
, 0);
418 KvaEnd
= (vm_offset_t
)VADDR(APTDPTDI
, 0);
419 KvaSize
= KvaEnd
- KvaStart
;
423 * Bootstrap the system enough to run with virtual memory.
425 * On the i386 this is called after mapping has already been enabled
426 * and just syncs the pmap module with what has already been done.
427 * [We can't call it easily with mapping off since the kernel is not
428 * mapped with PA == VA, hence we would have to relocate every address
429 * from the linked base (virtual) address "KERNBASE" to the actual
430 * (physical) address starting relative to 0]
433 pmap_bootstrap(vm_paddr_t
*firstaddr
, vm_paddr_t loadaddr
)
437 struct mdglobaldata
*gd
;
441 avail_start
= *firstaddr
;
444 * XXX The calculation of virtual_start is wrong. It's NKPT*PAGE_SIZE
445 * too large. It should instead be correctly calculated in locore.s and
446 * not based on 'first' (which is a physical address, not a virtual
447 * address, for the start of unused physical memory). The kernel
448 * page tables are NOT double mapped and thus should not be included
449 * in this calculation.
451 virtual_start
= (vm_offset_t
) PTOV_OFFSET
+ *firstaddr
;
452 virtual_start
= pmap_kmem_choose(virtual_start
);
453 virtual_end
= VADDR(KPTDI
+NKPDE
-1, NPTEPG
-1);
456 * Initialize protection array.
458 i386_protection_init();
461 * The kernel's pmap is statically allocated so we don't have to use
462 * pmap_create, which is unlikely to work correctly at this part of
463 * the boot sequence (XXX and which no longer exists).
465 kernel_pmap
.pm_pdir
= (pd_entry_t
*)(PTOV_OFFSET
+ (uint64_t)IdlePTD
);
466 kernel_pmap
.pm_count
= 1;
467 kernel_pmap
.pm_active
= (cpumask_t
)-1; /* don't allow deactivation */
468 TAILQ_INIT(&kernel_pmap
.pm_pvlist
);
472 * Reserve some special page table entries/VA space for temporary
475 #define SYSMAP(c, p, v, n) \
476 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
479 pte
= (pt_entry_t
*) pmap_pte(&kernel_pmap
, va
);
482 * CMAP1/CMAP2 are used for zeroing and copying pages.
484 SYSMAP(caddr_t
, CMAP1
, CADDR1
, 1)
489 SYSMAP(caddr_t
, pt_crashdumpmap
, crashdumpmap
, MAXDUMPPGS
);
492 * ptvmmap is used for reading arbitrary physical pages via
495 SYSMAP(caddr_t
, ptmmap
, ptvmmap
, 1)
498 * msgbufp is used to map the system message buffer.
499 * XXX msgbufmap is not used.
501 SYSMAP(struct msgbuf
*, msgbufmap
, msgbufp
,
502 atop(round_page(MSGBUF_SIZE
)))
507 for (i
= 0; i
< NKPT
; i
++)
511 * PG_G is terribly broken on SMP because we IPI invltlb's in some
512 * cases rather then invl1pg. Actually, I don't even know why it
513 * works under UP because self-referential page table mappings
518 if (cpu_feature
& CPUID_PGE
)
523 * Initialize the 4MB page size flag
527 * The 4MB page version of the initial
528 * kernel page mapping.
532 #if !defined(DISABLE_PSE)
533 if (cpu_feature
& CPUID_PSE
) {
536 * Note that we have enabled PSE mode
539 ptditmp
= *(PTmap
+ amd64_btop(KERNBASE
));
540 ptditmp
&= ~(NBPDR
- 1);
541 ptditmp
|= PG_V
| PG_RW
| PG_PS
| PG_U
| pgeflag
;
546 * Enable the PSE mode. If we are SMP we can't do this
547 * now because the APs will not be able to use it when
550 load_cr4(rcr4() | CR4_PSE
);
553 * We can do the mapping here for the single processor
554 * case. We simply ignore the old page table page from
558 * For SMP, we still need 4K pages to bootstrap APs,
559 * PSE will be enabled as soon as all APs are up.
561 PTD
[KPTDI
] = (pd_entry_t
)ptditmp
;
562 kernel_pmap
.pm_pdir
[KPTDI
] = (pd_entry_t
)ptditmp
;
568 if (cpu_apic_address
== 0)
569 panic("pmap_bootstrap: no local apic!");
571 /* local apic is mapped on last page */
572 SMPpt
[NPTEPG
- 1] = (pt_entry_t
)(PG_V
| PG_RW
| PG_N
| pgeflag
|
573 (cpu_apic_address
& PG_FRAME
));
577 * We need to finish setting up the globaldata page for the BSP.
578 * locore has already populated the page table for the mdglobaldata
581 pg
= MDGLOBALDATA_BASEALLOC_PAGES
;
582 gd
= &CPU_prvspace
[0].mdglobaldata
;
583 gd
->gd_CMAP1
= &SMPpt
[pg
+ 0];
584 gd
->gd_CMAP2
= &SMPpt
[pg
+ 1];
585 gd
->gd_CMAP3
= &SMPpt
[pg
+ 2];
586 gd
->gd_PMAP1
= &SMPpt
[pg
+ 3];
587 gd
->gd_CADDR1
= CPU_prvspace
[0].CPAGE1
;
588 gd
->gd_CADDR2
= CPU_prvspace
[0].CPAGE2
;
589 gd
->gd_CADDR3
= CPU_prvspace
[0].CPAGE3
;
590 gd
->gd_PADDR1
= (pt_entry_t
*)CPU_prvspace
[0].PPAGE1
;
597 * Set 4mb pdir for mp startup
602 if (pseflag
&& (cpu_feature
& CPUID_PSE
)) {
603 load_cr4(rcr4() | CR4_PSE
);
604 if (pdir4mb
&& mycpu
->gd_cpuid
== 0) { /* only on BSP */
605 kernel_pmap
.pm_pdir
[KPTDI
] =
606 PTD
[KPTDI
] = (pd_entry_t
)pdir4mb
;
614 * Initialize the pmap module.
615 * Called by vm_init, to initialize any structures that the pmap
616 * system needs to map virtual memory.
617 * pmap_init has been enhanced to support in a fairly consistant
618 * way, discontiguous physical memory.
627 * object for kernel page table pages
629 kptobj
= vm_object_allocate(OBJT_DEFAULT
, NKPDE
);
632 * Allocate memory for random pmap data structures. Includes the
636 for(i
= 0; i
< vm_page_array_size
; i
++) {
639 m
= &vm_page_array
[i
];
640 TAILQ_INIT(&m
->md
.pv_list
);
641 m
->md
.pv_list_count
= 0;
645 * init the pv free list
647 initial_pvs
= vm_page_array_size
;
648 if (initial_pvs
< MINPV
)
650 pvzone
= &pvzone_store
;
651 pvinit
= (struct pv_entry
*) kmem_alloc(&kernel_map
,
652 initial_pvs
* sizeof (struct pv_entry
));
653 zbootinit(pvzone
, "PV ENTRY", sizeof (struct pv_entry
), pvinit
,
657 * Now it is safe to enable pv_table recording.
659 pmap_initialized
= TRUE
;
663 * Initialize the address space (zone) for the pv_entries. Set a
664 * high water mark so that the system can recover from excessive
665 * numbers of pv entries.
670 int shpgperproc
= PMAP_SHPGPERPROC
;
672 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc
);
673 pv_entry_max
= shpgperproc
* maxproc
+ vm_page_array_size
;
674 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max
);
675 pv_entry_high_water
= 9 * (pv_entry_max
/ 10);
676 zinitna(pvzone
, &pvzone_obj
, NULL
, 0, pv_entry_max
, ZONE_INTERRUPT
, 1);
680 /***************************************************
681 * Low level helper routines.....
682 ***************************************************/
684 #if defined(PMAP_DIAGNOSTIC)
687 * This code checks for non-writeable/modified pages.
688 * This should be an invalid condition.
691 pmap_nw_modified(pt_entry_t ptea
)
697 if ((pte
& (PG_M
|PG_RW
)) == PG_M
)
706 * this routine defines the region(s) of memory that should
707 * not be tested for the modified bit.
709 static PMAP_INLINE
int
710 pmap_track_modified(vm_offset_t va
)
712 if ((va
< clean_sva
) || (va
>= clean_eva
))
719 get_ptbase(pmap_t pmap
)
721 pd_entry_t frame
= pmap
->pm_pdir
[PTDPTDI
] & PG_FRAME
;
722 struct globaldata
*gd
= mycpu
;
724 /* are we current address space or kernel? */
725 if (pmap
== &kernel_pmap
|| frame
== (PTDpde
& PG_FRAME
)) {
726 return (pt_entry_t
*) PTmap
;
729 /* otherwise, we are alternate address space */
730 KKASSERT(gd
->gd_intr_nesting_level
== 0 &&
731 (gd
->gd_curthread
->td_flags
& TDF_INTTHREAD
) == 0);
733 if (frame
!= (((pd_entry_t
) APTDpde
) & PG_FRAME
)) {
734 APTDpde
= (pd_entry_t
)(frame
| PG_RW
| PG_V
);
735 /* The page directory is not shared between CPUs */
738 return (pt_entry_t
*) APTmap
;
744 * Extract the physical page address associated with the map/VA pair.
746 * This function may not be called from an interrupt if the pmap is
750 pmap_extract(pmap_t pmap
, vm_offset_t va
)
753 vm_offset_t pdirindex
;
755 pdirindex
= va
>> PDRSHIFT
;
756 if (pmap
&& (rtval
= pmap
->pm_pdir
[pdirindex
])) {
758 if ((rtval
& PG_PS
) != 0) {
759 rtval
&= ~(NBPDR
- 1);
760 rtval
|= va
& (NBPDR
- 1);
763 pte
= get_ptbase(pmap
) + amd64_btop(va
);
764 rtval
= ((*pte
& PG_FRAME
) | (va
& PAGE_MASK
));
770 /***************************************************
771 * Low level mapping routines.....
772 ***************************************************/
775 * Routine: pmap_kenter
777 * Add a wired page to the KVA
778 * NOTE! note that in order for the mapping to take effect -- you
779 * should do an invltlb after doing the pmap_kenter().
782 pmap_kenter(vm_offset_t va
, vm_paddr_t pa
)
786 pmap_inval_info info
;
788 pmap_inval_init(&info
);
789 npte
= pa
| PG_RW
| PG_V
| pgeflag
;
791 pmap_inval_add(&info
, &kernel_pmap
, va
);
793 pmap_inval_flush(&info
);
797 * Routine: pmap_kenter_quick
799 * Similar to pmap_kenter(), except we only invalidate the
800 * mapping on the current CPU.
803 pmap_kenter_quick(vm_offset_t va
, vm_paddr_t pa
)
808 npte
= pa
| PG_RW
| PG_V
| pgeflag
;
811 cpu_invlpg((void *)va
);
815 pmap_kenter_sync(vm_offset_t va
)
817 pmap_inval_info info
;
819 pmap_inval_init(&info
);
820 pmap_inval_add(&info
, &kernel_pmap
, va
);
821 pmap_inval_flush(&info
);
825 pmap_kenter_sync_quick(vm_offset_t va
)
827 cpu_invlpg((void *)va
);
831 * remove a page from the kernel pagetables
834 pmap_kremove(vm_offset_t va
)
837 pmap_inval_info info
;
839 pmap_inval_init(&info
);
841 pmap_inval_add(&info
, &kernel_pmap
, va
);
843 pmap_inval_flush(&info
);
847 pmap_kremove_quick(vm_offset_t va
)
852 cpu_invlpg((void *)va
);
856 * XXX these need to be recoded. They are not used in any critical path.
859 pmap_kmodify_rw(vm_offset_t va
)
861 *vtopte(va
) |= PG_RW
;
862 cpu_invlpg((void *)va
);
866 pmap_kmodify_nc(vm_offset_t va
)
869 cpu_invlpg((void *)va
);
873 * Used to map a range of physical addresses into kernel
874 * virtual address space.
876 * For now, VM is already on, we only need to map the
880 pmap_map(vm_offset_t virt
, vm_paddr_t start
, vm_paddr_t end
, int prot
)
882 while (start
< end
) {
883 pmap_kenter(virt
, start
);
892 * Add a list of wired pages to the kva
893 * this routine is only used for temporary
894 * kernel mappings that do not need to have
895 * page modification or references recorded.
896 * Note that old mappings are simply written
897 * over. The page *must* be wired.
900 pmap_qenter(vm_offset_t va
, vm_page_t
*m
, int count
)
904 end_va
= va
+ count
* PAGE_SIZE
;
906 while (va
< end_va
) {
910 *pte
= VM_PAGE_TO_PHYS(*m
) | PG_RW
| PG_V
| pgeflag
;
911 cpu_invlpg((void *)va
);
916 smp_invltlb(); /* XXX */
921 pmap_qenter2(vm_offset_t va
, vm_page_t
*m
, int count
, cpumask_t
*mask
)
924 cpumask_t cmask
= mycpu
->gd_cpumask
;
926 end_va
= va
+ count
* PAGE_SIZE
;
928 while (va
< end_va
) {
933 * Install the new PTE. If the pte changed from the prior
934 * mapping we must reset the cpu mask and invalidate the page.
935 * If the pte is the same but we have not seen it on the
936 * current cpu, invlpg the existing mapping. Otherwise the
937 * entry is optimal and no invalidation is required.
940 pteval
= VM_PAGE_TO_PHYS(*m
) | PG_A
| PG_RW
| PG_V
| pgeflag
;
941 if (*pte
!= pteval
) {
944 cpu_invlpg((void *)va
);
945 } else if ((*mask
& cmask
) == 0) {
946 cpu_invlpg((void *)va
);
955 * this routine jerks page mappings from the
956 * kernel -- it is meant only for temporary mappings.
959 pmap_qremove(vm_offset_t va
, int count
)
963 end_va
= va
+ count
*PAGE_SIZE
;
965 while (va
< end_va
) {
970 cpu_invlpg((void *)va
);
979 * This routine works like vm_page_lookup() but also blocks as long as the
980 * page is busy. This routine does not busy the page it returns.
982 * Unless the caller is managing objects whos pages are in a known state,
983 * the call should be made with a critical section held so the page's object
984 * association remains valid on return.
987 pmap_page_lookup(vm_object_t object
, vm_pindex_t pindex
)
992 m
= vm_page_lookup(object
, pindex
);
993 } while (m
&& vm_page_sleep_busy(m
, FALSE
, "pplookp"));
999 * Create a new thread and optionally associate it with a (new) process.
1000 * NOTE! the new thread's cpu may not equal the current cpu.
1003 pmap_init_thread(thread_t td
)
1005 /* enforce pcb placement */
1006 td
->td_pcb
= (struct pcb
*)(td
->td_kstack
+ td
->td_kstack_size
) - 1;
1007 td
->td_savefpu
= &td
->td_pcb
->pcb_save
;
1008 td
->td_sp
= (char *)td
->td_pcb
- 16;
1012 * This routine directly affects the fork perf for a process.
1015 pmap_init_proc(struct proc
*p
)
1020 * Dispose the UPAGES for a process that has exited.
1021 * This routine directly impacts the exit perf of a process.
1024 pmap_dispose_proc(struct proc
*p
)
1026 KASSERT(p
->p_lock
== 0, ("attempt to dispose referenced proc! %p", p
));
1029 /***************************************************
1030 * Page table page management routines.....
1031 ***************************************************/
1034 * This routine unholds page table pages, and if the hold count
1035 * drops to zero, then it decrements the wire count.
1038 _pmap_unwire_pte_hold(pmap_t pmap
, vm_page_t m
, pmap_inval_info_t info
)
1041 * Wait until we can busy the page ourselves. We cannot have
1042 * any active flushes if we block.
1044 if (m
->flags
& PG_BUSY
) {
1045 pmap_inval_flush(info
);
1046 while (vm_page_sleep_busy(m
, FALSE
, "pmuwpt"))
1049 KASSERT(m
->queue
== PQ_NONE
,
1050 ("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m
));
1052 if (m
->hold_count
== 1) {
1054 * Unmap the page table page
1057 pmap_inval_add(info
, pmap
, -1);
1058 pmap
->pm_pdir
[m
->pindex
] = 0;
1060 KKASSERT(pmap
->pm_stats
.resident_count
> 0);
1061 --pmap
->pm_stats
.resident_count
;
1063 if (pmap
->pm_ptphint
== m
)
1064 pmap
->pm_ptphint
= NULL
;
1067 * This was our last hold, the page had better be unwired
1068 * after we decrement wire_count.
1070 * FUTURE NOTE: shared page directory page could result in
1071 * multiple wire counts.
1075 KKASSERT(m
->wire_count
== 0);
1076 --vmstats
.v_wire_count
;
1077 vm_page_flag_clear(m
, PG_MAPPED
| PG_WRITEABLE
);
1079 vm_page_free_zero(m
);
1082 KKASSERT(m
->hold_count
> 1);
1088 static PMAP_INLINE
int
1089 pmap_unwire_pte_hold(pmap_t pmap
, vm_page_t m
, pmap_inval_info_t info
)
1091 KKASSERT(m
->hold_count
> 0);
1092 if (m
->hold_count
> 1) {
1096 return _pmap_unwire_pte_hold(pmap
, m
, info
);
1101 * After removing a page table entry, this routine is used to
1102 * conditionally free the page, and manage the hold/wire counts.
1105 pmap_unuse_pt(pmap_t pmap
, vm_offset_t va
, vm_page_t mpte
,
1106 pmap_inval_info_t info
)
1108 vm_pindex_t ptepindex
;
1109 if (va
>= UPT_MIN_ADDRESS
)
1113 ptepindex
= (va
>> PDRSHIFT
);
1114 if (pmap
->pm_ptphint
&&
1115 (pmap
->pm_ptphint
->pindex
== ptepindex
)) {
1116 mpte
= pmap
->pm_ptphint
;
1118 pmap_inval_flush(info
);
1119 mpte
= pmap_page_lookup( pmap
->pm_pteobj
, ptepindex
);
1120 pmap
->pm_ptphint
= mpte
;
1124 return pmap_unwire_pte_hold(pmap
, mpte
, info
);
1128 * Initialize pmap0/vmspace0. This pmap is not added to pmap_list because
1129 * it, and IdlePTD, represents the template used to update all other pmaps.
1131 * On architectures where the kernel pmap is not integrated into the user
1132 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1133 * kernel_pmap should be used to directly access the kernel_pmap.
1136 pmap_pinit0(struct pmap
*pmap
)
1139 (pd_entry_t
*)kmem_alloc_pageable(&kernel_map
, PAGE_SIZE
);
1140 pmap_kenter((vm_offset_t
)pmap
->pm_pdir
, (vm_offset_t
) IdlePTD
);
1142 pmap
->pm_active
= 0;
1143 pmap
->pm_ptphint
= NULL
;
1144 TAILQ_INIT(&pmap
->pm_pvlist
);
1145 bzero(&pmap
->pm_stats
, sizeof pmap
->pm_stats
);
1149 * Initialize a preallocated and zeroed pmap structure,
1150 * such as one in a vmspace structure.
1153 pmap_pinit(struct pmap
*pmap
)
1158 * No need to allocate page table space yet but we do need a valid
1159 * page directory table.
1161 if (pmap
->pm_pdir
== NULL
) {
1163 (pd_entry_t
*)kmem_alloc_pageable(&kernel_map
, PAGE_SIZE
);
1167 * Allocate an object for the ptes
1169 if (pmap
->pm_pteobj
== NULL
)
1170 pmap
->pm_pteobj
= vm_object_allocate(OBJT_DEFAULT
, PTDPTDI
+ 1);
1173 * Allocate the page directory page, unless we already have
1174 * one cached. If we used the cached page the wire_count will
1175 * already be set appropriately.
1177 if ((ptdpg
= pmap
->pm_pdirm
) == NULL
) {
1178 ptdpg
= vm_page_grab(pmap
->pm_pteobj
, PTDPTDI
,
1179 VM_ALLOC_NORMAL
| VM_ALLOC_RETRY
);
1180 pmap
->pm_pdirm
= ptdpg
;
1181 vm_page_flag_clear(ptdpg
, PG_MAPPED
| PG_BUSY
);
1182 ptdpg
->valid
= VM_PAGE_BITS_ALL
;
1183 ptdpg
->wire_count
= 1;
1184 ++vmstats
.v_wire_count
;
1185 pmap_kenter((vm_offset_t
)pmap
->pm_pdir
, VM_PAGE_TO_PHYS(ptdpg
));
1187 if ((ptdpg
->flags
& PG_ZERO
) == 0)
1188 bzero(pmap
->pm_pdir
, PAGE_SIZE
);
1190 pmap
->pm_pdir
[MPPTDI
] = PTD
[MPPTDI
];
1192 /* install self-referential address mapping entry */
1193 *(pd_entry_t
*) (pmap
->pm_pdir
+ PTDPTDI
) =
1194 VM_PAGE_TO_PHYS(ptdpg
) | PG_V
| PG_RW
| PG_A
| PG_M
;
1197 pmap
->pm_active
= 0;
1198 pmap
->pm_ptphint
= NULL
;
1199 TAILQ_INIT(&pmap
->pm_pvlist
);
1200 bzero(&pmap
->pm_stats
, sizeof pmap
->pm_stats
);
1201 pmap
->pm_stats
.resident_count
= 1;
1205 * Clean up a pmap structure so it can be physically freed. This routine
1206 * is called by the vmspace dtor function. A great deal of pmap data is
1207 * left passively mapped to improve vmspace management so we have a bit
1208 * of cleanup work to do here.
1211 pmap_puninit(pmap_t pmap
)
1215 KKASSERT(pmap
->pm_active
== 0);
1216 if ((p
= pmap
->pm_pdirm
) != NULL
) {
1217 KKASSERT(pmap
->pm_pdir
!= NULL
);
1218 pmap_kremove((vm_offset_t
)pmap
->pm_pdir
);
1220 vmstats
.v_wire_count
--;
1221 KKASSERT((p
->flags
& PG_BUSY
) == 0);
1223 vm_page_free_zero(p
);
1224 pmap
->pm_pdirm
= NULL
;
1226 if (pmap
->pm_pdir
) {
1227 kmem_free(&kernel_map
, (vm_offset_t
)pmap
->pm_pdir
, PAGE_SIZE
);
1228 pmap
->pm_pdir
= NULL
;
1230 if (pmap
->pm_pteobj
) {
1231 vm_object_deallocate(pmap
->pm_pteobj
);
1232 pmap
->pm_pteobj
= NULL
;
1237 * Wire in kernel global address entries. To avoid a race condition
1238 * between pmap initialization and pmap_growkernel, this procedure
1239 * adds the pmap to the master list (which growkernel scans to update),
1240 * then copies the template.
1243 pmap_pinit2(struct pmap
*pmap
)
1246 TAILQ_INSERT_TAIL(&pmap_list
, pmap
, pm_pmnode
);
1247 /* XXX copies current process, does not fill in MPPTDI */
1248 bcopy(PTD
+ KPTDI
, pmap
->pm_pdir
+ KPTDI
, nkpt
* PTESIZE
);
1253 * Attempt to release and free a vm_page in a pmap. Returns 1 on success,
1254 * 0 on failure (if the procedure had to sleep).
1256 * When asked to remove the page directory page itself, we actually just
1257 * leave it cached so we do not have to incur the SMP inval overhead of
1258 * removing the kernel mapping. pmap_puninit() will take care of it.
1261 pmap_release_free_page(struct pmap
*pmap
, vm_page_t p
)
1263 pd_entry_t
*pde
= (pd_entry_t
*) pmap
->pm_pdir
;
1265 * This code optimizes the case of freeing non-busy
1266 * page-table pages. Those pages are zero now, and
1267 * might as well be placed directly into the zero queue.
1269 if (vm_page_sleep_busy(p
, FALSE
, "pmaprl"))
1275 * Remove the page table page from the processes address space.
1278 KKASSERT(pmap
->pm_stats
.resident_count
> 0);
1279 --pmap
->pm_stats
.resident_count
;
1281 if (p
->hold_count
) {
1282 panic("pmap_release: freeing held page table page");
1284 if (pmap
->pm_ptphint
&& (pmap
->pm_ptphint
->pindex
== p
->pindex
))
1285 pmap
->pm_ptphint
= NULL
;
1288 * We leave the page directory page cached, wired, and mapped in
1289 * the pmap until the dtor function (pmap_puninit()) gets called.
1290 * However, still clean it up so we can set PG_ZERO.
1292 if (p
->pindex
== PTDPTDI
) {
1293 bzero(pde
+ KPTDI
, nkpt
* PTESIZE
);
1296 vm_page_flag_set(p
, PG_ZERO
);
1300 vmstats
.v_wire_count
--;
1301 vm_page_free_zero(p
);
1307 * this routine is called if the page table page is not
1311 _pmap_allocpte(pmap_t pmap
, vm_pindex_t ptepindex
)
1313 vm_offset_t pteva
, ptepa
;
1317 * Find or fabricate a new pagetable page
1319 m
= vm_page_grab(pmap
->pm_pteobj
, ptepindex
,
1320 VM_ALLOC_NORMAL
| VM_ALLOC_ZERO
| VM_ALLOC_RETRY
);
1322 KASSERT(m
->queue
== PQ_NONE
,
1323 ("_pmap_allocpte: %p->queue != PQ_NONE", m
));
1326 * Increment the hold count for the page we will be returning to
1332 * It is possible that someone else got in and mapped by the page
1333 * directory page while we were blocked, if so just unbusy and
1334 * return the held page.
1336 if ((ptepa
= pmap
->pm_pdir
[ptepindex
]) != 0) {
1337 KKASSERT((ptepa
& PG_FRAME
) == VM_PAGE_TO_PHYS(m
));
1342 if (m
->wire_count
== 0)
1343 vmstats
.v_wire_count
++;
1348 * Map the pagetable page into the process address space, if
1349 * it isn't already there.
1352 ++pmap
->pm_stats
.resident_count
;
1354 ptepa
= VM_PAGE_TO_PHYS(m
);
1355 pmap
->pm_pdir
[ptepindex
] =
1356 (pd_entry_t
) (ptepa
| PG_U
| PG_RW
| PG_V
| PG_A
| PG_M
);
1359 * Set the page table hint
1361 pmap
->pm_ptphint
= m
;
1364 * Try to use the new mapping, but if we cannot, then
1365 * do it with the routine that maps the page explicitly.
1367 if ((m
->flags
& PG_ZERO
) == 0) {
1368 if ((pmap
->pm_pdir
[PTDPTDI
] & PG_FRAME
) ==
1369 (((pd_entry_t
) PTDpde
) & PG_FRAME
)) {
1370 pteva
= UPT_MIN_ADDRESS
+ amd64_ptob(ptepindex
);
1371 bzero((caddr_t
) pteva
, PAGE_SIZE
);
1373 pmap_zero_page(ptepa
);
1377 m
->valid
= VM_PAGE_BITS_ALL
;
1378 vm_page_flag_clear(m
, PG_ZERO
);
1379 vm_page_flag_set(m
, PG_MAPPED
);
1386 pmap_allocpte(pmap_t pmap
, vm_offset_t va
)
1388 vm_pindex_t ptepindex
;
1393 * Calculate pagetable page index
1395 ptepindex
= va
>> PDRSHIFT
;
1398 * Get the page directory entry
1400 ptepa
= (vm_offset_t
) pmap
->pm_pdir
[ptepindex
];
1403 * This supports switching from a 4MB page to a
1406 if (ptepa
& PG_PS
) {
1407 pmap
->pm_pdir
[ptepindex
] = 0;
1414 * If the page table page is mapped, we just increment the
1415 * hold count, and activate it.
1419 * In order to get the page table page, try the
1422 if (pmap
->pm_ptphint
&&
1423 (pmap
->pm_ptphint
->pindex
== ptepindex
)) {
1424 m
= pmap
->pm_ptphint
;
1426 m
= pmap_page_lookup( pmap
->pm_pteobj
, ptepindex
);
1427 pmap
->pm_ptphint
= m
;
1433 * Here if the pte page isn't mapped, or if it has been deallocated.
1435 return _pmap_allocpte(pmap
, ptepindex
);
1439 /***************************************************
1440 * Pmap allocation/deallocation routines.
1441 ***************************************************/
1444 * Release any resources held by the given physical map.
1445 * Called when a pmap initialized by pmap_pinit is being released.
1446 * Should only be called if the map contains no valid mappings.
1448 static int pmap_release_callback(struct vm_page
*p
, void *data
);
1451 pmap_release(struct pmap
*pmap
)
1453 vm_object_t object
= pmap
->pm_pteobj
;
1454 struct rb_vm_page_scan_info info
;
1456 KASSERT(pmap
->pm_active
== 0, ("pmap still active! %08x", pmap
->pm_active
));
1457 #if defined(DIAGNOSTIC)
1458 if (object
->ref_count
!= 1)
1459 panic("pmap_release: pteobj reference count != 1");
1463 info
.object
= object
;
1465 TAILQ_REMOVE(&pmap_list
, pmap
, pm_pmnode
);
1472 info
.limit
= object
->generation
;
1474 vm_page_rb_tree_RB_SCAN(&object
->rb_memq
, NULL
,
1475 pmap_release_callback
, &info
);
1476 if (info
.error
== 0 && info
.mpte
) {
1477 if (!pmap_release_free_page(pmap
, info
.mpte
))
1481 } while (info
.error
);
1485 pmap_release_callback(struct vm_page
*p
, void *data
)
1487 struct rb_vm_page_scan_info
*info
= data
;
1489 if (p
->pindex
== PTDPTDI
) {
1493 if (!pmap_release_free_page(info
->pmap
, p
)) {
1497 if (info
->object
->generation
!= info
->limit
) {
1505 * Grow the number of kernel page table entries, if needed.
1509 pmap_growkernel(vm_offset_t addr
)
1512 vm_offset_t ptppaddr
;
1517 if (kernel_vm_end
== 0) {
1518 kernel_vm_end
= KERNBASE
;
1520 while (pdir_pde(PTD
, kernel_vm_end
)) {
1521 kernel_vm_end
= (kernel_vm_end
+ PAGE_SIZE
* NPTEPG
) & ~(PAGE_SIZE
* NPTEPG
- 1);
1525 addr
= (addr
+ PAGE_SIZE
* NPTEPG
) & ~(PAGE_SIZE
* NPTEPG
- 1);
1526 while (kernel_vm_end
< addr
) {
1527 if (pdir_pde(PTD
, kernel_vm_end
)) {
1528 kernel_vm_end
= (kernel_vm_end
+ PAGE_SIZE
* NPTEPG
) & ~(PAGE_SIZE
* NPTEPG
- 1);
1533 * This index is bogus, but out of the way
1535 nkpg
= vm_page_alloc(kptobj
, nkpt
,
1536 VM_ALLOC_NORMAL
| VM_ALLOC_SYSTEM
| VM_ALLOC_INTERRUPT
);
1538 panic("pmap_growkernel: no memory to grow kernel");
1541 ptppaddr
= VM_PAGE_TO_PHYS(nkpg
);
1542 pmap_zero_page(ptppaddr
);
1543 newpdir
= (pd_entry_t
) (ptppaddr
| PG_V
| PG_RW
| PG_A
| PG_M
);
1544 pdir_pde(PTD
, kernel_vm_end
) = newpdir
;
1545 *pmap_pde(&kernel_pmap
, kernel_vm_end
) = newpdir
;
1549 * This update must be interlocked with pmap_pinit2.
1551 TAILQ_FOREACH(pmap
, &pmap_list
, pm_pmnode
) {
1552 *pmap_pde(pmap
, kernel_vm_end
) = newpdir
;
1554 kernel_vm_end
= (kernel_vm_end
+ PAGE_SIZE
* NPTEPG
) &
1555 ~(PAGE_SIZE
* NPTEPG
- 1);
1561 * Retire the given physical map from service.
1562 * Should only be called if the map contains
1563 * no valid mappings.
1566 pmap_destroy(pmap_t pmap
)
1573 count
= --pmap
->pm_count
;
1576 panic("destroying a pmap is not yet implemented");
1581 * Add a reference to the specified pmap.
1584 pmap_reference(pmap_t pmap
)
1591 /***************************************************
1592 * page management routines.
1593 ***************************************************/
1596 * free the pv_entry back to the free list. This function may be
1597 * called from an interrupt.
1599 static PMAP_INLINE
void
1600 free_pv_entry(pv_entry_t pv
)
1607 * get a new pv_entry, allocating a block from the system
1608 * when needed. This function may be called from an interrupt.
1614 if (pv_entry_high_water
&&
1615 (pv_entry_count
> pv_entry_high_water
) &&
1616 (pmap_pagedaemon_waken
== 0)) {
1617 pmap_pagedaemon_waken
= 1;
1618 wakeup (&vm_pages_needed
);
1620 return zalloc(pvzone
);
1624 * This routine is very drastic, but can save the system
1632 static int warningdone
=0;
1634 if (pmap_pagedaemon_waken
== 0)
1636 pmap_pagedaemon_waken
= 0;
1638 if (warningdone
< 5) {
1639 kprintf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1643 for(i
= 0; i
< vm_page_array_size
; i
++) {
1644 m
= &vm_page_array
[i
];
1645 if (m
->wire_count
|| m
->hold_count
|| m
->busy
||
1646 (m
->flags
& PG_BUSY
))
1654 * If it is the first entry on the list, it is actually
1655 * in the header and we must copy the following entry up
1656 * to the header. Otherwise we must search the list for
1657 * the entry. In either case we free the now unused entry.
1660 pmap_remove_entry(struct pmap
*pmap
, vm_page_t m
,
1661 vm_offset_t va
, pmap_inval_info_t info
)
1667 if (m
->md
.pv_list_count
< pmap
->pm_stats
.resident_count
) {
1668 TAILQ_FOREACH(pv
, &m
->md
.pv_list
, pv_list
) {
1669 if (pmap
== pv
->pv_pmap
&& va
== pv
->pv_va
)
1673 TAILQ_FOREACH(pv
, &pmap
->pm_pvlist
, pv_plist
) {
1674 if (va
== pv
->pv_va
)
1681 TAILQ_REMOVE(&m
->md
.pv_list
, pv
, pv_list
);
1682 m
->md
.pv_list_count
--;
1683 if (TAILQ_EMPTY(&m
->md
.pv_list
))
1684 vm_page_flag_clear(m
, PG_MAPPED
| PG_WRITEABLE
);
1685 TAILQ_REMOVE(&pmap
->pm_pvlist
, pv
, pv_plist
);
1686 ++pmap
->pm_generation
;
1687 rtval
= pmap_unuse_pt(pmap
, va
, pv
->pv_ptem
, info
);
1695 * Create a pv entry for page at pa for
1699 pmap_insert_entry(pmap_t pmap
, vm_offset_t va
, vm_page_t mpte
, vm_page_t m
)
1704 pv
= get_pv_entry();
1709 TAILQ_INSERT_TAIL(&pmap
->pm_pvlist
, pv
, pv_plist
);
1710 TAILQ_INSERT_TAIL(&m
->md
.pv_list
, pv
, pv_list
);
1711 m
->md
.pv_list_count
++;
1717 * pmap_remove_pte: do the things to unmap a page in a process
1720 pmap_remove_pte(struct pmap
*pmap
, pt_entry_t
*ptq
, vm_offset_t va
,
1721 pmap_inval_info_t info
)
1726 pmap_inval_add(info
, pmap
, va
);
1727 oldpte
= pte_load_clear(ptq
);
1729 pmap
->pm_stats
.wired_count
-= 1;
1731 * Machines that don't support invlpg, also don't support
1732 * PG_G. XXX PG_G is disabled for SMP so don't worry about
1736 cpu_invlpg((void *)va
);
1737 KKASSERT(pmap
->pm_stats
.resident_count
> 0);
1738 --pmap
->pm_stats
.resident_count
;
1739 if (oldpte
& PG_MANAGED
) {
1740 m
= PHYS_TO_VM_PAGE(oldpte
);
1741 if (oldpte
& PG_M
) {
1742 #if defined(PMAP_DIAGNOSTIC)
1743 if (pmap_nw_modified((pt_entry_t
) oldpte
)) {
1745 "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1749 if (pmap_track_modified(va
))
1753 vm_page_flag_set(m
, PG_REFERENCED
);
1754 return pmap_remove_entry(pmap
, m
, va
, info
);
1756 return pmap_unuse_pt(pmap
, va
, NULL
, info
);
1765 * Remove a single page from a process address space.
1767 * This function may not be called from an interrupt if the pmap is
1771 pmap_remove_page(struct pmap
*pmap
, vm_offset_t va
, pmap_inval_info_t info
)
1776 * if there is no pte for this address, just skip it!!! Otherwise
1777 * get a local va for mappings for this pmap and remove the entry.
1779 if (*pmap_pde(pmap
, va
) != 0) {
1780 ptq
= get_ptbase(pmap
) + amd64_btop(va
);
1782 pmap_remove_pte(pmap
, ptq
, va
, info
);
1790 * Remove the given range of addresses from the specified map.
1792 * It is assumed that the start and end are properly
1793 * rounded to the page size.
1795 * This function may not be called from an interrupt if the pmap is
1799 pmap_remove(struct pmap
*pmap
, vm_offset_t sva
, vm_offset_t eva
)
1803 vm_offset_t ptpaddr
;
1804 vm_offset_t sindex
, eindex
;
1805 struct pmap_inval_info info
;
1810 if (pmap
->pm_stats
.resident_count
== 0)
1813 pmap_inval_init(&info
);
1816 * special handling of removing one page. a very
1817 * common operation and easy to short circuit some
1820 if (((sva
+ PAGE_SIZE
) == eva
) &&
1821 ((pmap
->pm_pdir
[(sva
>> PDRSHIFT
)] & PG_PS
) == 0)) {
1822 pmap_remove_page(pmap
, sva
, &info
);
1823 pmap_inval_flush(&info
);
1828 * Get a local virtual address for the mappings that are being
1831 sindex
= amd64_btop(sva
);
1832 eindex
= amd64_btop(eva
);
1834 for (; sindex
< eindex
; sindex
= pdnxt
) {
1835 vm_pindex_t pdirindex
;
1838 * Calculate index for next page table.
1840 pdnxt
= ((sindex
+ NPTEPG
) & ~(NPTEPG
- 1));
1841 if (pmap
->pm_stats
.resident_count
== 0)
1844 pdirindex
= sindex
/ NPDEPG
;
1845 if (((ptpaddr
= pmap
->pm_pdir
[pdirindex
]) & PG_PS
) != 0) {
1846 pmap_inval_add(&info
, pmap
, -1);
1847 pmap
->pm_pdir
[pdirindex
] = 0;
1848 pmap
->pm_stats
.resident_count
-= NBPDR
/ PAGE_SIZE
;
1853 * Weed out invalid mappings. Note: we assume that the page
1854 * directory table is always allocated, and in kernel virtual.
1860 * Limit our scan to either the end of the va represented
1861 * by the current page table page, or to the end of the
1862 * range being removed.
1864 if (pdnxt
> eindex
) {
1869 * NOTE: pmap_remove_pte() can block.
1871 for (; sindex
!= pdnxt
; sindex
++) {
1874 ptbase
= get_ptbase(pmap
);
1875 if (ptbase
[sindex
] == 0)
1877 va
= amd64_ptob(sindex
);
1878 if (pmap_remove_pte(pmap
, ptbase
+ sindex
, va
, &info
))
1882 pmap_inval_flush(&info
);
1888 * Removes this physical page from all physical maps in which it resides.
1889 * Reflects back modify bits to the pager.
1891 * This routine may not be called from an interrupt.
1895 pmap_remove_all(vm_page_t m
)
1897 struct pmap_inval_info info
;
1898 pt_entry_t
*pte
, tpte
;
1901 if (!pmap_initialized
|| (m
->flags
& PG_FICTITIOUS
))
1904 pmap_inval_init(&info
);
1906 while ((pv
= TAILQ_FIRST(&m
->md
.pv_list
)) != NULL
) {
1907 KKASSERT(pv
->pv_pmap
->pm_stats
.resident_count
> 0);
1908 --pv
->pv_pmap
->pm_stats
.resident_count
;
1910 pte
= pmap_pte_quick(pv
->pv_pmap
, pv
->pv_va
);
1911 pmap_inval_add(&info
, pv
->pv_pmap
, pv
->pv_va
);
1912 tpte
= pte_load_clear(pte
);
1915 pv
->pv_pmap
->pm_stats
.wired_count
--;
1918 vm_page_flag_set(m
, PG_REFERENCED
);
1921 * Update the vm_page_t clean and reference bits.
1924 #if defined(PMAP_DIAGNOSTIC)
1925 if (pmap_nw_modified((pt_entry_t
) tpte
)) {
1927 "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1931 if (pmap_track_modified(pv
->pv_va
))
1934 TAILQ_REMOVE(&m
->md
.pv_list
, pv
, pv_list
);
1935 TAILQ_REMOVE(&pv
->pv_pmap
->pm_pvlist
, pv
, pv_plist
);
1936 ++pv
->pv_pmap
->pm_generation
;
1937 m
->md
.pv_list_count
--;
1938 if (TAILQ_EMPTY(&m
->md
.pv_list
))
1939 vm_page_flag_clear(m
, PG_MAPPED
| PG_WRITEABLE
);
1940 pmap_unuse_pt(pv
->pv_pmap
, pv
->pv_va
, pv
->pv_ptem
, &info
);
1944 KKASSERT((m
->flags
& (PG_MAPPED
|PG_WRITEABLE
)) == 0);
1945 pmap_inval_flush(&info
);
1951 * Set the physical protection on the specified range of this map
1954 * This function may not be called from an interrupt if the map is
1955 * not the kernel_pmap.
1958 pmap_protect(pmap_t pmap
, vm_offset_t sva
, vm_offset_t eva
, vm_prot_t prot
)
1961 vm_offset_t pdnxt
, ptpaddr
;
1962 vm_pindex_t sindex
, eindex
;
1963 pmap_inval_info info
;
1968 if ((prot
& VM_PROT_READ
) == VM_PROT_NONE
) {
1969 pmap_remove(pmap
, sva
, eva
);
1973 if (prot
& VM_PROT_WRITE
)
1976 pmap_inval_init(&info
);
1978 ptbase
= get_ptbase(pmap
);
1980 sindex
= amd64_btop(sva
);
1981 eindex
= amd64_btop(eva
);
1983 for (; sindex
< eindex
; sindex
= pdnxt
) {
1985 vm_pindex_t pdirindex
;
1987 pdnxt
= ((sindex
+ NPTEPG
) & ~(NPTEPG
- 1));
1989 pdirindex
= sindex
/ NPDEPG
;
1990 if (((ptpaddr
= pmap
->pm_pdir
[pdirindex
]) & PG_PS
) != 0) {
1991 pmap_inval_add(&info
, pmap
, -1);
1992 pmap
->pm_pdir
[pdirindex
] &= ~(PG_M
|PG_RW
);
1993 pmap
->pm_stats
.resident_count
-= NBPDR
/ PAGE_SIZE
;
1998 * Weed out invalid mappings. Note: we assume that the page
1999 * directory table is always allocated, and in kernel virtual.
2004 if (pdnxt
> eindex
) {
2008 for (; sindex
!= pdnxt
; sindex
++) {
2014 * XXX non-optimal. Note also that there can be
2015 * no pmap_inval_flush() calls until after we modify
2016 * ptbase[sindex] (or otherwise we have to do another
2017 * pmap_inval_add() call).
2019 pmap_inval_add(&info
, pmap
, amd64_ptob(sindex
));
2020 pbits
= ptbase
[sindex
];
2022 if (pbits
& PG_MANAGED
) {
2025 m
= PHYS_TO_VM_PAGE(pbits
);
2026 vm_page_flag_set(m
, PG_REFERENCED
);
2030 if (pmap_track_modified(amd64_ptob(sindex
))) {
2032 m
= PHYS_TO_VM_PAGE(pbits
);
2041 if (pbits
!= ptbase
[sindex
]) {
2042 ptbase
[sindex
] = pbits
;
2046 pmap_inval_flush(&info
);
2050 * Insert the given physical page (p) at
2051 * the specified virtual address (v) in the
2052 * target physical map with the protection requested.
2054 * If specified, the page will be wired down, meaning
2055 * that the related pte can not be reclaimed.
2057 * NB: This is the only routine which MAY NOT lazy-evaluate
2058 * or lose information. That is, this routine must actually
2059 * insert this page into the given map NOW.
2062 pmap_enter(pmap_t pmap
, vm_offset_t va
, vm_page_t m
, vm_prot_t prot
,
2068 vm_offset_t origpte
, newpte
;
2070 pmap_inval_info info
;
2076 #ifdef PMAP_DIAGNOSTIC
2078 panic("pmap_enter: toobig");
2079 if ((va
>= UPT_MIN_ADDRESS
) && (va
< UPT_MAX_ADDRESS
))
2080 panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va
);
2082 if (va
< UPT_MAX_ADDRESS
&& pmap
== &kernel_pmap
) {
2083 kprintf("Warning: pmap_enter called on UVA with kernel_pmap\n");
2085 db_print_backtrace();
2088 if (va
>= UPT_MAX_ADDRESS
&& pmap
!= &kernel_pmap
) {
2089 kprintf("Warning: pmap_enter called on KVA without kernel_pmap\n");
2091 db_print_backtrace();
2096 * In the case that a page table page is not
2097 * resident, we are creating it here.
2099 if (va
< UPT_MIN_ADDRESS
)
2100 mpte
= pmap_allocpte(pmap
, va
);
2104 pmap_inval_init(&info
);
2105 pte
= pmap_pte(pmap
, va
);
2108 * Page Directory table entry not valid, we need a new PT page
2111 panic("pmap_enter: invalid page directory pdir=%x, va=0x%x\n",
2112 pmap
->pm_pdir
[PTDPTDI
], va
);
2115 pa
= VM_PAGE_TO_PHYS(m
) & PG_FRAME
;
2116 origpte
= *(vm_offset_t
*)pte
;
2117 opa
= origpte
& PG_FRAME
;
2119 if (origpte
& PG_PS
)
2120 panic("pmap_enter: attempted pmap_enter on 4MB page");
2123 * Mapping has not changed, must be protection or wiring change.
2125 if (origpte
&& (opa
== pa
)) {
2127 * Wiring change, just update stats. We don't worry about
2128 * wiring PT pages as they remain resident as long as there
2129 * are valid mappings in them. Hence, if a user page is wired,
2130 * the PT page will be also.
2132 if (wired
&& ((origpte
& PG_W
) == 0))
2133 pmap
->pm_stats
.wired_count
++;
2134 else if (!wired
&& (origpte
& PG_W
))
2135 pmap
->pm_stats
.wired_count
--;
2137 #if defined(PMAP_DIAGNOSTIC)
2138 if (pmap_nw_modified((pt_entry_t
) origpte
)) {
2140 "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2146 * Remove the extra pte reference. Note that we cannot
2147 * optimize the RO->RW case because we have adjusted the
2148 * wiring count above and may need to adjust the wiring
2155 * We might be turning off write access to the page,
2156 * so we go ahead and sense modify status.
2158 if (origpte
& PG_MANAGED
) {
2159 if ((origpte
& PG_M
) && pmap_track_modified(va
)) {
2161 om
= PHYS_TO_VM_PAGE(opa
);
2165 KKASSERT(m
->flags
& PG_MAPPED
);
2170 * Mapping has changed, invalidate old range and fall through to
2171 * handle validating new mapping.
2175 err
= pmap_remove_pte(pmap
, pte
, va
, &info
);
2177 panic("pmap_enter: pte vanished, va: 0x%x", va
);
2181 * Enter on the PV list if part of our managed memory. Note that we
2182 * raise IPL while manipulating pv_table since pmap_enter can be
2183 * called at interrupt time.
2185 if (pmap_initialized
&&
2186 (m
->flags
& (PG_FICTITIOUS
|PG_UNMANAGED
)) == 0) {
2187 pmap_insert_entry(pmap
, va
, mpte
, m
);
2189 vm_page_flag_set(m
, PG_MAPPED
);
2193 * Increment counters
2195 ++pmap
->pm_stats
.resident_count
;
2197 pmap
->pm_stats
.wired_count
++;
2201 * Now validate mapping with desired protection/wiring.
2203 newpte
= (vm_offset_t
) (pa
| pte_prot(pmap
, prot
) | PG_V
);
2207 if (va
< UPT_MIN_ADDRESS
)
2209 if (pmap
== &kernel_pmap
)
2213 * if the mapping or permission bits are different, we need
2214 * to update the pte.
2216 if ((origpte
& ~(PG_M
|PG_A
)) != newpte
) {
2217 pmap_inval_add(&info
, pmap
, va
);
2218 *pte
= newpte
| PG_A
;
2220 vm_page_flag_set(m
, PG_WRITEABLE
);
2222 KKASSERT((newpte
& PG_MANAGED
) == 0 || (m
->flags
& PG_MAPPED
));
2223 pmap_inval_flush(&info
);
2227 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2228 * This code also assumes that the pmap has no pre-existing entry for this
2231 * This code currently may only be used on user pmaps, not kernel_pmap.
2234 pmap_enter_quick(pmap_t pmap
, vm_offset_t va
, vm_page_t m
)
2239 vm_pindex_t ptepindex
;
2241 pmap_inval_info info
;
2243 pmap_inval_init(&info
);
2245 if (va
< UPT_MAX_ADDRESS
&& pmap
== &kernel_pmap
) {
2246 kprintf("Warning: pmap_enter_quick called on UVA with kernel_pmap\n");
2248 db_print_backtrace();
2251 if (va
>= UPT_MAX_ADDRESS
&& pmap
!= &kernel_pmap
) {
2252 kprintf("Warning: pmap_enter_quick called on KVA without kernel_pmap\n");
2254 db_print_backtrace();
2258 KKASSERT(va
< UPT_MIN_ADDRESS
); /* assert used on user pmaps only */
2261 * Calculate the page table page (mpte), allocating it if necessary.
2263 * A held page table page (mpte), or NULL, is passed onto the
2264 * section following.
2266 if (va
< UPT_MIN_ADDRESS
) {
2268 * Calculate pagetable page index
2270 ptepindex
= va
>> PDRSHIFT
;
2274 * Get the page directory entry
2276 ptepa
= (vm_offset_t
) pmap
->pm_pdir
[ptepindex
];
2279 * If the page table page is mapped, we just increment
2280 * the hold count, and activate it.
2284 panic("pmap_enter_quick: unexpected mapping into 4MB page");
2285 if (pmap
->pm_ptphint
&&
2286 (pmap
->pm_ptphint
->pindex
== ptepindex
)) {
2287 mpte
= pmap
->pm_ptphint
;
2289 mpte
= pmap_page_lookup( pmap
->pm_pteobj
, ptepindex
);
2290 pmap
->pm_ptphint
= mpte
;
2295 mpte
= _pmap_allocpte(pmap
, ptepindex
);
2297 } while (mpte
== NULL
);
2300 /* this code path is not yet used */
2304 * With a valid (and held) page directory page, we can just use
2305 * vtopte() to get to the pte. If the pte is already present
2306 * we do not disturb it.
2311 pmap_unwire_pte_hold(pmap
, mpte
, &info
);
2312 pa
= VM_PAGE_TO_PHYS(m
);
2313 KKASSERT(((*pte
^ pa
) & PG_FRAME
) == 0);
2318 * Enter on the PV list if part of our managed memory
2320 if ((m
->flags
& (PG_FICTITIOUS
|PG_UNMANAGED
)) == 0) {
2321 pmap_insert_entry(pmap
, va
, mpte
, m
);
2322 vm_page_flag_set(m
, PG_MAPPED
);
2326 * Increment counters
2328 ++pmap
->pm_stats
.resident_count
;
2330 pa
= VM_PAGE_TO_PHYS(m
);
2333 * Now validate mapping with RO protection
2335 if (m
->flags
& (PG_FICTITIOUS
|PG_UNMANAGED
))
2336 *pte
= pa
| PG_V
| PG_U
;
2338 *pte
= pa
| PG_V
| PG_U
| PG_MANAGED
;
2339 /* pmap_inval_add(&info, pmap, va); shouldn't be needed inval->valid */
2340 pmap_inval_flush(&info
);
2344 * Make a temporary mapping for a physical address. This is only intended
2345 * to be used for panic dumps.
2348 pmap_kenter_temporary(vm_paddr_t pa
, int i
)
2350 pmap_kenter((vm_offset_t
)crashdumpmap
+ (i
* PAGE_SIZE
), pa
);
2351 return ((void *)crashdumpmap
);
2354 #define MAX_INIT_PT (96)
2357 * This routine preloads the ptes for a given object into the specified pmap.
2358 * This eliminates the blast of soft faults on process startup and
2359 * immediately after an mmap.
2361 static int pmap_object_init_pt_callback(vm_page_t p
, void *data
);
2364 pmap_object_init_pt(pmap_t pmap
, vm_offset_t addr
, vm_prot_t prot
,
2365 vm_object_t object
, vm_pindex_t pindex
,
2366 vm_size_t size
, int limit
)
2368 struct rb_vm_page_scan_info info
;
2373 * We can't preinit if read access isn't set or there is no pmap
2376 if ((prot
& VM_PROT_READ
) == 0 || pmap
== NULL
|| object
== NULL
)
2380 * We can't preinit if the pmap is not the current pmap
2382 lp
= curthread
->td_lwp
;
2383 if (lp
== NULL
|| pmap
!= vmspace_pmap(lp
->lwp_vmspace
))
2386 psize
= amd64_btop(size
);
2388 if ((object
->type
!= OBJT_VNODE
) ||
2389 ((limit
& MAP_PREFAULT_PARTIAL
) && (psize
> MAX_INIT_PT
) &&
2390 (object
->resident_page_count
> MAX_INIT_PT
))) {
2394 if (psize
+ pindex
> object
->size
) {
2395 if (object
->size
< pindex
)
2397 psize
= object
->size
- pindex
;
2404 * Use a red-black scan to traverse the requested range and load
2405 * any valid pages found into the pmap.
2407 * We cannot safely scan the object's memq unless we are in a
2408 * critical section since interrupts can remove pages from objects.
2410 info
.start_pindex
= pindex
;
2411 info
.end_pindex
= pindex
+ psize
- 1;
2418 vm_page_rb_tree_RB_SCAN(&object
->rb_memq
, rb_vm_page_scancmp
,
2419 pmap_object_init_pt_callback
, &info
);
2425 pmap_object_init_pt_callback(vm_page_t p
, void *data
)
2427 struct rb_vm_page_scan_info
*info
= data
;
2428 vm_pindex_t rel_index
;
2430 * don't allow an madvise to blow away our really
2431 * free pages allocating pv entries.
2433 if ((info
->limit
& MAP_PREFAULT_MADVISE
) &&
2434 vmstats
.v_free_count
< vmstats
.v_free_reserved
) {
2437 if (((p
->valid
& VM_PAGE_BITS_ALL
) == VM_PAGE_BITS_ALL
) &&
2438 (p
->busy
== 0) && (p
->flags
& (PG_BUSY
| PG_FICTITIOUS
)) == 0) {
2439 if ((p
->queue
- p
->pc
) == PQ_CACHE
)
2440 vm_page_deactivate(p
);
2442 rel_index
= p
->pindex
- info
->start_pindex
;
2443 pmap_enter_quick(info
->pmap
,
2444 info
->addr
+ amd64_ptob(rel_index
), p
);
2451 * pmap_prefault provides a quick way of clustering pagefaults into a
2452 * processes address space. It is a "cousin" of pmap_object_init_pt,
2453 * except it runs at page fault time instead of mmap time.
2457 #define PAGEORDER_SIZE (PFBAK+PFFOR)
2459 static int pmap_prefault_pageorder
[] = {
2460 -PAGE_SIZE
, PAGE_SIZE
,
2461 -2 * PAGE_SIZE
, 2 * PAGE_SIZE
,
2462 -3 * PAGE_SIZE
, 3 * PAGE_SIZE
,
2463 -4 * PAGE_SIZE
, 4 * PAGE_SIZE
2467 pmap_prefault(pmap_t pmap
, vm_offset_t addra
, vm_map_entry_t entry
)
2478 * We do not currently prefault mappings that use virtual page
2479 * tables. We do not prefault foreign pmaps.
2481 if (entry
->maptype
== VM_MAPTYPE_VPAGETABLE
)
2483 lp
= curthread
->td_lwp
;
2484 if (lp
== NULL
|| (pmap
!= vmspace_pmap(lp
->lwp_vmspace
)))
2487 object
= entry
->object
.vm_object
;
2489 starta
= addra
- PFBAK
* PAGE_SIZE
;
2490 if (starta
< entry
->start
)
2491 starta
= entry
->start
;
2492 else if (starta
> addra
)
2496 * critical section protection is required to maintain the
2497 * page/object association, interrupts can free pages and remove
2498 * them from their objects.
2501 for (i
= 0; i
< PAGEORDER_SIZE
; i
++) {
2502 vm_object_t lobject
;
2505 addr
= addra
+ pmap_prefault_pageorder
[i
];
2506 if (addr
> addra
+ (PFFOR
* PAGE_SIZE
))
2509 if (addr
< starta
|| addr
>= entry
->end
)
2512 if ((*pmap_pde(pmap
, addr
)) == 0)
2519 pindex
= ((addr
- entry
->start
) + entry
->offset
) >> PAGE_SHIFT
;
2522 for (m
= vm_page_lookup(lobject
, pindex
);
2523 (!m
&& (lobject
->type
== OBJT_DEFAULT
) &&
2524 (lobject
->backing_object
));
2525 lobject
= lobject
->backing_object
2527 if (lobject
->backing_object_offset
& PAGE_MASK
)
2529 pindex
+= (lobject
->backing_object_offset
>> PAGE_SHIFT
);
2530 m
= vm_page_lookup(lobject
->backing_object
, pindex
);
2534 * give-up when a page is not in memory
2539 if (((m
->valid
& VM_PAGE_BITS_ALL
) == VM_PAGE_BITS_ALL
) &&
2541 (m
->flags
& (PG_BUSY
| PG_FICTITIOUS
)) == 0) {
2543 if ((m
->queue
- m
->pc
) == PQ_CACHE
) {
2544 vm_page_deactivate(m
);
2547 pmap_enter_quick(pmap
, addr
, m
);
2555 * Routine: pmap_change_wiring
2556 * Function: Change the wiring attribute for a map/virtual-address
2558 * In/out conditions:
2559 * The mapping must already exist in the pmap.
2562 pmap_change_wiring(pmap_t pmap
, vm_offset_t va
, boolean_t wired
)
2569 pte
= pmap_pte(pmap
, va
);
2571 if (wired
&& !pmap_pte_w(pte
))
2572 pmap
->pm_stats
.wired_count
++;
2573 else if (!wired
&& pmap_pte_w(pte
))
2574 pmap
->pm_stats
.wired_count
--;
2577 * Wiring is not a hardware characteristic so there is no need to
2578 * invalidate TLB. However, in an SMP environment we must use
2579 * a locked bus cycle to update the pte (if we are not using
2580 * the pmap_inval_*() API that is)... it's ok to do this for simple
2585 atomic_set_int(pte
, PG_W
);
2587 atomic_clear_int(pte
, PG_W
);
2590 atomic_set_int_nonlocked(pte
, PG_W
);
2592 atomic_clear_int_nonlocked(pte
, PG_W
);
2599 * Copy the range specified by src_addr/len
2600 * from the source map to the range dst_addr/len
2601 * in the destination map.
2603 * This routine is only advisory and need not do anything.
2606 pmap_copy(pmap_t dst_pmap
, pmap_t src_pmap
, vm_offset_t dst_addr
,
2607 vm_size_t len
, vm_offset_t src_addr
)
2609 pmap_inval_info info
;
2611 vm_offset_t end_addr
= src_addr
+ len
;
2613 pd_entry_t src_frame
, dst_frame
;
2616 if (dst_addr
!= src_addr
)
2619 * XXX BUGGY. Amoung other things srcmpte is assumed to remain
2620 * valid through blocking calls, and that's just not going to
2627 src_frame
= src_pmap
->pm_pdir
[PTDPTDI
] & PG_FRAME
;
2628 if (src_frame
!= (PTDpde
& PG_FRAME
)) {
2632 dst_frame
= dst_pmap
->pm_pdir
[PTDPTDI
] & PG_FRAME
;
2633 if (dst_frame
!= (APTDpde
& PG_FRAME
)) {
2634 APTDpde
= (pd_entry_t
) (dst_frame
| PG_RW
| PG_V
);
2635 /* The page directory is not shared between CPUs */
2638 pmap_inval_init(&info
);
2639 pmap_inval_add(&info
, dst_pmap
, -1);
2640 pmap_inval_add(&info
, src_pmap
, -1);
2643 * critical section protection is required to maintain the page/object
2644 * association, interrupts can free pages and remove them from
2648 for (addr
= src_addr
; addr
< end_addr
; addr
= pdnxt
) {
2649 pt_entry_t
*src_pte
, *dst_pte
;
2650 vm_page_t dstmpte
, srcmpte
;
2651 vm_offset_t srcptepaddr
;
2652 vm_pindex_t ptepindex
;
2654 if (addr
>= UPT_MIN_ADDRESS
)
2655 panic("pmap_copy: invalid to pmap_copy page tables\n");
2658 * Don't let optional prefaulting of pages make us go
2659 * way below the low water mark of free pages or way
2660 * above high water mark of used pv entries.
2662 if (vmstats
.v_free_count
< vmstats
.v_free_reserved
||
2663 pv_entry_count
> pv_entry_high_water
)
2666 pdnxt
= ((addr
+ PAGE_SIZE
*NPTEPG
) & ~(PAGE_SIZE
*NPTEPG
- 1));
2667 ptepindex
= addr
>> PDRSHIFT
;
2669 srcptepaddr
= (vm_offset_t
) src_pmap
->pm_pdir
[ptepindex
];
2670 if (srcptepaddr
== 0)
2673 if (srcptepaddr
& PG_PS
) {
2674 if (dst_pmap
->pm_pdir
[ptepindex
] == 0) {
2675 dst_pmap
->pm_pdir
[ptepindex
] = (pd_entry_t
) srcptepaddr
;
2676 dst_pmap
->pm_stats
.resident_count
+= NBPDR
/ PAGE_SIZE
;
2681 srcmpte
= vm_page_lookup(src_pmap
->pm_pteobj
, ptepindex
);
2682 if ((srcmpte
== NULL
) || (srcmpte
->hold_count
== 0) ||
2683 (srcmpte
->flags
& PG_BUSY
)) {
2687 if (pdnxt
> end_addr
)
2690 src_pte
= vtopte(addr
);
2691 dst_pte
= avtopte(addr
);
2692 while (addr
< pdnxt
) {
2697 * we only virtual copy managed pages
2699 if ((ptetemp
& PG_MANAGED
) != 0) {
2701 * We have to check after allocpte for the
2702 * pte still being around... allocpte can
2705 * pmap_allocpte() can block. If we lose
2706 * our page directory mappings we stop.
2708 dstmpte
= pmap_allocpte(dst_pmap
, addr
);
2710 if (src_frame
!= (PTDpde
& PG_FRAME
) ||
2711 dst_frame
!= (APTDpde
& PG_FRAME
)
2713 kprintf("WARNING: pmap_copy: detected and corrected race\n");
2714 pmap_unwire_pte_hold(dst_pmap
, dstmpte
, &info
);
2716 } else if ((*dst_pte
== 0) &&
2717 (ptetemp
= *src_pte
) != 0 &&
2718 (ptetemp
& PG_MANAGED
)) {
2720 * Clear the modified and
2721 * accessed (referenced) bits
2724 m
= PHYS_TO_VM_PAGE(ptetemp
);
2725 *dst_pte
= ptetemp
& ~(PG_M
| PG_A
);
2726 ++dst_pmap
->pm_stats
.resident_count
;
2727 pmap_insert_entry(dst_pmap
, addr
,
2729 KKASSERT(m
->flags
& PG_MAPPED
);
2731 kprintf("WARNING: pmap_copy: dst_pte race detected and corrected\n");
2732 pmap_unwire_pte_hold(dst_pmap
, dstmpte
, &info
);
2735 if (dstmpte
->hold_count
>= srcmpte
->hold_count
)
2745 pmap_inval_flush(&info
);
2751 * Zero the specified PA by mapping the page into KVM and clearing its
2754 * This function may be called from an interrupt and no locking is
2758 pmap_zero_page(vm_paddr_t phys
)
2760 struct mdglobaldata
*gd
= mdcpu
;
2764 panic("pmap_zero_page: CMAP3 busy");
2766 PG_V
| PG_RW
| (phys
& PG_FRAME
) | PG_A
| PG_M
;
2767 cpu_invlpg(gd
->gd_CADDR3
);
2769 #if defined(I686_CPU)
2770 if (cpu_class
== CPUCLASS_686
)
2771 i686_pagezero(gd
->gd_CADDR3
);
2774 bzero(gd
->gd_CADDR3
, PAGE_SIZE
);
2780 * pmap_page_assertzero:
2782 * Assert that a page is empty, panic if it isn't.
2785 pmap_page_assertzero(vm_paddr_t phys
)
2787 struct mdglobaldata
*gd
= mdcpu
;
2792 panic("pmap_zero_page: CMAP3 busy");
2794 PG_V
| PG_RW
| (phys
& PG_FRAME
) | PG_A
| PG_M
;
2795 cpu_invlpg(gd
->gd_CADDR3
);
2796 for (i
= 0; i
< PAGE_SIZE
; i
+= sizeof(int)) {
2797 if (*(int *)((char *)gd
->gd_CADDR3
+ i
) != 0) {
2798 panic("pmap_page_assertzero() @ %p not zero!\n",
2799 (void *)gd
->gd_CADDR3
);
2809 * Zero part of a physical page by mapping it into memory and clearing
2810 * its contents with bzero.
2812 * off and size may not cover an area beyond a single hardware page.
2815 pmap_zero_page_area(vm_paddr_t phys
, int off
, int size
)
2817 struct mdglobaldata
*gd
= mdcpu
;
2821 panic("pmap_zero_page: CMAP3 busy");
2822 *gd
->gd_CMAP3
= PG_V
| PG_RW
| (phys
& PG_FRAME
) | PG_A
| PG_M
;
2823 cpu_invlpg(gd
->gd_CADDR3
);
2825 #if defined(I686_CPU)
2826 if (cpu_class
== CPUCLASS_686
&& off
== 0 && size
== PAGE_SIZE
)
2827 i686_pagezero(gd
->gd_CADDR3
);
2830 bzero((char *)gd
->gd_CADDR3
+ off
, size
);
2838 * Copy the physical page from the source PA to the target PA.
2839 * This function may be called from an interrupt. No locking
2843 pmap_copy_page(vm_paddr_t src
, vm_paddr_t dst
)
2845 struct mdglobaldata
*gd
= mdcpu
;
2849 panic("pmap_copy_page: CMAP1 busy");
2851 panic("pmap_copy_page: CMAP2 busy");
2853 *gd
->gd_CMAP1
= PG_V
| (src
& PG_FRAME
) | PG_A
;
2854 *gd
->gd_CMAP2
= PG_V
| PG_RW
| (dst
& PG_FRAME
) | PG_A
| PG_M
;
2856 cpu_invlpg(gd
->gd_CADDR1
);
2857 cpu_invlpg(gd
->gd_CADDR2
);
2859 bcopy(gd
->gd_CADDR1
, gd
->gd_CADDR2
, PAGE_SIZE
);
2867 * pmap_copy_page_frag:
2869 * Copy the physical page from the source PA to the target PA.
2870 * This function may be called from an interrupt. No locking
2874 pmap_copy_page_frag(vm_paddr_t src
, vm_paddr_t dst
, size_t bytes
)
2876 struct mdglobaldata
*gd
= mdcpu
;
2880 panic("pmap_copy_page: CMAP1 busy");
2882 panic("pmap_copy_page: CMAP2 busy");
2884 *gd
->gd_CMAP1
= PG_V
| (src
& PG_FRAME
) | PG_A
;
2885 *gd
->gd_CMAP2
= PG_V
| PG_RW
| (dst
& PG_FRAME
) | PG_A
| PG_M
;
2887 cpu_invlpg(gd
->gd_CADDR1
);
2888 cpu_invlpg(gd
->gd_CADDR2
);
2890 bcopy((char *)gd
->gd_CADDR1
+ (src
& PAGE_MASK
),
2891 (char *)gd
->gd_CADDR2
+ (dst
& PAGE_MASK
),
2900 * Returns true if the pmap's pv is one of the first
2901 * 16 pvs linked to from this page. This count may
2902 * be changed upwards or downwards in the future; it
2903 * is only necessary that true be returned for a small
2904 * subset of pmaps for proper page aging.
2907 pmap_page_exists_quick(pmap_t pmap
, vm_page_t m
)
2912 if (!pmap_initialized
|| (m
->flags
& PG_FICTITIOUS
))
2917 TAILQ_FOREACH(pv
, &m
->md
.pv_list
, pv_list
) {
2918 if (pv
->pv_pmap
== pmap
) {
2931 * Remove all pages from specified address space
2932 * this aids process exit speeds. Also, this code
2933 * is special cased for current process only, but
2934 * can have the more generic (and slightly slower)
2935 * mode enabled. This is much faster than pmap_remove
2936 * in the case of running down an entire address space.
2939 pmap_remove_pages(pmap_t pmap
, vm_offset_t sva
, vm_offset_t eva
)
2942 pt_entry_t
*pte
, tpte
;
2945 pmap_inval_info info
;
2947 int32_t save_generation
;
2949 lp
= curthread
->td_lwp
;
2950 if (lp
&& pmap
== vmspace_pmap(lp
->lwp_vmspace
))
2955 pmap_inval_init(&info
);
2957 for (pv
= TAILQ_FIRST(&pmap
->pm_pvlist
); pv
; pv
= npv
) {
2958 if (pv
->pv_va
>= eva
|| pv
->pv_va
< sva
) {
2959 npv
= TAILQ_NEXT(pv
, pv_plist
);
2963 KKASSERT(pmap
== pv
->pv_pmap
);
2966 pte
= vtopte(pv
->pv_va
);
2968 pte
= pmap_pte_quick(pmap
, pv
->pv_va
);
2969 if (pmap
->pm_active
)
2970 pmap_inval_add(&info
, pmap
, pv
->pv_va
);
2973 * We cannot remove wired pages from a process' mapping
2977 npv
= TAILQ_NEXT(pv
, pv_plist
);
2980 tpte
= pte_load_clear(pte
);
2982 m
= PHYS_TO_VM_PAGE(tpte
);
2984 KASSERT(m
< &vm_page_array
[vm_page_array_size
],
2985 ("pmap_remove_pages: bad tpte %x", tpte
));
2987 KKASSERT(pmap
->pm_stats
.resident_count
> 0);
2988 --pmap
->pm_stats
.resident_count
;
2991 * Update the vm_page_t clean and reference bits.
2997 npv
= TAILQ_NEXT(pv
, pv_plist
);
2998 TAILQ_REMOVE(&pmap
->pm_pvlist
, pv
, pv_plist
);
2999 save_generation
= ++pmap
->pm_generation
;
3001 m
->md
.pv_list_count
--;
3002 TAILQ_REMOVE(&m
->md
.pv_list
, pv
, pv_list
);
3003 if (TAILQ_EMPTY(&m
->md
.pv_list
))
3004 vm_page_flag_clear(m
, PG_MAPPED
| PG_WRITEABLE
);
3006 pmap_unuse_pt(pmap
, pv
->pv_va
, pv
->pv_ptem
, &info
);
3010 * Restart the scan if we blocked during the unuse or free
3011 * calls and other removals were made.
3013 if (save_generation
!= pmap
->pm_generation
) {
3014 kprintf("Warning: pmap_remove_pages race-A avoided\n");
3015 pv
= TAILQ_FIRST(&pmap
->pm_pvlist
);
3018 pmap_inval_flush(&info
);
3023 * pmap_testbit tests bits in pte's
3024 * note that the testbit/clearbit routines are inline,
3025 * and a lot of things compile-time evaluate.
3028 pmap_testbit(vm_page_t m
, int bit
)
3033 if (!pmap_initialized
|| (m
->flags
& PG_FICTITIOUS
))
3036 if (TAILQ_FIRST(&m
->md
.pv_list
) == NULL
)
3041 TAILQ_FOREACH(pv
, &m
->md
.pv_list
, pv_list
) {
3043 * if the bit being tested is the modified bit, then
3044 * mark clean_map and ptes as never
3047 if (bit
& (PG_A
|PG_M
)) {
3048 if (!pmap_track_modified(pv
->pv_va
))
3052 #if defined(PMAP_DIAGNOSTIC)
3054 kprintf("Null pmap (tb) at va: 0x%x\n", pv
->pv_va
);
3058 pte
= pmap_pte_quick(pv
->pv_pmap
, pv
->pv_va
);
3069 * this routine is used to modify bits in ptes
3071 static __inline
void
3072 pmap_clearbit(vm_page_t m
, int bit
)
3074 struct pmap_inval_info info
;
3079 if (!pmap_initialized
|| (m
->flags
& PG_FICTITIOUS
))
3082 pmap_inval_init(&info
);
3086 * Loop over all current mappings setting/clearing as appropos If
3087 * setting RO do we need to clear the VAC?
3089 TAILQ_FOREACH(pv
, &m
->md
.pv_list
, pv_list
) {
3091 * don't write protect pager mappings
3094 if (!pmap_track_modified(pv
->pv_va
))
3098 #if defined(PMAP_DIAGNOSTIC)
3100 kprintf("Null pmap (cb) at va: 0x%x\n", pv
->pv_va
);
3106 * Careful here. We can use a locked bus instruction to
3107 * clear PG_A or PG_M safely but we need to synchronize
3108 * with the target cpus when we mess with PG_RW.
3110 * We do not have to force synchronization when clearing
3111 * PG_M even for PTEs generated via virtual memory maps,
3112 * because the virtual kernel will invalidate the pmap
3113 * entry when/if it needs to resynchronize the Modify bit.
3116 pmap_inval_add(&info
, pv
->pv_pmap
, pv
->pv_va
);
3117 pte
= pmap_pte_quick(pv
->pv_pmap
, pv
->pv_va
);
3124 atomic_clear_int(pte
, PG_M
|PG_RW
);
3127 * The cpu may be trying to set PG_M
3128 * simultaniously with our clearing
3131 if (!atomic_cmpset_int(pte
, pbits
,
3135 } else if (bit
== PG_M
) {
3137 * We could also clear PG_RW here to force
3138 * a fault on write to redetect PG_M for
3139 * virtual kernels, but it isn't necessary
3140 * since virtual kernels invalidate the pte
3141 * when they clear the VPTE_M bit in their
3142 * virtual page tables.
3144 atomic_clear_int(pte
, PG_M
);
3146 atomic_clear_int(pte
, bit
);
3150 pmap_inval_flush(&info
);
3155 * pmap_page_protect:
3157 * Lower the permission for all mappings to a given page.
3160 pmap_page_protect(vm_page_t m
, vm_prot_t prot
)
3162 if ((prot
& VM_PROT_WRITE
) == 0) {
3163 if (prot
& (VM_PROT_READ
| VM_PROT_EXECUTE
)) {
3164 pmap_clearbit(m
, PG_RW
);
3165 vm_page_flag_clear(m
, PG_WRITEABLE
);
3173 pmap_phys_address(vm_pindex_t ppn
)
3175 return (amd64_ptob(ppn
));
3179 * pmap_ts_referenced:
3181 * Return a count of reference bits for a page, clearing those bits.
3182 * It is not necessary for every reference bit to be cleared, but it
3183 * is necessary that 0 only be returned when there are truly no
3184 * reference bits set.
3186 * XXX: The exact number of bits to check and clear is a matter that
3187 * should be tested and standardized at some point in the future for
3188 * optimal aging of shared pages.
3191 pmap_ts_referenced(vm_page_t m
)
3193 pv_entry_t pv
, pvf
, pvn
;
3197 if (!pmap_initialized
|| (m
->flags
& PG_FICTITIOUS
))
3202 if ((pv
= TAILQ_FIRST(&m
->md
.pv_list
)) != NULL
) {
3207 pvn
= TAILQ_NEXT(pv
, pv_list
);
3209 TAILQ_REMOVE(&m
->md
.pv_list
, pv
, pv_list
);
3211 TAILQ_INSERT_TAIL(&m
->md
.pv_list
, pv
, pv_list
);
3213 if (!pmap_track_modified(pv
->pv_va
))
3216 pte
= pmap_pte_quick(pv
->pv_pmap
, pv
->pv_va
);
3218 if (pte
&& (*pte
& PG_A
)) {
3220 atomic_clear_int(pte
, PG_A
);
3222 atomic_clear_int_nonlocked(pte
, PG_A
);
3229 } while ((pv
= pvn
) != NULL
&& pv
!= pvf
);
3239 * Return whether or not the specified physical page was modified
3240 * in any physical maps.
3243 pmap_is_modified(vm_page_t m
)
3245 return pmap_testbit(m
, PG_M
);
3249 * Clear the modify bits on the specified physical page.
3252 pmap_clear_modify(vm_page_t m
)
3254 pmap_clearbit(m
, PG_M
);
3258 * pmap_clear_reference:
3260 * Clear the reference bit on the specified physical page.
3263 pmap_clear_reference(vm_page_t m
)
3265 pmap_clearbit(m
, PG_A
);
3269 * Miscellaneous support routines follow
3273 i386_protection_init(void)
3277 kp
= protection_codes
;
3278 for (prot
= 0; prot
< 8; prot
++) {
3280 case VM_PROT_NONE
| VM_PROT_NONE
| VM_PROT_NONE
:
3282 * Read access is also 0. There isn't any execute bit,
3283 * so just make it readable.
3285 case VM_PROT_READ
| VM_PROT_NONE
| VM_PROT_NONE
:
3286 case VM_PROT_READ
| VM_PROT_NONE
| VM_PROT_EXECUTE
:
3287 case VM_PROT_NONE
| VM_PROT_NONE
| VM_PROT_EXECUTE
:
3290 case VM_PROT_NONE
| VM_PROT_WRITE
| VM_PROT_NONE
:
3291 case VM_PROT_NONE
| VM_PROT_WRITE
| VM_PROT_EXECUTE
:
3292 case VM_PROT_READ
| VM_PROT_WRITE
| VM_PROT_NONE
:
3293 case VM_PROT_READ
| VM_PROT_WRITE
| VM_PROT_EXECUTE
:
3301 * Map a set of physical memory pages into the kernel virtual
3302 * address space. Return a pointer to where it is mapped. This
3303 * routine is intended to be used for mapping device memory,
3306 * NOTE: we can't use pgeflag unless we invalidate the pages one at
3310 pmap_mapdev(vm_paddr_t pa
, vm_size_t size
)
3312 vm_offset_t va
, tmpva
, offset
;
3315 offset
= pa
& PAGE_MASK
;
3316 size
= roundup(offset
+ size
, PAGE_SIZE
);
3318 va
= kmem_alloc_nofault(&kernel_map
, size
);
3320 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3323 for (tmpva
= va
; size
> 0;) {
3324 pte
= vtopte(tmpva
);
3325 *pte
= pa
| PG_RW
| PG_V
; /* | pgeflag; */
3333 return ((void *)(va
+ offset
));
3337 pmap_unmapdev(vm_offset_t va
, vm_size_t size
)
3339 vm_offset_t base
, offset
;
3341 base
= va
& PG_FRAME
;
3342 offset
= va
& PAGE_MASK
;
3343 size
= roundup(offset
+ size
, PAGE_SIZE
);
3344 pmap_qremove(va
, size
>> PAGE_SHIFT
);
3345 kmem_free(&kernel_map
, base
, size
);
3349 * perform the pmap work for mincore
3352 pmap_mincore(pmap_t pmap
, vm_offset_t addr
)
3354 pt_entry_t
*ptep
, pte
;
3358 ptep
= pmap_pte(pmap
, addr
);
3363 if ((pte
= *ptep
) != 0) {
3366 val
= MINCORE_INCORE
;
3367 if ((pte
& PG_MANAGED
) == 0)
3370 pa
= pte
& PG_FRAME
;
3372 m
= PHYS_TO_VM_PAGE(pa
);
3378 val
|= MINCORE_MODIFIED
|MINCORE_MODIFIED_OTHER
;
3380 * Modified by someone
3382 else if (m
->dirty
|| pmap_is_modified(m
))
3383 val
|= MINCORE_MODIFIED_OTHER
;
3388 val
|= MINCORE_REFERENCED
|MINCORE_REFERENCED_OTHER
;
3391 * Referenced by someone
3393 else if ((m
->flags
& PG_REFERENCED
) || pmap_ts_referenced(m
)) {
3394 val
|= MINCORE_REFERENCED_OTHER
;
3395 vm_page_flag_set(m
, PG_REFERENCED
);
3402 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
3403 * vmspace will be ref'd and the old one will be deref'd.
3405 * The vmspace for all lwps associated with the process will be adjusted
3406 * and cr3 will be reloaded if any lwp is the current lwp.
3409 pmap_replacevm(struct proc
*p
, struct vmspace
*newvm
, int adjrefs
)
3411 struct vmspace
*oldvm
;
3415 oldvm
= p
->p_vmspace
;
3416 if (oldvm
!= newvm
) {
3417 p
->p_vmspace
= newvm
;
3418 KKASSERT(p
->p_nthreads
== 1);
3419 lp
= RB_ROOT(&p
->p_lwp_tree
);
3420 pmap_setlwpvm(lp
, newvm
);
3422 sysref_get(&newvm
->vm_sysref
);
3423 sysref_put(&oldvm
->vm_sysref
);
3430 * Set the vmspace for a LWP. The vmspace is almost universally set the
3431 * same as the process vmspace, but virtual kernels need to swap out contexts
3432 * on a per-lwp basis.
3435 pmap_setlwpvm(struct lwp
*lp
, struct vmspace
*newvm
)
3437 struct vmspace
*oldvm
;
3441 oldvm
= lp
->lwp_vmspace
;
3443 if (oldvm
!= newvm
) {
3444 lp
->lwp_vmspace
= newvm
;
3445 if (curthread
->td_lwp
== lp
) {
3446 pmap
= vmspace_pmap(newvm
);
3448 atomic_set_int(&pmap
->pm_active
, 1 << mycpu
->gd_cpuid
);
3450 pmap
->pm_active
|= 1;
3452 #if defined(SWTCH_OPTIM_STATS)
3455 curthread
->td_pcb
->pcb_cr3
= vtophys(pmap
->pm_pdir
);
3456 curthread
->td_pcb
->pcb_cr3
|= PG_RW
| PG_U
| PG_V
;
3457 *link_pdpe
= curthread
->td_pcb
->pcb_cr3
| PG_RW
| PG_U
| PG_V
;
3458 load_cr3(common_lvl4_phys
);
3459 pmap
= vmspace_pmap(oldvm
);
3461 atomic_clear_int(&pmap
->pm_active
,
3462 1 << mycpu
->gd_cpuid
);
3464 pmap
->pm_active
&= ~1;
3472 pmap_addr_hint(vm_object_t obj
, vm_offset_t addr
, vm_size_t size
)
3475 if ((obj
== NULL
) || (size
< NBPDR
) || (obj
->type
!= OBJT_DEVICE
)) {
3479 addr
= (addr
+ (NBPDR
- 1)) & ~(NBPDR
- 1);
3486 static void pads (pmap_t pm
);
3487 void pmap_pvdump (vm_paddr_t pa
);
3489 /* print address space of pmap*/
3497 if (pm
== &kernel_pmap
)
3500 for (i
= 0; i
< NPDEPG
; i
++) {
3501 if (pm
->pm_pdir
[i
]) {
3502 for (j
= 0; j
< NPTEPG
; j
++) {
3503 va
= (i
<< PDRSHIFT
) + (j
<< PAGE_SHIFT
);
3504 if (pm
== &kernel_pmap
&& va
< KERNBASE
)
3506 if (pm
!= &kernel_pmap
&& va
> UPT_MAX_ADDRESS
)
3508 ptep
= pmap_pte_quick(pm
, va
);
3509 if (pmap_pte_v(ptep
))
3510 kprintf("%lx:%lx ", va
, *ptep
);
3519 pmap_pvdump(vm_paddr_t pa
)
3524 kprintf("pa %08llx", (long long)pa
);
3525 m
= PHYS_TO_VM_PAGE(pa
);
3526 TAILQ_FOREACH(pv
, &m
->md
.pv_list
, pv_list
) {
3528 kprintf(" -> pmap %p, va %x, flags %x",
3529 (void *)pv
->pv_pmap
, pv
->pv_va
, pv
->pv_flags
);
3531 kprintf(" -> pmap %p, va %x", (void *)pv
->pv_pmap
, pv
->pv_va
);