bge: Split if_bgereg.h into if_bgereg.h and if_bgevar.h
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
blob9c3d48c6fc2c443a977b931c7691d1f7ff2222c9
1 /*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2001
4 * Bill Paul <wpaul@windriver.com>. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
33 * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
37 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Engineer, Wind River Systems
44 * The Broadcom BCM5700 is based on technology originally developed by
45 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49 * frames, highly configurable RX filtering, and 16 RX and TX queues
50 * (which, along with RX filter rules, can be used for QOS applications).
51 * Other features, such as TCP segmentation, may be available as part
52 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53 * firmware images can be stored in hardware and need not be compiled
54 * into the driver.
56 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
59 * The BCM5701 is a single-chip solution incorporating both the BCM5700
60 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61 * does not support external SSRAM.
63 * Broadcom also produces a variation of the BCM5700 under the "Altima"
64 * brand name, which is functionally similar but lacks PCI-X support.
66 * Without external SSRAM, you can only have at most 4 TX rings,
67 * and the use of the mini RX ring is disabled. This seems to imply
68 * that these features are simply not available on the BCM5701. As a
69 * result, this driver does not implement any support for the mini RX
70 * ring.
73 #include "opt_polling.h"
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
90 #include <net/bpf.h>
91 #include <net/ethernet.h>
92 #include <net/if.h>
93 #include <net/if_arp.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_types.h>
97 #include <net/ifq_var.h>
98 #include <net/vlan/if_vlan_var.h>
99 #include <net/vlan/if_vlan_ether.h>
101 #include <dev/netif/mii_layer/mii.h>
102 #include <dev/netif/mii_layer/miivar.h>
103 #include <dev/netif/mii_layer/brgphyreg.h>
105 #include <bus/pci/pcidevs.h>
106 #include <bus/pci/pcireg.h>
107 #include <bus/pci/pcivar.h>
109 #include <dev/netif/bge/if_bgereg.h>
110 #include <dev/netif/bge/if_bgevar.h>
112 /* "device miibus" required. See GENERIC if you get errors here. */
113 #include "miibus_if.h"
115 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP)
117 static const struct bge_type {
118 uint16_t bge_vid;
119 uint16_t bge_did;
120 char *bge_name;
121 } bge_devs[] = {
122 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
123 "3COM 3C996 Gigabit Ethernet" },
125 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
126 "Alteon BCM5700 Gigabit Ethernet" },
127 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
128 "Alteon BCM5701 Gigabit Ethernet" },
130 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
131 "Altima AC1000 Gigabit Ethernet" },
132 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
133 "Altima AC1002 Gigabit Ethernet" },
134 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
135 "Altima AC9100 Gigabit Ethernet" },
137 { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
138 "Apple BCM5701 Gigabit Ethernet" },
140 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
141 "Broadcom BCM5700 Gigabit Ethernet" },
142 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
143 "Broadcom BCM5701 Gigabit Ethernet" },
144 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
145 "Broadcom BCM5702 Gigabit Ethernet" },
146 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
147 "Broadcom BCM5702X Gigabit Ethernet" },
148 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
149 "Broadcom BCM5702 Gigabit Ethernet" },
150 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
151 "Broadcom BCM5703 Gigabit Ethernet" },
152 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
153 "Broadcom BCM5703X Gigabit Ethernet" },
154 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
155 "Broadcom BCM5703 Gigabit Ethernet" },
156 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
157 "Broadcom BCM5704C Dual Gigabit Ethernet" },
158 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
159 "Broadcom BCM5704S Dual Gigabit Ethernet" },
160 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
161 "Broadcom BCM5704S Dual Gigabit Ethernet" },
162 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
163 "Broadcom BCM5705 Gigabit Ethernet" },
164 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
165 "Broadcom BCM5705F Gigabit Ethernet" },
166 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
167 "Broadcom BCM5705K Gigabit Ethernet" },
168 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
169 "Broadcom BCM5705M Gigabit Ethernet" },
170 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
171 "Broadcom BCM5705M Gigabit Ethernet" },
172 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
173 "Broadcom BCM5714C Gigabit Ethernet" },
174 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
175 "Broadcom BCM5714S Gigabit Ethernet" },
176 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
177 "Broadcom BCM5715 Gigabit Ethernet" },
178 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
179 "Broadcom BCM5715S Gigabit Ethernet" },
180 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
181 "Broadcom BCM5720 Gigabit Ethernet" },
182 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
183 "Broadcom BCM5721 Gigabit Ethernet" },
184 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
185 "Broadcom BCM5722 Gigabit Ethernet" },
186 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
187 "Broadcom BCM5723 Gigabit Ethernet" },
188 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
189 "Broadcom BCM5750 Gigabit Ethernet" },
190 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
191 "Broadcom BCM5750M Gigabit Ethernet" },
192 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
193 "Broadcom BCM5751 Gigabit Ethernet" },
194 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
195 "Broadcom BCM5751F Gigabit Ethernet" },
196 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
197 "Broadcom BCM5751M Gigabit Ethernet" },
198 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
199 "Broadcom BCM5752 Gigabit Ethernet" },
200 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
201 "Broadcom BCM5752M Gigabit Ethernet" },
202 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
203 "Broadcom BCM5753 Gigabit Ethernet" },
204 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
205 "Broadcom BCM5753F Gigabit Ethernet" },
206 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
207 "Broadcom BCM5753M Gigabit Ethernet" },
208 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
209 "Broadcom BCM5754 Gigabit Ethernet" },
210 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
211 "Broadcom BCM5754M Gigabit Ethernet" },
212 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
213 "Broadcom BCM5755 Gigabit Ethernet" },
214 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
215 "Broadcom BCM5755M Gigabit Ethernet" },
216 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
217 "Broadcom BCM5756 Gigabit Ethernet" },
218 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
219 "Broadcom BCM5761 Gigabit Ethernet" },
220 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
221 "Broadcom BCM5761E Gigabit Ethernet" },
222 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
223 "Broadcom BCM5761S Gigabit Ethernet" },
224 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
225 "Broadcom BCM5761SE Gigabit Ethernet" },
226 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
227 "Broadcom BCM5764 Gigabit Ethernet" },
228 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
229 "Broadcom BCM5780 Gigabit Ethernet" },
230 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
231 "Broadcom BCM5780S Gigabit Ethernet" },
232 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
233 "Broadcom BCM5781 Gigabit Ethernet" },
234 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
235 "Broadcom BCM5782 Gigabit Ethernet" },
236 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
237 "Broadcom BCM5784 Gigabit Ethernet" },
238 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
239 "Broadcom BCM5785F Gigabit Ethernet" },
240 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
241 "Broadcom BCM5785G Gigabit Ethernet" },
242 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
243 "Broadcom BCM5786 Gigabit Ethernet" },
244 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
245 "Broadcom BCM5787 Gigabit Ethernet" },
246 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
247 "Broadcom BCM5787F Gigabit Ethernet" },
248 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
249 "Broadcom BCM5787M Gigabit Ethernet" },
250 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
251 "Broadcom BCM5788 Gigabit Ethernet" },
252 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
253 "Broadcom BCM5789 Gigabit Ethernet" },
254 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
255 "Broadcom BCM5901 Fast Ethernet" },
256 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
257 "Broadcom BCM5901A2 Fast Ethernet" },
258 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
259 "Broadcom BCM5903M Fast Ethernet" },
260 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
261 "Broadcom BCM5906 Fast Ethernet"},
262 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
263 "Broadcom BCM5906M Fast Ethernet"},
264 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
265 "Broadcom BCM57760 Gigabit Ethernet"},
266 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
267 "Broadcom BCM57780 Gigabit Ethernet"},
268 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
269 "Broadcom BCM57788 Gigabit Ethernet"},
270 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
271 "Broadcom BCM57790 Gigabit Ethernet"},
272 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
273 "SysKonnect Gigabit Ethernet" },
275 { 0, 0, NULL }
278 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO)
279 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
280 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
281 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
282 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
283 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
284 #define BGE_IS_5788(sc) ((sc)->bge_flags & BGE_FLAG_5788)
286 #define BGE_IS_CRIPPLED(sc) \
287 (BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
289 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
291 static int bge_probe(device_t);
292 static int bge_attach(device_t);
293 static int bge_detach(device_t);
294 static void bge_txeof(struct bge_softc *, uint16_t);
295 static void bge_rxeof(struct bge_softc *, uint16_t);
297 static void bge_tick(void *);
298 static void bge_stats_update(struct bge_softc *);
299 static void bge_stats_update_regs(struct bge_softc *);
300 static struct mbuf *
301 bge_defrag_shortdma(struct mbuf *);
302 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
304 #ifdef DEVICE_POLLING
305 static void bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
306 #endif
307 static void bge_intr(void *);
308 static void bge_intr_status_tag(void *);
309 static void bge_enable_intr(struct bge_softc *);
310 static void bge_disable_intr(struct bge_softc *);
311 static void bge_start(struct ifnet *);
312 static int bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
313 static void bge_init(void *);
314 static void bge_stop(struct bge_softc *);
315 static void bge_watchdog(struct ifnet *);
316 static void bge_shutdown(device_t);
317 static int bge_suspend(device_t);
318 static int bge_resume(device_t);
319 static int bge_ifmedia_upd(struct ifnet *);
320 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
322 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
323 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
325 static uint8_t bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
326 static int bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
328 static void bge_setmulti(struct bge_softc *);
329 static void bge_setpromisc(struct bge_softc *);
331 static int bge_alloc_jumbo_mem(struct bge_softc *);
332 static void bge_free_jumbo_mem(struct bge_softc *);
333 static struct bge_jslot
334 *bge_jalloc(struct bge_softc *);
335 static void bge_jfree(void *);
336 static void bge_jref(void *);
337 static int bge_newbuf_std(struct bge_softc *, int, int);
338 static int bge_newbuf_jumbo(struct bge_softc *, int, int);
339 static void bge_setup_rxdesc_std(struct bge_softc *, int);
340 static void bge_setup_rxdesc_jumbo(struct bge_softc *, int);
341 static int bge_init_rx_ring_std(struct bge_softc *);
342 static void bge_free_rx_ring_std(struct bge_softc *);
343 static int bge_init_rx_ring_jumbo(struct bge_softc *);
344 static void bge_free_rx_ring_jumbo(struct bge_softc *);
345 static void bge_free_tx_ring(struct bge_softc *);
346 static int bge_init_tx_ring(struct bge_softc *);
348 static int bge_chipinit(struct bge_softc *);
349 static int bge_blockinit(struct bge_softc *);
350 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
352 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
353 static void bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
354 #ifdef notdef
355 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
356 #endif
357 static void bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
358 static void bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
359 static void bge_writembx(struct bge_softc *, int, int);
361 static int bge_miibus_readreg(device_t, int, int);
362 static int bge_miibus_writereg(device_t, int, int, int);
363 static void bge_miibus_statchg(device_t);
364 static void bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
365 static void bge_tbi_link_upd(struct bge_softc *, uint32_t);
366 static void bge_copper_link_upd(struct bge_softc *, uint32_t);
367 static void bge_autopoll_link_upd(struct bge_softc *, uint32_t);
368 static void bge_link_poll(struct bge_softc *);
370 static void bge_reset(struct bge_softc *);
372 static int bge_dma_alloc(struct bge_softc *);
373 static void bge_dma_free(struct bge_softc *);
374 static int bge_dma_block_alloc(struct bge_softc *, bus_size_t,
375 bus_dma_tag_t *, bus_dmamap_t *,
376 void **, bus_addr_t *);
377 static void bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
379 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
380 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
381 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
382 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
384 static void bge_coal_change(struct bge_softc *);
385 static int bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
386 static int bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
387 static int bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
388 static int bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
389 static int bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
390 static int bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
391 static int bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
392 static int bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
393 static int bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
394 int, int, uint32_t);
397 * Set following tunable to 1 for some IBM blade servers with the DNLK
398 * switch module. Auto negotiation is broken for those configurations.
400 static int bge_fake_autoneg = 0;
401 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
403 #if !defined(KTR_IF_BGE)
404 #define KTR_IF_BGE KTR_ALL
405 #endif
406 KTR_INFO_MASTER(if_bge);
407 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
408 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
409 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
410 #define logif(name) KTR_LOG(if_bge_ ## name)
412 static device_method_t bge_methods[] = {
413 /* Device interface */
414 DEVMETHOD(device_probe, bge_probe),
415 DEVMETHOD(device_attach, bge_attach),
416 DEVMETHOD(device_detach, bge_detach),
417 DEVMETHOD(device_shutdown, bge_shutdown),
418 DEVMETHOD(device_suspend, bge_suspend),
419 DEVMETHOD(device_resume, bge_resume),
421 /* bus interface */
422 DEVMETHOD(bus_print_child, bus_generic_print_child),
423 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
425 /* MII interface */
426 DEVMETHOD(miibus_readreg, bge_miibus_readreg),
427 DEVMETHOD(miibus_writereg, bge_miibus_writereg),
428 DEVMETHOD(miibus_statchg, bge_miibus_statchg),
430 { 0, 0 }
433 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
434 static devclass_t bge_devclass;
436 DECLARE_DUMMY_MODULE(if_bge);
437 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
438 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
440 static uint32_t
441 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
443 device_t dev = sc->bge_dev;
444 uint32_t val;
446 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
447 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
448 return 0;
450 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
451 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
452 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
453 return (val);
456 static void
457 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
459 device_t dev = sc->bge_dev;
461 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
462 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
463 return;
465 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
466 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
467 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
470 #ifdef notdef
471 static uint32_t
472 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
474 device_t dev = sc->bge_dev;
476 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
477 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
479 #endif
481 static void
482 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
484 device_t dev = sc->bge_dev;
486 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
487 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
490 static void
491 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
493 CSR_WRITE_4(sc, off, val);
496 static void
497 bge_writembx(struct bge_softc *sc, int off, int val)
499 if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
500 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
502 CSR_WRITE_4(sc, off, val);
503 if (sc->bge_mbox_reorder)
504 CSR_READ_4(sc, off);
507 static uint8_t
508 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
510 uint32_t access, byte = 0;
511 int i;
513 /* Lock. */
514 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
515 for (i = 0; i < 8000; i++) {
516 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
517 break;
518 DELAY(20);
520 if (i == 8000)
521 return (1);
523 /* Enable access. */
524 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
525 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
527 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
528 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
529 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
530 DELAY(10);
531 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
532 DELAY(10);
533 break;
537 if (i == BGE_TIMEOUT * 10) {
538 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
539 return (1);
542 /* Get result. */
543 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
545 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
547 /* Disable access. */
548 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
550 /* Unlock. */
551 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
552 CSR_READ_4(sc, BGE_NVRAM_SWARB);
554 return (0);
558 * Read a sequence of bytes from NVRAM.
560 static int
561 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
563 int err = 0, i;
564 uint8_t byte = 0;
566 if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
567 return (1);
569 for (i = 0; i < cnt; i++) {
570 err = bge_nvram_getbyte(sc, off + i, &byte);
571 if (err)
572 break;
573 *(dest + i) = byte;
576 return (err ? 1 : 0);
580 * Read a byte of data stored in the EEPROM at address 'addr.' The
581 * BCM570x supports both the traditional bitbang interface and an
582 * auto access interface for reading the EEPROM. We use the auto
583 * access method.
585 static uint8_t
586 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
588 int i;
589 uint32_t byte = 0;
592 * Enable use of auto EEPROM access so we can avoid
593 * having to use the bitbang method.
595 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
597 /* Reset the EEPROM, load the clock period. */
598 CSR_WRITE_4(sc, BGE_EE_ADDR,
599 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
600 DELAY(20);
602 /* Issue the read EEPROM command. */
603 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
605 /* Wait for completion */
606 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
607 DELAY(10);
608 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
609 break;
612 if (i == BGE_TIMEOUT) {
613 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
614 return(1);
617 /* Get result. */
618 byte = CSR_READ_4(sc, BGE_EE_DATA);
620 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
622 return(0);
626 * Read a sequence of bytes from the EEPROM.
628 static int
629 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
631 size_t i;
632 int err;
633 uint8_t byte;
635 for (byte = 0, err = 0, i = 0; i < len; i++) {
636 err = bge_eeprom_getbyte(sc, off + i, &byte);
637 if (err)
638 break;
639 *(dest + i) = byte;
642 return(err ? 1 : 0);
645 static int
646 bge_miibus_readreg(device_t dev, int phy, int reg)
648 struct bge_softc *sc = device_get_softc(dev);
649 uint32_t val;
650 int i;
652 KASSERT(phy == sc->bge_phyno,
653 ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
655 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
656 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
657 CSR_WRITE_4(sc, BGE_MI_MODE,
658 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
659 DELAY(80);
662 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
663 BGE_MIPHY(phy) | BGE_MIREG(reg));
665 /* Poll for the PHY register access to complete. */
666 for (i = 0; i < BGE_TIMEOUT; i++) {
667 DELAY(10);
668 val = CSR_READ_4(sc, BGE_MI_COMM);
669 if ((val & BGE_MICOMM_BUSY) == 0) {
670 DELAY(5);
671 val = CSR_READ_4(sc, BGE_MI_COMM);
672 break;
675 if (i == BGE_TIMEOUT) {
676 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
677 "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
678 val = 0;
681 /* Restore the autopoll bit if necessary. */
682 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
683 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
684 DELAY(80);
687 if (val & BGE_MICOMM_READFAIL)
688 return 0;
690 return (val & 0xFFFF);
693 static int
694 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
696 struct bge_softc *sc = device_get_softc(dev);
697 int i;
699 KASSERT(phy == sc->bge_phyno,
700 ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
702 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
703 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
704 return 0;
706 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
707 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
708 CSR_WRITE_4(sc, BGE_MI_MODE,
709 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
710 DELAY(80);
713 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
714 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
716 for (i = 0; i < BGE_TIMEOUT; i++) {
717 DELAY(10);
718 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
719 DELAY(5);
720 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
721 break;
724 if (i == BGE_TIMEOUT) {
725 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
726 "(phy %d, reg %d, val %d)\n", phy, reg, val);
729 /* Restore the autopoll bit if necessary. */
730 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
731 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
732 DELAY(80);
735 return 0;
738 static void
739 bge_miibus_statchg(device_t dev)
741 struct bge_softc *sc;
742 struct mii_data *mii;
744 sc = device_get_softc(dev);
745 mii = device_get_softc(sc->bge_miibus);
747 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
748 (IFM_ACTIVE | IFM_AVALID)) {
749 switch (IFM_SUBTYPE(mii->mii_media_active)) {
750 case IFM_10_T:
751 case IFM_100_TX:
752 sc->bge_link = 1;
753 break;
754 case IFM_1000_T:
755 case IFM_1000_SX:
756 case IFM_2500_SX:
757 if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
758 sc->bge_link = 1;
759 else
760 sc->bge_link = 0;
761 break;
762 default:
763 sc->bge_link = 0;
764 break;
766 } else {
767 sc->bge_link = 0;
769 if (sc->bge_link == 0)
770 return;
772 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
773 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
774 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
775 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
776 } else {
777 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
780 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
781 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
782 } else {
783 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
788 * Memory management for jumbo frames.
790 static int
791 bge_alloc_jumbo_mem(struct bge_softc *sc)
793 struct ifnet *ifp = &sc->arpcom.ac_if;
794 struct bge_jslot *entry;
795 uint8_t *ptr;
796 bus_addr_t paddr;
797 int i, error;
800 * Create tag for jumbo mbufs.
801 * This is really a bit of a kludge. We allocate a special
802 * jumbo buffer pool which (thanks to the way our DMA
803 * memory allocation works) will consist of contiguous
804 * pages. This means that even though a jumbo buffer might
805 * be larger than a page size, we don't really need to
806 * map it into more than one DMA segment. However, the
807 * default mbuf tag will result in multi-segment mappings,
808 * so we have to create a special jumbo mbuf tag that
809 * lets us get away with mapping the jumbo buffers as
810 * a single segment. I think eventually the driver should
811 * be changed so that it uses ordinary mbufs and cluster
812 * buffers, i.e. jumbo frames can span multiple DMA
813 * descriptors. But that's a project for another day.
817 * Create DMA stuffs for jumbo RX ring.
819 error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
820 &sc->bge_cdata.bge_rx_jumbo_ring_tag,
821 &sc->bge_cdata.bge_rx_jumbo_ring_map,
822 (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
823 &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
824 if (error) {
825 if_printf(ifp, "could not create jumbo RX ring\n");
826 return error;
830 * Create DMA stuffs for jumbo buffer block.
832 error = bge_dma_block_alloc(sc, BGE_JMEM,
833 &sc->bge_cdata.bge_jumbo_tag,
834 &sc->bge_cdata.bge_jumbo_map,
835 (void **)&sc->bge_ldata.bge_jumbo_buf,
836 &paddr);
837 if (error) {
838 if_printf(ifp, "could not create jumbo buffer\n");
839 return error;
842 SLIST_INIT(&sc->bge_jfree_listhead);
845 * Now divide it up into 9K pieces and save the addresses
846 * in an array. Note that we play an evil trick here by using
847 * the first few bytes in the buffer to hold the the address
848 * of the softc structure for this interface. This is because
849 * bge_jfree() needs it, but it is called by the mbuf management
850 * code which will not pass it to us explicitly.
852 for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
853 entry = &sc->bge_cdata.bge_jslots[i];
854 entry->bge_sc = sc;
855 entry->bge_buf = ptr;
856 entry->bge_paddr = paddr;
857 entry->bge_inuse = 0;
858 entry->bge_slot = i;
859 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
861 ptr += BGE_JLEN;
862 paddr += BGE_JLEN;
864 return 0;
867 static void
868 bge_free_jumbo_mem(struct bge_softc *sc)
870 /* Destroy jumbo RX ring. */
871 bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
872 sc->bge_cdata.bge_rx_jumbo_ring_map,
873 sc->bge_ldata.bge_rx_jumbo_ring);
875 /* Destroy jumbo buffer block. */
876 bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
877 sc->bge_cdata.bge_jumbo_map,
878 sc->bge_ldata.bge_jumbo_buf);
882 * Allocate a jumbo buffer.
884 static struct bge_jslot *
885 bge_jalloc(struct bge_softc *sc)
887 struct bge_jslot *entry;
889 lwkt_serialize_enter(&sc->bge_jslot_serializer);
890 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
891 if (entry) {
892 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
893 entry->bge_inuse = 1;
894 } else {
895 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
897 lwkt_serialize_exit(&sc->bge_jslot_serializer);
898 return(entry);
902 * Adjust usage count on a jumbo buffer.
904 static void
905 bge_jref(void *arg)
907 struct bge_jslot *entry = (struct bge_jslot *)arg;
908 struct bge_softc *sc = entry->bge_sc;
910 if (sc == NULL)
911 panic("bge_jref: can't find softc pointer!");
913 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
914 panic("bge_jref: asked to reference buffer "
915 "that we don't manage!");
916 } else if (entry->bge_inuse == 0) {
917 panic("bge_jref: buffer already free!");
918 } else {
919 atomic_add_int(&entry->bge_inuse, 1);
924 * Release a jumbo buffer.
926 static void
927 bge_jfree(void *arg)
929 struct bge_jslot *entry = (struct bge_jslot *)arg;
930 struct bge_softc *sc = entry->bge_sc;
932 if (sc == NULL)
933 panic("bge_jfree: can't find softc pointer!");
935 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
936 panic("bge_jfree: asked to free buffer that we don't manage!");
937 } else if (entry->bge_inuse == 0) {
938 panic("bge_jfree: buffer already free!");
939 } else {
941 * Possible MP race to 0, use the serializer. The atomic insn
942 * is still needed for races against bge_jref().
944 lwkt_serialize_enter(&sc->bge_jslot_serializer);
945 atomic_subtract_int(&entry->bge_inuse, 1);
946 if (entry->bge_inuse == 0) {
947 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
948 entry, jslot_link);
950 lwkt_serialize_exit(&sc->bge_jslot_serializer);
956 * Intialize a standard receive ring descriptor.
958 static int
959 bge_newbuf_std(struct bge_softc *sc, int i, int init)
961 struct mbuf *m_new = NULL;
962 bus_dma_segment_t seg;
963 bus_dmamap_t map;
964 int error, nsegs;
966 m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
967 if (m_new == NULL)
968 return ENOBUFS;
969 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
971 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
972 m_adj(m_new, ETHER_ALIGN);
974 error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
975 sc->bge_cdata.bge_rx_tmpmap, m_new,
976 &seg, 1, &nsegs, BUS_DMA_NOWAIT);
977 if (error) {
978 m_freem(m_new);
979 return error;
982 if (!init) {
983 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
984 sc->bge_cdata.bge_rx_std_dmamap[i],
985 BUS_DMASYNC_POSTREAD);
986 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
987 sc->bge_cdata.bge_rx_std_dmamap[i]);
990 map = sc->bge_cdata.bge_rx_tmpmap;
991 sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
992 sc->bge_cdata.bge_rx_std_dmamap[i] = map;
994 sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
995 sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
997 bge_setup_rxdesc_std(sc, i);
998 return 0;
1001 static void
1002 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1004 struct bge_rxchain *rc;
1005 struct bge_rx_bd *r;
1007 rc = &sc->bge_cdata.bge_rx_std_chain[i];
1008 r = &sc->bge_ldata.bge_rx_std_ring[i];
1010 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1011 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1012 r->bge_len = rc->bge_mbuf->m_len;
1013 r->bge_idx = i;
1014 r->bge_flags = BGE_RXBDFLAG_END;
1018 * Initialize a jumbo receive ring descriptor. This allocates
1019 * a jumbo buffer from the pool managed internally by the driver.
1021 static int
1022 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1024 struct mbuf *m_new = NULL;
1025 struct bge_jslot *buf;
1026 bus_addr_t paddr;
1028 /* Allocate the mbuf. */
1029 MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1030 if (m_new == NULL)
1031 return ENOBUFS;
1033 /* Allocate the jumbo buffer */
1034 buf = bge_jalloc(sc);
1035 if (buf == NULL) {
1036 m_freem(m_new);
1037 return ENOBUFS;
1040 /* Attach the buffer to the mbuf. */
1041 m_new->m_ext.ext_arg = buf;
1042 m_new->m_ext.ext_buf = buf->bge_buf;
1043 m_new->m_ext.ext_free = bge_jfree;
1044 m_new->m_ext.ext_ref = bge_jref;
1045 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1047 m_new->m_flags |= M_EXT;
1049 m_new->m_data = m_new->m_ext.ext_buf;
1050 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1052 paddr = buf->bge_paddr;
1053 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1054 m_adj(m_new, ETHER_ALIGN);
1055 paddr += ETHER_ALIGN;
1058 /* Save necessary information */
1059 sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1060 sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1062 /* Set up the descriptor. */
1063 bge_setup_rxdesc_jumbo(sc, i);
1064 return 0;
1067 static void
1068 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1070 struct bge_rx_bd *r;
1071 struct bge_rxchain *rc;
1073 r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1074 rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1076 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1077 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1078 r->bge_len = rc->bge_mbuf->m_len;
1079 r->bge_idx = i;
1080 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1083 static int
1084 bge_init_rx_ring_std(struct bge_softc *sc)
1086 int i, error;
1088 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1089 error = bge_newbuf_std(sc, i, 1);
1090 if (error)
1091 return error;
1094 sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1095 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1097 return(0);
1100 static void
1101 bge_free_rx_ring_std(struct bge_softc *sc)
1103 int i;
1105 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1106 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1108 if (rc->bge_mbuf != NULL) {
1109 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1110 sc->bge_cdata.bge_rx_std_dmamap[i]);
1111 m_freem(rc->bge_mbuf);
1112 rc->bge_mbuf = NULL;
1114 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1115 sizeof(struct bge_rx_bd));
1119 static int
1120 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1122 struct bge_rcb *rcb;
1123 int i, error;
1125 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1126 error = bge_newbuf_jumbo(sc, i, 1);
1127 if (error)
1128 return error;
1131 sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1133 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1134 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1135 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1137 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1139 return(0);
1142 static void
1143 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1145 int i;
1147 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1148 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1150 if (rc->bge_mbuf != NULL) {
1151 m_freem(rc->bge_mbuf);
1152 rc->bge_mbuf = NULL;
1154 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1155 sizeof(struct bge_rx_bd));
1159 static void
1160 bge_free_tx_ring(struct bge_softc *sc)
1162 int i;
1164 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1165 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1166 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1167 sc->bge_cdata.bge_tx_dmamap[i]);
1168 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1169 sc->bge_cdata.bge_tx_chain[i] = NULL;
1171 bzero(&sc->bge_ldata.bge_tx_ring[i],
1172 sizeof(struct bge_tx_bd));
1176 static int
1177 bge_init_tx_ring(struct bge_softc *sc)
1179 sc->bge_txcnt = 0;
1180 sc->bge_tx_saved_considx = 0;
1181 sc->bge_tx_prodidx = 0;
1183 /* Initialize transmit producer index for host-memory send ring. */
1184 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1186 /* 5700 b2 errata */
1187 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1188 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1190 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1191 /* 5700 b2 errata */
1192 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1193 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1195 return(0);
1198 static void
1199 bge_setmulti(struct bge_softc *sc)
1201 struct ifnet *ifp;
1202 struct ifmultiaddr *ifma;
1203 uint32_t hashes[4] = { 0, 0, 0, 0 };
1204 int h, i;
1206 ifp = &sc->arpcom.ac_if;
1208 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1209 for (i = 0; i < 4; i++)
1210 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1211 return;
1214 /* First, zot all the existing filters. */
1215 for (i = 0; i < 4; i++)
1216 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1218 /* Now program new ones. */
1219 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1220 if (ifma->ifma_addr->sa_family != AF_LINK)
1221 continue;
1222 h = ether_crc32_le(
1223 LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1224 ETHER_ADDR_LEN) & 0x7f;
1225 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1228 for (i = 0; i < 4; i++)
1229 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1233 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1234 * self-test results.
1236 static int
1237 bge_chipinit(struct bge_softc *sc)
1239 int i;
1240 uint32_t dma_rw_ctl;
1241 uint16_t val;
1243 /* Set endian type before we access any non-PCI registers. */
1244 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1245 BGE_INIT | sc->bge_pci_miscctl, 4);
1247 /* Clear the MAC control register */
1248 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1251 * Clear the MAC statistics block in the NIC's
1252 * internal memory.
1254 for (i = BGE_STATS_BLOCK;
1255 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1256 BGE_MEMWIN_WRITE(sc, i, 0);
1258 for (i = BGE_STATUS_BLOCK;
1259 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1260 BGE_MEMWIN_WRITE(sc, i, 0);
1262 if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1264 * Fix data corruption caused by non-qword write with WB.
1265 * Fix master abort in PCI mode.
1266 * Fix PCI latency timer.
1268 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1269 val |= (1 << 10) | (1 << 12) | (1 << 13);
1270 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1273 /* Set up the PCI DMA control register. */
1274 if (sc->bge_flags & BGE_FLAG_PCIE) {
1275 /* PCI Express */
1276 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1277 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1278 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1279 } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1280 /* PCI-X bus */
1281 if (BGE_IS_5714_FAMILY(sc)) {
1282 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1283 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1284 /* XXX magic values, Broadcom-supplied Linux driver */
1285 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1286 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1287 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1288 } else {
1289 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1291 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1293 * In the BCM5703, the DMA read watermark should
1294 * be set to less than or equal to the maximum
1295 * memory read byte count of the PCI-X command
1296 * register.
1298 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1299 (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1300 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1301 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1303 * The 5704 uses a different encoding of read/write
1304 * watermarks.
1306 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1307 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1308 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1309 } else {
1310 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1311 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1312 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1313 (0x0F);
1317 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1318 * for hardware bugs.
1320 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1321 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1322 uint32_t tmp;
1324 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1325 if (tmp == 0x6 || tmp == 0x7)
1326 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1328 } else {
1329 /* Conventional PCI bus */
1330 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1331 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1332 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1333 (0x0F);
1336 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1337 sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1338 sc->bge_asicrev == BGE_ASICREV_BCM5705)
1339 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1340 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1343 * Set up general mode register.
1345 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1346 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1347 BGE_MODECTL_TX_NO_PHDR_CSUM);
1350 * BCM5701 B5 have a bug causing data corruption when using
1351 * 64-bit DMA reads, which can be terminated early and then
1352 * completed later as 32-bit accesses, in combination with
1353 * certain bridges.
1355 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1356 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1357 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1360 * Disable memory write invalidate. Apparently it is not supported
1361 * properly by these devices.
1363 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1365 /* Set the timer prescaler (always 66Mhz) */
1366 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1368 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1369 DELAY(40); /* XXX */
1371 /* Put PHY into ready state */
1372 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1373 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1374 DELAY(40);
1377 return(0);
1380 static int
1381 bge_blockinit(struct bge_softc *sc)
1383 struct bge_rcb *rcb;
1384 bus_size_t vrcb;
1385 bge_hostaddr taddr;
1386 uint32_t val;
1387 int i, limit;
1390 * Initialize the memory window pointer register so that
1391 * we can access the first 32K of internal NIC RAM. This will
1392 * allow us to set up the TX send ring RCBs and the RX return
1393 * ring RCBs, plus other things which live in NIC memory.
1395 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1397 /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1399 if (!BGE_IS_5705_PLUS(sc)) {
1400 /* Configure mbuf memory pool */
1401 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1402 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1403 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1404 else
1405 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1407 /* Configure DMA resource pool */
1408 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1409 BGE_DMA_DESCRIPTORS);
1410 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1413 /* Configure mbuf pool watermarks */
1414 if (!BGE_IS_5705_PLUS(sc)) {
1415 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1416 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1417 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1418 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1419 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1420 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1421 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1422 } else {
1423 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1424 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1425 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1428 /* Configure DMA resource watermarks */
1429 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1430 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1432 /* Enable buffer manager */
1433 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1434 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1436 /* Poll for buffer manager start indication */
1437 for (i = 0; i < BGE_TIMEOUT; i++) {
1438 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1439 break;
1440 DELAY(10);
1443 if (i == BGE_TIMEOUT) {
1444 if_printf(&sc->arpcom.ac_if,
1445 "buffer manager failed to start\n");
1446 return(ENXIO);
1449 /* Enable flow-through queues */
1450 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1451 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1453 /* Wait until queue initialization is complete */
1454 for (i = 0; i < BGE_TIMEOUT; i++) {
1455 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1456 break;
1457 DELAY(10);
1460 if (i == BGE_TIMEOUT) {
1461 if_printf(&sc->arpcom.ac_if,
1462 "flow-through queue init failed\n");
1463 return(ENXIO);
1467 * Summary of rings supported by the controller:
1469 * Standard Receive Producer Ring
1470 * - This ring is used to feed receive buffers for "standard"
1471 * sized frames (typically 1536 bytes) to the controller.
1473 * Jumbo Receive Producer Ring
1474 * - This ring is used to feed receive buffers for jumbo sized
1475 * frames (i.e. anything bigger than the "standard" frames)
1476 * to the controller.
1478 * Mini Receive Producer Ring
1479 * - This ring is used to feed receive buffers for "mini"
1480 * sized frames to the controller.
1481 * - This feature required external memory for the controller
1482 * but was never used in a production system. Should always
1483 * be disabled.
1485 * Receive Return Ring
1486 * - After the controller has placed an incoming frame into a
1487 * receive buffer that buffer is moved into a receive return
1488 * ring. The driver is then responsible to passing the
1489 * buffer up to the stack. Many versions of the controller
1490 * support multiple RR rings.
1492 * Send Ring
1493 * - This ring is used for outgoing frames. Many versions of
1494 * the controller support multiple send rings.
1497 /* Initialize the standard receive producer ring control block. */
1498 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1499 rcb->bge_hostaddr.bge_addr_lo =
1500 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1501 rcb->bge_hostaddr.bge_addr_hi =
1502 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1503 if (BGE_IS_5705_PLUS(sc)) {
1505 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1506 * Bits 15-2 : Reserved (should be 0)
1507 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
1508 * Bit 0 : Reserved
1510 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1511 } else {
1513 * Ring size is always XXX entries
1514 * Bits 31-16: Maximum RX frame size
1515 * Bits 15-2 : Reserved (should be 0)
1516 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
1517 * Bit 0 : Reserved
1519 rcb->bge_maxlen_flags =
1520 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1522 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1523 /* Write the standard receive producer ring control block. */
1524 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1525 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1526 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1527 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1528 /* Reset the standard receive producer ring producer index. */
1529 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1532 * Initialize the jumbo RX producer ring control
1533 * block. We set the 'ring disabled' bit in the
1534 * flags field until we're actually ready to start
1535 * using this ring (i.e. once we set the MTU
1536 * high enough to require it).
1538 if (BGE_IS_JUMBO_CAPABLE(sc)) {
1539 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1540 /* Get the jumbo receive producer ring RCB parameters. */
1541 rcb->bge_hostaddr.bge_addr_lo =
1542 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1543 rcb->bge_hostaddr.bge_addr_hi =
1544 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1545 rcb->bge_maxlen_flags =
1546 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1547 BGE_RCB_FLAG_RING_DISABLED);
1548 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1549 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1550 rcb->bge_hostaddr.bge_addr_hi);
1551 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1552 rcb->bge_hostaddr.bge_addr_lo);
1553 /* Program the jumbo receive producer ring RCB parameters. */
1554 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1555 rcb->bge_maxlen_flags);
1556 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1557 /* Reset the jumbo receive producer ring producer index. */
1558 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1561 /* Disable the mini receive producer ring RCB. */
1562 if (BGE_IS_5700_FAMILY(sc)) {
1563 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1564 rcb->bge_maxlen_flags =
1565 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1566 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1567 rcb->bge_maxlen_flags);
1568 /* Reset the mini receive producer ring producer index. */
1569 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1572 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1573 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1574 (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1575 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1576 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1577 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1578 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1582 * The BD ring replenish thresholds control how often the
1583 * hardware fetches new BD's from the producer rings in host
1584 * memory. Setting the value too low on a busy system can
1585 * starve the hardware and recue the throughpout.
1587 * Set the BD ring replentish thresholds. The recommended
1588 * values are 1/8th the number of descriptors allocated to
1589 * each ring.
1591 if (BGE_IS_5705_PLUS(sc))
1592 val = 8;
1593 else
1594 val = BGE_STD_RX_RING_CNT / 8;
1595 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1596 if (BGE_IS_JUMBO_CAPABLE(sc)) {
1597 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1598 BGE_JUMBO_RX_RING_CNT/8);
1602 * Disable all send rings by setting the 'ring disabled' bit
1603 * in the flags field of all the TX send ring control blocks,
1604 * located in NIC memory.
1606 if (!BGE_IS_5705_PLUS(sc)) {
1607 /* 5700 to 5704 had 16 send rings. */
1608 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1609 } else {
1610 limit = 1;
1612 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1613 for (i = 0; i < limit; i++) {
1614 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1615 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1616 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1617 vrcb += sizeof(struct bge_rcb);
1620 /* Configure send ring RCB 0 (we use only the first ring) */
1621 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1622 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1623 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1624 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1625 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1626 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1627 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1628 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1631 * Disable all receive return rings by setting the
1632 * 'ring diabled' bit in the flags field of all the receive
1633 * return ring control blocks, located in NIC memory.
1635 if (!BGE_IS_5705_PLUS(sc))
1636 limit = BGE_RX_RINGS_MAX;
1637 else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1638 limit = 4;
1639 else
1640 limit = 1;
1641 /* Disable all receive return rings. */
1642 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1643 for (i = 0; i < limit; i++) {
1644 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1645 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1646 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1647 BGE_RCB_FLAG_RING_DISABLED);
1648 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1649 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1650 (i * (sizeof(uint64_t))), 0);
1651 vrcb += sizeof(struct bge_rcb);
1655 * Set up receive return ring 0. Note that the NIC address
1656 * for RX return rings is 0x0. The return rings live entirely
1657 * within the host, so the nicaddr field in the RCB isn't used.
1659 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1660 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1661 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1662 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1663 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1664 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1665 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1667 /* Set random backoff seed for TX */
1668 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1669 sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1670 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1671 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1672 BGE_TX_BACKOFF_SEED_MASK);
1674 /* Set inter-packet gap */
1675 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1678 * Specify which ring to use for packets that don't match
1679 * any RX rules.
1681 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1684 * Configure number of RX lists. One interrupt distribution
1685 * list, sixteen active lists, one bad frames class.
1687 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1689 /* Inialize RX list placement stats mask. */
1690 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1691 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1693 /* Disable host coalescing until we get it set up */
1694 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1696 /* Poll to make sure it's shut down. */
1697 for (i = 0; i < BGE_TIMEOUT; i++) {
1698 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1699 break;
1700 DELAY(10);
1703 if (i == BGE_TIMEOUT) {
1704 if_printf(&sc->arpcom.ac_if,
1705 "host coalescing engine failed to idle\n");
1706 return(ENXIO);
1709 /* Set up host coalescing defaults */
1710 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1711 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1712 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1713 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1714 if (!BGE_IS_5705_PLUS(sc)) {
1715 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1716 sc->bge_rx_coal_ticks_int);
1717 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1718 sc->bge_tx_coal_ticks_int);
1721 * NOTE:
1722 * The datasheet (57XX-PG105-R) says BCM5705+ do not
1723 * have following two registers; obviously it is wrong.
1725 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1726 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1728 /* Set up address of statistics block */
1729 if (!BGE_IS_5705_PLUS(sc)) {
1730 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1731 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1732 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1733 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1735 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1736 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1737 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1740 /* Set up address of status block */
1741 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1742 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1743 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1744 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1745 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1748 * Set up status block partail update size.
1750 * Because only single TX ring, RX produce ring and Rx return ring
1751 * are used, ask device to update only minimum part of status block
1752 * except for BCM5700 AX/BX, whose status block partial update size
1753 * can't be configured.
1755 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1756 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1757 /* XXX Actually reserved on BCM5700 AX/BX */
1758 val = BGE_STATBLKSZ_FULL;
1759 } else {
1760 val = BGE_STATBLKSZ_32BYTE;
1762 #if 0
1764 * Does not seem to have visible effect in both
1765 * bulk data (1472B UDP datagram) and tiny data
1766 * (18B UDP datagram) TX tests.
1768 if (!BGE_IS_CRIPPLED(sc))
1769 val |= BGE_HCCMODE_CLRTICK_TX;
1770 #endif
1772 /* Turn on host coalescing state machine */
1773 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1775 /* Turn on RX BD completion state machine and enable attentions */
1776 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1777 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1779 /* Turn on RX list placement state machine */
1780 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1782 /* Turn on RX list selector state machine. */
1783 if (!BGE_IS_5705_PLUS(sc))
1784 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1786 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1787 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1788 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1789 BGE_MACMODE_FRMHDR_DMA_ENB;
1791 if (sc->bge_flags & BGE_FLAG_TBI)
1792 val |= BGE_PORTMODE_TBI;
1793 else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1794 val |= BGE_PORTMODE_GMII;
1795 else
1796 val |= BGE_PORTMODE_MII;
1798 /* Turn on DMA, clear stats */
1799 CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1801 /* Set misc. local control, enable interrupts on attentions */
1802 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1804 #ifdef notdef
1805 /* Assert GPIO pins for PHY reset */
1806 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1807 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1808 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1809 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1810 #endif
1812 /* Turn on DMA completion state machine */
1813 if (!BGE_IS_5705_PLUS(sc))
1814 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1816 /* Turn on write DMA state machine */
1817 val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1818 if (BGE_IS_5755_PLUS(sc)) {
1819 /* Enable host coalescing bug fix. */
1820 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1822 if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1823 /* Request larger DMA burst size to get better performance. */
1824 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1826 CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1827 DELAY(40);
1829 if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1830 sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1831 sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1832 sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1834 * Enable fix for read DMA FIFO overruns.
1835 * The fix is to limit the number of RX BDs
1836 * the hardware would fetch at a fime.
1838 val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1839 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1840 val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1843 /* Turn on read DMA state machine */
1844 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1845 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1846 sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1847 sc->bge_asicrev == BGE_ASICREV_BCM57780)
1848 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1849 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1850 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1851 if (sc->bge_flags & BGE_FLAG_PCIE)
1852 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1853 CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1854 DELAY(40);
1856 /* Turn on RX data completion state machine */
1857 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1859 /* Turn on RX BD initiator state machine */
1860 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1862 /* Turn on RX data and RX BD initiator state machine */
1863 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1865 /* Turn on Mbuf cluster free state machine */
1866 if (!BGE_IS_5705_PLUS(sc))
1867 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1869 /* Turn on send BD completion state machine */
1870 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1872 /* Turn on send data completion state machine */
1873 val = BGE_SDCMODE_ENABLE;
1874 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1875 val |= BGE_SDCMODE_CDELAY;
1876 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1878 /* Turn on send data initiator state machine */
1879 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1881 /* Turn on send BD initiator state machine */
1882 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1884 /* Turn on send BD selector state machine */
1885 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1887 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1888 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1889 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1891 /* ack/clear link change events */
1892 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1893 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1894 BGE_MACSTAT_LINK_CHANGED);
1895 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1898 * Enable attention when the link has changed state for
1899 * devices that use auto polling.
1901 if (sc->bge_flags & BGE_FLAG_TBI) {
1902 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1903 } else {
1904 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1905 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1906 DELAY(80);
1908 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1909 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1910 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1911 BGE_EVTENB_MI_INTERRUPT);
1916 * Clear any pending link state attention.
1917 * Otherwise some link state change events may be lost until attention
1918 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1919 * It's not necessary on newer BCM chips - perhaps enabling link
1920 * state change attentions implies clearing pending attention.
1922 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1923 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1924 BGE_MACSTAT_LINK_CHANGED);
1926 /* Enable link state change attentions. */
1927 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1929 return(0);
1933 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1934 * against our list and return its name if we find a match. Note
1935 * that since the Broadcom controller contains VPD support, we
1936 * can get the device name string from the controller itself instead
1937 * of the compiled-in string. This is a little slow, but it guarantees
1938 * we'll always announce the right product name.
1940 static int
1941 bge_probe(device_t dev)
1943 const struct bge_type *t;
1944 uint16_t product, vendor;
1946 product = pci_get_device(dev);
1947 vendor = pci_get_vendor(dev);
1949 for (t = bge_devs; t->bge_name != NULL; t++) {
1950 if (vendor == t->bge_vid && product == t->bge_did)
1951 break;
1953 if (t->bge_name == NULL)
1954 return(ENXIO);
1956 device_set_desc(dev, t->bge_name);
1957 return(0);
1960 static int
1961 bge_attach(device_t dev)
1963 struct ifnet *ifp;
1964 struct bge_softc *sc;
1965 uint32_t hwcfg = 0, misccfg;
1966 int error = 0, rid, capmask;
1967 uint8_t ether_addr[ETHER_ADDR_LEN];
1968 uint16_t product, vendor;
1969 driver_intr_t *intr_func;
1970 uintptr_t mii_priv = 0;
1972 sc = device_get_softc(dev);
1973 sc->bge_dev = dev;
1974 callout_init(&sc->bge_stat_timer);
1975 lwkt_serialize_init(&sc->bge_jslot_serializer);
1977 #ifndef BURN_BRIDGES
1978 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1979 uint32_t irq, mem;
1981 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1982 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1984 device_printf(dev, "chip is in D%d power mode "
1985 "-- setting to D0\n", pci_get_powerstate(dev));
1987 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1989 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1990 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
1992 #endif /* !BURN_BRIDGE */
1995 * Map control/status registers.
1997 pci_enable_busmaster(dev);
1999 rid = BGE_PCI_BAR0;
2000 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2001 RF_ACTIVE);
2003 if (sc->bge_res == NULL) {
2004 device_printf(dev, "couldn't map memory\n");
2005 return ENXIO;
2008 sc->bge_btag = rman_get_bustag(sc->bge_res);
2009 sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2011 /* Save various chip information */
2012 sc->bge_chipid =
2013 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2014 BGE_PCIMISCCTL_ASICREV_SHIFT;
2015 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG)
2016 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2017 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2018 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2020 /* Save chipset family. */
2021 switch (sc->bge_asicrev) {
2022 case BGE_ASICREV_BCM5755:
2023 case BGE_ASICREV_BCM5761:
2024 case BGE_ASICREV_BCM5784:
2025 case BGE_ASICREV_BCM5785:
2026 case BGE_ASICREV_BCM5787:
2027 case BGE_ASICREV_BCM57780:
2028 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2029 BGE_FLAG_5705_PLUS;
2030 break;
2032 case BGE_ASICREV_BCM5700:
2033 case BGE_ASICREV_BCM5701:
2034 case BGE_ASICREV_BCM5703:
2035 case BGE_ASICREV_BCM5704:
2036 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2037 break;
2039 case BGE_ASICREV_BCM5714_A0:
2040 case BGE_ASICREV_BCM5780:
2041 case BGE_ASICREV_BCM5714:
2042 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2043 /* Fall through */
2045 case BGE_ASICREV_BCM5750:
2046 case BGE_ASICREV_BCM5752:
2047 case BGE_ASICREV_BCM5906:
2048 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2049 /* Fall through */
2051 case BGE_ASICREV_BCM5705:
2052 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2053 break;
2056 if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2057 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2059 misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2060 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2061 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2062 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2063 sc->bge_flags |= BGE_FLAG_5788;
2065 /* BCM5755 or higher and BCM5906 have short DMA bug. */
2066 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2067 sc->bge_flags |= BGE_FLAG_SHORTDMA;
2070 * Check if this is a PCI-X or PCI Express device.
2072 if (BGE_IS_5705_PLUS(sc)) {
2073 if (pci_is_pcie(dev)) {
2074 sc->bge_flags |= BGE_FLAG_PCIE;
2075 sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2076 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2078 } else {
2080 * Check if the device is in PCI-X Mode.
2081 * (This bit is not valid on PCI Express controllers.)
2083 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2084 BGE_PCISTATE_PCI_BUSMODE) == 0) {
2085 sc->bge_flags |= BGE_FLAG_PCIX;
2086 sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2087 sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2088 "mbox_reorder", 0);
2091 device_printf(dev, "CHIP ID 0x%08x; "
2092 "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2093 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2094 (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2095 : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2096 "PCI-E" : "PCI"));
2099 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2100 * not actually a MAC controller bug but an issue with the embedded
2101 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2103 if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
2104 sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2106 /* Identify the chips that use an CPMU. */
2107 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2108 sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2109 sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2110 sc->bge_asicrev == BGE_ASICREV_BCM57780)
2111 sc->bge_flags |= BGE_FLAG_CPMU;
2114 * When using the BCM5701 in PCI-X mode, data corruption has
2115 * been observed in the first few bytes of some received packets.
2116 * Aligning the packet buffer in memory eliminates the corruption.
2117 * Unfortunately, this misaligns the packet payloads. On platforms
2118 * which do not support unaligned accesses, we will realign the
2119 * payloads by copying the received packets.
2121 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2122 (sc->bge_flags & BGE_FLAG_PCIX))
2123 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2125 if (!BGE_IS_CRIPPLED(sc)) {
2126 if (device_getenv_int(dev, "status_tag", 1)) {
2127 sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2128 sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2129 if (bootverbose)
2130 device_printf(dev, "enable status tag\n");
2135 * Set various PHY quirk flags.
2137 product = pci_get_device(dev);
2138 vendor = pci_get_vendor(dev);
2140 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2141 sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2142 pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2143 mii_priv |= BRGPHY_FLAG_NO_3LED;
2145 capmask = MII_CAPMASK_DEFAULT;
2146 if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2147 (misccfg == 0x4000 || misccfg == 0x8000)) ||
2148 (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2149 vendor == PCI_VENDOR_BROADCOM &&
2150 (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2151 product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2152 product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2153 (vendor == PCI_VENDOR_BROADCOM &&
2154 (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2155 product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2156 product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2157 product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2158 sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2159 /* 10/100 only */
2160 capmask &= ~BMSR_EXTSTAT;
2163 mii_priv |= BRGPHY_FLAG_WIRESPEED;
2164 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2165 (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2166 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2167 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2168 sc->bge_asicrev == BGE_ASICREV_BCM5906)
2169 mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2171 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2172 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2173 mii_priv |= BRGPHY_FLAG_CRC_BUG;
2175 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2176 sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2177 mii_priv |= BRGPHY_FLAG_ADC_BUG;
2179 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2180 mii_priv |= BRGPHY_FLAG_5704_A0;
2182 if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2183 mii_priv |= BRGPHY_FLAG_5906;
2185 if (BGE_IS_5705_PLUS(sc) &&
2186 sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2187 /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2188 sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2189 /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2190 sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2191 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2192 sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2193 sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2194 sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2195 if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2196 product != PCI_PRODUCT_BROADCOM_BCM5756)
2197 mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2198 if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2199 mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2200 } else {
2201 mii_priv |= BRGPHY_FLAG_BER_BUG;
2205 /* Allocate interrupt */
2206 rid = 0;
2207 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2208 RF_SHAREABLE | RF_ACTIVE);
2209 if (sc->bge_irq == NULL) {
2210 device_printf(dev, "couldn't map interrupt\n");
2211 error = ENXIO;
2212 goto fail;
2215 /* Initialize if_name earlier, so if_printf could be used */
2216 ifp = &sc->arpcom.ac_if;
2217 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2219 /* Try to reset the chip. */
2220 bge_reset(sc);
2222 if (bge_chipinit(sc)) {
2223 device_printf(dev, "chip initialization failed\n");
2224 error = ENXIO;
2225 goto fail;
2229 * Get station address
2231 error = bge_get_eaddr(sc, ether_addr);
2232 if (error) {
2233 device_printf(dev, "failed to read station address\n");
2234 goto fail;
2237 /* 5705/5750 limits RX return ring to 512 entries. */
2238 if (BGE_IS_5705_PLUS(sc))
2239 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2240 else
2241 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2243 error = bge_dma_alloc(sc);
2244 if (error)
2245 goto fail;
2247 /* Set default tuneable values. */
2248 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2249 sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2250 sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2251 sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2252 sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2253 if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2254 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2255 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2256 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2257 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2258 } else {
2259 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2260 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2261 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2262 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2265 /* Set up ifnet structure */
2266 ifp->if_softc = sc;
2267 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2268 ifp->if_ioctl = bge_ioctl;
2269 ifp->if_start = bge_start;
2270 #ifdef DEVICE_POLLING
2271 ifp->if_poll = bge_poll;
2272 #endif
2273 ifp->if_watchdog = bge_watchdog;
2274 ifp->if_init = bge_init;
2275 ifp->if_mtu = ETHERMTU;
2276 ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2277 ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2278 ifq_set_ready(&ifp->if_snd);
2281 * 5700 B0 chips do not support checksumming correctly due
2282 * to hardware bugs.
2284 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2285 ifp->if_capabilities |= IFCAP_HWCSUM;
2286 ifp->if_hwassist = BGE_CSUM_FEATURES;
2288 ifp->if_capenable = ifp->if_capabilities;
2291 * Figure out what sort of media we have by checking the
2292 * hardware config word in the first 32k of NIC internal memory,
2293 * or fall back to examining the EEPROM if necessary.
2294 * Note: on some BCM5700 cards, this value appears to be unset.
2295 * If that's the case, we have to rely on identifying the NIC
2296 * by its PCI subsystem ID, as we do below for the SysKonnect
2297 * SK-9D41.
2299 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2300 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2301 } else {
2302 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2303 sizeof(hwcfg))) {
2304 device_printf(dev, "failed to read EEPROM\n");
2305 error = ENXIO;
2306 goto fail;
2308 hwcfg = ntohl(hwcfg);
2311 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2312 if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2313 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2314 if (BGE_IS_5714_FAMILY(sc))
2315 sc->bge_flags |= BGE_FLAG_MII_SERDES;
2316 else
2317 sc->bge_flags |= BGE_FLAG_TBI;
2320 /* Setup MI MODE */
2321 if (sc->bge_flags & BGE_FLAG_CPMU)
2322 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2323 else
2324 sc->bge_mi_mode = BGE_MIMODE_BASE;
2325 if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2326 /* Enable auto polling for BCM570[0-5]. */
2327 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2330 /* Setup link status update stuffs */
2331 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2332 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2333 sc->bge_link_upd = bge_bcm5700_link_upd;
2334 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2335 } else if (sc->bge_flags & BGE_FLAG_TBI) {
2336 sc->bge_link_upd = bge_tbi_link_upd;
2337 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2338 } else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2339 sc->bge_link_upd = bge_autopoll_link_upd;
2340 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2341 } else {
2342 sc->bge_link_upd = bge_copper_link_upd;
2343 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2347 * Broadcom's own driver always assumes the internal
2348 * PHY is at GMII address 1. On some chips, the PHY responds
2349 * to accesses at all addresses, which could cause us to
2350 * bogusly attach the PHY 32 times at probe type. Always
2351 * restricting the lookup to address 1 is simpler than
2352 * trying to figure out which chips revisions should be
2353 * special-cased.
2355 sc->bge_phyno = 1;
2357 if (sc->bge_flags & BGE_FLAG_TBI) {
2358 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2359 bge_ifmedia_upd, bge_ifmedia_sts);
2360 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2361 ifmedia_add(&sc->bge_ifmedia,
2362 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2363 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2364 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2365 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2366 } else {
2367 struct mii_probe_args mii_args;
2369 mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2370 mii_args.mii_probemask = 1 << sc->bge_phyno;
2371 mii_args.mii_capmask = capmask;
2372 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2373 mii_args.mii_priv = mii_priv;
2375 error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2376 if (error) {
2377 device_printf(dev, "MII without any PHY!\n");
2378 goto fail;
2383 * Create sysctl nodes.
2385 sysctl_ctx_init(&sc->bge_sysctl_ctx);
2386 sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2387 SYSCTL_STATIC_CHILDREN(_hw),
2388 OID_AUTO,
2389 device_get_nameunit(dev),
2390 CTLFLAG_RD, 0, "");
2391 if (sc->bge_sysctl_tree == NULL) {
2392 device_printf(dev, "can't add sysctl node\n");
2393 error = ENXIO;
2394 goto fail;
2397 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2398 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2399 OID_AUTO, "rx_coal_ticks",
2400 CTLTYPE_INT | CTLFLAG_RW,
2401 sc, 0, bge_sysctl_rx_coal_ticks, "I",
2402 "Receive coalescing ticks (usec).");
2403 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2404 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2405 OID_AUTO, "tx_coal_ticks",
2406 CTLTYPE_INT | CTLFLAG_RW,
2407 sc, 0, bge_sysctl_tx_coal_ticks, "I",
2408 "Transmit coalescing ticks (usec).");
2409 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2410 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2411 OID_AUTO, "rx_coal_bds",
2412 CTLTYPE_INT | CTLFLAG_RW,
2413 sc, 0, bge_sysctl_rx_coal_bds, "I",
2414 "Receive max coalesced BD count.");
2415 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2416 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2417 OID_AUTO, "tx_coal_bds",
2418 CTLTYPE_INT | CTLFLAG_RW,
2419 sc, 0, bge_sysctl_tx_coal_bds, "I",
2420 "Transmit max coalesced BD count.");
2421 if (sc->bge_flags & BGE_FLAG_PCIE) {
2423 * A common design characteristic for many Broadcom
2424 * client controllers is that they only support a
2425 * single outstanding DMA read operation on the PCIe
2426 * bus. This means that it will take twice as long to
2427 * fetch a TX frame that is split into header and
2428 * payload buffers as it does to fetch a single,
2429 * contiguous TX frame (2 reads vs. 1 read). For these
2430 * controllers, coalescing buffers to reduce the number
2431 * of memory reads is effective way to get maximum
2432 * performance(about 940Mbps). Without collapsing TX
2433 * buffers the maximum TCP bulk transfer performance
2434 * is about 850Mbps. However forcing coalescing mbufs
2435 * consumes a lot of CPU cycles, so leave it off by
2436 * default.
2438 SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2439 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2440 OID_AUTO, "force_defrag", CTLFLAG_RW,
2441 &sc->bge_force_defrag, 0,
2442 "Force defragment on TX path");
2444 if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2445 if (!BGE_IS_5705_PLUS(sc)) {
2446 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2447 SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2448 "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2449 sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2450 "Receive coalescing ticks "
2451 "during interrupt (usec).");
2452 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2453 SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2454 "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2455 sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2456 "Transmit coalescing ticks "
2457 "during interrupt (usec).");
2459 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2460 SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2461 "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2462 sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2463 "Receive max coalesced BD count during interrupt.");
2464 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2465 SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2466 "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2467 sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2468 "Transmit max coalesced BD count during interrupt.");
2472 * Call MI attach routine.
2474 ether_ifattach(ifp, ether_addr, NULL);
2476 if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
2477 intr_func = bge_intr_status_tag;
2478 else
2479 intr_func = bge_intr;
2481 error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2482 &sc->bge_intrhand, ifp->if_serializer);
2483 if (error) {
2484 ether_ifdetach(ifp);
2485 device_printf(dev, "couldn't set up irq\n");
2486 goto fail;
2489 ifp->if_cpuid = rman_get_cpuid(sc->bge_irq);
2490 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2492 return(0);
2493 fail:
2494 bge_detach(dev);
2495 return(error);
2498 static int
2499 bge_detach(device_t dev)
2501 struct bge_softc *sc = device_get_softc(dev);
2503 if (device_is_attached(dev)) {
2504 struct ifnet *ifp = &sc->arpcom.ac_if;
2506 lwkt_serialize_enter(ifp->if_serializer);
2507 bge_stop(sc);
2508 bge_reset(sc);
2509 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2510 lwkt_serialize_exit(ifp->if_serializer);
2512 ether_ifdetach(ifp);
2515 if (sc->bge_flags & BGE_FLAG_TBI)
2516 ifmedia_removeall(&sc->bge_ifmedia);
2517 if (sc->bge_miibus)
2518 device_delete_child(dev, sc->bge_miibus);
2519 bus_generic_detach(dev);
2521 if (sc->bge_irq != NULL)
2522 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
2524 if (sc->bge_res != NULL)
2525 bus_release_resource(dev, SYS_RES_MEMORY,
2526 BGE_PCI_BAR0, sc->bge_res);
2528 if (sc->bge_sysctl_tree != NULL)
2529 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2531 bge_dma_free(sc);
2533 return 0;
2536 static void
2537 bge_reset(struct bge_softc *sc)
2539 device_t dev;
2540 uint32_t cachesize, command, pcistate, reset;
2541 void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2542 int i, val = 0;
2544 dev = sc->bge_dev;
2546 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2547 sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2548 if (sc->bge_flags & BGE_FLAG_PCIE)
2549 write_op = bge_writemem_direct;
2550 else
2551 write_op = bge_writemem_ind;
2552 } else {
2553 write_op = bge_writereg_ind;
2556 /* Save some important PCI state. */
2557 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2558 command = pci_read_config(dev, BGE_PCI_CMD, 4);
2559 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2561 pci_write_config(dev, BGE_PCI_MISC_CTL,
2562 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2563 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2564 sc->bge_pci_miscctl, 4);
2566 /* Disable fastboot on controllers that support it. */
2567 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2568 BGE_IS_5755_PLUS(sc)) {
2569 if (bootverbose)
2570 if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2571 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2575 * Write the magic number to SRAM at offset 0xB50.
2576 * When firmware finishes its initialization it will
2577 * write ~BGE_MAGIC_NUMBER to the same location.
2579 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2581 reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2583 /* XXX: Broadcom Linux driver. */
2584 if (sc->bge_flags & BGE_FLAG_PCIE) {
2585 if (CSR_READ_4(sc, 0x7e2c) == 0x60) /* PCIE 1.0 */
2586 CSR_WRITE_4(sc, 0x7e2c, 0x20);
2587 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2588 /* Prevent PCIE link training during global reset */
2589 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2590 reset |= (1<<29);
2595 * Set GPHY Power Down Override to leave GPHY
2596 * powered up in D0 uninitialized.
2598 if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2599 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2601 /* Issue global reset */
2602 write_op(sc, BGE_MISC_CFG, reset);
2604 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2605 uint32_t status, ctrl;
2607 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2608 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2609 status | BGE_VCPU_STATUS_DRV_RESET);
2610 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2611 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2612 ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2615 DELAY(1000);
2617 /* XXX: Broadcom Linux driver. */
2618 if (sc->bge_flags & BGE_FLAG_PCIE) {
2619 uint16_t devctl;
2621 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2622 uint32_t v;
2624 DELAY(500000); /* wait for link training to complete */
2625 v = pci_read_config(dev, 0xc4, 4);
2626 pci_write_config(dev, 0xc4, v | (1<<15), 4);
2629 /* Clear enable no snoop and disable relaxed ordering. */
2630 devctl = pci_read_config(dev,
2631 sc->bge_pciecap + PCIER_DEVCTRL, 2);
2632 devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2633 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2634 devctl, 2);
2636 /* Clear error status. */
2637 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2638 PCIEM_DEVSTS_CORR_ERR |
2639 PCIEM_DEVSTS_NFATAL_ERR |
2640 PCIEM_DEVSTS_FATAL_ERR |
2641 PCIEM_DEVSTS_UNSUPP_REQ, 2);
2644 /* Reset some of the PCI state that got zapped by reset */
2645 pci_write_config(dev, BGE_PCI_MISC_CTL,
2646 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2647 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2648 sc->bge_pci_miscctl, 4);
2649 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2650 pci_write_config(dev, BGE_PCI_CMD, command, 4);
2651 write_op(sc, BGE_MISC_CFG, (65 << 1));
2654 * Disable PCI-X relaxed ordering to ensure status block update
2655 * comes first then packet buffer DMA. Otherwise driver may
2656 * read stale status block.
2658 if (sc->bge_flags & BGE_FLAG_PCIX) {
2659 uint16_t devctl;
2661 devctl = pci_read_config(dev,
2662 sc->bge_pcixcap + PCIXR_COMMAND, 2);
2663 devctl &= ~PCIXM_COMMAND_ERO;
2664 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2665 devctl &= ~PCIXM_COMMAND_MAX_READ;
2666 devctl |= PCIXM_COMMAND_MAX_READ_2048;
2667 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2668 devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2669 PCIXM_COMMAND_MAX_READ);
2670 devctl |= PCIXM_COMMAND_MAX_READ_2048;
2672 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2673 devctl, 2);
2676 /* Enable memory arbiter. */
2677 if (BGE_IS_5714_FAMILY(sc)) {
2678 uint32_t val;
2680 val = CSR_READ_4(sc, BGE_MARB_MODE);
2681 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2682 } else {
2683 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2686 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2687 for (i = 0; i < BGE_TIMEOUT; i++) {
2688 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2689 if (val & BGE_VCPU_STATUS_INIT_DONE)
2690 break;
2691 DELAY(100);
2693 if (i == BGE_TIMEOUT) {
2694 if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2695 return;
2697 } else {
2699 * Poll until we see the 1's complement of the magic number.
2700 * This indicates that the firmware initialization
2701 * is complete.
2703 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2704 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2705 if (val == ~BGE_MAGIC_NUMBER)
2706 break;
2707 DELAY(10);
2709 if (i == BGE_FIRMWARE_TIMEOUT) {
2710 if_printf(&sc->arpcom.ac_if, "firmware handshake "
2711 "timed out, found 0x%08x\n", val);
2712 return;
2717 * XXX Wait for the value of the PCISTATE register to
2718 * return to its original pre-reset state. This is a
2719 * fairly good indicator of reset completion. If we don't
2720 * wait for the reset to fully complete, trying to read
2721 * from the device's non-PCI registers may yield garbage
2722 * results.
2724 for (i = 0; i < BGE_TIMEOUT; i++) {
2725 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2726 break;
2727 DELAY(10);
2730 /* Fix up byte swapping */
2731 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2732 BGE_MODECTL_BYTESWAP_DATA);
2734 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2737 * The 5704 in TBI mode apparently needs some special
2738 * adjustment to insure the SERDES drive level is set
2739 * to 1.2V.
2741 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2742 (sc->bge_flags & BGE_FLAG_TBI)) {
2743 uint32_t serdescfg;
2745 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2746 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2747 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2750 /* XXX: Broadcom Linux driver. */
2751 if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2752 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2753 sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2754 uint32_t v;
2756 /* Enable Data FIFO protection. */
2757 v = CSR_READ_4(sc, 0x7c00);
2758 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2761 DELAY(10000);
2765 * Frame reception handling. This is called if there's a frame
2766 * on the receive return list.
2768 * Note: we have to be able to handle two possibilities here:
2769 * 1) the frame is from the jumbo recieve ring
2770 * 2) the frame is from the standard receive ring
2773 static void
2774 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod)
2776 struct ifnet *ifp;
2777 int stdcnt = 0, jumbocnt = 0;
2779 ifp = &sc->arpcom.ac_if;
2781 while (sc->bge_rx_saved_considx != rx_prod) {
2782 struct bge_rx_bd *cur_rx;
2783 uint32_t rxidx;
2784 struct mbuf *m = NULL;
2785 uint16_t vlan_tag = 0;
2786 int have_tag = 0;
2788 cur_rx =
2789 &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2791 rxidx = cur_rx->bge_idx;
2792 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2793 logif(rx_pkt);
2795 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2796 have_tag = 1;
2797 vlan_tag = cur_rx->bge_vlan_tag;
2800 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2801 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2802 jumbocnt++;
2804 if (rxidx != sc->bge_jumbo) {
2805 ifp->if_ierrors++;
2806 if_printf(ifp, "sw jumbo index(%d) "
2807 "and hw jumbo index(%d) mismatch, drop!\n",
2808 sc->bge_jumbo, rxidx);
2809 bge_setup_rxdesc_jumbo(sc, rxidx);
2810 continue;
2813 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
2814 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2815 ifp->if_ierrors++;
2816 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2817 continue;
2819 if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
2820 ifp->if_ierrors++;
2821 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2822 continue;
2824 } else {
2825 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2826 stdcnt++;
2828 if (rxidx != sc->bge_std) {
2829 ifp->if_ierrors++;
2830 if_printf(ifp, "sw std index(%d) "
2831 "and hw std index(%d) mismatch, drop!\n",
2832 sc->bge_std, rxidx);
2833 bge_setup_rxdesc_std(sc, rxidx);
2834 continue;
2837 m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
2838 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2839 ifp->if_ierrors++;
2840 bge_setup_rxdesc_std(sc, sc->bge_std);
2841 continue;
2843 if (bge_newbuf_std(sc, sc->bge_std, 0)) {
2844 ifp->if_ierrors++;
2845 bge_setup_rxdesc_std(sc, sc->bge_std);
2846 continue;
2850 ifp->if_ipackets++;
2851 #if !defined(__i386__) && !defined(__x86_64__)
2853 * The x86 allows unaligned accesses, but for other
2854 * platforms we must make sure the payload is aligned.
2856 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2857 bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2858 cur_rx->bge_len);
2859 m->m_data += ETHER_ALIGN;
2861 #endif
2862 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2863 m->m_pkthdr.rcvif = ifp;
2865 if (ifp->if_capenable & IFCAP_RXCSUM) {
2866 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2867 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2868 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2869 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2871 if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2872 m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
2873 m->m_pkthdr.csum_data =
2874 cur_rx->bge_tcp_udp_csum;
2875 m->m_pkthdr.csum_flags |=
2876 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2881 * If we received a packet with a vlan tag, pass it
2882 * to vlan_input() instead of ether_input().
2884 if (have_tag) {
2885 m->m_flags |= M_VLANTAG;
2886 m->m_pkthdr.ether_vlantag = vlan_tag;
2887 have_tag = vlan_tag = 0;
2889 ifp->if_input(ifp, m);
2892 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2893 if (stdcnt)
2894 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2895 if (jumbocnt)
2896 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2899 static void
2900 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
2902 struct bge_tx_bd *cur_tx = NULL;
2903 struct ifnet *ifp;
2905 ifp = &sc->arpcom.ac_if;
2908 * Go through our tx ring and free mbufs for those
2909 * frames that have been sent.
2911 while (sc->bge_tx_saved_considx != tx_cons) {
2912 uint32_t idx = 0;
2914 idx = sc->bge_tx_saved_considx;
2915 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2916 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2917 ifp->if_opackets++;
2918 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2919 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
2920 sc->bge_cdata.bge_tx_dmamap[idx]);
2921 m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2922 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2924 sc->bge_txcnt--;
2925 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2926 logif(tx_pkt);
2929 if (cur_tx != NULL &&
2930 (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2931 (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2932 ifp->if_flags &= ~IFF_OACTIVE;
2934 if (sc->bge_txcnt == 0)
2935 ifp->if_timer = 0;
2937 if (!ifq_is_empty(&ifp->if_snd))
2938 if_devstart(ifp);
2941 #ifdef DEVICE_POLLING
2943 static void
2944 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2946 struct bge_softc *sc = ifp->if_softc;
2947 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
2948 uint16_t rx_prod, tx_cons;
2950 switch(cmd) {
2951 case POLL_REGISTER:
2952 bge_disable_intr(sc);
2953 break;
2954 case POLL_DEREGISTER:
2955 bge_enable_intr(sc);
2956 break;
2957 case POLL_AND_CHECK_STATUS:
2959 * Process link state changes.
2961 bge_link_poll(sc);
2962 /* Fall through */
2963 case POLL_ONLY:
2964 if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2965 sc->bge_status_tag = sblk->bge_status_tag;
2967 * Use a load fence to ensure that status_tag
2968 * is saved before rx_prod and tx_cons.
2970 cpu_lfence();
2972 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
2973 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
2974 if (ifp->if_flags & IFF_RUNNING) {
2975 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
2976 if (sc->bge_rx_saved_considx != rx_prod)
2977 bge_rxeof(sc, rx_prod);
2979 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
2980 if (sc->bge_tx_saved_considx != tx_cons)
2981 bge_txeof(sc, tx_cons);
2983 break;
2987 #endif
2989 static void
2990 bge_intr(void *xsc)
2992 struct bge_softc *sc = xsc;
2993 struct ifnet *ifp = &sc->arpcom.ac_if;
2995 logif(intr);
2998 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't
2999 * disable interrupts by writing nonzero like we used to, since with
3000 * our current organization this just gives complications and
3001 * pessimizations for re-enabling interrupts. We used to have races
3002 * instead of the necessary complications. Disabling interrupts
3003 * would just reduce the chance of a status update while we are
3004 * running (by switching to the interrupt-mode coalescence
3005 * parameters), but this chance is already very low so it is more
3006 * efficient to get another interrupt than prevent it.
3008 * We do the ack first to ensure another interrupt if there is a
3009 * status update after the ack. We don't check for the status
3010 * changing later because it is more efficient to get another
3011 * interrupt than prevent it, not quite as above (not checking is
3012 * a smaller optimization than not toggling the interrupt enable,
3013 * since checking doesn't involve PCI accesses and toggling require
3014 * the status check). So toggling would probably be a pessimization
3015 * even with MSI. It would only be needed for using a task queue.
3017 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3020 * Process link state changes.
3022 bge_link_poll(sc);
3024 if (ifp->if_flags & IFF_RUNNING) {
3025 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3026 uint16_t rx_prod, tx_cons;
3028 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3029 if (sc->bge_rx_saved_considx != rx_prod)
3030 bge_rxeof(sc, rx_prod);
3032 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3033 if (sc->bge_tx_saved_considx != tx_cons)
3034 bge_txeof(sc, tx_cons);
3037 if (sc->bge_coal_chg)
3038 bge_coal_change(sc);
3041 static void
3042 bge_intr_status_tag(void *xsc)
3044 struct bge_softc *sc = xsc;
3045 struct ifnet *ifp = &sc->arpcom.ac_if;
3046 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3047 uint16_t rx_prod, tx_cons;
3048 uint32_t status;
3050 if (sc->bge_status_tag == sblk->bge_status_tag) {
3051 uint32_t val;
3053 val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3054 if (val & BGE_PCISTAT_INTR_NOTACT)
3055 return;
3059 * NOTE:
3060 * Interrupt will have to be disabled if tagged status
3061 * is used, else interrupt will always be asserted on
3062 * certain chips (at least on BCM5750 AX/BX).
3064 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3066 sc->bge_status_tag = sblk->bge_status_tag;
3068 * Use a load fence to ensure that status_tag is saved
3069 * before rx_prod, tx_cons and status.
3071 cpu_lfence();
3073 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3074 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3075 status = sblk->bge_status;
3077 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3078 bge_link_poll(sc);
3080 if (ifp->if_flags & IFF_RUNNING) {
3081 if (sc->bge_rx_saved_considx != rx_prod)
3082 bge_rxeof(sc, rx_prod);
3084 if (sc->bge_tx_saved_considx != tx_cons)
3085 bge_txeof(sc, tx_cons);
3088 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3090 if (sc->bge_coal_chg)
3091 bge_coal_change(sc);
3094 static void
3095 bge_tick(void *xsc)
3097 struct bge_softc *sc = xsc;
3098 struct ifnet *ifp = &sc->arpcom.ac_if;
3100 lwkt_serialize_enter(ifp->if_serializer);
3102 if (BGE_IS_5705_PLUS(sc))
3103 bge_stats_update_regs(sc);
3104 else
3105 bge_stats_update(sc);
3107 if (sc->bge_flags & BGE_FLAG_TBI) {
3109 * Since in TBI mode auto-polling can't be used we should poll
3110 * link status manually. Here we register pending link event
3111 * and trigger interrupt.
3113 sc->bge_link_evt++;
3114 if (BGE_IS_CRIPPLED(sc))
3115 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3116 else
3117 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3118 } else if (!sc->bge_link) {
3119 mii_tick(device_get_softc(sc->bge_miibus));
3122 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3124 lwkt_serialize_exit(ifp->if_serializer);
3127 static void
3128 bge_stats_update_regs(struct bge_softc *sc)
3130 struct ifnet *ifp = &sc->arpcom.ac_if;
3131 struct bge_mac_stats_regs stats;
3132 uint32_t *s;
3133 int i;
3135 s = (uint32_t *)&stats;
3136 for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3137 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3138 s++;
3141 ifp->if_collisions +=
3142 (stats.dot3StatsSingleCollisionFrames +
3143 stats.dot3StatsMultipleCollisionFrames +
3144 stats.dot3StatsExcessiveCollisions +
3145 stats.dot3StatsLateCollisions) -
3146 ifp->if_collisions;
3149 static void
3150 bge_stats_update(struct bge_softc *sc)
3152 struct ifnet *ifp = &sc->arpcom.ac_if;
3153 bus_size_t stats;
3155 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3157 #define READ_STAT(sc, stats, stat) \
3158 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3160 ifp->if_collisions +=
3161 (READ_STAT(sc, stats,
3162 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3163 READ_STAT(sc, stats,
3164 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3165 READ_STAT(sc, stats,
3166 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3167 READ_STAT(sc, stats,
3168 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
3169 ifp->if_collisions;
3171 #undef READ_STAT
3173 #ifdef notdef
3174 ifp->if_collisions +=
3175 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3176 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3177 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3178 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3179 ifp->if_collisions;
3180 #endif
3184 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3185 * pointers to descriptors.
3187 static int
3188 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
3190 struct bge_tx_bd *d = NULL;
3191 uint16_t csum_flags = 0;
3192 bus_dma_segment_t segs[BGE_NSEG_NEW];
3193 bus_dmamap_t map;
3194 int error, maxsegs, nsegs, idx, i;
3195 struct mbuf *m_head = *m_head0, *m_new;
3197 if (m_head->m_pkthdr.csum_flags) {
3198 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3199 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3200 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3201 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3202 if (m_head->m_flags & M_LASTFRAG)
3203 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3204 else if (m_head->m_flags & M_FRAG)
3205 csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3208 idx = *txidx;
3209 map = sc->bge_cdata.bge_tx_dmamap[idx];
3211 maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
3212 KASSERT(maxsegs >= BGE_NSEG_SPARE,
3213 ("not enough segments %d", maxsegs));
3215 if (maxsegs > BGE_NSEG_NEW)
3216 maxsegs = BGE_NSEG_NEW;
3219 * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3220 * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3221 * but when such padded frames employ the bge IP/TCP checksum
3222 * offload, the hardware checksum assist gives incorrect results
3223 * (possibly from incorporating its own padding into the UDP/TCP
3224 * checksum; who knows). If we pad such runts with zeros, the
3225 * onboard checksum comes out correct.
3227 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3228 m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3229 error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3230 if (error)
3231 goto back;
3234 if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3235 m_new = bge_defrag_shortdma(m_head);
3236 if (m_new == NULL) {
3237 error = ENOBUFS;
3238 goto back;
3240 *m_head0 = m_head = m_new;
3242 if (sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3243 m_head->m_next != NULL) {
3245 * Forcefully defragment mbuf chain to overcome hardware
3246 * limitation which only support a single outstanding
3247 * DMA read operation. If it fails, keep moving on using
3248 * the original mbuf chain.
3250 m_new = m_defrag(m_head, MB_DONTWAIT);
3251 if (m_new != NULL)
3252 *m_head0 = m_head = m_new;
3255 error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3256 m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3257 if (error)
3258 goto back;
3260 m_head = *m_head0;
3261 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3263 for (i = 0; ; i++) {
3264 d = &sc->bge_ldata.bge_tx_ring[idx];
3266 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3267 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3268 d->bge_len = segs[i].ds_len;
3269 d->bge_flags = csum_flags;
3271 if (i == nsegs - 1)
3272 break;
3273 BGE_INC(idx, BGE_TX_RING_CNT);
3275 /* Mark the last segment as end of packet... */
3276 d->bge_flags |= BGE_TXBDFLAG_END;
3278 /* Set vlan tag to the first segment of the packet. */
3279 d = &sc->bge_ldata.bge_tx_ring[*txidx];
3280 if (m_head->m_flags & M_VLANTAG) {
3281 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3282 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3283 } else {
3284 d->bge_vlan_tag = 0;
3288 * Insure that the map for this transmission is placed at
3289 * the array index of the last descriptor in this chain.
3291 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3292 sc->bge_cdata.bge_tx_dmamap[idx] = map;
3293 sc->bge_cdata.bge_tx_chain[idx] = m_head;
3294 sc->bge_txcnt += nsegs;
3296 BGE_INC(idx, BGE_TX_RING_CNT);
3297 *txidx = idx;
3298 back:
3299 if (error) {
3300 m_freem(*m_head0);
3301 *m_head0 = NULL;
3303 return error;
3307 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3308 * to the mbuf data regions directly in the transmit descriptors.
3310 static void
3311 bge_start(struct ifnet *ifp)
3313 struct bge_softc *sc = ifp->if_softc;
3314 struct mbuf *m_head = NULL;
3315 uint32_t prodidx;
3316 int need_trans;
3318 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3319 return;
3321 prodidx = sc->bge_tx_prodidx;
3323 need_trans = 0;
3324 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3325 m_head = ifq_dequeue(&ifp->if_snd, NULL);
3326 if (m_head == NULL)
3327 break;
3330 * XXX
3331 * The code inside the if() block is never reached since we
3332 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3333 * requests to checksum TCP/UDP in a fragmented packet.
3335 * XXX
3336 * safety overkill. If this is a fragmented packet chain
3337 * with delayed TCP/UDP checksums, then only encapsulate
3338 * it if we have enough descriptors to handle the entire
3339 * chain at once.
3340 * (paranoia -- may not actually be needed)
3342 if ((m_head->m_flags & M_FIRSTFRAG) &&
3343 (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3344 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3345 m_head->m_pkthdr.csum_data + BGE_NSEG_RSVD) {
3346 ifp->if_flags |= IFF_OACTIVE;
3347 ifq_prepend(&ifp->if_snd, m_head);
3348 break;
3353 * Sanity check: avoid coming within BGE_NSEG_RSVD
3354 * descriptors of the end of the ring. Also make
3355 * sure there are BGE_NSEG_SPARE descriptors for
3356 * jumbo buffers' defragmentation.
3358 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3359 (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
3360 ifp->if_flags |= IFF_OACTIVE;
3361 ifq_prepend(&ifp->if_snd, m_head);
3362 break;
3366 * Pack the data into the transmit ring. If we
3367 * don't have room, set the OACTIVE flag and wait
3368 * for the NIC to drain the ring.
3370 if (bge_encap(sc, &m_head, &prodidx)) {
3371 ifp->if_flags |= IFF_OACTIVE;
3372 ifp->if_oerrors++;
3373 break;
3375 need_trans = 1;
3377 ETHER_BPF_MTAP(ifp, m_head);
3380 if (!need_trans)
3381 return;
3383 /* Transmit */
3384 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3385 /* 5700 b2 errata */
3386 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3387 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3389 sc->bge_tx_prodidx = prodidx;
3392 * Set a timeout in case the chip goes out to lunch.
3394 ifp->if_timer = 5;
3397 static void
3398 bge_init(void *xsc)
3400 struct bge_softc *sc = xsc;
3401 struct ifnet *ifp = &sc->arpcom.ac_if;
3402 uint16_t *m;
3403 uint32_t mode;
3405 ASSERT_SERIALIZED(ifp->if_serializer);
3407 /* Cancel pending I/O and flush buffers. */
3408 bge_stop(sc);
3409 bge_reset(sc);
3410 bge_chipinit(sc);
3413 * Init the various state machines, ring
3414 * control blocks and firmware.
3416 if (bge_blockinit(sc)) {
3417 if_printf(ifp, "initialization failure\n");
3418 bge_stop(sc);
3419 return;
3422 /* Specify MTU. */
3423 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3424 ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3426 /* Load our MAC address. */
3427 m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3428 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3429 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3431 /* Enable or disable promiscuous mode as needed. */
3432 bge_setpromisc(sc);
3434 /* Program multicast filter. */
3435 bge_setmulti(sc);
3437 /* Init RX ring. */
3438 if (bge_init_rx_ring_std(sc)) {
3439 if_printf(ifp, "RX ring initialization failed\n");
3440 bge_stop(sc);
3441 return;
3445 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3446 * memory to insure that the chip has in fact read the first
3447 * entry of the ring.
3449 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3450 uint32_t v, i;
3451 for (i = 0; i < 10; i++) {
3452 DELAY(20);
3453 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3454 if (v == (MCLBYTES - ETHER_ALIGN))
3455 break;
3457 if (i == 10)
3458 if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3461 /* Init jumbo RX ring. */
3462 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3463 if (bge_init_rx_ring_jumbo(sc)) {
3464 if_printf(ifp, "Jumbo RX ring initialization failed\n");
3465 bge_stop(sc);
3466 return;
3470 /* Init our RX return ring index */
3471 sc->bge_rx_saved_considx = 0;
3473 /* Init TX ring. */
3474 bge_init_tx_ring(sc);
3476 /* Enable TX MAC state machine lockup fix. */
3477 mode = CSR_READ_4(sc, BGE_TX_MODE);
3478 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3479 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3480 /* Turn on transmitter */
3481 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3483 /* Turn on receiver */
3484 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3487 * Set the number of good frames to receive after RX MBUF
3488 * Low Watermark has been reached. After the RX MAC receives
3489 * this number of frames, it will drop subsequent incoming
3490 * frames until the MBUF High Watermark is reached.
3492 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3494 /* Tell firmware we're alive. */
3495 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3497 /* Enable host interrupts if polling(4) is not enabled. */
3498 PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3499 #ifdef DEVICE_POLLING
3500 if (ifp->if_flags & IFF_POLLING)
3501 bge_disable_intr(sc);
3502 else
3503 #endif
3504 bge_enable_intr(sc);
3506 bge_ifmedia_upd(ifp);
3508 ifp->if_flags |= IFF_RUNNING;
3509 ifp->if_flags &= ~IFF_OACTIVE;
3511 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3515 * Set media options.
3517 static int
3518 bge_ifmedia_upd(struct ifnet *ifp)
3520 struct bge_softc *sc = ifp->if_softc;
3522 /* If this is a 1000baseX NIC, enable the TBI port. */
3523 if (sc->bge_flags & BGE_FLAG_TBI) {
3524 struct ifmedia *ifm = &sc->bge_ifmedia;
3526 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3527 return(EINVAL);
3529 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3530 case IFM_AUTO:
3532 * The BCM5704 ASIC appears to have a special
3533 * mechanism for programming the autoneg
3534 * advertisement registers in TBI mode.
3536 if (!bge_fake_autoneg &&
3537 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3538 uint32_t sgdig;
3540 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3541 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3542 sgdig |= BGE_SGDIGCFG_AUTO |
3543 BGE_SGDIGCFG_PAUSE_CAP |
3544 BGE_SGDIGCFG_ASYM_PAUSE;
3545 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3546 sgdig | BGE_SGDIGCFG_SEND);
3547 DELAY(5);
3548 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3550 break;
3551 case IFM_1000_SX:
3552 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3553 BGE_CLRBIT(sc, BGE_MAC_MODE,
3554 BGE_MACMODE_HALF_DUPLEX);
3555 } else {
3556 BGE_SETBIT(sc, BGE_MAC_MODE,
3557 BGE_MACMODE_HALF_DUPLEX);
3559 break;
3560 default:
3561 return(EINVAL);
3563 } else {
3564 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3566 sc->bge_link_evt++;
3567 sc->bge_link = 0;
3568 if (mii->mii_instance) {
3569 struct mii_softc *miisc;
3571 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3572 mii_phy_reset(miisc);
3574 mii_mediachg(mii);
3577 * Force an interrupt so that we will call bge_link_upd
3578 * if needed and clear any pending link state attention.
3579 * Without this we are not getting any further interrupts
3580 * for link state changes and thus will not UP the link and
3581 * not be able to send in bge_start. The only way to get
3582 * things working was to receive a packet and get an RX
3583 * intr.
3585 * bge_tick should help for fiber cards and we might not
3586 * need to do this here if BGE_FLAG_TBI is set but as
3587 * we poll for fiber anyway it should not harm.
3589 if (BGE_IS_CRIPPLED(sc))
3590 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3591 else
3592 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3594 return(0);
3598 * Report current media status.
3600 static void
3601 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3603 struct bge_softc *sc = ifp->if_softc;
3605 if (sc->bge_flags & BGE_FLAG_TBI) {
3606 ifmr->ifm_status = IFM_AVALID;
3607 ifmr->ifm_active = IFM_ETHER;
3608 if (CSR_READ_4(sc, BGE_MAC_STS) &
3609 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3610 ifmr->ifm_status |= IFM_ACTIVE;
3611 } else {
3612 ifmr->ifm_active |= IFM_NONE;
3613 return;
3616 ifmr->ifm_active |= IFM_1000_SX;
3617 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3618 ifmr->ifm_active |= IFM_HDX;
3619 else
3620 ifmr->ifm_active |= IFM_FDX;
3621 } else {
3622 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3624 mii_pollstat(mii);
3625 ifmr->ifm_active = mii->mii_media_active;
3626 ifmr->ifm_status = mii->mii_media_status;
3630 static int
3631 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3633 struct bge_softc *sc = ifp->if_softc;
3634 struct ifreq *ifr = (struct ifreq *)data;
3635 int mask, error = 0;
3637 ASSERT_SERIALIZED(ifp->if_serializer);
3639 switch (command) {
3640 case SIOCSIFMTU:
3641 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3642 (BGE_IS_JUMBO_CAPABLE(sc) &&
3643 ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3644 error = EINVAL;
3645 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3646 ifp->if_mtu = ifr->ifr_mtu;
3647 if (ifp->if_flags & IFF_RUNNING)
3648 bge_init(sc);
3650 break;
3651 case SIOCSIFFLAGS:
3652 if (ifp->if_flags & IFF_UP) {
3653 if (ifp->if_flags & IFF_RUNNING) {
3654 mask = ifp->if_flags ^ sc->bge_if_flags;
3657 * If only the state of the PROMISC flag
3658 * changed, then just use the 'set promisc
3659 * mode' command instead of reinitializing
3660 * the entire NIC. Doing a full re-init
3661 * means reloading the firmware and waiting
3662 * for it to start up, which may take a
3663 * second or two. Similarly for ALLMULTI.
3665 if (mask & IFF_PROMISC)
3666 bge_setpromisc(sc);
3667 if (mask & IFF_ALLMULTI)
3668 bge_setmulti(sc);
3669 } else {
3670 bge_init(sc);
3672 } else if (ifp->if_flags & IFF_RUNNING) {
3673 bge_stop(sc);
3675 sc->bge_if_flags = ifp->if_flags;
3676 break;
3677 case SIOCADDMULTI:
3678 case SIOCDELMULTI:
3679 if (ifp->if_flags & IFF_RUNNING)
3680 bge_setmulti(sc);
3681 break;
3682 case SIOCSIFMEDIA:
3683 case SIOCGIFMEDIA:
3684 if (sc->bge_flags & BGE_FLAG_TBI) {
3685 error = ifmedia_ioctl(ifp, ifr,
3686 &sc->bge_ifmedia, command);
3687 } else {
3688 struct mii_data *mii;
3690 mii = device_get_softc(sc->bge_miibus);
3691 error = ifmedia_ioctl(ifp, ifr,
3692 &mii->mii_media, command);
3694 break;
3695 case SIOCSIFCAP:
3696 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3697 if (mask & IFCAP_HWCSUM) {
3698 ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3699 if (IFCAP_HWCSUM & ifp->if_capenable)
3700 ifp->if_hwassist = BGE_CSUM_FEATURES;
3701 else
3702 ifp->if_hwassist = 0;
3704 break;
3705 default:
3706 error = ether_ioctl(ifp, command, data);
3707 break;
3709 return error;
3712 static void
3713 bge_watchdog(struct ifnet *ifp)
3715 struct bge_softc *sc = ifp->if_softc;
3717 if_printf(ifp, "watchdog timeout -- resetting\n");
3719 bge_init(sc);
3721 ifp->if_oerrors++;
3723 if (!ifq_is_empty(&ifp->if_snd))
3724 if_devstart(ifp);
3728 * Stop the adapter and free any mbufs allocated to the
3729 * RX and TX lists.
3731 static void
3732 bge_stop(struct bge_softc *sc)
3734 struct ifnet *ifp = &sc->arpcom.ac_if;
3736 ASSERT_SERIALIZED(ifp->if_serializer);
3738 callout_stop(&sc->bge_stat_timer);
3741 * Disable all of the receiver blocks
3743 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3744 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3745 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3746 if (BGE_IS_5700_FAMILY(sc))
3747 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3748 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3749 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3750 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3753 * Disable all of the transmit blocks
3755 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3756 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3757 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3758 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3759 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3760 if (BGE_IS_5700_FAMILY(sc))
3761 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3762 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3765 * Shut down all of the memory managers and related
3766 * state machines.
3768 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3769 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3770 if (BGE_IS_5700_FAMILY(sc))
3771 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3772 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3773 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3774 if (!BGE_IS_5705_PLUS(sc)) {
3775 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3776 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3779 /* Disable host interrupts. */
3780 bge_disable_intr(sc);
3783 * Tell firmware we're shutting down.
3785 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3787 /* Free the RX lists. */
3788 bge_free_rx_ring_std(sc);
3790 /* Free jumbo RX list. */
3791 if (BGE_IS_JUMBO_CAPABLE(sc))
3792 bge_free_rx_ring_jumbo(sc);
3794 /* Free TX buffers. */
3795 bge_free_tx_ring(sc);
3797 sc->bge_status_tag = 0;
3798 sc->bge_link = 0;
3799 sc->bge_coal_chg = 0;
3801 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3803 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3804 ifp->if_timer = 0;
3808 * Stop all chip I/O so that the kernel's probe routines don't
3809 * get confused by errant DMAs when rebooting.
3811 static void
3812 bge_shutdown(device_t dev)
3814 struct bge_softc *sc = device_get_softc(dev);
3815 struct ifnet *ifp = &sc->arpcom.ac_if;
3817 lwkt_serialize_enter(ifp->if_serializer);
3818 bge_stop(sc);
3819 bge_reset(sc);
3820 lwkt_serialize_exit(ifp->if_serializer);
3823 static int
3824 bge_suspend(device_t dev)
3826 struct bge_softc *sc = device_get_softc(dev);
3827 struct ifnet *ifp = &sc->arpcom.ac_if;
3829 lwkt_serialize_enter(ifp->if_serializer);
3830 bge_stop(sc);
3831 lwkt_serialize_exit(ifp->if_serializer);
3833 return 0;
3836 static int
3837 bge_resume(device_t dev)
3839 struct bge_softc *sc = device_get_softc(dev);
3840 struct ifnet *ifp = &sc->arpcom.ac_if;
3842 lwkt_serialize_enter(ifp->if_serializer);
3844 if (ifp->if_flags & IFF_UP) {
3845 bge_init(sc);
3847 if (!ifq_is_empty(&ifp->if_snd))
3848 if_devstart(ifp);
3851 lwkt_serialize_exit(ifp->if_serializer);
3853 return 0;
3856 static void
3857 bge_setpromisc(struct bge_softc *sc)
3859 struct ifnet *ifp = &sc->arpcom.ac_if;
3861 if (ifp->if_flags & IFF_PROMISC)
3862 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3863 else
3864 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3867 static void
3868 bge_dma_free(struct bge_softc *sc)
3870 int i;
3872 /* Destroy RX mbuf DMA stuffs. */
3873 if (sc->bge_cdata.bge_rx_mtag != NULL) {
3874 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3875 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3876 sc->bge_cdata.bge_rx_std_dmamap[i]);
3878 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3879 sc->bge_cdata.bge_rx_tmpmap);
3880 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3883 /* Destroy TX mbuf DMA stuffs. */
3884 if (sc->bge_cdata.bge_tx_mtag != NULL) {
3885 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3886 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
3887 sc->bge_cdata.bge_tx_dmamap[i]);
3889 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
3892 /* Destroy standard RX ring */
3893 bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3894 sc->bge_cdata.bge_rx_std_ring_map,
3895 sc->bge_ldata.bge_rx_std_ring);
3897 if (BGE_IS_JUMBO_CAPABLE(sc))
3898 bge_free_jumbo_mem(sc);
3900 /* Destroy RX return ring */
3901 bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3902 sc->bge_cdata.bge_rx_return_ring_map,
3903 sc->bge_ldata.bge_rx_return_ring);
3905 /* Destroy TX ring */
3906 bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3907 sc->bge_cdata.bge_tx_ring_map,
3908 sc->bge_ldata.bge_tx_ring);
3910 /* Destroy status block */
3911 bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3912 sc->bge_cdata.bge_status_map,
3913 sc->bge_ldata.bge_status_block);
3915 /* Destroy statistics block */
3916 bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3917 sc->bge_cdata.bge_stats_map,
3918 sc->bge_ldata.bge_stats);
3920 /* Destroy the parent tag */
3921 if (sc->bge_cdata.bge_parent_tag != NULL)
3922 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3925 static int
3926 bge_dma_alloc(struct bge_softc *sc)
3928 struct ifnet *ifp = &sc->arpcom.ac_if;
3929 int i, error;
3930 bus_addr_t lowaddr;
3932 lowaddr = BUS_SPACE_MAXADDR;
3933 if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
3934 lowaddr = BGE_DMA_MAXADDR_40BIT;
3937 * Allocate the parent bus DMA tag appropriate for PCI.
3939 * All of the NetExtreme/NetLink controllers have 4GB boundary
3940 * DMA bug.
3941 * Whenever an address crosses a multiple of the 4GB boundary
3942 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3943 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3944 * state machine will lockup and cause the device to hang.
3946 error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
3947 lowaddr, BUS_SPACE_MAXADDR,
3948 NULL, NULL,
3949 BUS_SPACE_MAXSIZE_32BIT, 0,
3950 BUS_SPACE_MAXSIZE_32BIT,
3951 0, &sc->bge_cdata.bge_parent_tag);
3952 if (error) {
3953 if_printf(ifp, "could not allocate parent dma tag\n");
3954 return error;
3958 * Create DMA tag and maps for RX mbufs.
3960 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3961 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3962 NULL, NULL, MCLBYTES, 1, MCLBYTES,
3963 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
3964 &sc->bge_cdata.bge_rx_mtag);
3965 if (error) {
3966 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
3967 return error;
3970 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
3971 BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
3972 if (error) {
3973 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3974 sc->bge_cdata.bge_rx_mtag = NULL;
3975 return error;
3978 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3979 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
3980 BUS_DMA_WAITOK,
3981 &sc->bge_cdata.bge_rx_std_dmamap[i]);
3982 if (error) {
3983 int j;
3985 for (j = 0; j < i; ++j) {
3986 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3987 sc->bge_cdata.bge_rx_std_dmamap[j]);
3989 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3990 sc->bge_cdata.bge_rx_mtag = NULL;
3992 if_printf(ifp, "could not create DMA map for RX\n");
3993 return error;
3998 * Create DMA tag and maps for TX mbufs.
4000 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4001 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4002 NULL, NULL,
4003 BGE_JUMBO_FRAMELEN, BGE_NSEG_NEW, MCLBYTES,
4004 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4005 BUS_DMA_ONEBPAGE,
4006 &sc->bge_cdata.bge_tx_mtag);
4007 if (error) {
4008 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4009 return error;
4012 for (i = 0; i < BGE_TX_RING_CNT; i++) {
4013 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4014 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4015 &sc->bge_cdata.bge_tx_dmamap[i]);
4016 if (error) {
4017 int j;
4019 for (j = 0; j < i; ++j) {
4020 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4021 sc->bge_cdata.bge_tx_dmamap[j]);
4023 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4024 sc->bge_cdata.bge_tx_mtag = NULL;
4026 if_printf(ifp, "could not create DMA map for TX\n");
4027 return error;
4032 * Create DMA stuffs for standard RX ring.
4034 error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4035 &sc->bge_cdata.bge_rx_std_ring_tag,
4036 &sc->bge_cdata.bge_rx_std_ring_map,
4037 (void *)&sc->bge_ldata.bge_rx_std_ring,
4038 &sc->bge_ldata.bge_rx_std_ring_paddr);
4039 if (error) {
4040 if_printf(ifp, "could not create std RX ring\n");
4041 return error;
4045 * Create jumbo buffer pool.
4047 if (BGE_IS_JUMBO_CAPABLE(sc)) {
4048 error = bge_alloc_jumbo_mem(sc);
4049 if (error) {
4050 if_printf(ifp, "could not create jumbo buffer pool\n");
4051 return error;
4056 * Create DMA stuffs for RX return ring.
4058 error = bge_dma_block_alloc(sc,
4059 BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4060 &sc->bge_cdata.bge_rx_return_ring_tag,
4061 &sc->bge_cdata.bge_rx_return_ring_map,
4062 (void *)&sc->bge_ldata.bge_rx_return_ring,
4063 &sc->bge_ldata.bge_rx_return_ring_paddr);
4064 if (error) {
4065 if_printf(ifp, "could not create RX ret ring\n");
4066 return error;
4070 * Create DMA stuffs for TX ring.
4072 error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4073 &sc->bge_cdata.bge_tx_ring_tag,
4074 &sc->bge_cdata.bge_tx_ring_map,
4075 (void *)&sc->bge_ldata.bge_tx_ring,
4076 &sc->bge_ldata.bge_tx_ring_paddr);
4077 if (error) {
4078 if_printf(ifp, "could not create TX ring\n");
4079 return error;
4083 * Create DMA stuffs for status block.
4085 error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4086 &sc->bge_cdata.bge_status_tag,
4087 &sc->bge_cdata.bge_status_map,
4088 (void *)&sc->bge_ldata.bge_status_block,
4089 &sc->bge_ldata.bge_status_block_paddr);
4090 if (error) {
4091 if_printf(ifp, "could not create status block\n");
4092 return error;
4096 * Create DMA stuffs for statistics block.
4098 error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4099 &sc->bge_cdata.bge_stats_tag,
4100 &sc->bge_cdata.bge_stats_map,
4101 (void *)&sc->bge_ldata.bge_stats,
4102 &sc->bge_ldata.bge_stats_paddr);
4103 if (error) {
4104 if_printf(ifp, "could not create stats block\n");
4105 return error;
4107 return 0;
4110 static int
4111 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4112 bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4114 bus_dmamem_t dmem;
4115 int error;
4117 error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4118 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4119 size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4120 if (error)
4121 return error;
4123 *tag = dmem.dmem_tag;
4124 *map = dmem.dmem_map;
4125 *addr = dmem.dmem_addr;
4126 *paddr = dmem.dmem_busaddr;
4128 return 0;
4131 static void
4132 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4134 if (tag != NULL) {
4135 bus_dmamap_unload(tag, map);
4136 bus_dmamem_free(tag, addr, map);
4137 bus_dma_tag_destroy(tag);
4142 * Grrr. The link status word in the status block does
4143 * not work correctly on the BCM5700 rev AX and BX chips,
4144 * according to all available information. Hence, we have
4145 * to enable MII interrupts in order to properly obtain
4146 * async link changes. Unfortunately, this also means that
4147 * we have to read the MAC status register to detect link
4148 * changes, thereby adding an additional register access to
4149 * the interrupt handler.
4151 * XXX: perhaps link state detection procedure used for
4152 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4154 static void
4155 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4157 struct ifnet *ifp = &sc->arpcom.ac_if;
4158 struct mii_data *mii = device_get_softc(sc->bge_miibus);
4160 mii_pollstat(mii);
4162 if (!sc->bge_link &&
4163 (mii->mii_media_status & IFM_ACTIVE) &&
4164 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4165 sc->bge_link++;
4166 if (bootverbose)
4167 if_printf(ifp, "link UP\n");
4168 } else if (sc->bge_link &&
4169 (!(mii->mii_media_status & IFM_ACTIVE) ||
4170 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4171 sc->bge_link = 0;
4172 if (bootverbose)
4173 if_printf(ifp, "link DOWN\n");
4176 /* Clear the interrupt. */
4177 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4178 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4179 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4182 static void
4183 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4185 struct ifnet *ifp = &sc->arpcom.ac_if;
4187 #define PCS_ENCODE_ERR (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4190 * Sometimes PCS encoding errors are detected in
4191 * TBI mode (on fiber NICs), and for some reason
4192 * the chip will signal them as link changes.
4193 * If we get a link change event, but the 'PCS
4194 * encoding error' bit in the MAC status register
4195 * is set, don't bother doing a link check.
4196 * This avoids spurious "gigabit link up" messages
4197 * that sometimes appear on fiber NICs during
4198 * periods of heavy traffic.
4200 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4201 if (!sc->bge_link) {
4202 sc->bge_link++;
4203 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4204 BGE_CLRBIT(sc, BGE_MAC_MODE,
4205 BGE_MACMODE_TBI_SEND_CFGS);
4207 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4209 if (bootverbose)
4210 if_printf(ifp, "link UP\n");
4212 ifp->if_link_state = LINK_STATE_UP;
4213 if_link_state_change(ifp);
4215 } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4216 if (sc->bge_link) {
4217 sc->bge_link = 0;
4219 if (bootverbose)
4220 if_printf(ifp, "link DOWN\n");
4222 ifp->if_link_state = LINK_STATE_DOWN;
4223 if_link_state_change(ifp);
4227 #undef PCS_ENCODE_ERR
4229 /* Clear the attention. */
4230 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4231 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4232 BGE_MACSTAT_LINK_CHANGED);
4235 static void
4236 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4238 struct ifnet *ifp = &sc->arpcom.ac_if;
4239 struct mii_data *mii = device_get_softc(sc->bge_miibus);
4241 mii_pollstat(mii);
4242 bge_miibus_statchg(sc->bge_dev);
4244 if (bootverbose) {
4245 if (sc->bge_link)
4246 if_printf(ifp, "link UP\n");
4247 else
4248 if_printf(ifp, "link DOWN\n");
4251 /* Clear the attention. */
4252 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4253 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4254 BGE_MACSTAT_LINK_CHANGED);
4257 static void
4258 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4260 struct ifnet *ifp = &sc->arpcom.ac_if;
4261 struct mii_data *mii = device_get_softc(sc->bge_miibus);
4263 mii_pollstat(mii);
4265 if (!sc->bge_link &&
4266 (mii->mii_media_status & IFM_ACTIVE) &&
4267 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4268 sc->bge_link++;
4269 if (bootverbose)
4270 if_printf(ifp, "link UP\n");
4271 } else if (sc->bge_link &&
4272 (!(mii->mii_media_status & IFM_ACTIVE) ||
4273 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4274 sc->bge_link = 0;
4275 if (bootverbose)
4276 if_printf(ifp, "link DOWN\n");
4279 /* Clear the attention. */
4280 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4281 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4282 BGE_MACSTAT_LINK_CHANGED);
4285 static int
4286 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4288 struct bge_softc *sc = arg1;
4290 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4291 &sc->bge_rx_coal_ticks,
4292 BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4293 BGE_RX_COAL_TICKS_CHG);
4296 static int
4297 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4299 struct bge_softc *sc = arg1;
4301 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4302 &sc->bge_tx_coal_ticks,
4303 BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4304 BGE_TX_COAL_TICKS_CHG);
4307 static int
4308 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4310 struct bge_softc *sc = arg1;
4312 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4313 &sc->bge_rx_coal_bds,
4314 BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4315 BGE_RX_COAL_BDS_CHG);
4318 static int
4319 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4321 struct bge_softc *sc = arg1;
4323 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4324 &sc->bge_tx_coal_bds,
4325 BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4326 BGE_TX_COAL_BDS_CHG);
4329 static int
4330 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4332 struct bge_softc *sc = arg1;
4334 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4335 &sc->bge_rx_coal_ticks_int,
4336 BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4337 BGE_RX_COAL_TICKS_INT_CHG);
4340 static int
4341 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4343 struct bge_softc *sc = arg1;
4345 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4346 &sc->bge_tx_coal_ticks_int,
4347 BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4348 BGE_TX_COAL_TICKS_INT_CHG);
4351 static int
4352 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4354 struct bge_softc *sc = arg1;
4356 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4357 &sc->bge_rx_coal_bds_int,
4358 BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4359 BGE_RX_COAL_BDS_INT_CHG);
4362 static int
4363 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4365 struct bge_softc *sc = arg1;
4367 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4368 &sc->bge_tx_coal_bds_int,
4369 BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4370 BGE_TX_COAL_BDS_INT_CHG);
4373 static int
4374 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4375 int coal_min, int coal_max, uint32_t coal_chg_mask)
4377 struct bge_softc *sc = arg1;
4378 struct ifnet *ifp = &sc->arpcom.ac_if;
4379 int error = 0, v;
4381 lwkt_serialize_enter(ifp->if_serializer);
4383 v = *coal;
4384 error = sysctl_handle_int(oidp, &v, 0, req);
4385 if (!error && req->newptr != NULL) {
4386 if (v < coal_min || v > coal_max) {
4387 error = EINVAL;
4388 } else {
4389 *coal = v;
4390 sc->bge_coal_chg |= coal_chg_mask;
4394 lwkt_serialize_exit(ifp->if_serializer);
4395 return error;
4398 static void
4399 bge_coal_change(struct bge_softc *sc)
4401 struct ifnet *ifp = &sc->arpcom.ac_if;
4402 uint32_t val;
4404 ASSERT_SERIALIZED(ifp->if_serializer);
4406 if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4407 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4408 sc->bge_rx_coal_ticks);
4409 DELAY(10);
4410 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4412 if (bootverbose) {
4413 if_printf(ifp, "rx_coal_ticks -> %u\n",
4414 sc->bge_rx_coal_ticks);
4418 if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4419 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4420 sc->bge_tx_coal_ticks);
4421 DELAY(10);
4422 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4424 if (bootverbose) {
4425 if_printf(ifp, "tx_coal_ticks -> %u\n",
4426 sc->bge_tx_coal_ticks);
4430 if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4431 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4432 sc->bge_rx_coal_bds);
4433 DELAY(10);
4434 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4436 if (bootverbose) {
4437 if_printf(ifp, "rx_coal_bds -> %u\n",
4438 sc->bge_rx_coal_bds);
4442 if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4443 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4444 sc->bge_tx_coal_bds);
4445 DELAY(10);
4446 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4448 if (bootverbose) {
4449 if_printf(ifp, "tx_max_coal_bds -> %u\n",
4450 sc->bge_tx_coal_bds);
4454 if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4455 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4456 sc->bge_rx_coal_ticks_int);
4457 DELAY(10);
4458 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4460 if (bootverbose) {
4461 if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4462 sc->bge_rx_coal_ticks_int);
4466 if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4467 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4468 sc->bge_tx_coal_ticks_int);
4469 DELAY(10);
4470 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4472 if (bootverbose) {
4473 if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4474 sc->bge_tx_coal_ticks_int);
4478 if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4479 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4480 sc->bge_rx_coal_bds_int);
4481 DELAY(10);
4482 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4484 if (bootverbose) {
4485 if_printf(ifp, "rx_coal_bds_int -> %u\n",
4486 sc->bge_rx_coal_bds_int);
4490 if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4491 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4492 sc->bge_tx_coal_bds_int);
4493 DELAY(10);
4494 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4496 if (bootverbose) {
4497 if_printf(ifp, "tx_coal_bds_int -> %u\n",
4498 sc->bge_tx_coal_bds_int);
4502 sc->bge_coal_chg = 0;
4505 static void
4506 bge_enable_intr(struct bge_softc *sc)
4508 struct ifnet *ifp = &sc->arpcom.ac_if;
4510 lwkt_serialize_handler_enable(ifp->if_serializer);
4513 * Enable interrupt.
4515 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4518 * Unmask the interrupt when we stop polling.
4520 PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4521 BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4524 * Trigger another interrupt, since above writing
4525 * to interrupt mailbox0 may acknowledge pending
4526 * interrupt.
4528 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4531 static void
4532 bge_disable_intr(struct bge_softc *sc)
4534 struct ifnet *ifp = &sc->arpcom.ac_if;
4537 * Mask the interrupt when we start polling.
4539 PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4540 BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4543 * Acknowledge possible asserted interrupt.
4545 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4547 lwkt_serialize_handler_disable(ifp->if_serializer);
4550 static int
4551 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4553 uint32_t mac_addr;
4554 int ret = 1;
4556 mac_addr = bge_readmem_ind(sc, 0x0c14);
4557 if ((mac_addr >> 16) == 0x484b) {
4558 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4559 ether_addr[1] = (uint8_t)mac_addr;
4560 mac_addr = bge_readmem_ind(sc, 0x0c18);
4561 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4562 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4563 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4564 ether_addr[5] = (uint8_t)mac_addr;
4565 ret = 0;
4567 return ret;
4570 static int
4571 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4573 int mac_offset = BGE_EE_MAC_OFFSET;
4575 if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4576 mac_offset = BGE_EE_MAC_OFFSET_5906;
4578 return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4581 static int
4582 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4584 if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4585 return 1;
4587 return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4588 ETHER_ADDR_LEN);
4591 static int
4592 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4594 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4595 /* NOTE: Order is critical */
4596 bge_get_eaddr_mem,
4597 bge_get_eaddr_nvram,
4598 bge_get_eaddr_eeprom,
4599 NULL
4601 const bge_eaddr_fcn_t *func;
4603 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4604 if ((*func)(sc, eaddr) == 0)
4605 break;
4607 return (*func == NULL ? ENXIO : 0);
4611 * NOTE: 'm' is not freed upon failure
4613 struct mbuf *
4614 bge_defrag_shortdma(struct mbuf *m)
4616 struct mbuf *n;
4617 int found;
4620 * If device receive two back-to-back send BDs with less than
4621 * or equal to 8 total bytes then the device may hang. The two
4622 * back-to-back send BDs must in the same frame for this failure
4623 * to occur. Scan mbuf chains and see whether two back-to-back
4624 * send BDs are there. If this is the case, allocate new mbuf
4625 * and copy the frame to workaround the silicon bug.
4627 for (n = m, found = 0; n != NULL; n = n->m_next) {
4628 if (n->m_len < 8) {
4629 found++;
4630 if (found > 1)
4631 break;
4632 continue;
4634 found = 0;
4637 if (found > 1)
4638 n = m_defrag(m, MB_DONTWAIT);
4639 else
4640 n = m;
4641 return n;
4644 static void
4645 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
4647 int i;
4649 BGE_CLRBIT(sc, reg, bit);
4650 for (i = 0; i < BGE_TIMEOUT; i++) {
4651 if ((CSR_READ_4(sc, reg) & bit) == 0)
4652 return;
4653 DELAY(100);
4657 static void
4658 bge_link_poll(struct bge_softc *sc)
4660 uint32_t status;
4662 status = CSR_READ_4(sc, BGE_MAC_STS);
4663 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
4664 sc->bge_link_evt = 0;
4665 sc->bge_link_upd(sc, status);