gcc50: Backport c++11 literal fixes from gcc80.
[dragonfly.git] / contrib / gcc-5.0 / gcc / modulo-sched.c
blob13a01d62211def8e385e92a21f4f0447e909b6f8
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "hashtab.h"
32 #include "hash-set.h"
33 #include "vec.h"
34 #include "machmode.h"
35 #include "input.h"
36 #include "function.h"
37 #include "profile.h"
38 #include "flags.h"
39 #include "insn-config.h"
40 #include "insn-attr.h"
41 #include "except.h"
42 #include "recog.h"
43 #include "dominance.h"
44 #include "cfg.h"
45 #include "cfgrtl.h"
46 #include "predict.h"
47 #include "basic-block.h"
48 #include "sched-int.h"
49 #include "target.h"
50 #include "cfgloop.h"
51 #include "double-int.h"
52 #include "alias.h"
53 #include "symtab.h"
54 #include "wide-int.h"
55 #include "inchash.h"
56 #include "tree.h"
57 #include "insn-codes.h"
58 #include "optabs.h"
59 #include "statistics.h"
60 #include "real.h"
61 #include "fixed-value.h"
62 #include "expmed.h"
63 #include "dojump.h"
64 #include "explow.h"
65 #include "calls.h"
66 #include "emit-rtl.h"
67 #include "varasm.h"
68 #include "stmt.h"
69 #include "expr.h"
70 #include "params.h"
71 #include "gcov-io.h"
72 #include "sbitmap.h"
73 #include "df.h"
74 #include "ddg.h"
75 #include "tree-pass.h"
76 #include "dbgcnt.h"
77 #include "loop-unroll.h"
79 #ifdef INSN_SCHEDULING
81 /* This file contains the implementation of the Swing Modulo Scheduler,
82 described in the following references:
83 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
84 Lifetime--sensitive modulo scheduling in a production environment.
85 IEEE Trans. on Comps., 50(3), March 2001
86 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
87 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
88 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
90 The basic structure is:
91 1. Build a data-dependence graph (DDG) for each loop.
92 2. Use the DDG to order the insns of a loop (not in topological order
93 necessarily, but rather) trying to place each insn after all its
94 predecessors _or_ after all its successors.
95 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
96 4. Use the ordering to perform list-scheduling of the loop:
97 1. Set II = MII. We will try to schedule the loop within II cycles.
98 2. Try to schedule the insns one by one according to the ordering.
99 For each insn compute an interval of cycles by considering already-
100 scheduled preds and succs (and associated latencies); try to place
101 the insn in the cycles of this window checking for potential
102 resource conflicts (using the DFA interface).
103 Note: this is different from the cycle-scheduling of schedule_insns;
104 here the insns are not scheduled monotonically top-down (nor bottom-
105 up).
106 3. If failed in scheduling all insns - bump II++ and try again, unless
107 II reaches an upper bound MaxII, in which case report failure.
108 5. If we succeeded in scheduling the loop within II cycles, we now
109 generate prolog and epilog, decrease the counter of the loop, and
110 perform modulo variable expansion for live ranges that span more than
111 II cycles (i.e. use register copies to prevent a def from overwriting
112 itself before reaching the use).
114 SMS works with countable loops (1) whose control part can be easily
115 decoupled from the rest of the loop and (2) whose loop count can
116 be easily adjusted. This is because we peel a constant number of
117 iterations into a prologue and epilogue for which we want to avoid
118 emitting the control part, and a kernel which is to iterate that
119 constant number of iterations less than the original loop. So the
120 control part should be a set of insns clearly identified and having
121 its own iv, not otherwise used in the loop (at-least for now), which
122 initializes a register before the loop to the number of iterations.
123 Currently SMS relies on the do-loop pattern to recognize such loops,
124 where (1) the control part comprises of all insns defining and/or
125 using a certain 'count' register and (2) the loop count can be
126 adjusted by modifying this register prior to the loop.
127 TODO: Rely on cfgloop analysis instead. */
129 /* This page defines partial-schedule structures and functions for
130 modulo scheduling. */
132 typedef struct partial_schedule *partial_schedule_ptr;
133 typedef struct ps_insn *ps_insn_ptr;
135 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
136 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
138 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
139 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
141 /* Perform signed modulo, always returning a non-negative value. */
142 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
144 /* The number of different iterations the nodes in ps span, assuming
145 the stage boundaries are placed efficiently. */
146 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
147 + 1 + ii - 1) / ii)
148 /* The stage count of ps. */
149 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
151 /* A single instruction in the partial schedule. */
152 struct ps_insn
154 /* Identifies the instruction to be scheduled. Values smaller than
155 the ddg's num_nodes refer directly to ddg nodes. A value of
156 X - num_nodes refers to register move X. */
157 int id;
159 /* The (absolute) cycle in which the PS instruction is scheduled.
160 Same as SCHED_TIME (node). */
161 int cycle;
163 /* The next/prev PS_INSN in the same row. */
164 ps_insn_ptr next_in_row,
165 prev_in_row;
169 /* Information about a register move that has been added to a partial
170 schedule. */
171 struct ps_reg_move_info
173 /* The source of the move is defined by the ps_insn with id DEF.
174 The destination is used by the ps_insns with the ids in USES. */
175 int def;
176 sbitmap uses;
178 /* The original form of USES' instructions used OLD_REG, but they
179 should now use NEW_REG. */
180 rtx old_reg;
181 rtx new_reg;
183 /* The number of consecutive stages that the move occupies. */
184 int num_consecutive_stages;
186 /* An instruction that sets NEW_REG to the correct value. The first
187 move associated with DEF will have an rhs of OLD_REG; later moves
188 use the result of the previous move. */
189 rtx_insn *insn;
192 typedef struct ps_reg_move_info ps_reg_move_info;
194 /* Holds the partial schedule as an array of II rows. Each entry of the
195 array points to a linked list of PS_INSNs, which represents the
196 instructions that are scheduled for that row. */
197 struct partial_schedule
199 int ii; /* Number of rows in the partial schedule. */
200 int history; /* Threshold for conflict checking using DFA. */
202 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
203 ps_insn_ptr *rows;
205 /* All the moves added for this partial schedule. Index X has
206 a ps_insn id of X + g->num_nodes. */
207 vec<ps_reg_move_info> reg_moves;
209 /* rows_length[i] holds the number of instructions in the row.
210 It is used only (as an optimization) to back off quickly from
211 trying to schedule a node in a full row; that is, to avoid running
212 through futile DFA state transitions. */
213 int *rows_length;
215 /* The earliest absolute cycle of an insn in the partial schedule. */
216 int min_cycle;
218 /* The latest absolute cycle of an insn in the partial schedule. */
219 int max_cycle;
221 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
223 int stage_count; /* The stage count of the partial schedule. */
227 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
228 static void free_partial_schedule (partial_schedule_ptr);
229 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
230 void print_partial_schedule (partial_schedule_ptr, FILE *);
231 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
232 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
233 int, int, sbitmap, sbitmap);
234 static void rotate_partial_schedule (partial_schedule_ptr, int);
235 void set_row_column_for_ps (partial_schedule_ptr);
236 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
237 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
240 /* This page defines constants and structures for the modulo scheduling
241 driver. */
243 static int sms_order_nodes (ddg_ptr, int, int *, int *);
244 static void set_node_sched_params (ddg_ptr);
245 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
246 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
247 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
248 rtx, rtx);
249 static int calculate_stage_count (partial_schedule_ptr, int);
250 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
251 int, int, sbitmap, sbitmap, sbitmap);
252 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
253 sbitmap, int, int *, int *, int *);
254 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
255 sbitmap, int *, sbitmap, sbitmap);
256 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
258 #define NODE_ASAP(node) ((node)->aux.count)
260 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
261 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
262 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
263 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
264 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
266 /* The scheduling parameters held for each node. */
267 typedef struct node_sched_params
269 int time; /* The absolute scheduling cycle. */
271 int row; /* Holds time % ii. */
272 int stage; /* Holds time / ii. */
274 /* The column of a node inside the ps. If nodes u, v are on the same row,
275 u will precede v if column (u) < column (v). */
276 int column;
277 } *node_sched_params_ptr;
279 typedef struct node_sched_params node_sched_params;
281 /* The following three functions are copied from the current scheduler
282 code in order to use sched_analyze() for computing the dependencies.
283 They are used when initializing the sched_info structure. */
284 static const char *
285 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
287 static char tmp[80];
289 sprintf (tmp, "i%4d", INSN_UID (insn));
290 return tmp;
293 static void
294 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
295 regset used ATTRIBUTE_UNUSED)
299 static struct common_sched_info_def sms_common_sched_info;
301 static struct sched_deps_info_def sms_sched_deps_info =
303 compute_jump_reg_dependencies,
304 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
305 NULL,
306 0, 0, 0
309 static struct haifa_sched_info sms_sched_info =
311 NULL,
312 NULL,
313 NULL,
314 NULL,
315 NULL,
316 sms_print_insn,
317 NULL,
318 NULL, /* insn_finishes_block_p */
319 NULL, NULL,
320 NULL, NULL,
321 0, 0,
323 NULL, NULL, NULL, NULL,
324 NULL, NULL,
328 /* Partial schedule instruction ID in PS is a register move. Return
329 information about it. */
330 static struct ps_reg_move_info *
331 ps_reg_move (partial_schedule_ptr ps, int id)
333 gcc_checking_assert (id >= ps->g->num_nodes);
334 return &ps->reg_moves[id - ps->g->num_nodes];
337 /* Return the rtl instruction that is being scheduled by partial schedule
338 instruction ID, which belongs to schedule PS. */
339 static rtx_insn *
340 ps_rtl_insn (partial_schedule_ptr ps, int id)
342 if (id < ps->g->num_nodes)
343 return ps->g->nodes[id].insn;
344 else
345 return ps_reg_move (ps, id)->insn;
348 /* Partial schedule instruction ID, which belongs to PS, occurred in
349 the original (unscheduled) loop. Return the first instruction
350 in the loop that was associated with ps_rtl_insn (PS, ID).
351 If the instruction had some notes before it, this is the first
352 of those notes. */
353 static rtx_insn *
354 ps_first_note (partial_schedule_ptr ps, int id)
356 gcc_assert (id < ps->g->num_nodes);
357 return ps->g->nodes[id].first_note;
360 /* Return the number of consecutive stages that are occupied by
361 partial schedule instruction ID in PS. */
362 static int
363 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
365 if (id < ps->g->num_nodes)
366 return 1;
367 else
368 return ps_reg_move (ps, id)->num_consecutive_stages;
371 /* Given HEAD and TAIL which are the first and last insns in a loop;
372 return the register which controls the loop. Return zero if it has
373 more than one occurrence in the loop besides the control part or the
374 do-loop pattern is not of the form we expect. */
375 static rtx
376 doloop_register_get (rtx_insn *head ATTRIBUTE_UNUSED, rtx_insn *tail ATTRIBUTE_UNUSED)
378 #ifdef HAVE_doloop_end
379 rtx reg, condition;
380 rtx_insn *insn, *first_insn_not_to_check;
382 if (!JUMP_P (tail))
383 return NULL_RTX;
385 /* TODO: Free SMS's dependence on doloop_condition_get. */
386 condition = doloop_condition_get (tail);
387 if (! condition)
388 return NULL_RTX;
390 if (REG_P (XEXP (condition, 0)))
391 reg = XEXP (condition, 0);
392 else if (GET_CODE (XEXP (condition, 0)) == PLUS
393 && REG_P (XEXP (XEXP (condition, 0), 0)))
394 reg = XEXP (XEXP (condition, 0), 0);
395 else
396 gcc_unreachable ();
398 /* Check that the COUNT_REG has no other occurrences in the loop
399 until the decrement. We assume the control part consists of
400 either a single (parallel) branch-on-count or a (non-parallel)
401 branch immediately preceded by a single (decrement) insn. */
402 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
403 : prev_nondebug_insn (tail));
405 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
406 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
408 if (dump_file)
410 fprintf (dump_file, "SMS count_reg found ");
411 print_rtl_single (dump_file, reg);
412 fprintf (dump_file, " outside control in insn:\n");
413 print_rtl_single (dump_file, insn);
416 return NULL_RTX;
419 return reg;
420 #else
421 return NULL_RTX;
422 #endif
425 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
426 that the number of iterations is a compile-time constant. If so,
427 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
428 this constant. Otherwise return 0. */
429 static rtx_insn *
430 const_iteration_count (rtx count_reg, basic_block pre_header,
431 int64_t * count)
433 rtx_insn *insn;
434 rtx_insn *head, *tail;
436 if (! pre_header)
437 return NULL;
439 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
441 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
442 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
443 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
445 rtx pat = single_set (insn);
447 if (CONST_INT_P (SET_SRC (pat)))
449 *count = INTVAL (SET_SRC (pat));
450 return insn;
453 return NULL;
456 return NULL;
459 /* A very simple resource-based lower bound on the initiation interval.
460 ??? Improve the accuracy of this bound by considering the
461 utilization of various units. */
462 static int
463 res_MII (ddg_ptr g)
465 if (targetm.sched.sms_res_mii)
466 return targetm.sched.sms_res_mii (g);
468 return ((g->num_nodes - g->num_debug) / issue_rate);
472 /* A vector that contains the sched data for each ps_insn. */
473 static vec<node_sched_params> node_sched_param_vec;
475 /* Allocate sched_params for each node and initialize it. */
476 static void
477 set_node_sched_params (ddg_ptr g)
479 node_sched_param_vec.truncate (0);
480 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
483 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
484 static void
485 extend_node_sched_params (partial_schedule_ptr ps)
487 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
488 + ps->reg_moves.length ());
491 /* Update the sched_params (time, row and stage) for node U using the II,
492 the CYCLE of U and MIN_CYCLE.
493 We're not simply taking the following
494 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
495 because the stages may not be aligned on cycle 0. */
496 static void
497 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
499 int sc_until_cycle_zero;
500 int stage;
502 SCHED_TIME (u) = cycle;
503 SCHED_ROW (u) = SMODULO (cycle, ii);
505 /* The calculation of stage count is done adding the number
506 of stages before cycle zero and after cycle zero. */
507 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
509 if (SCHED_TIME (u) < 0)
511 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
512 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
514 else
516 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
517 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
521 static void
522 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
524 int i;
526 if (! file)
527 return;
528 for (i = 0; i < num_nodes; i++)
530 node_sched_params_ptr nsp = SCHED_PARAMS (i);
532 fprintf (file, "Node = %d; INSN = %d\n", i,
533 INSN_UID (ps_rtl_insn (ps, i)));
534 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
535 fprintf (file, " time = %d:\n", nsp->time);
536 fprintf (file, " stage = %d:\n", nsp->stage);
540 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
541 static void
542 set_columns_for_row (partial_schedule_ptr ps, int row)
544 ps_insn_ptr cur_insn;
545 int column;
547 column = 0;
548 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
549 SCHED_COLUMN (cur_insn->id) = column++;
552 /* Set SCHED_COLUMN for each instruction in PS. */
553 static void
554 set_columns_for_ps (partial_schedule_ptr ps)
556 int row;
558 for (row = 0; row < ps->ii; row++)
559 set_columns_for_row (ps, row);
562 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
563 Its single predecessor has already been scheduled, as has its
564 ddg node successors. (The move may have also another move as its
565 successor, in which case that successor will be scheduled later.)
567 The move is part of a chain that satisfies register dependencies
568 between a producing ddg node and various consuming ddg nodes.
569 If some of these dependencies have a distance of 1 (meaning that
570 the use is upward-exposed) then DISTANCE1_USES is nonnull and
571 contains the set of uses with distance-1 dependencies.
572 DISTANCE1_USES is null otherwise.
574 MUST_FOLLOW is a scratch bitmap that is big enough to hold
575 all current ps_insn ids.
577 Return true on success. */
578 static bool
579 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
580 sbitmap distance1_uses, sbitmap must_follow)
582 unsigned int u;
583 int this_time, this_distance, this_start, this_end, this_latency;
584 int start, end, c, ii;
585 sbitmap_iterator sbi;
586 ps_reg_move_info *move;
587 rtx_insn *this_insn;
588 ps_insn_ptr psi;
590 move = ps_reg_move (ps, i_reg_move);
591 ii = ps->ii;
592 if (dump_file)
594 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
595 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
596 PS_MIN_CYCLE (ps));
597 print_rtl_single (dump_file, move->insn);
598 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
599 fprintf (dump_file, "=========== =========== =====\n");
602 start = INT_MIN;
603 end = INT_MAX;
605 /* For dependencies of distance 1 between a producer ddg node A
606 and consumer ddg node B, we have a chain of dependencies:
608 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
610 where Mi is the ith move. For dependencies of distance 0 between
611 a producer ddg node A and consumer ddg node C, we have a chain of
612 dependencies:
614 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
616 where Mi' occupies the same position as Mi but occurs a stage later.
617 We can only schedule each move once, so if we have both types of
618 chain, we model the second as:
620 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
622 First handle the dependencies between the previously-scheduled
623 predecessor and the move. */
624 this_insn = ps_rtl_insn (ps, move->def);
625 this_latency = insn_latency (this_insn, move->insn);
626 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
627 this_time = SCHED_TIME (move->def) - this_distance * ii;
628 this_start = this_time + this_latency;
629 this_end = this_time + ii;
630 if (dump_file)
631 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
632 this_start, this_end, SCHED_TIME (move->def),
633 INSN_UID (this_insn), this_latency, this_distance,
634 INSN_UID (move->insn));
636 if (start < this_start)
637 start = this_start;
638 if (end > this_end)
639 end = this_end;
641 /* Handle the dependencies between the move and previously-scheduled
642 successors. */
643 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
645 this_insn = ps_rtl_insn (ps, u);
646 this_latency = insn_latency (move->insn, this_insn);
647 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
648 this_distance = -1;
649 else
650 this_distance = 0;
651 this_time = SCHED_TIME (u) + this_distance * ii;
652 this_start = this_time - ii;
653 this_end = this_time - this_latency;
654 if (dump_file)
655 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
656 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
657 this_latency, this_distance, INSN_UID (this_insn));
659 if (start < this_start)
660 start = this_start;
661 if (end > this_end)
662 end = this_end;
665 if (dump_file)
667 fprintf (dump_file, "----------- ----------- -----\n");
668 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
671 bitmap_clear (must_follow);
672 bitmap_set_bit (must_follow, move->def);
674 start = MAX (start, end - (ii - 1));
675 for (c = end; c >= start; c--)
677 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
678 move->uses, must_follow);
679 if (psi)
681 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
682 if (dump_file)
683 fprintf (dump_file, "\nScheduled register move INSN %d at"
684 " time %d, row %d\n\n", INSN_UID (move->insn), c,
685 SCHED_ROW (i_reg_move));
686 return true;
690 if (dump_file)
691 fprintf (dump_file, "\nNo available slot\n\n");
693 return false;
697 Breaking intra-loop register anti-dependences:
698 Each intra-loop register anti-dependence implies a cross-iteration true
699 dependence of distance 1. Therefore, we can remove such false dependencies
700 and figure out if the partial schedule broke them by checking if (for a
701 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
702 if so generate a register move. The number of such moves is equal to:
703 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
704 nreg_moves = ----------------------------------- + 1 - { dependence.
705 ii { 1 if not.
707 static bool
708 schedule_reg_moves (partial_schedule_ptr ps)
710 ddg_ptr g = ps->g;
711 int ii = ps->ii;
712 int i;
714 for (i = 0; i < g->num_nodes; i++)
716 ddg_node_ptr u = &g->nodes[i];
717 ddg_edge_ptr e;
718 int nreg_moves = 0, i_reg_move;
719 rtx prev_reg, old_reg;
720 int first_move;
721 int distances[2];
722 sbitmap must_follow;
723 sbitmap distance1_uses;
724 rtx set = single_set (u->insn);
726 /* Skip instructions that do not set a register. */
727 if ((set && !REG_P (SET_DEST (set))))
728 continue;
730 /* Compute the number of reg_moves needed for u, by looking at life
731 ranges started at u (excluding self-loops). */
732 distances[0] = distances[1] = false;
733 for (e = u->out; e; e = e->next_out)
734 if (e->type == TRUE_DEP && e->dest != e->src)
736 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
737 - SCHED_TIME (e->src->cuid)) / ii;
739 if (e->distance == 1)
740 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
741 - SCHED_TIME (e->src->cuid) + ii) / ii;
743 /* If dest precedes src in the schedule of the kernel, then dest
744 will read before src writes and we can save one reg_copy. */
745 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
746 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
747 nreg_moves4e--;
749 if (nreg_moves4e >= 1)
751 /* !single_set instructions are not supported yet and
752 thus we do not except to encounter them in the loop
753 except from the doloop part. For the latter case
754 we assume no regmoves are generated as the doloop
755 instructions are tied to the branch with an edge. */
756 gcc_assert (set);
757 /* If the instruction contains auto-inc register then
758 validate that the regmov is being generated for the
759 target regsiter rather then the inc'ed register. */
760 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
763 if (nreg_moves4e)
765 gcc_assert (e->distance < 2);
766 distances[e->distance] = true;
768 nreg_moves = MAX (nreg_moves, nreg_moves4e);
771 if (nreg_moves == 0)
772 continue;
774 /* Create NREG_MOVES register moves. */
775 first_move = ps->reg_moves.length ();
776 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
777 extend_node_sched_params (ps);
779 /* Record the moves associated with this node. */
780 first_move += ps->g->num_nodes;
782 /* Generate each move. */
783 old_reg = prev_reg = SET_DEST (single_set (u->insn));
784 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
786 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
788 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
789 move->uses = sbitmap_alloc (first_move + nreg_moves);
790 move->old_reg = old_reg;
791 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
792 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
793 move->insn = as_a <rtx_insn *> (gen_move_insn (move->new_reg,
794 copy_rtx (prev_reg)));
795 bitmap_clear (move->uses);
797 prev_reg = move->new_reg;
800 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
802 if (distance1_uses)
803 bitmap_clear (distance1_uses);
805 /* Every use of the register defined by node may require a different
806 copy of this register, depending on the time the use is scheduled.
807 Record which uses require which move results. */
808 for (e = u->out; e; e = e->next_out)
809 if (e->type == TRUE_DEP && e->dest != e->src)
811 int dest_copy = (SCHED_TIME (e->dest->cuid)
812 - SCHED_TIME (e->src->cuid)) / ii;
814 if (e->distance == 1)
815 dest_copy = (SCHED_TIME (e->dest->cuid)
816 - SCHED_TIME (e->src->cuid) + ii) / ii;
818 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
819 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
820 dest_copy--;
822 if (dest_copy)
824 ps_reg_move_info *move;
826 move = ps_reg_move (ps, first_move + dest_copy - 1);
827 bitmap_set_bit (move->uses, e->dest->cuid);
828 if (e->distance == 1)
829 bitmap_set_bit (distance1_uses, e->dest->cuid);
833 must_follow = sbitmap_alloc (first_move + nreg_moves);
834 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
835 if (!schedule_reg_move (ps, first_move + i_reg_move,
836 distance1_uses, must_follow))
837 break;
838 sbitmap_free (must_follow);
839 if (distance1_uses)
840 sbitmap_free (distance1_uses);
841 if (i_reg_move < nreg_moves)
842 return false;
844 return true;
847 /* Emit the moves associatied with PS. Apply the substitutions
848 associated with them. */
849 static void
850 apply_reg_moves (partial_schedule_ptr ps)
852 ps_reg_move_info *move;
853 int i;
855 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
857 unsigned int i_use;
858 sbitmap_iterator sbi;
860 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
862 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
863 df_insn_rescan (ps->g->nodes[i_use].insn);
868 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
869 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
870 will move to cycle zero. */
871 static void
872 reset_sched_times (partial_schedule_ptr ps, int amount)
874 int row;
875 int ii = ps->ii;
876 ps_insn_ptr crr_insn;
878 for (row = 0; row < ii; row++)
879 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
881 int u = crr_insn->id;
882 int normalized_time = SCHED_TIME (u) - amount;
883 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
885 if (dump_file)
887 /* Print the scheduling times after the rotation. */
888 rtx_insn *insn = ps_rtl_insn (ps, u);
890 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
891 "crr_insn->cycle=%d, min_cycle=%d", u,
892 INSN_UID (insn), normalized_time, new_min_cycle);
893 if (JUMP_P (insn))
894 fprintf (dump_file, " (branch)");
895 fprintf (dump_file, "\n");
898 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
899 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
901 crr_insn->cycle = normalized_time;
902 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
906 /* Permute the insns according to their order in PS, from row 0 to
907 row ii-1, and position them right before LAST. This schedules
908 the insns of the loop kernel. */
909 static void
910 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
912 int ii = ps->ii;
913 int row;
914 ps_insn_ptr ps_ij;
916 for (row = 0; row < ii ; row++)
917 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
919 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
921 if (PREV_INSN (last) != insn)
923 if (ps_ij->id < ps->g->num_nodes)
924 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
925 PREV_INSN (last));
926 else
927 add_insn_before (insn, last, NULL);
932 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
933 respectively only if cycle C falls on the border of the scheduling
934 window boundaries marked by START and END cycles. STEP is the
935 direction of the window. */
936 static inline void
937 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
938 sbitmap *tmp_precede, sbitmap must_precede, int c,
939 int start, int end, int step)
941 *tmp_precede = NULL;
942 *tmp_follow = NULL;
944 if (c == start)
946 if (step == 1)
947 *tmp_precede = must_precede;
948 else /* step == -1. */
949 *tmp_follow = must_follow;
951 if (c == end - step)
953 if (step == 1)
954 *tmp_follow = must_follow;
955 else /* step == -1. */
956 *tmp_precede = must_precede;
961 /* Return True if the branch can be moved to row ii-1 while
962 normalizing the partial schedule PS to start from cycle zero and thus
963 optimize the SC. Otherwise return False. */
964 static bool
965 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
967 int amount = PS_MIN_CYCLE (ps);
968 sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
969 int start, end, step;
970 int ii = ps->ii;
971 bool ok = false;
972 int stage_count, stage_count_curr;
974 /* Compare the SC after normalization and SC after bringing the branch
975 to row ii-1. If they are equal just bail out. */
976 stage_count = calculate_stage_count (ps, amount);
977 stage_count_curr =
978 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
980 if (stage_count == stage_count_curr)
982 if (dump_file)
983 fprintf (dump_file, "SMS SC already optimized.\n");
985 ok = false;
986 goto clear;
989 if (dump_file)
991 fprintf (dump_file, "SMS Trying to optimize branch location\n");
992 fprintf (dump_file, "SMS partial schedule before trial:\n");
993 print_partial_schedule (ps, dump_file);
996 /* First, normalize the partial scheduling. */
997 reset_sched_times (ps, amount);
998 rotate_partial_schedule (ps, amount);
999 if (dump_file)
1001 fprintf (dump_file,
1002 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
1003 ii, stage_count);
1004 print_partial_schedule (ps, dump_file);
1007 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
1009 ok = true;
1010 goto clear;
1013 bitmap_ones (sched_nodes);
1015 /* Calculate the new placement of the branch. It should be in row
1016 ii-1 and fall into it's scheduling window. */
1017 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
1018 &step, &end) == 0)
1020 bool success;
1021 ps_insn_ptr next_ps_i;
1022 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
1023 int row = SMODULO (branch_cycle, ps->ii);
1024 int num_splits = 0;
1025 sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
1026 int min_cycle, c;
1028 if (dump_file)
1029 fprintf (dump_file, "\nTrying to schedule node %d "
1030 "INSN = %d in (%d .. %d) step %d\n",
1031 g->closing_branch->cuid,
1032 (INSN_UID (g->closing_branch->insn)), start, end, step);
1034 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
1035 if (step == 1)
1037 c = start + ii - SMODULO (start, ii) - 1;
1038 gcc_assert (c >= start);
1039 if (c >= end)
1041 ok = false;
1042 if (dump_file)
1043 fprintf (dump_file,
1044 "SMS failed to schedule branch at cycle: %d\n", c);
1045 goto clear;
1048 else
1050 c = start - SMODULO (start, ii) - 1;
1051 gcc_assert (c <= start);
1053 if (c <= end)
1055 if (dump_file)
1056 fprintf (dump_file,
1057 "SMS failed to schedule branch at cycle: %d\n", c);
1058 ok = false;
1059 goto clear;
1063 must_precede = sbitmap_alloc (g->num_nodes);
1064 must_follow = sbitmap_alloc (g->num_nodes);
1066 /* Try to schedule the branch is it's new cycle. */
1067 calculate_must_precede_follow (g->closing_branch, start, end,
1068 step, ii, sched_nodes,
1069 must_precede, must_follow);
1071 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1072 must_precede, c, start, end, step);
1074 /* Find the element in the partial schedule related to the closing
1075 branch so we can remove it from it's current cycle. */
1076 for (next_ps_i = ps->rows[row];
1077 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1078 if (next_ps_i->id == g->closing_branch->cuid)
1079 break;
1081 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1082 remove_node_from_ps (ps, next_ps_i);
1083 success =
1084 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1085 sched_nodes, &num_splits,
1086 tmp_precede, tmp_follow);
1087 gcc_assert (num_splits == 0);
1088 if (!success)
1090 if (dump_file)
1091 fprintf (dump_file,
1092 "SMS failed to schedule branch at cycle: %d, "
1093 "bringing it back to cycle %d\n", c, branch_cycle);
1095 /* The branch was failed to be placed in row ii - 1.
1096 Put it back in it's original place in the partial
1097 schedualing. */
1098 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1099 must_precede, branch_cycle, start, end,
1100 step);
1101 success =
1102 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1103 branch_cycle, sched_nodes,
1104 &num_splits, tmp_precede,
1105 tmp_follow);
1106 gcc_assert (success && (num_splits == 0));
1107 ok = false;
1109 else
1111 /* The branch is placed in row ii - 1. */
1112 if (dump_file)
1113 fprintf (dump_file,
1114 "SMS success in moving branch to cycle %d\n", c);
1116 update_node_sched_params (g->closing_branch->cuid, ii, c,
1117 PS_MIN_CYCLE (ps));
1118 ok = true;
1121 /* This might have been added to a new first stage. */
1122 if (PS_MIN_CYCLE (ps) < min_cycle)
1123 reset_sched_times (ps, 0);
1125 free (must_precede);
1126 free (must_follow);
1129 clear:
1130 free (sched_nodes);
1131 return ok;
1134 static void
1135 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1136 int to_stage, rtx count_reg)
1138 int row;
1139 ps_insn_ptr ps_ij;
1141 for (row = 0; row < ps->ii; row++)
1142 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1144 int u = ps_ij->id;
1145 int first_u, last_u;
1146 rtx_insn *u_insn;
1148 /* Do not duplicate any insn which refers to count_reg as it
1149 belongs to the control part.
1150 The closing branch is scheduled as well and thus should
1151 be ignored.
1152 TODO: This should be done by analyzing the control part of
1153 the loop. */
1154 u_insn = ps_rtl_insn (ps, u);
1155 if (reg_mentioned_p (count_reg, u_insn)
1156 || JUMP_P (u_insn))
1157 continue;
1159 first_u = SCHED_STAGE (u);
1160 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1161 if (from_stage <= last_u && to_stage >= first_u)
1163 if (u < ps->g->num_nodes)
1164 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1165 else
1166 emit_insn (copy_rtx (PATTERN (u_insn)));
1172 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1173 static void
1174 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1175 rtx count_reg, rtx count_init)
1177 int i;
1178 int last_stage = PS_STAGE_COUNT (ps) - 1;
1179 edge e;
1181 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1182 start_sequence ();
1184 if (!count_init)
1186 /* Generate instructions at the beginning of the prolog to
1187 adjust the loop count by STAGE_COUNT. If loop count is constant
1188 (count_init), this constant is adjusted by STAGE_COUNT in
1189 generate_prolog_epilog function. */
1190 rtx sub_reg = NULL_RTX;
1192 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1193 gen_int_mode (last_stage,
1194 GET_MODE (count_reg)),
1195 count_reg, 1, OPTAB_DIRECT);
1196 gcc_assert (REG_P (sub_reg));
1197 if (REGNO (sub_reg) != REGNO (count_reg))
1198 emit_move_insn (count_reg, sub_reg);
1201 for (i = 0; i < last_stage; i++)
1202 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1204 /* Put the prolog on the entry edge. */
1205 e = loop_preheader_edge (loop);
1206 split_edge_and_insert (e, get_insns ());
1207 if (!flag_resched_modulo_sched)
1208 e->dest->flags |= BB_DISABLE_SCHEDULE;
1210 end_sequence ();
1212 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1213 start_sequence ();
1215 for (i = 0; i < last_stage; i++)
1216 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1218 /* Put the epilogue on the exit edge. */
1219 gcc_assert (single_exit (loop));
1220 e = single_exit (loop);
1221 split_edge_and_insert (e, get_insns ());
1222 if (!flag_resched_modulo_sched)
1223 e->dest->flags |= BB_DISABLE_SCHEDULE;
1225 end_sequence ();
1228 /* Mark LOOP as software pipelined so the later
1229 scheduling passes don't touch it. */
1230 static void
1231 mark_loop_unsched (struct loop *loop)
1233 unsigned i;
1234 basic_block *bbs = get_loop_body (loop);
1236 for (i = 0; i < loop->num_nodes; i++)
1237 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1239 free (bbs);
1242 /* Return true if all the BBs of the loop are empty except the
1243 loop header. */
1244 static bool
1245 loop_single_full_bb_p (struct loop *loop)
1247 unsigned i;
1248 basic_block *bbs = get_loop_body (loop);
1250 for (i = 0; i < loop->num_nodes ; i++)
1252 rtx_insn *head, *tail;
1253 bool empty_bb = true;
1255 if (bbs[i] == loop->header)
1256 continue;
1258 /* Make sure that basic blocks other than the header
1259 have only notes labels or jumps. */
1260 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1261 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1263 if (NOTE_P (head) || LABEL_P (head)
1264 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1265 continue;
1266 empty_bb = false;
1267 break;
1270 if (! empty_bb)
1272 free (bbs);
1273 return false;
1276 free (bbs);
1277 return true;
1280 /* Dump file:line from INSN's location info to dump_file. */
1282 static void
1283 dump_insn_location (rtx_insn *insn)
1285 if (dump_file && INSN_HAS_LOCATION (insn))
1287 expanded_location xloc = insn_location (insn);
1288 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1292 /* A simple loop from SMS point of view; it is a loop that is composed of
1293 either a single basic block or two BBs - a header and a latch. */
1294 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1295 && (EDGE_COUNT (loop->latch->preds) == 1) \
1296 && (EDGE_COUNT (loop->latch->succs) == 1))
1298 /* Return true if the loop is in its canonical form and false if not.
1299 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1300 static bool
1301 loop_canon_p (struct loop *loop)
1304 if (loop->inner || !loop_outer (loop))
1306 if (dump_file)
1307 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1308 return false;
1311 if (!single_exit (loop))
1313 if (dump_file)
1315 rtx_insn *insn = BB_END (loop->header);
1317 fprintf (dump_file, "SMS loop many exits");
1318 dump_insn_location (insn);
1319 fprintf (dump_file, "\n");
1321 return false;
1324 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1326 if (dump_file)
1328 rtx_insn *insn = BB_END (loop->header);
1330 fprintf (dump_file, "SMS loop many BBs.");
1331 dump_insn_location (insn);
1332 fprintf (dump_file, "\n");
1334 return false;
1337 return true;
1340 /* If there are more than one entry for the loop,
1341 make it one by splitting the first entry edge and
1342 redirecting the others to the new BB. */
1343 static void
1344 canon_loop (struct loop *loop)
1346 edge e;
1347 edge_iterator i;
1349 /* Avoid annoying special cases of edges going to exit
1350 block. */
1351 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1352 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1353 split_edge (e);
1355 if (loop->latch == loop->header
1356 || EDGE_COUNT (loop->latch->succs) > 1)
1358 FOR_EACH_EDGE (e, i, loop->header->preds)
1359 if (e->src == loop->latch)
1360 break;
1361 split_edge (e);
1365 /* Setup infos. */
1366 static void
1367 setup_sched_infos (void)
1369 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1370 sizeof (sms_common_sched_info));
1371 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1372 common_sched_info = &sms_common_sched_info;
1374 sched_deps_info = &sms_sched_deps_info;
1375 current_sched_info = &sms_sched_info;
1378 /* Probability in % that the sms-ed loop rolls enough so that optimized
1379 version may be entered. Just a guess. */
1380 #define PROB_SMS_ENOUGH_ITERATIONS 80
1382 /* Used to calculate the upper bound of ii. */
1383 #define MAXII_FACTOR 2
1385 /* Main entry point, perform SMS scheduling on the loops of the function
1386 that consist of single basic blocks. */
1387 static void
1388 sms_schedule (void)
1390 rtx_insn *insn;
1391 ddg_ptr *g_arr, g;
1392 int * node_order;
1393 int maxii, max_asap;
1394 partial_schedule_ptr ps;
1395 basic_block bb = NULL;
1396 struct loop *loop;
1397 basic_block condition_bb = NULL;
1398 edge latch_edge;
1399 gcov_type trip_count = 0;
1401 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1402 | LOOPS_HAVE_RECORDED_EXITS);
1403 if (number_of_loops (cfun) <= 1)
1405 loop_optimizer_finalize ();
1406 return; /* There are no loops to schedule. */
1409 /* Initialize issue_rate. */
1410 if (targetm.sched.issue_rate)
1412 int temp = reload_completed;
1414 reload_completed = 1;
1415 issue_rate = targetm.sched.issue_rate ();
1416 reload_completed = temp;
1418 else
1419 issue_rate = 1;
1421 /* Initialize the scheduler. */
1422 setup_sched_infos ();
1423 haifa_sched_init ();
1425 /* Allocate memory to hold the DDG array one entry for each loop.
1426 We use loop->num as index into this array. */
1427 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1429 if (dump_file)
1431 fprintf (dump_file, "\n\nSMS analysis phase\n");
1432 fprintf (dump_file, "===================\n\n");
1435 /* Build DDGs for all the relevant loops and hold them in G_ARR
1436 indexed by the loop index. */
1437 FOR_EACH_LOOP (loop, 0)
1439 rtx_insn *head, *tail;
1440 rtx count_reg;
1442 /* For debugging. */
1443 if (dbg_cnt (sms_sched_loop) == false)
1445 if (dump_file)
1446 fprintf (dump_file, "SMS reached max limit... \n");
1448 break;
1451 if (dump_file)
1453 rtx_insn *insn = BB_END (loop->header);
1455 fprintf (dump_file, "SMS loop num: %d", loop->num);
1456 dump_insn_location (insn);
1457 fprintf (dump_file, "\n");
1460 if (! loop_canon_p (loop))
1461 continue;
1463 if (! loop_single_full_bb_p (loop))
1465 if (dump_file)
1466 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1467 continue;
1470 bb = loop->header;
1472 get_ebb_head_tail (bb, bb, &head, &tail);
1473 latch_edge = loop_latch_edge (loop);
1474 gcc_assert (single_exit (loop));
1475 if (single_exit (loop)->count)
1476 trip_count = latch_edge->count / single_exit (loop)->count;
1478 /* Perform SMS only on loops that their average count is above threshold. */
1480 if ( latch_edge->count
1481 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1483 if (dump_file)
1485 dump_insn_location (tail);
1486 fprintf (dump_file, "\nSMS single-bb-loop\n");
1487 if (profile_info && flag_branch_probabilities)
1489 fprintf (dump_file, "SMS loop-count ");
1490 fprintf (dump_file, "%" PRId64,
1491 (int64_t) bb->count);
1492 fprintf (dump_file, "\n");
1493 fprintf (dump_file, "SMS trip-count ");
1494 fprintf (dump_file, "%" PRId64,
1495 (int64_t) trip_count);
1496 fprintf (dump_file, "\n");
1497 fprintf (dump_file, "SMS profile-sum-max ");
1498 fprintf (dump_file, "%" PRId64,
1499 (int64_t) profile_info->sum_max);
1500 fprintf (dump_file, "\n");
1503 continue;
1506 /* Make sure this is a doloop. */
1507 if ( !(count_reg = doloop_register_get (head, tail)))
1509 if (dump_file)
1510 fprintf (dump_file, "SMS doloop_register_get failed\n");
1511 continue;
1514 /* Don't handle BBs with calls or barriers
1515 or !single_set with the exception of instructions that include
1516 count_reg---these instructions are part of the control part
1517 that do-loop recognizes.
1518 ??? Should handle insns defining subregs. */
1519 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1521 rtx set;
1523 if (CALL_P (insn)
1524 || BARRIER_P (insn)
1525 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1526 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1527 && !reg_mentioned_p (count_reg, insn))
1528 || (INSN_P (insn) && (set = single_set (insn))
1529 && GET_CODE (SET_DEST (set)) == SUBREG))
1530 break;
1533 if (insn != NEXT_INSN (tail))
1535 if (dump_file)
1537 if (CALL_P (insn))
1538 fprintf (dump_file, "SMS loop-with-call\n");
1539 else if (BARRIER_P (insn))
1540 fprintf (dump_file, "SMS loop-with-barrier\n");
1541 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1542 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1543 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1544 else
1545 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1546 print_rtl_single (dump_file, insn);
1549 continue;
1552 /* Always schedule the closing branch with the rest of the
1553 instructions. The branch is rotated to be in row ii-1 at the
1554 end of the scheduling procedure to make sure it's the last
1555 instruction in the iteration. */
1556 if (! (g = create_ddg (bb, 1)))
1558 if (dump_file)
1559 fprintf (dump_file, "SMS create_ddg failed\n");
1560 continue;
1563 g_arr[loop->num] = g;
1564 if (dump_file)
1565 fprintf (dump_file, "...OK\n");
1568 if (dump_file)
1570 fprintf (dump_file, "\nSMS transformation phase\n");
1571 fprintf (dump_file, "=========================\n\n");
1574 /* We don't want to perform SMS on new loops - created by versioning. */
1575 FOR_EACH_LOOP (loop, 0)
1577 rtx_insn *head, *tail;
1578 rtx count_reg;
1579 rtx_insn *count_init;
1580 int mii, rec_mii, stage_count, min_cycle;
1581 int64_t loop_count = 0;
1582 bool opt_sc_p;
1584 if (! (g = g_arr[loop->num]))
1585 continue;
1587 if (dump_file)
1589 rtx_insn *insn = BB_END (loop->header);
1591 fprintf (dump_file, "SMS loop num: %d", loop->num);
1592 dump_insn_location (insn);
1593 fprintf (dump_file, "\n");
1595 print_ddg (dump_file, g);
1598 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1600 latch_edge = loop_latch_edge (loop);
1601 gcc_assert (single_exit (loop));
1602 if (single_exit (loop)->count)
1603 trip_count = latch_edge->count / single_exit (loop)->count;
1605 if (dump_file)
1607 dump_insn_location (tail);
1608 fprintf (dump_file, "\nSMS single-bb-loop\n");
1609 if (profile_info && flag_branch_probabilities)
1611 fprintf (dump_file, "SMS loop-count ");
1612 fprintf (dump_file, "%" PRId64,
1613 (int64_t) bb->count);
1614 fprintf (dump_file, "\n");
1615 fprintf (dump_file, "SMS profile-sum-max ");
1616 fprintf (dump_file, "%" PRId64,
1617 (int64_t) profile_info->sum_max);
1618 fprintf (dump_file, "\n");
1620 fprintf (dump_file, "SMS doloop\n");
1621 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1622 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1623 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1627 /* In case of th loop have doloop register it gets special
1628 handling. */
1629 count_init = NULL;
1630 if ((count_reg = doloop_register_get (head, tail)))
1632 basic_block pre_header;
1634 pre_header = loop_preheader_edge (loop)->src;
1635 count_init = const_iteration_count (count_reg, pre_header,
1636 &loop_count);
1638 gcc_assert (count_reg);
1640 if (dump_file && count_init)
1642 fprintf (dump_file, "SMS const-doloop ");
1643 fprintf (dump_file, "%" PRId64,
1644 loop_count);
1645 fprintf (dump_file, "\n");
1648 node_order = XNEWVEC (int, g->num_nodes);
1650 mii = 1; /* Need to pass some estimate of mii. */
1651 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1652 mii = MAX (res_MII (g), rec_mii);
1653 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1655 if (dump_file)
1656 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1657 rec_mii, mii, maxii);
1659 for (;;)
1661 set_node_sched_params (g);
1663 stage_count = 0;
1664 opt_sc_p = false;
1665 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1667 if (ps)
1669 /* Try to achieve optimized SC by normalizing the partial
1670 schedule (having the cycles start from cycle zero).
1671 The branch location must be placed in row ii-1 in the
1672 final scheduling. If failed, shift all instructions to
1673 position the branch in row ii-1. */
1674 opt_sc_p = optimize_sc (ps, g);
1675 if (opt_sc_p)
1676 stage_count = calculate_stage_count (ps, 0);
1677 else
1679 /* Bring the branch to cycle ii-1. */
1680 int amount = (SCHED_TIME (g->closing_branch->cuid)
1681 - (ps->ii - 1));
1683 if (dump_file)
1684 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1686 stage_count = calculate_stage_count (ps, amount);
1689 gcc_assert (stage_count >= 1);
1692 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1693 1 means that there is no interleaving between iterations thus
1694 we let the scheduling passes do the job in this case. */
1695 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1696 || (count_init && (loop_count <= stage_count))
1697 || (flag_branch_probabilities && (trip_count <= stage_count)))
1699 if (dump_file)
1701 fprintf (dump_file, "SMS failed... \n");
1702 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1703 " loop-count=", stage_count);
1704 fprintf (dump_file, "%" PRId64, loop_count);
1705 fprintf (dump_file, ", trip-count=");
1706 fprintf (dump_file, "%" PRId64, trip_count);
1707 fprintf (dump_file, ")\n");
1709 break;
1712 if (!opt_sc_p)
1714 /* Rotate the partial schedule to have the branch in row ii-1. */
1715 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1717 reset_sched_times (ps, amount);
1718 rotate_partial_schedule (ps, amount);
1721 set_columns_for_ps (ps);
1723 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1724 if (!schedule_reg_moves (ps))
1726 mii = ps->ii + 1;
1727 free_partial_schedule (ps);
1728 continue;
1731 /* Moves that handle incoming values might have been added
1732 to a new first stage. Bump the stage count if so.
1734 ??? Perhaps we could consider rotating the schedule here
1735 instead? */
1736 if (PS_MIN_CYCLE (ps) < min_cycle)
1738 reset_sched_times (ps, 0);
1739 stage_count++;
1742 /* The stage count should now be correct without rotation. */
1743 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1744 PS_STAGE_COUNT (ps) = stage_count;
1746 canon_loop (loop);
1748 if (dump_file)
1750 dump_insn_location (tail);
1751 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1752 ps->ii, stage_count);
1753 print_partial_schedule (ps, dump_file);
1756 /* case the BCT count is not known , Do loop-versioning */
1757 if (count_reg && ! count_init)
1759 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1760 gen_int_mode (stage_count,
1761 GET_MODE (count_reg)));
1762 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1763 * REG_BR_PROB_BASE) / 100;
1765 loop_version (loop, comp_rtx, &condition_bb,
1766 prob, prob, REG_BR_PROB_BASE - prob,
1767 true);
1770 /* Set new iteration count of loop kernel. */
1771 if (count_reg && count_init)
1772 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1773 - stage_count + 1);
1775 /* Now apply the scheduled kernel to the RTL of the loop. */
1776 permute_partial_schedule (ps, g->closing_branch->first_note);
1778 /* Mark this loop as software pipelined so the later
1779 scheduling passes don't touch it. */
1780 if (! flag_resched_modulo_sched)
1781 mark_loop_unsched (loop);
1783 /* The life-info is not valid any more. */
1784 df_set_bb_dirty (g->bb);
1786 apply_reg_moves (ps);
1787 if (dump_file)
1788 print_node_sched_params (dump_file, g->num_nodes, ps);
1789 /* Generate prolog and epilog. */
1790 generate_prolog_epilog (ps, loop, count_reg, count_init);
1791 break;
1794 free_partial_schedule (ps);
1795 node_sched_param_vec.release ();
1796 free (node_order);
1797 free_ddg (g);
1800 free (g_arr);
1802 /* Release scheduler data, needed until now because of DFA. */
1803 haifa_sched_finish ();
1804 loop_optimizer_finalize ();
1807 /* The SMS scheduling algorithm itself
1808 -----------------------------------
1809 Input: 'O' an ordered list of insns of a loop.
1810 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1812 'Q' is the empty Set
1813 'PS' is the partial schedule; it holds the currently scheduled nodes with
1814 their cycle/slot.
1815 'PSP' previously scheduled predecessors.
1816 'PSS' previously scheduled successors.
1817 't(u)' the cycle where u is scheduled.
1818 'l(u)' is the latency of u.
1819 'd(v,u)' is the dependence distance from v to u.
1820 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1821 the node ordering phase.
1822 'check_hardware_resources_conflicts(u, PS, c)'
1823 run a trace around cycle/slot through DFA model
1824 to check resource conflicts involving instruction u
1825 at cycle c given the partial schedule PS.
1826 'add_to_partial_schedule_at_time(u, PS, c)'
1827 Add the node/instruction u to the partial schedule
1828 PS at time c.
1829 'calculate_register_pressure(PS)'
1830 Given a schedule of instructions, calculate the register
1831 pressure it implies. One implementation could be the
1832 maximum number of overlapping live ranges.
1833 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1834 registers available in the hardware.
1836 1. II = MII.
1837 2. PS = empty list
1838 3. for each node u in O in pre-computed order
1839 4. if (PSP(u) != Q && PSS(u) == Q) then
1840 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1841 6. start = Early_start; end = Early_start + II - 1; step = 1
1842 11. else if (PSP(u) == Q && PSS(u) != Q) then
1843 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1844 13. start = Late_start; end = Late_start - II + 1; step = -1
1845 14. else if (PSP(u) != Q && PSS(u) != Q) then
1846 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1847 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1848 17. start = Early_start;
1849 18. end = min(Early_start + II - 1 , Late_start);
1850 19. step = 1
1851 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1852 21. start = ASAP(u); end = start + II - 1; step = 1
1853 22. endif
1855 23. success = false
1856 24. for (c = start ; c != end ; c += step)
1857 25. if check_hardware_resources_conflicts(u, PS, c) then
1858 26. add_to_partial_schedule_at_time(u, PS, c)
1859 27. success = true
1860 28. break
1861 29. endif
1862 30. endfor
1863 31. if (success == false) then
1864 32. II = II + 1
1865 33. if (II > maxII) then
1866 34. finish - failed to schedule
1867 35. endif
1868 36. goto 2.
1869 37. endif
1870 38. endfor
1871 39. if (calculate_register_pressure(PS) > maxRP) then
1872 40. goto 32.
1873 41. endif
1874 42. compute epilogue & prologue
1875 43. finish - succeeded to schedule
1877 ??? The algorithm restricts the scheduling window to II cycles.
1878 In rare cases, it may be better to allow windows of II+1 cycles.
1879 The window would then start and end on the same row, but with
1880 different "must precede" and "must follow" requirements. */
1882 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1883 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1884 set to 0 to save compile time. */
1885 #define DFA_HISTORY SMS_DFA_HISTORY
1887 /* A threshold for the number of repeated unsuccessful attempts to insert
1888 an empty row, before we flush the partial schedule and start over. */
1889 #define MAX_SPLIT_NUM 10
1890 /* Given the partial schedule PS, this function calculates and returns the
1891 cycles in which we can schedule the node with the given index I.
1892 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1893 noticed that there are several cases in which we fail to SMS the loop
1894 because the sched window of a node is empty due to tight data-deps. In
1895 such cases we want to unschedule some of the predecessors/successors
1896 until we get non-empty scheduling window. It returns -1 if the
1897 scheduling window is empty and zero otherwise. */
1899 static int
1900 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1901 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1902 int *end_p)
1904 int start, step, end;
1905 int early_start, late_start;
1906 ddg_edge_ptr e;
1907 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1908 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1909 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1910 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1911 int psp_not_empty;
1912 int pss_not_empty;
1913 int count_preds;
1914 int count_succs;
1916 /* 1. compute sched window for u (start, end, step). */
1917 bitmap_clear (psp);
1918 bitmap_clear (pss);
1919 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1920 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1922 /* We first compute a forward range (start <= end), then decide whether
1923 to reverse it. */
1924 early_start = INT_MIN;
1925 late_start = INT_MAX;
1926 start = INT_MIN;
1927 end = INT_MAX;
1928 step = 1;
1930 count_preds = 0;
1931 count_succs = 0;
1933 if (dump_file && (psp_not_empty || pss_not_empty))
1935 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1936 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1937 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1938 "start", "early start", "late start", "end", "time");
1939 fprintf (dump_file, "=========== =========== =========== ==========="
1940 " =====\n");
1942 /* Calculate early_start and limit end. Both bounds are inclusive. */
1943 if (psp_not_empty)
1944 for (e = u_node->in; e != 0; e = e->next_in)
1946 int v = e->src->cuid;
1948 if (bitmap_bit_p (sched_nodes, v))
1950 int p_st = SCHED_TIME (v);
1951 int earliest = p_st + e->latency - (e->distance * ii);
1952 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1954 if (dump_file)
1956 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1957 "", earliest, "", latest, p_st);
1958 print_ddg_edge (dump_file, e);
1959 fprintf (dump_file, "\n");
1962 early_start = MAX (early_start, earliest);
1963 end = MIN (end, latest);
1965 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1966 count_preds++;
1970 /* Calculate late_start and limit start. Both bounds are inclusive. */
1971 if (pss_not_empty)
1972 for (e = u_node->out; e != 0; e = e->next_out)
1974 int v = e->dest->cuid;
1976 if (bitmap_bit_p (sched_nodes, v))
1978 int s_st = SCHED_TIME (v);
1979 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1980 int latest = s_st - e->latency + (e->distance * ii);
1982 if (dump_file)
1984 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1985 earliest, "", latest, "", s_st);
1986 print_ddg_edge (dump_file, e);
1987 fprintf (dump_file, "\n");
1990 start = MAX (start, earliest);
1991 late_start = MIN (late_start, latest);
1993 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1994 count_succs++;
1998 if (dump_file && (psp_not_empty || pss_not_empty))
2000 fprintf (dump_file, "----------- ----------- ----------- -----------"
2001 " -----\n");
2002 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
2003 start, early_start, late_start, end, "",
2004 "(max, max, min, min)");
2007 /* Get a target scheduling window no bigger than ii. */
2008 if (early_start == INT_MIN && late_start == INT_MAX)
2009 early_start = NODE_ASAP (u_node);
2010 else if (early_start == INT_MIN)
2011 early_start = late_start - (ii - 1);
2012 late_start = MIN (late_start, early_start + (ii - 1));
2014 /* Apply memory dependence limits. */
2015 start = MAX (start, early_start);
2016 end = MIN (end, late_start);
2018 if (dump_file && (psp_not_empty || pss_not_empty))
2019 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
2020 "", start, end, "", "");
2022 /* If there are at least as many successors as predecessors, schedule the
2023 node close to its successors. */
2024 if (pss_not_empty && count_succs >= count_preds)
2026 int tmp = end;
2027 end = start;
2028 start = tmp;
2029 step = -1;
2032 /* Now that we've finalized the window, make END an exclusive rather
2033 than an inclusive bound. */
2034 end += step;
2036 *start_p = start;
2037 *step_p = step;
2038 *end_p = end;
2039 sbitmap_free (psp);
2040 sbitmap_free (pss);
2042 if ((start >= end && step == 1) || (start <= end && step == -1))
2044 if (dump_file)
2045 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
2046 start, end, step);
2047 return -1;
2050 return 0;
2053 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2054 node currently been scheduled. At the end of the calculation
2055 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2056 U_NODE which are (1) already scheduled in the first/last row of
2057 U_NODE's scheduling window, (2) whose dependence inequality with U
2058 becomes an equality when U is scheduled in this same row, and (3)
2059 whose dependence latency is zero.
2061 The first and last rows are calculated using the following parameters:
2062 START/END rows - The cycles that begins/ends the traversal on the window;
2063 searching for an empty cycle to schedule U_NODE.
2064 STEP - The direction in which we traverse the window.
2065 II - The initiation interval. */
2067 static void
2068 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2069 int step, int ii, sbitmap sched_nodes,
2070 sbitmap must_precede, sbitmap must_follow)
2072 ddg_edge_ptr e;
2073 int first_cycle_in_window, last_cycle_in_window;
2075 gcc_assert (must_precede && must_follow);
2077 /* Consider the following scheduling window:
2078 {first_cycle_in_window, first_cycle_in_window+1, ...,
2079 last_cycle_in_window}. If step is 1 then the following will be
2080 the order we traverse the window: {start=first_cycle_in_window,
2081 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2082 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2083 end=first_cycle_in_window-1} if step is -1. */
2084 first_cycle_in_window = (step == 1) ? start : end - step;
2085 last_cycle_in_window = (step == 1) ? end - step : start;
2087 bitmap_clear (must_precede);
2088 bitmap_clear (must_follow);
2090 if (dump_file)
2091 fprintf (dump_file, "\nmust_precede: ");
2093 /* Instead of checking if:
2094 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2095 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2096 first_cycle_in_window)
2097 && e->latency == 0
2098 we use the fact that latency is non-negative:
2099 SCHED_TIME (e->src) - (e->distance * ii) <=
2100 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2101 first_cycle_in_window
2102 and check only if
2103 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2104 for (e = u_node->in; e != 0; e = e->next_in)
2105 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2106 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2107 first_cycle_in_window))
2109 if (dump_file)
2110 fprintf (dump_file, "%d ", e->src->cuid);
2112 bitmap_set_bit (must_precede, e->src->cuid);
2115 if (dump_file)
2116 fprintf (dump_file, "\nmust_follow: ");
2118 /* Instead of checking if:
2119 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2120 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2121 last_cycle_in_window)
2122 && e->latency == 0
2123 we use the fact that latency is non-negative:
2124 SCHED_TIME (e->dest) + (e->distance * ii) >=
2125 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2126 last_cycle_in_window
2127 and check only if
2128 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2129 for (e = u_node->out; e != 0; e = e->next_out)
2130 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2131 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2132 last_cycle_in_window))
2134 if (dump_file)
2135 fprintf (dump_file, "%d ", e->dest->cuid);
2137 bitmap_set_bit (must_follow, e->dest->cuid);
2140 if (dump_file)
2141 fprintf (dump_file, "\n");
2144 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2145 parameters to decide if that's possible:
2146 PS - The partial schedule.
2147 U - The serial number of U_NODE.
2148 NUM_SPLITS - The number of row splits made so far.
2149 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2150 the first row of the scheduling window)
2151 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2152 last row of the scheduling window) */
2154 static bool
2155 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2156 int u, int cycle, sbitmap sched_nodes,
2157 int *num_splits, sbitmap must_precede,
2158 sbitmap must_follow)
2160 ps_insn_ptr psi;
2161 bool success = 0;
2163 verify_partial_schedule (ps, sched_nodes);
2164 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2165 if (psi)
2167 SCHED_TIME (u) = cycle;
2168 bitmap_set_bit (sched_nodes, u);
2169 success = 1;
2170 *num_splits = 0;
2171 if (dump_file)
2172 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2176 return success;
2179 /* This function implements the scheduling algorithm for SMS according to the
2180 above algorithm. */
2181 static partial_schedule_ptr
2182 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2184 int ii = mii;
2185 int i, c, success, num_splits = 0;
2186 int flush_and_start_over = true;
2187 int num_nodes = g->num_nodes;
2188 int start, end, step; /* Place together into one struct? */
2189 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
2190 sbitmap must_precede = sbitmap_alloc (num_nodes);
2191 sbitmap must_follow = sbitmap_alloc (num_nodes);
2192 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
2194 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2196 bitmap_ones (tobe_scheduled);
2197 bitmap_clear (sched_nodes);
2199 while (flush_and_start_over && (ii < maxii))
2202 if (dump_file)
2203 fprintf (dump_file, "Starting with ii=%d\n", ii);
2204 flush_and_start_over = false;
2205 bitmap_clear (sched_nodes);
2207 for (i = 0; i < num_nodes; i++)
2209 int u = nodes_order[i];
2210 ddg_node_ptr u_node = &ps->g->nodes[u];
2211 rtx insn = u_node->insn;
2213 if (!NONDEBUG_INSN_P (insn))
2215 bitmap_clear_bit (tobe_scheduled, u);
2216 continue;
2219 if (bitmap_bit_p (sched_nodes, u))
2220 continue;
2222 /* Try to get non-empty scheduling window. */
2223 success = 0;
2224 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2225 &step, &end) == 0)
2227 if (dump_file)
2228 fprintf (dump_file, "\nTrying to schedule node %d "
2229 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2230 (g->nodes[u].insn)), start, end, step);
2232 gcc_assert ((step > 0 && start < end)
2233 || (step < 0 && start > end));
2235 calculate_must_precede_follow (u_node, start, end, step, ii,
2236 sched_nodes, must_precede,
2237 must_follow);
2239 for (c = start; c != end; c += step)
2241 sbitmap tmp_precede, tmp_follow;
2243 set_must_precede_follow (&tmp_follow, must_follow,
2244 &tmp_precede, must_precede,
2245 c, start, end, step);
2246 success =
2247 try_scheduling_node_in_cycle (ps, u, c,
2248 sched_nodes,
2249 &num_splits, tmp_precede,
2250 tmp_follow);
2251 if (success)
2252 break;
2255 verify_partial_schedule (ps, sched_nodes);
2257 if (!success)
2259 int split_row;
2261 if (ii++ == maxii)
2262 break;
2264 if (num_splits >= MAX_SPLIT_NUM)
2266 num_splits = 0;
2267 flush_and_start_over = true;
2268 verify_partial_schedule (ps, sched_nodes);
2269 reset_partial_schedule (ps, ii);
2270 verify_partial_schedule (ps, sched_nodes);
2271 break;
2274 num_splits++;
2275 /* The scheduling window is exclusive of 'end'
2276 whereas compute_split_window() expects an inclusive,
2277 ordered range. */
2278 if (step == 1)
2279 split_row = compute_split_row (sched_nodes, start, end - 1,
2280 ps->ii, u_node);
2281 else
2282 split_row = compute_split_row (sched_nodes, end + 1, start,
2283 ps->ii, u_node);
2285 ps_insert_empty_row (ps, split_row, sched_nodes);
2286 i--; /* Go back and retry node i. */
2288 if (dump_file)
2289 fprintf (dump_file, "num_splits=%d\n", num_splits);
2292 /* ??? If (success), check register pressure estimates. */
2293 } /* Continue with next node. */
2294 } /* While flush_and_start_over. */
2295 if (ii >= maxii)
2297 free_partial_schedule (ps);
2298 ps = NULL;
2300 else
2301 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2303 sbitmap_free (sched_nodes);
2304 sbitmap_free (must_precede);
2305 sbitmap_free (must_follow);
2306 sbitmap_free (tobe_scheduled);
2308 return ps;
2311 /* This function inserts a new empty row into PS at the position
2312 according to SPLITROW, keeping all already scheduled instructions
2313 intact and updating their SCHED_TIME and cycle accordingly. */
2314 static void
2315 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2316 sbitmap sched_nodes)
2318 ps_insn_ptr crr_insn;
2319 ps_insn_ptr *rows_new;
2320 int ii = ps->ii;
2321 int new_ii = ii + 1;
2322 int row;
2323 int *rows_length_new;
2325 verify_partial_schedule (ps, sched_nodes);
2327 /* We normalize sched_time and rotate ps to have only non-negative sched
2328 times, for simplicity of updating cycles after inserting new row. */
2329 split_row -= ps->min_cycle;
2330 split_row = SMODULO (split_row, ii);
2331 if (dump_file)
2332 fprintf (dump_file, "split_row=%d\n", split_row);
2334 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2335 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2337 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2338 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2339 for (row = 0; row < split_row; row++)
2341 rows_new[row] = ps->rows[row];
2342 rows_length_new[row] = ps->rows_length[row];
2343 ps->rows[row] = NULL;
2344 for (crr_insn = rows_new[row];
2345 crr_insn; crr_insn = crr_insn->next_in_row)
2347 int u = crr_insn->id;
2348 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2350 SCHED_TIME (u) = new_time;
2351 crr_insn->cycle = new_time;
2352 SCHED_ROW (u) = new_time % new_ii;
2353 SCHED_STAGE (u) = new_time / new_ii;
2358 rows_new[split_row] = NULL;
2360 for (row = split_row; row < ii; row++)
2362 rows_new[row + 1] = ps->rows[row];
2363 rows_length_new[row + 1] = ps->rows_length[row];
2364 ps->rows[row] = NULL;
2365 for (crr_insn = rows_new[row + 1];
2366 crr_insn; crr_insn = crr_insn->next_in_row)
2368 int u = crr_insn->id;
2369 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2371 SCHED_TIME (u) = new_time;
2372 crr_insn->cycle = new_time;
2373 SCHED_ROW (u) = new_time % new_ii;
2374 SCHED_STAGE (u) = new_time / new_ii;
2378 /* Updating ps. */
2379 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2380 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2381 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2382 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2383 free (ps->rows);
2384 ps->rows = rows_new;
2385 free (ps->rows_length);
2386 ps->rows_length = rows_length_new;
2387 ps->ii = new_ii;
2388 gcc_assert (ps->min_cycle >= 0);
2390 verify_partial_schedule (ps, sched_nodes);
2392 if (dump_file)
2393 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2394 ps->max_cycle);
2397 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2398 UP which are the boundaries of it's scheduling window; compute using
2399 SCHED_NODES and II a row in the partial schedule that can be split
2400 which will separate a critical predecessor from a critical successor
2401 thereby expanding the window, and return it. */
2402 static int
2403 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2404 ddg_node_ptr u_node)
2406 ddg_edge_ptr e;
2407 int lower = INT_MIN, upper = INT_MAX;
2408 int crit_pred = -1;
2409 int crit_succ = -1;
2410 int crit_cycle;
2412 for (e = u_node->in; e != 0; e = e->next_in)
2414 int v = e->src->cuid;
2416 if (bitmap_bit_p (sched_nodes, v)
2417 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2418 if (SCHED_TIME (v) > lower)
2420 crit_pred = v;
2421 lower = SCHED_TIME (v);
2425 if (crit_pred >= 0)
2427 crit_cycle = SCHED_TIME (crit_pred) + 1;
2428 return SMODULO (crit_cycle, ii);
2431 for (e = u_node->out; e != 0; e = e->next_out)
2433 int v = e->dest->cuid;
2435 if (bitmap_bit_p (sched_nodes, v)
2436 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2437 if (SCHED_TIME (v) < upper)
2439 crit_succ = v;
2440 upper = SCHED_TIME (v);
2444 if (crit_succ >= 0)
2446 crit_cycle = SCHED_TIME (crit_succ);
2447 return SMODULO (crit_cycle, ii);
2450 if (dump_file)
2451 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2453 return SMODULO ((low + up + 1) / 2, ii);
2456 static void
2457 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2459 int row;
2460 ps_insn_ptr crr_insn;
2462 for (row = 0; row < ps->ii; row++)
2464 int length = 0;
2466 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2468 int u = crr_insn->id;
2470 length++;
2471 gcc_assert (bitmap_bit_p (sched_nodes, u));
2472 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2473 popcount (sched_nodes) == number of insns in ps. */
2474 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2475 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2478 gcc_assert (ps->rows_length[row] == length);
2483 /* This page implements the algorithm for ordering the nodes of a DDG
2484 for modulo scheduling, activated through the
2485 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2487 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2488 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2489 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2490 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2491 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2492 #define DEPTH(x) (ASAP ((x)))
2494 typedef struct node_order_params * nopa;
2496 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2497 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2498 static nopa calculate_order_params (ddg_ptr, int, int *);
2499 static int find_max_asap (ddg_ptr, sbitmap);
2500 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2501 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2503 enum sms_direction {BOTTOMUP, TOPDOWN};
2505 struct node_order_params
2507 int asap;
2508 int alap;
2509 int height;
2512 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2513 static void
2514 check_nodes_order (int *node_order, int num_nodes)
2516 int i;
2517 sbitmap tmp = sbitmap_alloc (num_nodes);
2519 bitmap_clear (tmp);
2521 if (dump_file)
2522 fprintf (dump_file, "SMS final nodes order: \n");
2524 for (i = 0; i < num_nodes; i++)
2526 int u = node_order[i];
2528 if (dump_file)
2529 fprintf (dump_file, "%d ", u);
2530 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2532 bitmap_set_bit (tmp, u);
2535 if (dump_file)
2536 fprintf (dump_file, "\n");
2538 sbitmap_free (tmp);
2541 /* Order the nodes of G for scheduling and pass the result in
2542 NODE_ORDER. Also set aux.count of each node to ASAP.
2543 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2544 static int
2545 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2547 int i;
2548 int rec_mii = 0;
2549 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2551 nopa nops = calculate_order_params (g, mii, pmax_asap);
2553 if (dump_file)
2554 print_sccs (dump_file, sccs, g);
2556 order_nodes_of_sccs (sccs, node_order);
2558 if (sccs->num_sccs > 0)
2559 /* First SCC has the largest recurrence_length. */
2560 rec_mii = sccs->sccs[0]->recurrence_length;
2562 /* Save ASAP before destroying node_order_params. */
2563 for (i = 0; i < g->num_nodes; i++)
2565 ddg_node_ptr v = &g->nodes[i];
2566 v->aux.count = ASAP (v);
2569 free (nops);
2570 free_ddg_all_sccs (sccs);
2571 check_nodes_order (node_order, g->num_nodes);
2573 return rec_mii;
2576 static void
2577 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2579 int i, pos = 0;
2580 ddg_ptr g = all_sccs->ddg;
2581 int num_nodes = g->num_nodes;
2582 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2583 sbitmap on_path = sbitmap_alloc (num_nodes);
2584 sbitmap tmp = sbitmap_alloc (num_nodes);
2585 sbitmap ones = sbitmap_alloc (num_nodes);
2587 bitmap_clear (prev_sccs);
2588 bitmap_ones (ones);
2590 /* Perform the node ordering starting from the SCC with the highest recMII.
2591 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2592 for (i = 0; i < all_sccs->num_sccs; i++)
2594 ddg_scc_ptr scc = all_sccs->sccs[i];
2596 /* Add nodes on paths from previous SCCs to the current SCC. */
2597 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2598 bitmap_ior (tmp, scc->nodes, on_path);
2600 /* Add nodes on paths from the current SCC to previous SCCs. */
2601 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2602 bitmap_ior (tmp, tmp, on_path);
2604 /* Remove nodes of previous SCCs from current extended SCC. */
2605 bitmap_and_compl (tmp, tmp, prev_sccs);
2607 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2608 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2611 /* Handle the remaining nodes that do not belong to any scc. Each call
2612 to order_nodes_in_scc handles a single connected component. */
2613 while (pos < g->num_nodes)
2615 bitmap_and_compl (tmp, ones, prev_sccs);
2616 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2618 sbitmap_free (prev_sccs);
2619 sbitmap_free (on_path);
2620 sbitmap_free (tmp);
2621 sbitmap_free (ones);
2624 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2625 static struct node_order_params *
2626 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2628 int u;
2629 int max_asap;
2630 int num_nodes = g->num_nodes;
2631 ddg_edge_ptr e;
2632 /* Allocate a place to hold ordering params for each node in the DDG. */
2633 nopa node_order_params_arr;
2635 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2636 node_order_params_arr = (nopa) xcalloc (num_nodes,
2637 sizeof (struct node_order_params));
2639 /* Set the aux pointer of each node to point to its order_params structure. */
2640 for (u = 0; u < num_nodes; u++)
2641 g->nodes[u].aux.info = &node_order_params_arr[u];
2643 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2644 calculate ASAP, ALAP, mobility, distance, and height for each node
2645 in the dependence (direct acyclic) graph. */
2647 /* We assume that the nodes in the array are in topological order. */
2649 max_asap = 0;
2650 for (u = 0; u < num_nodes; u++)
2652 ddg_node_ptr u_node = &g->nodes[u];
2654 ASAP (u_node) = 0;
2655 for (e = u_node->in; e; e = e->next_in)
2656 if (e->distance == 0)
2657 ASAP (u_node) = MAX (ASAP (u_node),
2658 ASAP (e->src) + e->latency);
2659 max_asap = MAX (max_asap, ASAP (u_node));
2662 for (u = num_nodes - 1; u > -1; u--)
2664 ddg_node_ptr u_node = &g->nodes[u];
2666 ALAP (u_node) = max_asap;
2667 HEIGHT (u_node) = 0;
2668 for (e = u_node->out; e; e = e->next_out)
2669 if (e->distance == 0)
2671 ALAP (u_node) = MIN (ALAP (u_node),
2672 ALAP (e->dest) - e->latency);
2673 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2674 HEIGHT (e->dest) + e->latency);
2677 if (dump_file)
2679 fprintf (dump_file, "\nOrder params\n");
2680 for (u = 0; u < num_nodes; u++)
2682 ddg_node_ptr u_node = &g->nodes[u];
2684 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2685 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2689 *pmax_asap = max_asap;
2690 return node_order_params_arr;
2693 static int
2694 find_max_asap (ddg_ptr g, sbitmap nodes)
2696 unsigned int u = 0;
2697 int max_asap = -1;
2698 int result = -1;
2699 sbitmap_iterator sbi;
2701 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2703 ddg_node_ptr u_node = &g->nodes[u];
2705 if (max_asap < ASAP (u_node))
2707 max_asap = ASAP (u_node);
2708 result = u;
2711 return result;
2714 static int
2715 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2717 unsigned int u = 0;
2718 int max_hv = -1;
2719 int min_mob = INT_MAX;
2720 int result = -1;
2721 sbitmap_iterator sbi;
2723 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2725 ddg_node_ptr u_node = &g->nodes[u];
2727 if (max_hv < HEIGHT (u_node))
2729 max_hv = HEIGHT (u_node);
2730 min_mob = MOB (u_node);
2731 result = u;
2733 else if ((max_hv == HEIGHT (u_node))
2734 && (min_mob > MOB (u_node)))
2736 min_mob = MOB (u_node);
2737 result = u;
2740 return result;
2743 static int
2744 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2746 unsigned int u = 0;
2747 int max_dv = -1;
2748 int min_mob = INT_MAX;
2749 int result = -1;
2750 sbitmap_iterator sbi;
2752 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2754 ddg_node_ptr u_node = &g->nodes[u];
2756 if (max_dv < DEPTH (u_node))
2758 max_dv = DEPTH (u_node);
2759 min_mob = MOB (u_node);
2760 result = u;
2762 else if ((max_dv == DEPTH (u_node))
2763 && (min_mob > MOB (u_node)))
2765 min_mob = MOB (u_node);
2766 result = u;
2769 return result;
2772 /* Places the nodes of SCC into the NODE_ORDER array starting
2773 at position POS, according to the SMS ordering algorithm.
2774 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2775 the NODE_ORDER array, starting from position zero. */
2776 static int
2777 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2778 int * node_order, int pos)
2780 enum sms_direction dir;
2781 int num_nodes = g->num_nodes;
2782 sbitmap workset = sbitmap_alloc (num_nodes);
2783 sbitmap tmp = sbitmap_alloc (num_nodes);
2784 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2785 sbitmap predecessors = sbitmap_alloc (num_nodes);
2786 sbitmap successors = sbitmap_alloc (num_nodes);
2788 bitmap_clear (predecessors);
2789 find_predecessors (predecessors, g, nodes_ordered);
2791 bitmap_clear (successors);
2792 find_successors (successors, g, nodes_ordered);
2794 bitmap_clear (tmp);
2795 if (bitmap_and (tmp, predecessors, scc))
2797 bitmap_copy (workset, tmp);
2798 dir = BOTTOMUP;
2800 else if (bitmap_and (tmp, successors, scc))
2802 bitmap_copy (workset, tmp);
2803 dir = TOPDOWN;
2805 else
2807 int u;
2809 bitmap_clear (workset);
2810 if ((u = find_max_asap (g, scc)) >= 0)
2811 bitmap_set_bit (workset, u);
2812 dir = BOTTOMUP;
2815 bitmap_clear (zero_bitmap);
2816 while (!bitmap_equal_p (workset, zero_bitmap))
2818 int v;
2819 ddg_node_ptr v_node;
2820 sbitmap v_node_preds;
2821 sbitmap v_node_succs;
2823 if (dir == TOPDOWN)
2825 while (!bitmap_equal_p (workset, zero_bitmap))
2827 v = find_max_hv_min_mob (g, workset);
2828 v_node = &g->nodes[v];
2829 node_order[pos++] = v;
2830 v_node_succs = NODE_SUCCESSORS (v_node);
2831 bitmap_and (tmp, v_node_succs, scc);
2833 /* Don't consider the already ordered successors again. */
2834 bitmap_and_compl (tmp, tmp, nodes_ordered);
2835 bitmap_ior (workset, workset, tmp);
2836 bitmap_clear_bit (workset, v);
2837 bitmap_set_bit (nodes_ordered, v);
2839 dir = BOTTOMUP;
2840 bitmap_clear (predecessors);
2841 find_predecessors (predecessors, g, nodes_ordered);
2842 bitmap_and (workset, predecessors, scc);
2844 else
2846 while (!bitmap_equal_p (workset, zero_bitmap))
2848 v = find_max_dv_min_mob (g, workset);
2849 v_node = &g->nodes[v];
2850 node_order[pos++] = v;
2851 v_node_preds = NODE_PREDECESSORS (v_node);
2852 bitmap_and (tmp, v_node_preds, scc);
2854 /* Don't consider the already ordered predecessors again. */
2855 bitmap_and_compl (tmp, tmp, nodes_ordered);
2856 bitmap_ior (workset, workset, tmp);
2857 bitmap_clear_bit (workset, v);
2858 bitmap_set_bit (nodes_ordered, v);
2860 dir = TOPDOWN;
2861 bitmap_clear (successors);
2862 find_successors (successors, g, nodes_ordered);
2863 bitmap_and (workset, successors, scc);
2866 sbitmap_free (tmp);
2867 sbitmap_free (workset);
2868 sbitmap_free (zero_bitmap);
2869 sbitmap_free (predecessors);
2870 sbitmap_free (successors);
2871 return pos;
2875 /* This page contains functions for manipulating partial-schedules during
2876 modulo scheduling. */
2878 /* Create a partial schedule and allocate a memory to hold II rows. */
2880 static partial_schedule_ptr
2881 create_partial_schedule (int ii, ddg_ptr g, int history)
2883 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2884 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2885 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2886 ps->reg_moves.create (0);
2887 ps->ii = ii;
2888 ps->history = history;
2889 ps->min_cycle = INT_MAX;
2890 ps->max_cycle = INT_MIN;
2891 ps->g = g;
2893 return ps;
2896 /* Free the PS_INSNs in rows array of the given partial schedule.
2897 ??? Consider caching the PS_INSN's. */
2898 static void
2899 free_ps_insns (partial_schedule_ptr ps)
2901 int i;
2903 for (i = 0; i < ps->ii; i++)
2905 while (ps->rows[i])
2907 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2909 free (ps->rows[i]);
2910 ps->rows[i] = ps_insn;
2912 ps->rows[i] = NULL;
2916 /* Free all the memory allocated to the partial schedule. */
2918 static void
2919 free_partial_schedule (partial_schedule_ptr ps)
2921 ps_reg_move_info *move;
2922 unsigned int i;
2924 if (!ps)
2925 return;
2927 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2928 sbitmap_free (move->uses);
2929 ps->reg_moves.release ();
2931 free_ps_insns (ps);
2932 free (ps->rows);
2933 free (ps->rows_length);
2934 free (ps);
2937 /* Clear the rows array with its PS_INSNs, and create a new one with
2938 NEW_II rows. */
2940 static void
2941 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2943 if (!ps)
2944 return;
2945 free_ps_insns (ps);
2946 if (new_ii == ps->ii)
2947 return;
2948 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2949 * sizeof (ps_insn_ptr));
2950 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2951 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2952 memset (ps->rows_length, 0, new_ii * sizeof (int));
2953 ps->ii = new_ii;
2954 ps->min_cycle = INT_MAX;
2955 ps->max_cycle = INT_MIN;
2958 /* Prints the partial schedule as an ii rows array, for each rows
2959 print the ids of the insns in it. */
2960 void
2961 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2963 int i;
2965 for (i = 0; i < ps->ii; i++)
2967 ps_insn_ptr ps_i = ps->rows[i];
2969 fprintf (dump, "\n[ROW %d ]: ", i);
2970 while (ps_i)
2972 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2974 if (JUMP_P (insn))
2975 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2976 else
2977 fprintf (dump, "%d, ", INSN_UID (insn));
2979 ps_i = ps_i->next_in_row;
2984 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2985 static ps_insn_ptr
2986 create_ps_insn (int id, int cycle)
2988 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2990 ps_i->id = id;
2991 ps_i->next_in_row = NULL;
2992 ps_i->prev_in_row = NULL;
2993 ps_i->cycle = cycle;
2995 return ps_i;
2999 /* Removes the given PS_INSN from the partial schedule. */
3000 static void
3001 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
3003 int row;
3005 gcc_assert (ps && ps_i);
3007 row = SMODULO (ps_i->cycle, ps->ii);
3008 if (! ps_i->prev_in_row)
3010 gcc_assert (ps_i == ps->rows[row]);
3011 ps->rows[row] = ps_i->next_in_row;
3012 if (ps->rows[row])
3013 ps->rows[row]->prev_in_row = NULL;
3015 else
3017 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
3018 if (ps_i->next_in_row)
3019 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
3022 ps->rows_length[row] -= 1;
3023 free (ps_i);
3024 return;
3027 /* Unlike what literature describes for modulo scheduling (which focuses
3028 on VLIW machines) the order of the instructions inside a cycle is
3029 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
3030 where the current instruction should go relative to the already
3031 scheduled instructions in the given cycle. Go over these
3032 instructions and find the first possible column to put it in. */
3033 static bool
3034 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3035 sbitmap must_precede, sbitmap must_follow)
3037 ps_insn_ptr next_ps_i;
3038 ps_insn_ptr first_must_follow = NULL;
3039 ps_insn_ptr last_must_precede = NULL;
3040 ps_insn_ptr last_in_row = NULL;
3041 int row;
3043 if (! ps_i)
3044 return false;
3046 row = SMODULO (ps_i->cycle, ps->ii);
3048 /* Find the first must follow and the last must precede
3049 and insert the node immediately after the must precede
3050 but make sure that it there is no must follow after it. */
3051 for (next_ps_i = ps->rows[row];
3052 next_ps_i;
3053 next_ps_i = next_ps_i->next_in_row)
3055 if (must_follow
3056 && bitmap_bit_p (must_follow, next_ps_i->id)
3057 && ! first_must_follow)
3058 first_must_follow = next_ps_i;
3059 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
3061 /* If we have already met a node that must follow, then
3062 there is no possible column. */
3063 if (first_must_follow)
3064 return false;
3065 else
3066 last_must_precede = next_ps_i;
3068 /* The closing branch must be the last in the row. */
3069 if (must_precede
3070 && bitmap_bit_p (must_precede, next_ps_i->id)
3071 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3072 return false;
3074 last_in_row = next_ps_i;
3077 /* The closing branch is scheduled as well. Make sure there is no
3078 dependent instruction after it as the branch should be the last
3079 instruction in the row. */
3080 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3082 if (first_must_follow)
3083 return false;
3084 if (last_in_row)
3086 /* Make the branch the last in the row. New instructions
3087 will be inserted at the beginning of the row or after the
3088 last must_precede instruction thus the branch is guaranteed
3089 to remain the last instruction in the row. */
3090 last_in_row->next_in_row = ps_i;
3091 ps_i->prev_in_row = last_in_row;
3092 ps_i->next_in_row = NULL;
3094 else
3095 ps->rows[row] = ps_i;
3096 return true;
3099 /* Now insert the node after INSERT_AFTER_PSI. */
3101 if (! last_must_precede)
3103 ps_i->next_in_row = ps->rows[row];
3104 ps_i->prev_in_row = NULL;
3105 if (ps_i->next_in_row)
3106 ps_i->next_in_row->prev_in_row = ps_i;
3107 ps->rows[row] = ps_i;
3109 else
3111 ps_i->next_in_row = last_must_precede->next_in_row;
3112 last_must_precede->next_in_row = ps_i;
3113 ps_i->prev_in_row = last_must_precede;
3114 if (ps_i->next_in_row)
3115 ps_i->next_in_row->prev_in_row = ps_i;
3118 return true;
3121 /* Advances the PS_INSN one column in its current row; returns false
3122 in failure and true in success. Bit N is set in MUST_FOLLOW if
3123 the node with cuid N must be come after the node pointed to by
3124 PS_I when scheduled in the same cycle. */
3125 static int
3126 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3127 sbitmap must_follow)
3129 ps_insn_ptr prev, next;
3130 int row;
3132 if (!ps || !ps_i)
3133 return false;
3135 row = SMODULO (ps_i->cycle, ps->ii);
3137 if (! ps_i->next_in_row)
3138 return false;
3140 /* Check if next_in_row is dependent on ps_i, both having same sched
3141 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3142 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3143 return false;
3145 /* Advance PS_I over its next_in_row in the doubly linked list. */
3146 prev = ps_i->prev_in_row;
3147 next = ps_i->next_in_row;
3149 if (ps_i == ps->rows[row])
3150 ps->rows[row] = next;
3152 ps_i->next_in_row = next->next_in_row;
3154 if (next->next_in_row)
3155 next->next_in_row->prev_in_row = ps_i;
3157 next->next_in_row = ps_i;
3158 ps_i->prev_in_row = next;
3160 next->prev_in_row = prev;
3161 if (prev)
3162 prev->next_in_row = next;
3164 return true;
3167 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3168 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3169 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3170 before/after (respectively) the node pointed to by PS_I when scheduled
3171 in the same cycle. */
3172 static ps_insn_ptr
3173 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3174 sbitmap must_precede, sbitmap must_follow)
3176 ps_insn_ptr ps_i;
3177 int row = SMODULO (cycle, ps->ii);
3179 if (ps->rows_length[row] >= issue_rate)
3180 return NULL;
3182 ps_i = create_ps_insn (id, cycle);
3184 /* Finds and inserts PS_I according to MUST_FOLLOW and
3185 MUST_PRECEDE. */
3186 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3188 free (ps_i);
3189 return NULL;
3192 ps->rows_length[row] += 1;
3193 return ps_i;
3196 /* Advance time one cycle. Assumes DFA is being used. */
3197 static void
3198 advance_one_cycle (void)
3200 if (targetm.sched.dfa_pre_cycle_insn)
3201 state_transition (curr_state,
3202 targetm.sched.dfa_pre_cycle_insn ());
3204 state_transition (curr_state, NULL);
3206 if (targetm.sched.dfa_post_cycle_insn)
3207 state_transition (curr_state,
3208 targetm.sched.dfa_post_cycle_insn ());
3213 /* Checks if PS has resource conflicts according to DFA, starting from
3214 FROM cycle to TO cycle; returns true if there are conflicts and false
3215 if there are no conflicts. Assumes DFA is being used. */
3216 static int
3217 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3219 int cycle;
3221 state_reset (curr_state);
3223 for (cycle = from; cycle <= to; cycle++)
3225 ps_insn_ptr crr_insn;
3226 /* Holds the remaining issue slots in the current row. */
3227 int can_issue_more = issue_rate;
3229 /* Walk through the DFA for the current row. */
3230 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3231 crr_insn;
3232 crr_insn = crr_insn->next_in_row)
3234 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3236 if (!NONDEBUG_INSN_P (insn))
3237 continue;
3239 /* Check if there is room for the current insn. */
3240 if (!can_issue_more || state_dead_lock_p (curr_state))
3241 return true;
3243 /* Update the DFA state and return with failure if the DFA found
3244 resource conflicts. */
3245 if (state_transition (curr_state, insn) >= 0)
3246 return true;
3248 if (targetm.sched.variable_issue)
3249 can_issue_more =
3250 targetm.sched.variable_issue (sched_dump, sched_verbose,
3251 insn, can_issue_more);
3252 /* A naked CLOBBER or USE generates no instruction, so don't
3253 let them consume issue slots. */
3254 else if (GET_CODE (PATTERN (insn)) != USE
3255 && GET_CODE (PATTERN (insn)) != CLOBBER)
3256 can_issue_more--;
3259 /* Advance the DFA to the next cycle. */
3260 advance_one_cycle ();
3262 return false;
3265 /* Checks if the given node causes resource conflicts when added to PS at
3266 cycle C. If not the node is added to PS and returned; otherwise zero
3267 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3268 cuid N must be come before/after (respectively) the node pointed to by
3269 PS_I when scheduled in the same cycle. */
3270 ps_insn_ptr
3271 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3272 int c, sbitmap must_precede,
3273 sbitmap must_follow)
3275 int has_conflicts = 0;
3276 ps_insn_ptr ps_i;
3278 /* First add the node to the PS, if this succeeds check for
3279 conflicts, trying different issue slots in the same row. */
3280 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3281 return NULL; /* Failed to insert the node at the given cycle. */
3283 has_conflicts = ps_has_conflicts (ps, c, c)
3284 || (ps->history > 0
3285 && ps_has_conflicts (ps,
3286 c - ps->history,
3287 c + ps->history));
3289 /* Try different issue slots to find one that the given node can be
3290 scheduled in without conflicts. */
3291 while (has_conflicts)
3293 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3294 break;
3295 has_conflicts = ps_has_conflicts (ps, c, c)
3296 || (ps->history > 0
3297 && ps_has_conflicts (ps,
3298 c - ps->history,
3299 c + ps->history));
3302 if (has_conflicts)
3304 remove_node_from_ps (ps, ps_i);
3305 return NULL;
3308 ps->min_cycle = MIN (ps->min_cycle, c);
3309 ps->max_cycle = MAX (ps->max_cycle, c);
3310 return ps_i;
3313 /* Calculate the stage count of the partial schedule PS. The calculation
3314 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3316 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3318 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3319 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3320 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3322 /* The calculation of stage count is done adding the number of stages
3323 before cycle zero and after cycle zero. */
3324 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3326 return stage_count;
3329 /* Rotate the rows of PS such that insns scheduled at time
3330 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3331 void
3332 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3334 int i, row, backward_rotates;
3335 int last_row = ps->ii - 1;
3337 if (start_cycle == 0)
3338 return;
3340 backward_rotates = SMODULO (start_cycle, ps->ii);
3342 /* Revisit later and optimize this into a single loop. */
3343 for (i = 0; i < backward_rotates; i++)
3345 ps_insn_ptr first_row = ps->rows[0];
3346 int first_row_length = ps->rows_length[0];
3348 for (row = 0; row < last_row; row++)
3350 ps->rows[row] = ps->rows[row + 1];
3351 ps->rows_length[row] = ps->rows_length[row + 1];
3354 ps->rows[last_row] = first_row;
3355 ps->rows_length[last_row] = first_row_length;
3358 ps->max_cycle -= start_cycle;
3359 ps->min_cycle -= start_cycle;
3362 #endif /* INSN_SCHEDULING */
3364 /* Run instruction scheduler. */
3365 /* Perform SMS module scheduling. */
3367 namespace {
3369 const pass_data pass_data_sms =
3371 RTL_PASS, /* type */
3372 "sms", /* name */
3373 OPTGROUP_NONE, /* optinfo_flags */
3374 TV_SMS, /* tv_id */
3375 0, /* properties_required */
3376 0, /* properties_provided */
3377 0, /* properties_destroyed */
3378 0, /* todo_flags_start */
3379 TODO_df_finish, /* todo_flags_finish */
3382 class pass_sms : public rtl_opt_pass
3384 public:
3385 pass_sms (gcc::context *ctxt)
3386 : rtl_opt_pass (pass_data_sms, ctxt)
3389 /* opt_pass methods: */
3390 virtual bool gate (function *)
3392 return (optimize > 0 && flag_modulo_sched);
3395 virtual unsigned int execute (function *);
3397 }; // class pass_sms
3399 unsigned int
3400 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3402 #ifdef INSN_SCHEDULING
3403 basic_block bb;
3405 /* Collect loop information to be used in SMS. */
3406 cfg_layout_initialize (0);
3407 sms_schedule ();
3409 /* Update the life information, because we add pseudos. */
3410 max_regno = max_reg_num ();
3412 /* Finalize layout changes. */
3413 FOR_EACH_BB_FN (bb, fun)
3414 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3415 bb->aux = bb->next_bb;
3416 free_dominance_info (CDI_DOMINATORS);
3417 cfg_layout_finalize ();
3418 #endif /* INSN_SCHEDULING */
3419 return 0;
3422 } // anon namespace
3424 rtl_opt_pass *
3425 make_pass_sms (gcc::context *ctxt)
3427 return new pass_sms (ctxt);