kernel - Cleanup swap comments
[dragonfly.git] / sys / vm / swap_pager.c
blob8597b70da715f8a7ab369f638546513aa82cf4de
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1998-2010 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * Copyright (c) 1994 John S. Dyson
37 * Copyright (c) 1990 University of Utah.
38 * Copyright (c) 1991, 1993
39 * The Regents of the University of California. All rights reserved.
41 * This code is derived from software contributed to Berkeley by
42 * the Systems Programming Group of the University of Utah Computer
43 * Science Department.
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
69 * New Swap System
70 * Matthew Dillon
72 * Radix Bitmap 'blists'.
74 * - The new swapper uses the new radix bitmap code. This should scale
75 * to arbitrarily small or arbitrarily large swap spaces and an almost
76 * arbitrary degree of fragmentation.
78 * Features:
80 * - on the fly reallocation of swap during putpages. The new system
81 * does not try to keep previously allocated swap blocks for dirty
82 * pages.
84 * - on the fly deallocation of swap
86 * - No more garbage collection required. Unnecessarily allocated swap
87 * blocks only exist for dirty vm_page_t's now and these are already
88 * cycled (in a high-load system) by the pager. We also do on-the-fly
89 * removal of invalidated swap blocks when a page is destroyed
90 * or renamed.
92 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
94 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/thread2.h>
111 #include "opt_swap.h"
112 #include <vm/vm.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/vm_zone.h>
120 #include <vm/vnode_pager.h>
122 #include <sys/buf2.h>
123 #include <vm/vm_page2.h>
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER SWB_NPAGES
127 #endif
129 #define SWM_FREE 0x02 /* free, period */
130 #define SWM_POP 0x04 /* pop out */
132 #define SWBIO_READ 0x01
133 #define SWBIO_WRITE 0x02
134 #define SWBIO_SYNC 0x04
135 #define SWBIO_TTC 0x08 /* for VM_PAGER_TRY_TO_CACHE */
137 struct swfreeinfo {
138 vm_object_t object;
139 vm_pindex_t basei;
140 vm_pindex_t begi;
141 vm_pindex_t endi; /* inclusive */
144 struct swswapoffinfo {
145 vm_object_t object;
146 int devidx;
147 int shared;
151 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks
152 * in the old system.
155 int swap_pager_full; /* swap space exhaustion (task killing) */
156 int swap_fail_ticks; /* when we became exhausted */
157 int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
158 swblk_t vm_swap_cache_use;
159 swblk_t vm_swap_anon_use;
160 static int vm_report_swap_allocs;
162 static int nsw_rcount; /* free read buffers */
163 static int nsw_wcount_sync; /* limit write buffers / synchronous */
164 static int nsw_wcount_async; /* limit write buffers / asynchronous */
165 static int nsw_wcount_async_max;/* assigned maximum */
166 static int nsw_cluster_max; /* maximum VOP I/O allowed */
168 struct blist *swapblist;
169 static int swap_async_max = 4; /* maximum in-progress async I/O's */
170 static int swap_burst_read = 0; /* allow burst reading */
171 static swblk_t swapiterator; /* linearize allocations */
172 int swap_user_async = 0; /* user swap pager operation can be async */
174 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
176 /* from vm_swap.c */
177 extern struct vnode *swapdev_vp;
178 extern struct swdevt *swdevt;
179 extern int nswdev;
181 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
183 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
184 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
185 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
186 CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
187 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
188 CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
190 #if SWBLK_BITS == 64
191 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
192 CTLFLAG_RD, &vm_swap_cache_use, 0, "");
193 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
194 CTLFLAG_RD, &vm_swap_anon_use, 0, "");
195 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
196 CTLFLAG_RD, &vm_swap_size, 0, "");
197 #else
198 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
199 CTLFLAG_RD, &vm_swap_cache_use, 0, "");
200 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
201 CTLFLAG_RD, &vm_swap_anon_use, 0, "");
202 SYSCTL_INT(_vm, OID_AUTO, swap_size,
203 CTLFLAG_RD, &vm_swap_size, 0, "");
204 #endif
205 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
206 CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
208 vm_zone_t swap_zone;
211 * Red-Black tree for swblock entries
213 * The caller must hold vm_token
215 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
216 vm_pindex_t, swb_index);
219 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
221 if (swb1->swb_index < swb2->swb_index)
222 return(-1);
223 if (swb1->swb_index > swb2->swb_index)
224 return(1);
225 return(0);
228 static
230 rb_swblock_scancmp(struct swblock *swb, void *data)
232 struct swfreeinfo *info = data;
234 if (swb->swb_index < info->basei)
235 return(-1);
236 if (swb->swb_index > info->endi)
237 return(1);
238 return(0);
241 static
243 rb_swblock_condcmp(struct swblock *swb, void *data)
245 struct swfreeinfo *info = data;
247 if (swb->swb_index < info->basei)
248 return(-1);
249 return(0);
253 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
254 * calls hooked from other parts of the VM system and do not appear here.
255 * (see vm/swap_pager.h).
258 static void swap_pager_dealloc (vm_object_t object);
259 static int swap_pager_getpage (vm_object_t, vm_page_t *, int);
260 static void swap_chain_iodone(struct bio *biox);
262 struct pagerops swappagerops = {
263 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
264 swap_pager_getpage, /* pagein */
265 swap_pager_putpages, /* pageout */
266 swap_pager_haspage /* get backing store status for page */
270 * dmmax is in page-sized chunks with the new swap system. It was
271 * dev-bsized chunks in the old. dmmax is always a power of 2.
273 * swap_*() routines are externally accessible. swp_*() routines are
274 * internal.
277 int dmmax;
278 static int dmmax_mask;
279 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
280 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
282 static __inline void swp_sizecheck (void);
283 static void swp_pager_async_iodone (struct bio *bio);
286 * Swap bitmap functions
289 static __inline void swp_pager_freeswapspace(vm_object_t object,
290 swblk_t blk, int npages);
291 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages);
294 * Metadata functions
297 static void swp_pager_meta_convert(vm_object_t);
298 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
299 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
300 static void swp_pager_meta_free_all(vm_object_t);
301 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
304 * SWP_SIZECHECK() - update swap_pager_full indication
306 * update the swap_pager_almost_full indication and warn when we are
307 * about to run out of swap space, using lowat/hiwat hysteresis.
309 * Clear swap_pager_full ( task killing ) indication when lowat is met.
311 * No restrictions on call
312 * This routine may not block.
313 * SMP races are ok.
315 static __inline void
316 swp_sizecheck(void)
318 if (vm_swap_size < nswap_lowat) {
319 if (swap_pager_almost_full == 0) {
320 kprintf("swap_pager: out of swap space\n");
321 swap_pager_almost_full = 1;
322 swap_fail_ticks = ticks;
324 } else {
325 swap_pager_full = 0;
326 if (vm_swap_size > nswap_hiwat)
327 swap_pager_almost_full = 0;
332 * SWAP_PAGER_INIT() - initialize the swap pager!
334 * Expected to be started from system init. NOTE: This code is run
335 * before much else so be careful what you depend on. Most of the VM
336 * system has yet to be initialized at this point.
338 * Called from the low level boot code only.
340 static void
341 swap_pager_init(void *arg __unused)
344 * Device Stripe, in PAGE_SIZE'd blocks
346 dmmax = SWB_NPAGES * 2;
347 dmmax_mask = ~(dmmax - 1);
349 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
352 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
354 * Expected to be started from pageout process once, prior to entering
355 * its main loop.
357 * Called from the low level boot code only.
359 void
360 swap_pager_swap_init(void)
362 int n, n2;
365 * Number of in-transit swap bp operations. Don't
366 * exhaust the pbufs completely. Make sure we
367 * initialize workable values (0 will work for hysteresis
368 * but it isn't very efficient).
370 * The nsw_cluster_max is constrained by the number of pages an XIO
371 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
372 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
373 * constrained by the swap device interleave stripe size.
375 * Currently we hardwire nsw_wcount_async to 4. This limit is
376 * designed to prevent other I/O from having high latencies due to
377 * our pageout I/O. The value 4 works well for one or two active swap
378 * devices but is probably a little low if you have more. Even so,
379 * a higher value would probably generate only a limited improvement
380 * with three or four active swap devices since the system does not
381 * typically have to pageout at extreme bandwidths. We will want
382 * at least 2 per swap devices, and 4 is a pretty good value if you
383 * have one NFS swap device due to the command/ack latency over NFS.
384 * So it all works out pretty well.
387 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
389 nsw_rcount = (nswbuf_kva + 1) / 2;
390 nsw_wcount_sync = (nswbuf_kva + 3) / 4;
391 nsw_wcount_async = 4;
392 nsw_wcount_async_max = nsw_wcount_async;
395 * The zone is dynamically allocated so generally size it to
396 * maxswzone (32MB to 256GB of KVM). Set a minimum size based
397 * on physical memory of around 8x (each swblock can hold 16 pages).
399 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
400 * has increased dramatically.
402 n = vmstats.v_page_count / 2;
403 if (maxswzone && n < maxswzone / sizeof(struct swblock))
404 n = maxswzone / sizeof(struct swblock);
405 n2 = n;
407 do {
408 swap_zone = zinit(
409 "SWAPMETA",
410 sizeof(struct swblock),
412 ZONE_INTERRUPT);
413 if (swap_zone != NULL)
414 break;
416 * if the allocation failed, try a zone two thirds the
417 * size of the previous attempt.
419 n -= ((n + 2) / 3);
420 } while (n > 0);
422 if (swap_zone == NULL)
423 panic("swap_pager_swap_init: swap_zone == NULL");
424 if (n2 != n)
425 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
429 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
430 * its metadata structures.
432 * This routine is called from the mmap and fork code to create a new
433 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
434 * and then converting it with swp_pager_meta_convert().
436 * We only support unnamed objects.
438 * No restrictions.
440 vm_object_t
441 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
443 vm_object_t object;
445 KKASSERT(handle == NULL);
446 object = vm_object_allocate_hold(OBJT_DEFAULT,
447 OFF_TO_IDX(offset + PAGE_MASK + size));
448 swp_pager_meta_convert(object);
449 vm_object_drop(object);
451 return (object);
455 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
457 * The swap backing for the object is destroyed. The code is
458 * designed such that we can reinstantiate it later, but this
459 * routine is typically called only when the entire object is
460 * about to be destroyed.
462 * The object must be locked or unreferenceable.
463 * No other requirements.
465 static void
466 swap_pager_dealloc(vm_object_t object)
468 vm_object_hold(object);
469 vm_object_pip_wait(object, "swpdea");
472 * Free all remaining metadata. We only bother to free it from
473 * the swap meta data. We do not attempt to free swapblk's still
474 * associated with vm_page_t's for this object. We do not care
475 * if paging is still in progress on some objects.
477 swp_pager_meta_free_all(object);
478 vm_object_drop(object);
481 /************************************************************************
482 * SWAP PAGER BITMAP ROUTINES *
483 ************************************************************************/
486 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
488 * Allocate swap for the requested number of pages. The starting
489 * swap block number (a page index) is returned or SWAPBLK_NONE
490 * if the allocation failed.
492 * Also has the side effect of advising that somebody made a mistake
493 * when they configured swap and didn't configure enough.
495 * The caller must hold the object.
496 * This routine may not block.
498 static __inline swblk_t
499 swp_pager_getswapspace(vm_object_t object, int npages)
501 swblk_t blk;
503 lwkt_gettoken(&vm_token);
504 blk = blist_allocat(swapblist, npages, swapiterator);
505 if (blk == SWAPBLK_NONE)
506 blk = blist_allocat(swapblist, npages, 0);
507 if (blk == SWAPBLK_NONE) {
508 if (swap_pager_full != 2) {
509 if (vm_swap_max == 0)
510 kprintf("Warning: The system would like to "
511 "page to swap but no swap space "
512 "is configured!\n");
513 else
514 kprintf("swap_pager_getswapspace: "
515 "swap full allocating %d pages\n",
516 npages);
517 swap_pager_full = 2;
518 if (swap_pager_almost_full == 0)
519 swap_fail_ticks = ticks;
520 swap_pager_almost_full = 1;
522 } else {
523 /* swapiterator = blk; disable for now, doesn't work well */
524 swapacctspace(blk, -npages);
525 if (object->type == OBJT_SWAP)
526 vm_swap_anon_use += npages;
527 else
528 vm_swap_cache_use += npages;
529 swp_sizecheck();
531 lwkt_reltoken(&vm_token);
532 return(blk);
536 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
538 * This routine returns the specified swap blocks back to the bitmap.
540 * Note: This routine may not block (it could in the old swap code),
541 * and through the use of the new blist routines it does not block.
543 * We must be called at splvm() to avoid races with bitmap frees from
544 * vm_page_remove() aka swap_pager_page_removed().
546 * This routine may not block.
549 static __inline void
550 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
552 struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
554 lwkt_gettoken(&vm_token);
555 sp->sw_nused -= npages;
556 if (object->type == OBJT_SWAP)
557 vm_swap_anon_use -= npages;
558 else
559 vm_swap_cache_use -= npages;
561 if (sp->sw_flags & SW_CLOSING) {
562 lwkt_reltoken(&vm_token);
563 return;
566 blist_free(swapblist, blk, npages);
567 vm_swap_size += npages;
568 swp_sizecheck();
569 lwkt_reltoken(&vm_token);
573 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
574 * range within an object.
576 * This is a globally accessible routine.
578 * This routine removes swapblk assignments from swap metadata.
580 * The external callers of this routine typically have already destroyed
581 * or renamed vm_page_t's associated with this range in the object so
582 * we should be ok.
584 * No requirements.
586 void
587 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
589 vm_object_hold(object);
590 swp_pager_meta_free(object, start, size);
591 vm_object_drop(object);
595 * No requirements.
597 void
598 swap_pager_freespace_all(vm_object_t object)
600 vm_object_hold(object);
601 swp_pager_meta_free_all(object);
602 vm_object_drop(object);
606 * This function conditionally frees swap cache swap starting at
607 * (*basei) in the object. (count) swap blocks will be nominally freed.
608 * The actual number of blocks freed can be more or less than the
609 * requested number.
611 * This function nominally returns the number of blocks freed. However,
612 * the actual number of blocks freed may be less then the returned value.
613 * If the function is unable to exhaust the object or if it is able to
614 * free (approximately) the requested number of blocks it returns
615 * a value n > count.
617 * If we exhaust the object we will return a value n <= count.
619 * The caller must hold the object.
621 * WARNING! If count == 0 then -1 can be returned as a degenerate case,
622 * callers should always pass a count value > 0.
624 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
627 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
629 struct swfreeinfo info;
630 int n;
631 int t;
633 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
635 info.object = object;
636 info.basei = *basei; /* skip up to this page index */
637 info.begi = count; /* max swap pages to destroy */
638 info.endi = count * 8; /* max swblocks to scan */
640 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
641 swap_pager_condfree_callback, &info);
642 *basei = info.basei;
645 * Take the higher difference swblocks vs pages
647 n = count - (int)info.begi;
648 t = count * 8 - (int)info.endi;
649 if (n < t)
650 n = t;
651 if (n < 1)
652 n = 1;
653 return(n);
657 * The idea is to free whole meta-block to avoid fragmenting
658 * the swap space or disk I/O. We only do this if NO VM pages
659 * are present.
661 * We do not have to deal with clearing PG_SWAPPED in related VM
662 * pages because there are no related VM pages.
664 * The caller must hold the object.
666 static int
667 swap_pager_condfree_callback(struct swblock *swap, void *data)
669 struct swfreeinfo *info = data;
670 vm_object_t object = info->object;
671 int i;
673 for (i = 0; i < SWAP_META_PAGES; ++i) {
674 if (vm_page_lookup(object, swap->swb_index + i))
675 break;
677 info->basei = swap->swb_index + SWAP_META_PAGES;
678 if (i == SWAP_META_PAGES) {
679 info->begi -= swap->swb_count;
680 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
682 --info->endi;
683 if ((int)info->begi < 0 || (int)info->endi < 0)
684 return(-1);
685 lwkt_yield();
686 return(0);
690 * Called by vm_page_alloc() when a new VM page is inserted
691 * into a VM object. Checks whether swap has been assigned to
692 * the page and sets PG_SWAPPED as necessary.
694 * No requirements.
696 void
697 swap_pager_page_inserted(vm_page_t m)
699 if (m->object->swblock_count) {
700 vm_object_hold(m->object);
701 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
702 vm_page_flag_set(m, PG_SWAPPED);
703 vm_object_drop(m->object);
708 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
710 * Assigns swap blocks to the specified range within the object. The
711 * swap blocks are not zerod. Any previous swap assignment is destroyed.
713 * Returns 0 on success, -1 on failure.
715 * The caller is responsible for avoiding races in the specified range.
716 * No other requirements.
719 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
721 int n = 0;
722 swblk_t blk = SWAPBLK_NONE;
723 vm_pindex_t beg = start; /* save start index */
725 vm_object_hold(object);
727 while (size) {
728 if (n == 0) {
729 n = BLIST_MAX_ALLOC;
730 while ((blk = swp_pager_getswapspace(object, n)) ==
731 SWAPBLK_NONE)
733 n >>= 1;
734 if (n == 0) {
735 swp_pager_meta_free(object, beg,
736 start - beg);
737 vm_object_drop(object);
738 return(-1);
742 swp_pager_meta_build(object, start, blk);
743 --size;
744 ++start;
745 ++blk;
746 --n;
748 swp_pager_meta_free(object, start, n);
749 vm_object_drop(object);
750 return(0);
754 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
755 * and destroy the source.
757 * Copy any valid swapblks from the source to the destination. In
758 * cases where both the source and destination have a valid swapblk,
759 * we keep the destination's.
761 * This routine is allowed to block. It may block allocating metadata
762 * indirectly through swp_pager_meta_build() or if paging is still in
763 * progress on the source.
765 * XXX vm_page_collapse() kinda expects us not to block because we
766 * supposedly do not need to allocate memory, but for the moment we
767 * *may* have to get a little memory from the zone allocator, but
768 * it is taken from the interrupt memory. We should be ok.
770 * The source object contains no vm_page_t's (which is just as well)
771 * The source object is of type OBJT_SWAP.
773 * The source and destination objects must be held by the caller.
775 void
776 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
777 vm_pindex_t base_index, int destroysource)
779 vm_pindex_t i;
781 ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
782 ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
785 * transfer source to destination.
787 for (i = 0; i < dstobject->size; ++i) {
788 swblk_t dstaddr;
791 * Locate (without changing) the swapblk on the destination,
792 * unless it is invalid in which case free it silently, or
793 * if the destination is a resident page, in which case the
794 * source is thrown away.
796 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
798 if (dstaddr == SWAPBLK_NONE) {
800 * Destination has no swapblk and is not resident,
801 * copy source.
803 swblk_t srcaddr;
805 srcaddr = swp_pager_meta_ctl(srcobject,
806 base_index + i, SWM_POP);
808 if (srcaddr != SWAPBLK_NONE)
809 swp_pager_meta_build(dstobject, i, srcaddr);
810 } else {
812 * Destination has valid swapblk or it is represented
813 * by a resident page. We destroy the sourceblock.
815 swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
820 * Free left over swap blocks in source.
822 * We have to revert the type to OBJT_DEFAULT so we do not accidently
823 * double-remove the object from the swap queues.
825 if (destroysource) {
827 * Reverting the type is not necessary, the caller is going
828 * to destroy srcobject directly, but I'm doing it here
829 * for consistency since we've removed the object from its
830 * queues.
832 swp_pager_meta_free_all(srcobject);
833 if (srcobject->type == OBJT_SWAP)
834 srcobject->type = OBJT_DEFAULT;
839 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
840 * the requested page.
842 * We determine whether good backing store exists for the requested
843 * page and return TRUE if it does, FALSE if it doesn't.
845 * If TRUE, we also try to determine how much valid, contiguous backing
846 * store exists before and after the requested page within a reasonable
847 * distance. We do not try to restrict it to the swap device stripe
848 * (that is handled in getpages/putpages). It probably isn't worth
849 * doing here.
851 * No requirements.
853 boolean_t
854 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
856 swblk_t blk0;
859 * do we have good backing store at the requested index ?
861 vm_object_hold(object);
862 blk0 = swp_pager_meta_ctl(object, pindex, 0);
864 if (blk0 == SWAPBLK_NONE) {
865 vm_object_drop(object);
866 return (FALSE);
868 vm_object_drop(object);
869 return (TRUE);
873 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
875 * This removes any associated swap backing store, whether valid or
876 * not, from the page. This operates on any VM object, not just OBJT_SWAP
877 * objects.
879 * This routine is typically called when a page is made dirty, at
880 * which point any associated swap can be freed. MADV_FREE also
881 * calls us in a special-case situation
883 * NOTE!!! If the page is clean and the swap was valid, the caller
884 * should make the page dirty before calling this routine. This routine
885 * does NOT change the m->dirty status of the page. Also: MADV_FREE
886 * depends on it.
888 * The page must be busied or soft-busied.
889 * The caller can hold the object to avoid blocking, else we might block.
890 * No other requirements.
892 void
893 swap_pager_unswapped(vm_page_t m)
895 if (m->flags & PG_SWAPPED) {
896 vm_object_hold(m->object);
897 KKASSERT(m->flags & PG_SWAPPED);
898 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
899 vm_page_flag_clear(m, PG_SWAPPED);
900 vm_object_drop(m->object);
905 * SWAP_PAGER_STRATEGY() - read, write, free blocks
907 * This implements a VM OBJECT strategy function using swap backing store.
908 * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
909 * types.
911 * This is intended to be a cacheless interface (i.e. caching occurs at
912 * higher levels), and is also used as a swap-based SSD cache for vnode
913 * and device objects.
915 * All I/O goes directly to and from the swap device.
917 * We currently attempt to run I/O synchronously or asynchronously as
918 * the caller requests. This isn't perfect because we loose error
919 * sequencing when we run multiple ops in parallel to satisfy a request.
920 * But this is swap, so we let it all hang out.
922 * No requirements.
924 void
925 swap_pager_strategy(vm_object_t object, struct bio *bio)
927 struct buf *bp = bio->bio_buf;
928 struct bio *nbio;
929 vm_pindex_t start;
930 vm_pindex_t biox_blkno = 0;
931 int count;
932 char *data;
933 struct bio *biox;
934 struct buf *bufx;
935 #if 0
936 struct bio_track *track;
937 #endif
939 #if 0
941 * tracking for swapdev vnode I/Os
943 if (bp->b_cmd == BUF_CMD_READ)
944 track = &swapdev_vp->v_track_read;
945 else
946 track = &swapdev_vp->v_track_write;
947 #endif
949 if (bp->b_bcount & PAGE_MASK) {
950 bp->b_error = EINVAL;
951 bp->b_flags |= B_ERROR | B_INVAL;
952 biodone(bio);
953 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
954 "not page bounded\n",
955 bp, (long long)bio->bio_offset, (int)bp->b_bcount);
956 return;
960 * Clear error indication, initialize page index, count, data pointer.
962 bp->b_error = 0;
963 bp->b_flags &= ~B_ERROR;
964 bp->b_resid = bp->b_bcount;
966 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
967 count = howmany(bp->b_bcount, PAGE_SIZE);
968 data = bp->b_data;
971 * Deal with BUF_CMD_FREEBLKS
973 if (bp->b_cmd == BUF_CMD_FREEBLKS) {
975 * FREE PAGE(s) - destroy underlying swap that is no longer
976 * needed.
978 vm_object_hold(object);
979 swp_pager_meta_free(object, start, count);
980 vm_object_drop(object);
981 bp->b_resid = 0;
982 biodone(bio);
983 return;
987 * We need to be able to create a new cluster of I/O's. We cannot
988 * use the caller fields of the passed bio so push a new one.
990 * Because nbio is just a placeholder for the cluster links,
991 * we can biodone() the original bio instead of nbio to make
992 * things a bit more efficient.
994 nbio = push_bio(bio);
995 nbio->bio_offset = bio->bio_offset;
996 nbio->bio_caller_info1.cluster_head = NULL;
997 nbio->bio_caller_info2.cluster_tail = NULL;
999 biox = NULL;
1000 bufx = NULL;
1003 * Execute read or write
1005 vm_object_hold(object);
1007 while (count > 0) {
1008 swblk_t blk;
1011 * Obtain block. If block not found and writing, allocate a
1012 * new block and build it into the object.
1014 blk = swp_pager_meta_ctl(object, start, 0);
1015 if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
1016 blk = swp_pager_getswapspace(object, 1);
1017 if (blk == SWAPBLK_NONE) {
1018 bp->b_error = ENOMEM;
1019 bp->b_flags |= B_ERROR;
1020 break;
1022 swp_pager_meta_build(object, start, blk);
1026 * Do we have to flush our current collection? Yes if:
1028 * - no swap block at this index
1029 * - swap block is not contiguous
1030 * - we cross a physical disk boundry in the
1031 * stripe.
1033 if (
1034 biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1035 ((biox_blkno ^ blk) & dmmax_mask)
1038 if (bp->b_cmd == BUF_CMD_READ) {
1039 ++mycpu->gd_cnt.v_swapin;
1040 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1041 } else {
1042 ++mycpu->gd_cnt.v_swapout;
1043 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1044 bufx->b_dirtyend = bufx->b_bcount;
1048 * Finished with this buf.
1050 KKASSERT(bufx->b_bcount != 0);
1051 if (bufx->b_cmd != BUF_CMD_READ)
1052 bufx->b_dirtyend = bufx->b_bcount;
1053 biox = NULL;
1054 bufx = NULL;
1058 * Add new swapblk to biox, instantiating biox if necessary.
1059 * Zero-fill reads are able to take a shortcut.
1061 if (blk == SWAPBLK_NONE) {
1063 * We can only get here if we are reading. Since
1064 * we are at splvm() we can safely modify b_resid,
1065 * even if chain ops are in progress.
1067 bzero(data, PAGE_SIZE);
1068 bp->b_resid -= PAGE_SIZE;
1069 } else {
1070 if (biox == NULL) {
1071 /* XXX chain count > 4, wait to <= 4 */
1073 bufx = getpbuf(NULL);
1074 biox = &bufx->b_bio1;
1075 cluster_append(nbio, bufx);
1076 bufx->b_flags |= (bp->b_flags & B_ORDERED);
1077 bufx->b_cmd = bp->b_cmd;
1078 biox->bio_done = swap_chain_iodone;
1079 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1080 biox->bio_caller_info1.cluster_parent = nbio;
1081 biox_blkno = blk;
1082 bufx->b_bcount = 0;
1083 bufx->b_data = data;
1085 bufx->b_bcount += PAGE_SIZE;
1087 --count;
1088 ++start;
1089 data += PAGE_SIZE;
1092 vm_object_drop(object);
1095 * Flush out last buffer
1097 if (biox) {
1098 if (bufx->b_cmd == BUF_CMD_READ) {
1099 ++mycpu->gd_cnt.v_swapin;
1100 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1101 } else {
1102 ++mycpu->gd_cnt.v_swapout;
1103 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1104 bufx->b_dirtyend = bufx->b_bcount;
1106 KKASSERT(bufx->b_bcount);
1107 if (bufx->b_cmd != BUF_CMD_READ)
1108 bufx->b_dirtyend = bufx->b_bcount;
1109 /* biox, bufx = NULL */
1113 * Now initiate all the I/O. Be careful looping on our chain as
1114 * I/O's may complete while we are still initiating them.
1116 * If the request is a 100% sparse read no bios will be present
1117 * and we just biodone() the buffer.
1119 nbio->bio_caller_info2.cluster_tail = NULL;
1120 bufx = nbio->bio_caller_info1.cluster_head;
1122 if (bufx) {
1123 while (bufx) {
1124 biox = &bufx->b_bio1;
1125 BUF_KERNPROC(bufx);
1126 bufx = bufx->b_cluster_next;
1127 vn_strategy(swapdev_vp, biox);
1129 } else {
1130 biodone(bio);
1134 * Completion of the cluster will also call biodone_chain(nbio).
1135 * We never call biodone(nbio) so we don't have to worry about
1136 * setting up a bio_done callback. It's handled in the sub-IO.
1138 /**/
1142 * biodone callback
1144 * No requirements.
1146 static void
1147 swap_chain_iodone(struct bio *biox)
1149 struct buf **nextp;
1150 struct buf *bufx; /* chained sub-buffer */
1151 struct bio *nbio; /* parent nbio with chain glue */
1152 struct buf *bp; /* original bp associated with nbio */
1153 int chain_empty;
1155 bufx = biox->bio_buf;
1156 nbio = biox->bio_caller_info1.cluster_parent;
1157 bp = nbio->bio_buf;
1160 * Update the original buffer
1162 KKASSERT(bp != NULL);
1163 if (bufx->b_flags & B_ERROR) {
1164 atomic_set_int(&bufx->b_flags, B_ERROR);
1165 bp->b_error = bufx->b_error; /* race ok */
1166 } else if (bufx->b_resid != 0) {
1167 atomic_set_int(&bufx->b_flags, B_ERROR);
1168 bp->b_error = EINVAL; /* race ok */
1169 } else {
1170 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1174 * Remove us from the chain.
1176 spin_lock(&swapbp_spin);
1177 nextp = &nbio->bio_caller_info1.cluster_head;
1178 while (*nextp != bufx) {
1179 KKASSERT(*nextp != NULL);
1180 nextp = &(*nextp)->b_cluster_next;
1182 *nextp = bufx->b_cluster_next;
1183 chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1184 spin_unlock(&swapbp_spin);
1187 * Clean up bufx. If the chain is now empty we finish out
1188 * the parent. Note that we may be racing other completions
1189 * so we must use the chain_empty status from above.
1191 if (chain_empty) {
1192 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1193 atomic_set_int(&bp->b_flags, B_ERROR);
1194 bp->b_error = EINVAL;
1196 biodone_chain(nbio);
1198 relpbuf(bufx, NULL);
1202 * SWAP_PAGER_GETPAGES() - bring page in from swap
1204 * The requested page may have to be brought in from swap. Calculate the
1205 * swap block and bring in additional pages if possible. All pages must
1206 * have contiguous swap block assignments and reside in the same object.
1208 * The caller has a single vm_object_pip_add() reference prior to
1209 * calling us and we should return with the same.
1211 * The caller has BUSY'd the page. We should return with (*mpp) left busy,
1212 * and any additinal pages unbusied.
1214 * If the caller encounters a PG_RAM page it will pass it to us even though
1215 * it may be valid and dirty. We cannot overwrite the page in this case!
1216 * The case is used to allow us to issue pure read-aheads.
1218 * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1219 * the PG_RAM page is validated at the same time as mreq. What we
1220 * really need to do is issue a separate read-ahead pbuf.
1222 * No requirements.
1224 static int
1225 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1227 struct buf *bp;
1228 struct bio *bio;
1229 vm_page_t mreq;
1230 vm_page_t m;
1231 vm_offset_t kva;
1232 swblk_t blk;
1233 int i;
1234 int j;
1235 int raonly;
1236 int error;
1237 u_int32_t flags;
1238 vm_page_t marray[XIO_INTERNAL_PAGES];
1240 mreq = *mpp;
1242 vm_object_hold(object);
1243 if (mreq->object != object) {
1244 panic("swap_pager_getpages: object mismatch %p/%p",
1245 object,
1246 mreq->object
1251 * We don't want to overwrite a fully valid page as it might be
1252 * dirty. This case can occur when e.g. vm_fault hits a perfectly
1253 * valid page with PG_RAM set.
1255 * In this case we see if the next page is a suitable page-in
1256 * candidate and if it is we issue read-ahead. PG_RAM will be
1257 * set on the last page of the read-ahead to continue the pipeline.
1259 if (mreq->valid == VM_PAGE_BITS_ALL) {
1260 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1261 vm_object_drop(object);
1262 return(VM_PAGER_OK);
1264 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1265 if (blk == SWAPBLK_NONE) {
1266 vm_object_drop(object);
1267 return(VM_PAGER_OK);
1269 m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1270 TRUE, &error);
1271 if (error) {
1272 vm_object_drop(object);
1273 return(VM_PAGER_OK);
1274 } else if (m == NULL) {
1276 * Use VM_ALLOC_QUICK to avoid blocking on cache
1277 * page reuse.
1279 m = vm_page_alloc(object, mreq->pindex + 1,
1280 VM_ALLOC_QUICK);
1281 if (m == NULL) {
1282 vm_object_drop(object);
1283 return(VM_PAGER_OK);
1285 } else {
1286 if (m->valid) {
1287 vm_page_wakeup(m);
1288 vm_object_drop(object);
1289 return(VM_PAGER_OK);
1291 vm_page_unqueue_nowakeup(m);
1293 /* page is busy */
1294 mreq = m;
1295 raonly = 1;
1296 } else {
1297 raonly = 0;
1301 * Try to block-read contiguous pages from swap if sequential,
1302 * otherwise just read one page. Contiguous pages from swap must
1303 * reside within a single device stripe because the I/O cannot be
1304 * broken up across multiple stripes.
1306 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1307 * set up such that the case(s) are handled implicitly.
1309 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1310 marray[0] = mreq;
1312 for (i = 1; i <= swap_burst_read &&
1313 i < XIO_INTERNAL_PAGES &&
1314 mreq->pindex + i < object->size; ++i) {
1315 swblk_t iblk;
1317 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1318 if (iblk != blk + i)
1319 break;
1320 if ((blk ^ iblk) & dmmax_mask)
1321 break;
1322 m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1323 TRUE, &error);
1324 if (error) {
1325 break;
1326 } else if (m == NULL) {
1328 * Use VM_ALLOC_QUICK to avoid blocking on cache
1329 * page reuse.
1331 m = vm_page_alloc(object, mreq->pindex + i,
1332 VM_ALLOC_QUICK);
1333 if (m == NULL)
1334 break;
1335 } else {
1336 if (m->valid) {
1337 vm_page_wakeup(m);
1338 break;
1340 vm_page_unqueue_nowakeup(m);
1342 /* page is busy */
1343 marray[i] = m;
1345 if (i > 1)
1346 vm_page_flag_set(marray[i - 1], PG_RAM);
1349 * If mreq is the requested page and we have nothing to do return
1350 * VM_PAGER_FAIL. If raonly is set mreq is just another read-ahead
1351 * page and must be cleaned up.
1353 if (blk == SWAPBLK_NONE) {
1354 KKASSERT(i == 1);
1355 if (raonly) {
1356 vnode_pager_freepage(mreq);
1357 vm_object_drop(object);
1358 return(VM_PAGER_OK);
1359 } else {
1360 vm_object_drop(object);
1361 return(VM_PAGER_FAIL);
1366 * map our page(s) into kva for input
1368 bp = getpbuf_kva(&nsw_rcount);
1369 bio = &bp->b_bio1;
1370 kva = (vm_offset_t) bp->b_kvabase;
1371 bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1372 pmap_qenter(kva, bp->b_xio.xio_pages, i);
1374 bp->b_data = (caddr_t)kva;
1375 bp->b_bcount = PAGE_SIZE * i;
1376 bp->b_xio.xio_npages = i;
1377 bio->bio_done = swp_pager_async_iodone;
1378 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1379 bio->bio_caller_info1.index = SWBIO_READ;
1382 * Set index. If raonly set the index beyond the array so all
1383 * the pages are treated the same, otherwise the original mreq is
1384 * at index 0.
1386 if (raonly)
1387 bio->bio_driver_info = (void *)(intptr_t)i;
1388 else
1389 bio->bio_driver_info = (void *)(intptr_t)0;
1391 for (j = 0; j < i; ++j)
1392 vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1394 mycpu->gd_cnt.v_swapin++;
1395 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1398 * We still hold the lock on mreq, and our automatic completion routine
1399 * does not remove it.
1401 vm_object_pip_add(object, bp->b_xio.xio_npages);
1404 * perform the I/O. NOTE!!! bp cannot be considered valid after
1405 * this point because we automatically release it on completion.
1406 * Instead, we look at the one page we are interested in which we
1407 * still hold a lock on even through the I/O completion.
1409 * The other pages in our m[] array are also released on completion,
1410 * so we cannot assume they are valid anymore either.
1412 bp->b_cmd = BUF_CMD_READ;
1413 BUF_KERNPROC(bp);
1414 vn_strategy(swapdev_vp, bio);
1417 * Wait for the page we want to complete. PG_SWAPINPROG is always
1418 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1419 * is set in the meta-data.
1421 * If this is a read-ahead only we return immediately without
1422 * waiting for I/O.
1424 if (raonly) {
1425 vm_object_drop(object);
1426 return(VM_PAGER_OK);
1430 * Read-ahead includes originally requested page case.
1432 for (;;) {
1433 flags = mreq->flags;
1434 cpu_ccfence();
1435 if ((flags & PG_SWAPINPROG) == 0)
1436 break;
1437 tsleep_interlock(mreq, 0);
1438 if (!atomic_cmpset_int(&mreq->flags, flags,
1439 flags | PG_WANTED | PG_REFERENCED)) {
1440 continue;
1442 mycpu->gd_cnt.v_intrans++;
1443 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1444 kprintf(
1445 "swap_pager: indefinite wait buffer: "
1446 " bp %p offset: %lld, size: %ld\n",
1448 (long long)bio->bio_offset,
1449 (long)bp->b_bcount
1455 * mreq is left bussied after completion, but all the other pages
1456 * are freed. If we had an unrecoverable read error the page will
1457 * not be valid.
1459 vm_object_drop(object);
1460 if (mreq->valid != VM_PAGE_BITS_ALL)
1461 return(VM_PAGER_ERROR);
1462 else
1463 return(VM_PAGER_OK);
1466 * A final note: in a low swap situation, we cannot deallocate swap
1467 * and mark a page dirty here because the caller is likely to mark
1468 * the page clean when we return, causing the page to possibly revert
1469 * to all-zero's later.
1474 * swap_pager_putpages:
1476 * Assign swap (if necessary) and initiate I/O on the specified pages.
1478 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1479 * are automatically converted to SWAP objects.
1481 * In a low memory situation we may block in vn_strategy(), but the new
1482 * vm_page reservation system coupled with properly written VFS devices
1483 * should ensure that no low-memory deadlock occurs. This is an area
1484 * which needs work.
1486 * The parent has N vm_object_pip_add() references prior to
1487 * calling us and will remove references for rtvals[] that are
1488 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1489 * completion.
1491 * The parent has soft-busy'd the pages it passes us and will unbusy
1492 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1493 * We need to unbusy the rest on I/O completion.
1495 * No requirements.
1497 void
1498 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1499 int flags, int *rtvals)
1501 int i;
1502 int n = 0;
1504 vm_object_hold(object);
1506 if (count && m[0]->object != object) {
1507 panic("swap_pager_getpages: object mismatch %p/%p",
1508 object,
1509 m[0]->object
1514 * Step 1
1516 * Turn object into OBJT_SWAP
1517 * Check for bogus sysops
1519 * Force sync if not pageout process, we don't want any single
1520 * non-pageout process to be able to hog the I/O subsystem! This
1521 * can be overridden by setting.
1523 if (object->type == OBJT_DEFAULT) {
1524 if (object->type == OBJT_DEFAULT)
1525 swp_pager_meta_convert(object);
1529 * Normally we force synchronous swap I/O if this is not the
1530 * pageout daemon to prevent any single user process limited
1531 * via RLIMIT_RSS from hogging swap write bandwidth.
1533 if (curthread != pagethread && swap_user_async == 0)
1534 flags |= VM_PAGER_PUT_SYNC;
1537 * Step 2
1539 * Update nsw parameters from swap_async_max sysctl values.
1540 * Do not let the sysop crash the machine with bogus numbers.
1542 if (swap_async_max != nsw_wcount_async_max) {
1543 int n;
1546 * limit range
1548 if ((n = swap_async_max) > nswbuf_kva / 2)
1549 n = nswbuf_kva / 2;
1550 if (n < 1)
1551 n = 1;
1552 swap_async_max = n;
1555 * Adjust difference ( if possible ). If the current async
1556 * count is too low, we may not be able to make the adjustment
1557 * at this time.
1559 * vm_token needed for nsw_wcount sleep interlock
1561 lwkt_gettoken(&vm_token);
1562 n -= nsw_wcount_async_max;
1563 if (nsw_wcount_async + n >= 0) {
1564 nsw_wcount_async_max += n;
1565 pbuf_adjcount(&nsw_wcount_async, n);
1567 lwkt_reltoken(&vm_token);
1571 * Step 3
1573 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1574 * The page is left dirty until the pageout operation completes
1575 * successfully.
1578 for (i = 0; i < count; i += n) {
1579 struct buf *bp;
1580 struct bio *bio;
1581 swblk_t blk;
1582 int j;
1585 * Maximum I/O size is limited by a number of factors.
1588 n = min(BLIST_MAX_ALLOC, count - i);
1589 n = min(n, nsw_cluster_max);
1591 lwkt_gettoken(&vm_token);
1594 * Get biggest block of swap we can. If we fail, fall
1595 * back and try to allocate a smaller block. Don't go
1596 * overboard trying to allocate space if it would overly
1597 * fragment swap.
1599 while (
1600 (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1601 n > 4
1603 n >>= 1;
1605 if (blk == SWAPBLK_NONE) {
1606 for (j = 0; j < n; ++j)
1607 rtvals[i+j] = VM_PAGER_FAIL;
1608 lwkt_reltoken(&vm_token);
1609 continue;
1611 if (vm_report_swap_allocs > 0) {
1612 kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1613 --vm_report_swap_allocs;
1617 * The I/O we are constructing cannot cross a physical
1618 * disk boundry in the swap stripe. Note: we are still
1619 * at splvm().
1621 if ((blk ^ (blk + n)) & dmmax_mask) {
1622 j = ((blk + dmmax) & dmmax_mask) - blk;
1623 swp_pager_freeswapspace(object, blk + j, n - j);
1624 n = j;
1628 * All I/O parameters have been satisfied, build the I/O
1629 * request and assign the swap space.
1631 if ((flags & VM_PAGER_PUT_SYNC))
1632 bp = getpbuf_kva(&nsw_wcount_sync);
1633 else
1634 bp = getpbuf_kva(&nsw_wcount_async);
1635 bio = &bp->b_bio1;
1637 lwkt_reltoken(&vm_token);
1639 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1641 bp->b_bcount = PAGE_SIZE * n;
1642 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1644 for (j = 0; j < n; ++j) {
1645 vm_page_t mreq = m[i+j];
1647 swp_pager_meta_build(mreq->object, mreq->pindex,
1648 blk + j);
1649 if (object->type == OBJT_SWAP)
1650 vm_page_dirty(mreq);
1651 rtvals[i+j] = VM_PAGER_OK;
1653 vm_page_flag_set(mreq, PG_SWAPINPROG);
1654 bp->b_xio.xio_pages[j] = mreq;
1656 bp->b_xio.xio_npages = n;
1658 mycpu->gd_cnt.v_swapout++;
1659 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1661 bp->b_dirtyoff = 0; /* req'd for NFS */
1662 bp->b_dirtyend = bp->b_bcount; /* req'd for NFS */
1663 bp->b_cmd = BUF_CMD_WRITE;
1664 bio->bio_caller_info1.index = SWBIO_WRITE;
1667 * asynchronous
1669 if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1670 bio->bio_done = swp_pager_async_iodone;
1671 BUF_KERNPROC(bp);
1672 vn_strategy(swapdev_vp, bio);
1674 for (j = 0; j < n; ++j)
1675 rtvals[i+j] = VM_PAGER_PEND;
1676 continue;
1680 * Issue synchrnously.
1682 * Wait for the sync I/O to complete, then update rtvals.
1683 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1684 * our async completion routine at the end, thus avoiding a
1685 * double-free.
1687 bio->bio_caller_info1.index |= SWBIO_SYNC;
1688 if (flags & VM_PAGER_TRY_TO_CACHE)
1689 bio->bio_caller_info1.index |= SWBIO_TTC;
1690 bio->bio_done = biodone_sync;
1691 bio->bio_flags |= BIO_SYNC;
1692 vn_strategy(swapdev_vp, bio);
1693 biowait(bio, "swwrt");
1695 for (j = 0; j < n; ++j)
1696 rtvals[i+j] = VM_PAGER_PEND;
1699 * Now that we are through with the bp, we can call the
1700 * normal async completion, which frees everything up.
1702 swp_pager_async_iodone(bio);
1704 vm_object_drop(object);
1708 * No requirements.
1710 * Recalculate the low and high-water marks.
1712 void
1713 swap_pager_newswap(void)
1716 * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1717 * limitation imposed by the blist code. Remember that this
1718 * will be divided by NSWAP_MAX (4), so each swap device is
1719 * limited to around a terrabyte.
1721 if (vm_swap_max) {
1722 nswap_lowat = (int64_t)vm_swap_max * 4 / 100; /* 4% left */
1723 nswap_hiwat = (int64_t)vm_swap_max * 6 / 100; /* 6% left */
1724 kprintf("swap low/high-water marks set to %d/%d\n",
1725 nswap_lowat, nswap_hiwat);
1726 } else {
1727 nswap_lowat = 128;
1728 nswap_hiwat = 512;
1730 swp_sizecheck();
1734 * swp_pager_async_iodone:
1736 * Completion routine for asynchronous reads and writes from/to swap.
1737 * Also called manually by synchronous code to finish up a bp.
1739 * For READ operations, the pages are PG_BUSY'd. For WRITE operations,
1740 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY
1741 * unbusy all pages except the 'main' request page. For WRITE
1742 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1743 * because we marked them all VM_PAGER_PEND on return from putpages ).
1745 * This routine may not block.
1747 * No requirements.
1749 static void
1750 swp_pager_async_iodone(struct bio *bio)
1752 struct buf *bp = bio->bio_buf;
1753 vm_object_t object = NULL;
1754 int i;
1755 int *nswptr;
1758 * report error
1760 if (bp->b_flags & B_ERROR) {
1761 kprintf(
1762 "swap_pager: I/O error - %s failed; offset %lld,"
1763 "size %ld, error %d\n",
1764 ((bio->bio_caller_info1.index & SWBIO_READ) ?
1765 "pagein" : "pageout"),
1766 (long long)bio->bio_offset,
1767 (long)bp->b_bcount,
1768 bp->b_error
1773 * set object, raise to splvm().
1775 if (bp->b_xio.xio_npages)
1776 object = bp->b_xio.xio_pages[0]->object;
1779 * remove the mapping for kernel virtual
1781 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1784 * cleanup pages. If an error occurs writing to swap, we are in
1785 * very serious trouble. If it happens to be a disk error, though,
1786 * we may be able to recover by reassigning the swap later on. So
1787 * in this case we remove the m->swapblk assignment for the page
1788 * but do not free it in the rlist. The errornous block(s) are thus
1789 * never reallocated as swap. Redirty the page and continue.
1791 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1792 vm_page_t m = bp->b_xio.xio_pages[i];
1794 if (bp->b_flags & B_ERROR) {
1796 * If an error occurs I'd love to throw the swapblk
1797 * away without freeing it back to swapspace, so it
1798 * can never be used again. But I can't from an
1799 * interrupt.
1802 if (bio->bio_caller_info1.index & SWBIO_READ) {
1804 * When reading, reqpage needs to stay
1805 * locked for the parent, but all other
1806 * pages can be freed. We still want to
1807 * wakeup the parent waiting on the page,
1808 * though. ( also: pg_reqpage can be -1 and
1809 * not match anything ).
1811 * We have to wake specifically requested pages
1812 * up too because we cleared PG_SWAPINPROG and
1813 * someone may be waiting for that.
1815 * NOTE: for reads, m->dirty will probably
1816 * be overridden by the original caller of
1817 * getpages so don't play cute tricks here.
1819 * NOTE: We can't actually free the page from
1820 * here, because this is an interrupt. It
1821 * is not legal to mess with object->memq
1822 * from an interrupt. Deactivate the page
1823 * instead.
1826 m->valid = 0;
1827 vm_page_flag_clear(m, PG_SWAPINPROG);
1830 * bio_driver_info holds the requested page
1831 * index.
1833 if (i != (int)(intptr_t)bio->bio_driver_info) {
1834 vm_page_deactivate(m);
1835 vm_page_wakeup(m);
1836 } else {
1837 vm_page_flash(m);
1840 * If i == bp->b_pager.pg_reqpage, do not wake
1841 * the page up. The caller needs to.
1843 } else {
1845 * If a write error occurs remove the swap
1846 * assignment (note that PG_SWAPPED may or
1847 * may not be set depending on prior activity).
1849 * Re-dirty OBJT_SWAP pages as there is no
1850 * other backing store, we can't throw the
1851 * page away.
1853 * Non-OBJT_SWAP pages (aka swapcache) must
1854 * not be dirtied since they may not have
1855 * been dirty in the first place, and they
1856 * do have backing store (the vnode).
1858 vm_page_busy_wait(m, FALSE, "swadpg");
1859 swp_pager_meta_ctl(m->object, m->pindex,
1860 SWM_FREE);
1861 vm_page_flag_clear(m, PG_SWAPPED);
1862 if (m->object->type == OBJT_SWAP) {
1863 vm_page_dirty(m);
1864 vm_page_activate(m);
1866 vm_page_flag_clear(m, PG_SWAPINPROG);
1867 vm_page_io_finish(m);
1868 vm_page_wakeup(m);
1870 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
1872 * NOTE: for reads, m->dirty will probably be
1873 * overridden by the original caller of getpages so
1874 * we cannot set them in order to free the underlying
1875 * swap in a low-swap situation. I don't think we'd
1876 * want to do that anyway, but it was an optimization
1877 * that existed in the old swapper for a time before
1878 * it got ripped out due to precisely this problem.
1880 * If not the requested page then deactivate it.
1882 * Note that the requested page, reqpage, is left
1883 * busied, but we still have to wake it up. The
1884 * other pages are released (unbusied) by
1885 * vm_page_wakeup(). We do not set reqpage's
1886 * valid bits here, it is up to the caller.
1890 * NOTE: can't call pmap_clear_modify(m) from an
1891 * interrupt thread, the pmap code may have to map
1892 * non-kernel pmaps and currently asserts the case.
1894 /*pmap_clear_modify(m);*/
1895 m->valid = VM_PAGE_BITS_ALL;
1896 vm_page_undirty(m);
1897 vm_page_flag_clear(m, PG_SWAPINPROG);
1898 vm_page_flag_set(m, PG_SWAPPED);
1901 * We have to wake specifically requested pages
1902 * up too because we cleared PG_SWAPINPROG and
1903 * could be waiting for it in getpages. However,
1904 * be sure to not unbusy getpages specifically
1905 * requested page - getpages expects it to be
1906 * left busy.
1908 * bio_driver_info holds the requested page
1910 if (i != (int)(intptr_t)bio->bio_driver_info) {
1911 vm_page_deactivate(m);
1912 vm_page_wakeup(m);
1913 } else {
1914 vm_page_flash(m);
1916 } else {
1918 * Mark the page clean but do not mess with the
1919 * pmap-layer's modified state. That state should
1920 * also be clear since the caller protected the
1921 * page VM_PROT_READ, but allow the case.
1923 * We are in an interrupt, avoid pmap operations.
1925 * If we have a severe page deficit, deactivate the
1926 * page. Do not try to cache it (which would also
1927 * involve a pmap op), because the page might still
1928 * be read-heavy.
1930 * When using the swap to cache clean vnode pages
1931 * we do not mess with the page dirty bits.
1933 vm_page_busy_wait(m, FALSE, "swadpg");
1934 if (m->object->type == OBJT_SWAP)
1935 vm_page_undirty(m);
1936 vm_page_flag_clear(m, PG_SWAPINPROG);
1937 vm_page_flag_set(m, PG_SWAPPED);
1938 if (vm_page_count_severe())
1939 vm_page_deactivate(m);
1940 vm_page_io_finish(m);
1941 vm_page_wakeup(m);
1942 if (bio->bio_caller_info1.index & SWBIO_TTC)
1943 vm_page_try_to_cache(m);
1948 * adjust pip. NOTE: the original parent may still have its own
1949 * pip refs on the object.
1952 if (object)
1953 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
1956 * Release the physical I/O buffer.
1958 * NOTE: Due to synchronous operations in the write case b_cmd may
1959 * already be set to BUF_CMD_DONE and BIO_SYNC may have already
1960 * been cleared.
1962 * Use vm_token to interlock nsw_rcount/wcount wakeup?
1964 lwkt_gettoken(&vm_token);
1965 if (bio->bio_caller_info1.index & SWBIO_READ)
1966 nswptr = &nsw_rcount;
1967 else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1968 nswptr = &nsw_wcount_sync;
1969 else
1970 nswptr = &nsw_wcount_async;
1971 bp->b_cmd = BUF_CMD_DONE;
1972 relpbuf(bp, nswptr);
1973 lwkt_reltoken(&vm_token);
1977 * Fault-in a potentially swapped page and remove the swap reference.
1978 * (used by swapoff code)
1980 * object must be held.
1982 static __inline void
1983 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
1985 struct vnode *vp;
1986 vm_page_t m;
1987 int error;
1989 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1991 if (object->type == OBJT_VNODE) {
1993 * Any swap related to a vnode is due to swapcache. We must
1994 * vget() the vnode in case it is not active (otherwise
1995 * vref() will panic). Calling vm_object_page_remove() will
1996 * ensure that any swap ref is removed interlocked with the
1997 * page. clean_only is set to TRUE so we don't throw away
1998 * dirty pages.
2000 vp = object->handle;
2001 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2002 if (error == 0) {
2003 vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2004 vput(vp);
2006 } else {
2008 * Otherwise it is a normal OBJT_SWAP object and we can
2009 * fault the page in and remove the swap.
2011 m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2012 VM_PROT_NONE,
2013 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2014 sharedp, &error);
2015 if (m)
2016 vm_page_unhold(m);
2021 * This removes all swap blocks related to a particular device. We have
2022 * to be careful of ripups during the scan.
2024 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2027 swap_pager_swapoff(int devidx)
2029 struct swswapoffinfo info;
2030 struct vm_object marker;
2031 vm_object_t object;
2032 int n;
2034 bzero(&marker, sizeof(marker));
2035 marker.type = OBJT_MARKER;
2037 for (n = 0; n < VMOBJ_HSIZE; ++n) {
2038 lwkt_gettoken(&vmobj_tokens[n]);
2039 TAILQ_INSERT_HEAD(&vm_object_lists[n], &marker, object_list);
2041 while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2042 if (object->type == OBJT_MARKER)
2043 goto skip;
2044 if (object->type != OBJT_SWAP &&
2045 object->type != OBJT_VNODE)
2046 goto skip;
2047 vm_object_hold(object);
2048 if (object->type != OBJT_SWAP &&
2049 object->type != OBJT_VNODE) {
2050 vm_object_drop(object);
2051 goto skip;
2053 info.object = object;
2054 info.shared = 0;
2055 info.devidx = devidx;
2056 swblock_rb_tree_RB_SCAN(&object->swblock_root,
2057 NULL, swp_pager_swapoff_callback,
2058 &info);
2059 vm_object_drop(object);
2060 skip:
2061 if (object == TAILQ_NEXT(&marker, object_list)) {
2062 TAILQ_REMOVE(&vm_object_lists[n],
2063 &marker, object_list);
2064 TAILQ_INSERT_AFTER(&vm_object_lists[n], object,
2065 &marker, object_list);
2068 TAILQ_REMOVE(&vm_object_lists[n], &marker, object_list);
2069 lwkt_reltoken(&vmobj_tokens[n]);
2073 * If we fail to locate all swblocks we just fail gracefully and
2074 * do not bother to restore paging on the swap device. If the
2075 * user wants to retry the user can retry.
2077 if (swdevt[devidx].sw_nused)
2078 return (1);
2079 else
2080 return (0);
2083 static
2085 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2087 struct swswapoffinfo *info = data;
2088 vm_object_t object = info->object;
2089 vm_pindex_t index;
2090 swblk_t v;
2091 int i;
2093 index = swap->swb_index;
2094 for (i = 0; i < SWAP_META_PAGES; ++i) {
2096 * Make sure we don't race a dying object. This will
2097 * kill the scan of the object's swap blocks entirely.
2099 if (object->flags & OBJ_DEAD)
2100 return(-1);
2103 * Fault the page, which can obviously block. If the swap
2104 * structure disappears break out.
2106 v = swap->swb_pages[i];
2107 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2108 swp_pager_fault_page(object, &info->shared,
2109 swap->swb_index + i);
2110 /* swap ptr might go away */
2111 if (RB_LOOKUP(swblock_rb_tree,
2112 &object->swblock_root, index) != swap) {
2113 break;
2117 return(0);
2120 /************************************************************************
2121 * SWAP META DATA *
2122 ************************************************************************
2124 * These routines manipulate the swap metadata stored in the
2125 * OBJT_SWAP object. All swp_*() routines must be called at
2126 * splvm() because swap can be freed up by the low level vm_page
2127 * code which might be called from interrupts beyond what splbio() covers.
2129 * Swap metadata is implemented with a global hash and not directly
2130 * linked into the object. Instead the object simply contains
2131 * appropriate tracking counters.
2135 * Lookup the swblock containing the specified swap block index.
2137 * The caller must hold the object.
2139 static __inline
2140 struct swblock *
2141 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2143 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2144 index &= ~(vm_pindex_t)SWAP_META_MASK;
2145 return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2149 * Remove a swblock from the RB tree.
2151 * The caller must hold the object.
2153 static __inline
2154 void
2155 swp_pager_remove(vm_object_t object, struct swblock *swap)
2157 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2158 RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2162 * Convert default object to swap object if necessary
2164 * The caller must hold the object.
2166 static void
2167 swp_pager_meta_convert(vm_object_t object)
2169 if (object->type == OBJT_DEFAULT) {
2170 object->type = OBJT_SWAP;
2171 KKASSERT(object->swblock_count == 0);
2176 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
2178 * We first convert the object to a swap object if it is a default
2179 * object. Vnode objects do not need to be converted.
2181 * The specified swapblk is added to the object's swap metadata. If
2182 * the swapblk is not valid, it is freed instead. Any previously
2183 * assigned swapblk is freed.
2185 * The caller must hold the object.
2187 static void
2188 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2190 struct swblock *swap;
2191 struct swblock *oswap;
2192 vm_pindex_t v;
2194 KKASSERT(swapblk != SWAPBLK_NONE);
2195 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2198 * Convert object if necessary
2200 if (object->type == OBJT_DEFAULT)
2201 swp_pager_meta_convert(object);
2204 * Locate swblock. If not found create, but if we aren't adding
2205 * anything just return. If we run out of space in the map we wait
2206 * and, since the hash table may have changed, retry.
2208 retry:
2209 swap = swp_pager_lookup(object, index);
2211 if (swap == NULL) {
2212 int i;
2214 swap = zalloc(swap_zone);
2215 if (swap == NULL) {
2216 vm_wait(0);
2217 goto retry;
2219 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2220 swap->swb_count = 0;
2222 ++object->swblock_count;
2224 for (i = 0; i < SWAP_META_PAGES; ++i)
2225 swap->swb_pages[i] = SWAPBLK_NONE;
2226 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2227 KKASSERT(oswap == NULL);
2231 * Delete prior contents of metadata.
2233 * NOTE: Decrement swb_count after the freeing operation (which
2234 * might block) to prevent racing destruction of the swblock.
2236 index &= SWAP_META_MASK;
2238 while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2239 swap->swb_pages[index] = SWAPBLK_NONE;
2240 /* can block */
2241 swp_pager_freeswapspace(object, v, 1);
2242 --swap->swb_count;
2243 --mycpu->gd_vmtotal.t_vm;
2247 * Enter block into metadata
2249 swap->swb_pages[index] = swapblk;
2250 if (swapblk != SWAPBLK_NONE) {
2251 ++swap->swb_count;
2252 ++mycpu->gd_vmtotal.t_vm;
2257 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2259 * The requested range of blocks is freed, with any associated swap
2260 * returned to the swap bitmap.
2262 * This routine will free swap metadata structures as they are cleaned
2263 * out. This routine does *NOT* operate on swap metadata associated
2264 * with resident pages.
2266 * The caller must hold the object.
2268 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2270 static void
2271 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2273 struct swfreeinfo info;
2275 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2278 * Nothing to do
2280 if (object->swblock_count == 0) {
2281 KKASSERT(RB_EMPTY(&object->swblock_root));
2282 return;
2284 if (count == 0)
2285 return;
2288 * Setup for RB tree scan. Note that the pindex range can be huge
2289 * due to the 64 bit page index space so we cannot safely iterate.
2291 info.object = object;
2292 info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2293 info.begi = index;
2294 info.endi = index + count - 1;
2295 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2296 swp_pager_meta_free_callback, &info);
2300 * The caller must hold the object.
2302 static
2304 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2306 struct swfreeinfo *info = data;
2307 vm_object_t object = info->object;
2308 int index;
2309 int eindex;
2312 * Figure out the range within the swblock. The wider scan may
2313 * return edge-case swap blocks when the start and/or end points
2314 * are in the middle of a block.
2316 if (swap->swb_index < info->begi)
2317 index = (int)info->begi & SWAP_META_MASK;
2318 else
2319 index = 0;
2321 if (swap->swb_index + SWAP_META_PAGES > info->endi)
2322 eindex = (int)info->endi & SWAP_META_MASK;
2323 else
2324 eindex = SWAP_META_MASK;
2327 * Scan and free the blocks. The loop terminates early
2328 * if (swap) runs out of blocks and could be freed.
2330 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2331 * to deal with a zfree race.
2333 while (index <= eindex) {
2334 swblk_t v = swap->swb_pages[index];
2336 if (v != SWAPBLK_NONE) {
2337 swap->swb_pages[index] = SWAPBLK_NONE;
2338 /* can block */
2339 swp_pager_freeswapspace(object, v, 1);
2340 --mycpu->gd_vmtotal.t_vm;
2341 if (--swap->swb_count == 0) {
2342 swp_pager_remove(object, swap);
2343 zfree(swap_zone, swap);
2344 --object->swblock_count;
2345 break;
2348 ++index;
2351 /* swap may be invalid here due to zfree above */
2352 lwkt_yield();
2354 return(0);
2358 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2360 * This routine locates and destroys all swap metadata associated with
2361 * an object.
2363 * NOTE: Decrement swb_count after the freeing operation (which
2364 * might block) to prevent racing destruction of the swblock.
2366 * The caller must hold the object.
2368 static void
2369 swp_pager_meta_free_all(vm_object_t object)
2371 struct swblock *swap;
2372 int i;
2374 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2376 while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2377 swp_pager_remove(object, swap);
2378 for (i = 0; i < SWAP_META_PAGES; ++i) {
2379 swblk_t v = swap->swb_pages[i];
2380 if (v != SWAPBLK_NONE) {
2381 /* can block */
2382 swp_pager_freeswapspace(object, v, 1);
2383 --swap->swb_count;
2384 --mycpu->gd_vmtotal.t_vm;
2387 if (swap->swb_count != 0)
2388 panic("swap_pager_meta_free_all: swb_count != 0");
2389 zfree(swap_zone, swap);
2390 --object->swblock_count;
2391 lwkt_yield();
2393 KKASSERT(object->swblock_count == 0);
2397 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
2399 * This routine is capable of looking up, popping, or freeing
2400 * swapblk assignments in the swap meta data or in the vm_page_t.
2401 * The routine typically returns the swapblk being looked-up, or popped,
2402 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2403 * was invalid. This routine will automatically free any invalid
2404 * meta-data swapblks.
2406 * It is not possible to store invalid swapblks in the swap meta data
2407 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2409 * When acting on a busy resident page and paging is in progress, we
2410 * have to wait until paging is complete but otherwise can act on the
2411 * busy page.
2413 * SWM_FREE remove and free swap block from metadata
2414 * SWM_POP remove from meta data but do not free.. pop it out
2416 * The caller must hold the object.
2418 static swblk_t
2419 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2421 struct swblock *swap;
2422 swblk_t r1;
2424 if (object->swblock_count == 0)
2425 return(SWAPBLK_NONE);
2427 r1 = SWAPBLK_NONE;
2428 swap = swp_pager_lookup(object, index);
2430 if (swap != NULL) {
2431 index &= SWAP_META_MASK;
2432 r1 = swap->swb_pages[index];
2434 if (r1 != SWAPBLK_NONE) {
2435 if (flags & (SWM_FREE|SWM_POP)) {
2436 swap->swb_pages[index] = SWAPBLK_NONE;
2437 --mycpu->gd_vmtotal.t_vm;
2438 if (--swap->swb_count == 0) {
2439 swp_pager_remove(object, swap);
2440 zfree(swap_zone, swap);
2441 --object->swblock_count;
2444 /* swap ptr may be invalid */
2445 if (flags & SWM_FREE) {
2446 swp_pager_freeswapspace(object, r1, 1);
2447 r1 = SWAPBLK_NONE;
2450 /* swap ptr may be invalid */
2452 return(r1);