kqueue: Use wakeup_one based on # of threads sleep on kqueue
[dragonfly.git] / sys / netinet / tcp_subr.c
blobb1f4fd04b8a899a580e3c62579241afad260f43c
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
62 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
63 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
66 #include "opt_compat.h"
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_tcpdebug.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/malloc.h>
78 #include <sys/mpipe.h>
79 #include <sys/mbuf.h>
80 #ifdef INET6
81 #include <sys/domain.h>
82 #endif
83 #include <sys/proc.h>
84 #include <sys/priv.h>
85 #include <sys/socket.h>
86 #include <sys/socketops.h>
87 #include <sys/socketvar.h>
88 #include <sys/protosw.h>
89 #include <sys/random.h>
90 #include <sys/in_cksum.h>
91 #include <sys/ktr.h>
93 #include <net/route.h>
94 #include <net/if.h>
95 #include <net/netisr2.h>
97 #define _IP_VHL
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip6.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet6/ip6_var.h>
107 #include <netinet/ip_icmp.h>
108 #ifdef INET6
109 #include <netinet/icmp6.h>
110 #endif
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 #include <netinet/tcpip.h>
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 #endif
122 #include <netinet6/ip6protosw.h>
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #ifdef INET6
128 #include <netinet6/ipsec6.h>
129 #endif
130 #endif
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #ifdef INET6
135 #include <netproto/ipsec/ipsec6.h>
136 #endif
137 #define IPSEC
138 #endif
140 #include <sys/md5.h>
141 #include <machine/smp.h>
143 #include <sys/msgport2.h>
144 #include <sys/mplock2.h>
145 #include <net/netmsg2.h>
147 #if !defined(KTR_TCP)
148 #define KTR_TCP KTR_ALL
149 #endif
151 KTR_INFO_MASTER(tcp);
152 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
155 #define logtcp(name) KTR_LOG(tcp_ ## name)
158 #define TCP_IW_MAXSEGS_DFLT 4
159 #define TCP_IW_CAPSEGS_DFLT 4
161 struct inpcbinfo tcbinfo[MAXCPU];
162 struct tcpcbackqhead tcpcbackq[MAXCPU];
164 int tcp_mssdflt = TCP_MSS;
165 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
166 &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
168 #ifdef INET6
169 int tcp_v6mssdflt = TCP6_MSS;
170 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
171 &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
172 #endif
175 * Minimum MSS we accept and use. This prevents DoS attacks where
176 * we are forced to a ridiculous low MSS like 20 and send hundreds
177 * of packets instead of one. The effect scales with the available
178 * bandwidth and quickly saturates the CPU and network interface
179 * with packet generation and sending. Set to zero to disable MINMSS
180 * checking. This setting prevents us from sending too small packets.
182 int tcp_minmss = TCP_MINMSS;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
184 &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
186 #if 0
187 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
188 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
189 &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
190 #endif
192 int tcp_do_rfc1323 = 1;
193 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
194 &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
196 static int tcp_tcbhashsize = 0;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
198 &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
200 static int do_tcpdrain = 1;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
202 "Enable tcp_drain routine for extra help when low on mbufs");
204 static int icmp_may_rst = 1;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
206 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
208 static int tcp_isn_reseed_interval = 0;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
210 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
213 * TCP bandwidth limiting sysctls. The inflight limiter is now turned on
214 * by default, but with generous values which should allow maximal
215 * bandwidth. In particular, the slop defaults to 50 (5 packets).
217 * The reason for doing this is that the limiter is the only mechanism we
218 * have which seems to do a really good job preventing receiver RX rings
219 * on network interfaces from getting blown out. Even though GigE/10GigE
220 * is supposed to flow control it looks like either it doesn't actually
221 * do it or Open Source drivers do not properly enable it.
223 * People using the limiter to reduce bottlenecks on slower WAN connections
224 * should set the slop to 20 (2 packets).
226 static int tcp_inflight_enable = 1;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
228 &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
230 static int tcp_inflight_debug = 0;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
232 &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
235 * NOTE: tcp_inflight_start is essentially the starting receive window
236 * for a connection. If set too low then fetches over tcp
237 * connections will take noticably longer to ramp-up over
238 * high-latency connections. 6144 is too low for a default,
239 * use something more reasonable.
241 static int tcp_inflight_start = 33792;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_start, CTLFLAG_RW,
243 &tcp_inflight_start, 0, "Start value for TCP inflight window");
245 static int tcp_inflight_min = 6144;
246 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
247 &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
249 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
250 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
251 &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
253 static int tcp_inflight_stab = 50;
254 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
255 &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
257 static int tcp_inflight_adjrtt = 2;
258 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
259 &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
261 static int tcp_do_rfc3390 = 1;
262 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
263 &tcp_do_rfc3390, 0,
264 "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
266 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
267 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
268 &tcp_iw_maxsegs, 0, "TCP IW segments max");
270 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
271 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
272 &tcp_iw_capsegs, 0, "TCP IW segments");
274 int tcp_low_rtobase = 1;
275 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
276 &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
278 static int tcp_do_ncr = 1;
279 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
280 &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
282 int tcp_ncr_rxtthresh_max = 16;
283 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_rxtthresh_max, CTLFLAG_RW,
284 &tcp_ncr_rxtthresh_max, 0,
285 "Non-Congestion Robustness (RFC 4653), DupThresh upper limit");
287 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
288 static struct malloc_pipe tcptemp_mpipe;
290 static void tcp_willblock(void);
291 static void tcp_notify (struct inpcb *, int);
293 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
295 static struct netmsg_base tcp_drain_netmsg[MAXCPU];
296 static void tcp_drain_dispatch(netmsg_t nmsg);
298 static int
299 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
301 int cpu, error = 0;
303 for (cpu = 0; cpu < ncpus2; ++cpu) {
304 if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
305 sizeof(struct tcp_stats))))
306 break;
307 if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
308 sizeof(struct tcp_stats))))
309 break;
312 return (error);
314 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
315 0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
318 * Target size of TCP PCB hash tables. Must be a power of two.
320 * Note that this can be overridden by the kernel environment
321 * variable net.inet.tcp.tcbhashsize
323 #ifndef TCBHASHSIZE
324 #define TCBHASHSIZE 512
325 #endif
328 * This is the actual shape of what we allocate using the zone
329 * allocator. Doing it this way allows us to protect both structures
330 * using the same generation count, and also eliminates the overhead
331 * of allocating tcpcbs separately. By hiding the structure here,
332 * we avoid changing most of the rest of the code (although it needs
333 * to be changed, eventually, for greater efficiency).
335 #define ALIGNMENT 32
336 #define ALIGNM1 (ALIGNMENT - 1)
337 struct inp_tp {
338 union {
339 struct inpcb inp;
340 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
341 } inp_tp_u;
342 struct tcpcb tcb;
343 struct tcp_callout inp_tp_rexmt;
344 struct tcp_callout inp_tp_persist;
345 struct tcp_callout inp_tp_keep;
346 struct tcp_callout inp_tp_2msl;
347 struct tcp_callout inp_tp_delack;
348 struct netmsg_tcp_timer inp_tp_timermsg;
349 struct netmsg_base inp_tp_sndmore;
351 #undef ALIGNMENT
352 #undef ALIGNM1
355 * Tcp initialization
357 void
358 tcp_init(void)
360 struct inpcbportinfo *portinfo;
361 struct inpcbinfo *ticb;
362 int hashsize = TCBHASHSIZE;
363 int cpu;
366 * note: tcptemp is used for keepalives, and it is ok for an
367 * allocation to fail so do not specify MPF_INT.
369 mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
370 25, -1, 0, NULL, NULL, NULL);
372 tcp_delacktime = TCPTV_DELACK;
373 tcp_keepinit = TCPTV_KEEP_INIT;
374 tcp_keepidle = TCPTV_KEEP_IDLE;
375 tcp_keepintvl = TCPTV_KEEPINTVL;
376 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
377 tcp_msl = TCPTV_MSL;
378 tcp_rexmit_min = TCPTV_MIN;
379 tcp_rexmit_slop = TCPTV_CPU_VAR;
381 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
382 if (!powerof2(hashsize)) {
383 kprintf("WARNING: TCB hash size not a power of 2\n");
384 hashsize = 512; /* safe default */
386 tcp_tcbhashsize = hashsize;
388 portinfo = kmalloc_cachealign(sizeof(*portinfo) * ncpus2, M_PCB,
389 M_WAITOK);
391 for (cpu = 0; cpu < ncpus2; cpu++) {
392 ticb = &tcbinfo[cpu];
393 in_pcbinfo_init(ticb, cpu, FALSE);
394 ticb->hashbase = hashinit(hashsize, M_PCB,
395 &ticb->hashmask);
396 in_pcbportinfo_init(&portinfo[cpu], hashsize, cpu);
397 ticb->portinfo = portinfo;
398 ticb->portinfo_mask = ncpus2_mask;
399 ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
400 &ticb->wildcardhashmask);
401 ticb->localgrphashbase = hashinit(hashsize, M_PCB,
402 &ticb->localgrphashmask);
403 ticb->ipi_size = sizeof(struct inp_tp);
404 TAILQ_INIT(&tcpcbackq[cpu]);
407 tcp_reass_maxseg = nmbclusters / 16;
408 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
410 #ifdef INET6
411 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
412 #else
413 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
414 #endif
415 if (max_protohdr < TCP_MINPROTOHDR)
416 max_protohdr = TCP_MINPROTOHDR;
417 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
418 panic("tcp_init");
419 #undef TCP_MINPROTOHDR
422 * Initialize TCP statistics counters for each CPU.
424 for (cpu = 0; cpu < ncpus2; ++cpu)
425 bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
428 * Initialize netmsgs for TCP drain
430 for (cpu = 0; cpu < ncpus2; ++cpu) {
431 netmsg_init(&tcp_drain_netmsg[cpu], NULL, &netisr_adone_rport,
432 MSGF_PRIORITY, tcp_drain_dispatch);
435 syncache_init();
436 netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
439 static void
440 tcp_willblock(void)
442 struct tcpcb *tp;
443 int cpu = mycpu->gd_cpuid;
445 while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
446 KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
447 tp->t_flags &= ~TF_ONOUTPUTQ;
448 TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
449 tcp_output(tp);
454 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
455 * tcp_template used to store this data in mbufs, but we now recopy it out
456 * of the tcpcb each time to conserve mbufs.
458 void
459 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
461 struct inpcb *inp = tp->t_inpcb;
462 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
464 #ifdef INET6
465 if (INP_ISIPV6(inp)) {
466 struct ip6_hdr *ip6;
468 ip6 = (struct ip6_hdr *)ip_ptr;
469 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
470 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
471 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
472 (IPV6_VERSION & IPV6_VERSION_MASK);
473 ip6->ip6_nxt = IPPROTO_TCP;
474 ip6->ip6_plen = sizeof(struct tcphdr);
475 ip6->ip6_src = inp->in6p_laddr;
476 ip6->ip6_dst = inp->in6p_faddr;
477 tcp_hdr->th_sum = 0;
478 } else
479 #endif
481 struct ip *ip = (struct ip *) ip_ptr;
482 u_int plen;
484 ip->ip_vhl = IP_VHL_BORING;
485 ip->ip_tos = 0;
486 ip->ip_len = 0;
487 ip->ip_id = 0;
488 ip->ip_off = 0;
489 ip->ip_ttl = 0;
490 ip->ip_sum = 0;
491 ip->ip_p = IPPROTO_TCP;
492 ip->ip_src = inp->inp_laddr;
493 ip->ip_dst = inp->inp_faddr;
495 if (tso)
496 plen = htons(IPPROTO_TCP);
497 else
498 plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
499 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
500 ip->ip_dst.s_addr, plen);
503 tcp_hdr->th_sport = inp->inp_lport;
504 tcp_hdr->th_dport = inp->inp_fport;
505 tcp_hdr->th_seq = 0;
506 tcp_hdr->th_ack = 0;
507 tcp_hdr->th_x2 = 0;
508 tcp_hdr->th_off = 5;
509 tcp_hdr->th_flags = 0;
510 tcp_hdr->th_win = 0;
511 tcp_hdr->th_urp = 0;
515 * Create template to be used to send tcp packets on a connection.
516 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
517 * use for this function is in keepalives, which use tcp_respond.
519 struct tcptemp *
520 tcp_maketemplate(struct tcpcb *tp)
522 struct tcptemp *tmp;
524 if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
525 return (NULL);
526 tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
527 return (tmp);
530 void
531 tcp_freetemplate(struct tcptemp *tmp)
533 mpipe_free(&tcptemp_mpipe, tmp);
537 * Send a single message to the TCP at address specified by
538 * the given TCP/IP header. If m == NULL, then we make a copy
539 * of the tcpiphdr at ti and send directly to the addressed host.
540 * This is used to force keep alive messages out using the TCP
541 * template for a connection. If flags are given then we send
542 * a message back to the TCP which originated the * segment ti,
543 * and discard the mbuf containing it and any other attached mbufs.
545 * In any case the ack and sequence number of the transmitted
546 * segment are as specified by the parameters.
548 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
550 void
551 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
552 tcp_seq ack, tcp_seq seq, int flags)
554 int tlen;
555 long win = 0;
556 struct route *ro = NULL;
557 struct route sro;
558 struct ip *ip = ipgen;
559 struct tcphdr *nth;
560 int ipflags = 0;
561 struct route_in6 *ro6 = NULL;
562 struct route_in6 sro6;
563 struct ip6_hdr *ip6 = ipgen;
564 boolean_t use_tmpro = TRUE;
565 #ifdef INET6
566 boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
567 #else
568 const boolean_t isipv6 = FALSE;
569 #endif
571 if (tp != NULL) {
572 if (!(flags & TH_RST)) {
573 win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
574 if (win < 0)
575 win = 0;
576 if (win > (long)TCP_MAXWIN << tp->rcv_scale)
577 win = (long)TCP_MAXWIN << tp->rcv_scale;
580 * Don't use the route cache of a listen socket,
581 * it is not MPSAFE; use temporary route cache.
583 if (tp->t_state != TCPS_LISTEN) {
584 if (isipv6)
585 ro6 = &tp->t_inpcb->in6p_route;
586 else
587 ro = &tp->t_inpcb->inp_route;
588 use_tmpro = FALSE;
591 if (use_tmpro) {
592 if (isipv6) {
593 ro6 = &sro6;
594 bzero(ro6, sizeof *ro6);
595 } else {
596 ro = &sro;
597 bzero(ro, sizeof *ro);
600 if (m == NULL) {
601 m = m_gethdr(M_NOWAIT, MT_HEADER);
602 if (m == NULL)
603 return;
604 tlen = 0;
605 m->m_data += max_linkhdr;
606 if (isipv6) {
607 bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
608 ip6 = mtod(m, struct ip6_hdr *);
609 nth = (struct tcphdr *)(ip6 + 1);
610 } else {
611 bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
612 ip = mtod(m, struct ip *);
613 nth = (struct tcphdr *)(ip + 1);
615 bcopy(th, nth, sizeof(struct tcphdr));
616 flags = TH_ACK;
617 } else {
618 m_freem(m->m_next);
619 m->m_next = NULL;
620 m->m_data = (caddr_t)ipgen;
621 /* m_len is set later */
622 tlen = 0;
623 #define xchg(a, b, type) { type t; t = a; a = b; b = t; }
624 if (isipv6) {
625 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
626 nth = (struct tcphdr *)(ip6 + 1);
627 } else {
628 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
629 nth = (struct tcphdr *)(ip + 1);
631 if (th != nth) {
633 * this is usually a case when an extension header
634 * exists between the IPv6 header and the
635 * TCP header.
637 nth->th_sport = th->th_sport;
638 nth->th_dport = th->th_dport;
640 xchg(nth->th_dport, nth->th_sport, n_short);
641 #undef xchg
643 if (isipv6) {
644 ip6->ip6_flow = 0;
645 ip6->ip6_vfc = IPV6_VERSION;
646 ip6->ip6_nxt = IPPROTO_TCP;
647 ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
648 tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
649 } else {
650 tlen += sizeof(struct tcpiphdr);
651 ip->ip_len = tlen;
652 ip->ip_ttl = ip_defttl;
654 m->m_len = tlen;
655 m->m_pkthdr.len = tlen;
656 m->m_pkthdr.rcvif = NULL;
657 nth->th_seq = htonl(seq);
658 nth->th_ack = htonl(ack);
659 nth->th_x2 = 0;
660 nth->th_off = sizeof(struct tcphdr) >> 2;
661 nth->th_flags = flags;
662 if (tp != NULL)
663 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
664 else
665 nth->th_win = htons((u_short)win);
666 nth->th_urp = 0;
667 if (isipv6) {
668 nth->th_sum = 0;
669 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
670 sizeof(struct ip6_hdr),
671 tlen - sizeof(struct ip6_hdr));
672 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
673 (ro6 && ro6->ro_rt) ?
674 ro6->ro_rt->rt_ifp : NULL);
675 } else {
676 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
677 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
678 m->m_pkthdr.csum_flags = CSUM_TCP;
679 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
680 m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
682 #ifdef TCPDEBUG
683 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
684 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
685 #endif
686 if (isipv6) {
687 ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
688 tp ? tp->t_inpcb : NULL);
689 if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
690 RTFREE(ro6->ro_rt);
691 ro6->ro_rt = NULL;
693 } else {
694 ipflags |= IP_DEBUGROUTE;
695 ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
696 if ((ro == &sro) && (ro->ro_rt != NULL)) {
697 RTFREE(ro->ro_rt);
698 ro->ro_rt = NULL;
704 * Create a new TCP control block, making an
705 * empty reassembly queue and hooking it to the argument
706 * protocol control block. The `inp' parameter must have
707 * come from the zone allocator set up in tcp_init().
709 struct tcpcb *
710 tcp_newtcpcb(struct inpcb *inp)
712 struct inp_tp *it;
713 struct tcpcb *tp;
714 #ifdef INET6
715 boolean_t isipv6 = INP_ISIPV6(inp);
716 #else
717 const boolean_t isipv6 = FALSE;
718 #endif
720 it = (struct inp_tp *)inp;
721 tp = &it->tcb;
722 bzero(tp, sizeof(struct tcpcb));
723 TAILQ_INIT(&tp->t_segq);
724 tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
725 tp->t_rxtthresh = tcprexmtthresh;
727 /* Set up our timeouts. */
728 tp->tt_rexmt = &it->inp_tp_rexmt;
729 tp->tt_persist = &it->inp_tp_persist;
730 tp->tt_keep = &it->inp_tp_keep;
731 tp->tt_2msl = &it->inp_tp_2msl;
732 tp->tt_delack = &it->inp_tp_delack;
733 tcp_inittimers(tp);
736 * Zero out timer message. We don't create it here,
737 * since the current CPU may not be the owner of this
738 * inpcb.
740 tp->tt_msg = &it->inp_tp_timermsg;
741 bzero(tp->tt_msg, sizeof(*tp->tt_msg));
743 tp->t_keepinit = tcp_keepinit;
744 tp->t_keepidle = tcp_keepidle;
745 tp->t_keepintvl = tcp_keepintvl;
746 tp->t_keepcnt = tcp_keepcnt;
747 tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
749 if (tcp_do_ncr)
750 tp->t_flags |= TF_NCR;
751 if (tcp_do_rfc1323)
752 tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
754 tp->t_inpcb = inp; /* XXX */
755 tp->t_state = TCPS_CLOSED;
757 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
758 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
759 * reasonable initial retransmit time.
761 tp->t_srtt = TCPTV_SRTTBASE;
762 tp->t_rttvar =
763 ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
764 tp->t_rttmin = tcp_rexmit_min;
765 tp->t_rxtcur = TCPTV_RTOBASE;
766 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
767 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
768 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
769 tp->snd_last = ticks;
770 tp->t_rcvtime = ticks;
772 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
773 * because the socket may be bound to an IPv6 wildcard address,
774 * which may match an IPv4-mapped IPv6 address.
776 inp->inp_ip_ttl = ip_defttl;
777 inp->inp_ppcb = tp;
778 tcp_sack_tcpcb_init(tp);
780 tp->tt_sndmore = &it->inp_tp_sndmore;
781 tcp_output_init(tp);
783 return (tp); /* XXX */
787 * Drop a TCP connection, reporting the specified error.
788 * If connection is synchronized, then send a RST to peer.
790 struct tcpcb *
791 tcp_drop(struct tcpcb *tp, int error)
793 struct socket *so = tp->t_inpcb->inp_socket;
795 if (TCPS_HAVERCVDSYN(tp->t_state)) {
796 tp->t_state = TCPS_CLOSED;
797 tcp_output(tp);
798 tcpstat.tcps_drops++;
799 } else
800 tcpstat.tcps_conndrops++;
801 if (error == ETIMEDOUT && tp->t_softerror)
802 error = tp->t_softerror;
803 so->so_error = error;
804 return (tcp_close(tp));
807 struct netmsg_listen_detach {
808 struct netmsg_base base;
809 struct tcpcb *nm_tp;
810 struct tcpcb *nm_tp_inh;
813 static void
814 tcp_listen_detach_handler(netmsg_t msg)
816 struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
817 struct tcpcb *tp = nmsg->nm_tp;
818 int cpu = mycpuid, nextcpu;
820 if (tp->t_flags & TF_LISTEN)
821 syncache_destroy(tp, nmsg->nm_tp_inh);
823 in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
825 nextcpu = cpu + 1;
826 if (nextcpu < ncpus2)
827 lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
828 else
829 lwkt_replymsg(&nmsg->base.lmsg, 0);
833 * Close a TCP control block:
834 * discard all space held by the tcp
835 * discard internet protocol block
836 * wake up any sleepers
838 struct tcpcb *
839 tcp_close(struct tcpcb *tp)
841 struct tseg_qent *q;
842 struct inpcb *inp = tp->t_inpcb;
843 struct inpcb *inp_inh = NULL;
844 struct tcpcb *tp_inh = NULL;
845 struct socket *so = inp->inp_socket;
846 struct rtentry *rt;
847 boolean_t dosavessthresh;
848 #ifdef INET6
849 boolean_t isipv6 = INP_ISIPV6(inp);
850 #else
851 const boolean_t isipv6 = FALSE;
852 #endif
854 if (tp->t_flags & TF_LISTEN) {
856 * Pending socket/syncache inheritance
858 * If this is a listen(2) socket, find another listen(2)
859 * socket in the same local group, which could inherit
860 * the syncache and sockets pending on the completion
861 * and incompletion queues.
863 * NOTE:
864 * Currently the inheritance could only happen on the
865 * listen(2) sockets w/ SO_REUSEPORT set.
867 ASSERT_IN_NETISR(0);
868 inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
869 if (inp_inh != NULL)
870 tp_inh = intotcpcb(inp_inh);
874 * INP_WILDCARD indicates that listen(2) has been called on
875 * this socket. This implies:
876 * - A wildcard inp's hash is replicated for each protocol thread.
877 * - Syncache for this inp grows independently in each protocol
878 * thread.
879 * - There is more than one cpu
881 * We have to chain a message to the rest of the protocol threads
882 * to cleanup the wildcard hash and the syncache. The cleanup
883 * in the current protocol thread is defered till the end of this
884 * function (syncache_destroy and in_pcbdetach).
886 * NOTE:
887 * After cleanup the inp's hash and syncache entries, this inp will
888 * no longer be available to the rest of the protocol threads, so we
889 * are safe to whack the inp in the following code.
891 if ((inp->inp_flags & INP_WILDCARD) && ncpus2 > 1) {
892 struct netmsg_listen_detach nmsg;
894 KKASSERT(so->so_port == netisr_cpuport(0));
895 ASSERT_IN_NETISR(0);
896 KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
898 netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
899 MSGF_PRIORITY, tcp_listen_detach_handler);
900 nmsg.nm_tp = tp;
901 nmsg.nm_tp_inh = tp_inh;
902 lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
905 KKASSERT(tp->t_state != TCPS_TERMINATING);
906 tp->t_state = TCPS_TERMINATING;
909 * Make sure that all of our timers are stopped before we
910 * delete the PCB. For listen TCP socket (tp->tt_msg == NULL),
911 * timers are never used. If timer message is never created
912 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
914 if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
915 tcp_callout_stop(tp, tp->tt_rexmt);
916 tcp_callout_stop(tp, tp->tt_persist);
917 tcp_callout_stop(tp, tp->tt_keep);
918 tcp_callout_stop(tp, tp->tt_2msl);
919 tcp_callout_stop(tp, tp->tt_delack);
922 if (tp->t_flags & TF_ONOUTPUTQ) {
923 KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
924 TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
925 tp->t_flags &= ~TF_ONOUTPUTQ;
929 * If we got enough samples through the srtt filter,
930 * save the rtt and rttvar in the routing entry.
931 * 'Enough' is arbitrarily defined as the 16 samples.
932 * 16 samples is enough for the srtt filter to converge
933 * to within 5% of the correct value; fewer samples and
934 * we could save a very bogus rtt.
936 * Don't update the default route's characteristics and don't
937 * update anything that the user "locked".
939 if (tp->t_rttupdated >= 16) {
940 u_long i = 0;
942 if (isipv6) {
943 struct sockaddr_in6 *sin6;
945 if ((rt = inp->in6p_route.ro_rt) == NULL)
946 goto no_valid_rt;
947 sin6 = (struct sockaddr_in6 *)rt_key(rt);
948 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
949 goto no_valid_rt;
950 } else
951 if ((rt = inp->inp_route.ro_rt) == NULL ||
952 ((struct sockaddr_in *)rt_key(rt))->
953 sin_addr.s_addr == INADDR_ANY)
954 goto no_valid_rt;
956 if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
957 i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
958 if (rt->rt_rmx.rmx_rtt && i)
960 * filter this update to half the old & half
961 * the new values, converting scale.
962 * See route.h and tcp_var.h for a
963 * description of the scaling constants.
965 rt->rt_rmx.rmx_rtt =
966 (rt->rt_rmx.rmx_rtt + i) / 2;
967 else
968 rt->rt_rmx.rmx_rtt = i;
969 tcpstat.tcps_cachedrtt++;
971 if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
972 i = tp->t_rttvar *
973 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
974 if (rt->rt_rmx.rmx_rttvar && i)
975 rt->rt_rmx.rmx_rttvar =
976 (rt->rt_rmx.rmx_rttvar + i) / 2;
977 else
978 rt->rt_rmx.rmx_rttvar = i;
979 tcpstat.tcps_cachedrttvar++;
982 * The old comment here said:
983 * update the pipelimit (ssthresh) if it has been updated
984 * already or if a pipesize was specified & the threshhold
985 * got below half the pipesize. I.e., wait for bad news
986 * before we start updating, then update on both good
987 * and bad news.
989 * But we want to save the ssthresh even if no pipesize is
990 * specified explicitly in the route, because such
991 * connections still have an implicit pipesize specified
992 * by the global tcp_sendspace. In the absence of a reliable
993 * way to calculate the pipesize, it will have to do.
995 i = tp->snd_ssthresh;
996 if (rt->rt_rmx.rmx_sendpipe != 0)
997 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
998 else
999 dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
1000 if (dosavessthresh ||
1001 (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
1002 (rt->rt_rmx.rmx_ssthresh != 0))) {
1004 * convert the limit from user data bytes to
1005 * packets then to packet data bytes.
1007 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1008 if (i < 2)
1009 i = 2;
1010 i *= tp->t_maxseg +
1011 (isipv6 ?
1012 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1013 sizeof(struct tcpiphdr));
1014 if (rt->rt_rmx.rmx_ssthresh)
1015 rt->rt_rmx.rmx_ssthresh =
1016 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1017 else
1018 rt->rt_rmx.rmx_ssthresh = i;
1019 tcpstat.tcps_cachedssthresh++;
1023 no_valid_rt:
1024 /* free the reassembly queue, if any */
1025 while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1026 TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1027 m_freem(q->tqe_m);
1028 kfree(q, M_TSEGQ);
1029 atomic_add_int(&tcp_reass_qsize, -1);
1031 /* throw away SACK blocks in scoreboard*/
1032 if (TCP_DO_SACK(tp))
1033 tcp_sack_destroy(&tp->scb);
1035 inp->inp_ppcb = NULL;
1036 soisdisconnected(so);
1037 /* note: pcb detached later on */
1039 tcp_destroy_timermsg(tp);
1040 tcp_output_cancel(tp);
1042 if (tp->t_flags & TF_LISTEN) {
1043 syncache_destroy(tp, tp_inh);
1044 if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1046 * Pending sockets inheritance only needs
1047 * to be done once in the current thread,
1048 * i.e. netisr0.
1050 soinherit(so, inp_inh->inp_socket);
1054 so_async_rcvd_drop(so);
1055 /* Drop the reference for the asynchronized pru_rcvd */
1056 sofree(so);
1059 * NOTE:
1060 * pcbdetach removes any wildcard hash entry on the current CPU.
1062 #ifdef INET6
1063 if (isipv6)
1064 in6_pcbdetach(inp);
1065 else
1066 #endif
1067 in_pcbdetach(inp);
1069 tcpstat.tcps_closed++;
1070 return (NULL);
1073 static __inline void
1074 tcp_drain_oncpu(struct inpcbinfo *pcbinfo)
1076 struct inpcbhead *head = &pcbinfo->pcblisthead;
1077 struct inpcb *inpb;
1080 * Since we run in netisr, it is MP safe, even if
1081 * we block during the inpcb list iteration, i.e.
1082 * we don't need to use inpcb marker here.
1084 ASSERT_IN_NETISR(pcbinfo->cpu);
1086 LIST_FOREACH(inpb, head, inp_list) {
1087 struct tcpcb *tcpb;
1088 struct tseg_qent *te;
1090 if (inpb->inp_flags & INP_PLACEMARKER)
1091 continue;
1093 tcpb = intotcpcb(inpb);
1094 KASSERT(tcpb != NULL, ("tcp_drain_oncpu: tcpb is NULL"));
1096 if ((te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1097 TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1098 if (te->tqe_th->th_flags & TH_FIN)
1099 tcpb->t_flags &= ~TF_QUEDFIN;
1100 m_freem(te->tqe_m);
1101 kfree(te, M_TSEGQ);
1102 atomic_add_int(&tcp_reass_qsize, -1);
1103 /* retry */
1108 static void
1109 tcp_drain_dispatch(netmsg_t nmsg)
1111 crit_enter();
1112 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */
1113 crit_exit();
1115 tcp_drain_oncpu(&tcbinfo[mycpuid]);
1118 static void
1119 tcp_drain_ipi(void *arg __unused)
1121 int cpu = mycpuid;
1122 struct lwkt_msg *msg = &tcp_drain_netmsg[cpu].lmsg;
1124 crit_enter();
1125 if (msg->ms_flags & MSGF_DONE)
1126 lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1127 crit_exit();
1130 void
1131 tcp_drain(void)
1133 cpumask_t mask;
1135 if (!do_tcpdrain)
1136 return;
1139 * Walk the tcpbs, if existing, and flush the reassembly queue,
1140 * if there is one...
1141 * XXX: The "Net/3" implementation doesn't imply that the TCP
1142 * reassembly queue should be flushed, but in a situation
1143 * where we're really low on mbufs, this is potentially
1144 * useful.
1145 * YYY: We may consider run tcp_drain_oncpu directly here,
1146 * however, that will require M_WAITOK memory allocation
1147 * for the inpcb marker.
1149 CPUMASK_ASSBMASK(mask, ncpus2);
1150 CPUMASK_ANDMASK(mask, smp_active_mask);
1151 if (CPUMASK_TESTNZERO(mask))
1152 lwkt_send_ipiq_mask(mask, tcp_drain_ipi, NULL);
1156 * Notify a tcp user of an asynchronous error;
1157 * store error as soft error, but wake up user
1158 * (for now, won't do anything until can select for soft error).
1160 * Do not wake up user since there currently is no mechanism for
1161 * reporting soft errors (yet - a kqueue filter may be added).
1163 static void
1164 tcp_notify(struct inpcb *inp, int error)
1166 struct tcpcb *tp = intotcpcb(inp);
1169 * Ignore some errors if we are hooked up.
1170 * If connection hasn't completed, has retransmitted several times,
1171 * and receives a second error, give up now. This is better
1172 * than waiting a long time to establish a connection that
1173 * can never complete.
1175 if (tp->t_state == TCPS_ESTABLISHED &&
1176 (error == EHOSTUNREACH || error == ENETUNREACH ||
1177 error == EHOSTDOWN)) {
1178 return;
1179 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1180 tp->t_softerror)
1181 tcp_drop(tp, error);
1182 else
1183 tp->t_softerror = error;
1184 #if 0
1185 wakeup(&so->so_timeo);
1186 sorwakeup(so);
1187 sowwakeup(so);
1188 #endif
1191 static int
1192 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1194 int error, i, n;
1195 struct inpcb *marker;
1196 struct inpcb *inp;
1197 int origcpu, ccpu;
1199 error = 0;
1200 n = 0;
1203 * The process of preparing the TCB list is too time-consuming and
1204 * resource-intensive to repeat twice on every request.
1206 if (req->oldptr == NULL) {
1207 for (ccpu = 0; ccpu < ncpus2; ++ccpu)
1208 n += tcbinfo[ccpu].ipi_count;
1209 req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1210 return (0);
1213 if (req->newptr != NULL)
1214 return (EPERM);
1216 marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1217 marker->inp_flags |= INP_PLACEMARKER;
1220 * OK, now we're committed to doing something. Run the inpcb list
1221 * for each cpu in the system and construct the output. Use a
1222 * list placemarker to deal with list changes occuring during
1223 * copyout blockages (but otherwise depend on being on the correct
1224 * cpu to avoid races).
1226 origcpu = mycpu->gd_cpuid;
1227 for (ccpu = 0; ccpu < ncpus2 && error == 0; ++ccpu) {
1228 caddr_t inp_ppcb;
1229 struct xtcpcb xt;
1231 lwkt_migratecpu(ccpu);
1233 n = tcbinfo[ccpu].ipi_count;
1235 LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1236 i = 0;
1237 while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1239 * process a snapshot of pcbs, ignoring placemarkers
1240 * and using our own to allow SYSCTL_OUT to block.
1242 LIST_REMOVE(marker, inp_list);
1243 LIST_INSERT_AFTER(inp, marker, inp_list);
1245 if (inp->inp_flags & INP_PLACEMARKER)
1246 continue;
1247 if (prison_xinpcb(req->td, inp))
1248 continue;
1250 xt.xt_len = sizeof xt;
1251 bcopy(inp, &xt.xt_inp, sizeof *inp);
1252 inp_ppcb = inp->inp_ppcb;
1253 if (inp_ppcb != NULL)
1254 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1255 else
1256 bzero(&xt.xt_tp, sizeof xt.xt_tp);
1257 if (inp->inp_socket)
1258 sotoxsocket(inp->inp_socket, &xt.xt_socket);
1259 if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1260 break;
1261 ++i;
1263 LIST_REMOVE(marker, inp_list);
1264 if (error == 0 && i < n) {
1265 bzero(&xt, sizeof xt);
1266 xt.xt_len = sizeof xt;
1267 while (i < n) {
1268 error = SYSCTL_OUT(req, &xt, sizeof xt);
1269 if (error)
1270 break;
1271 ++i;
1277 * Make sure we are on the same cpu we were on originally, since
1278 * higher level callers expect this. Also don't pollute caches with
1279 * migrated userland data by (eventually) returning to userland
1280 * on a different cpu.
1282 lwkt_migratecpu(origcpu);
1283 kfree(marker, M_TEMP);
1284 return (error);
1287 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1288 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1290 static int
1291 tcp_getcred(SYSCTL_HANDLER_ARGS)
1293 struct sockaddr_in addrs[2];
1294 struct ucred cred0, *cred = NULL;
1295 struct inpcb *inp;
1296 int cpu, origcpu, error;
1298 error = priv_check(req->td, PRIV_ROOT);
1299 if (error != 0)
1300 return (error);
1301 error = SYSCTL_IN(req, addrs, sizeof addrs);
1302 if (error != 0)
1303 return (error);
1305 origcpu = mycpuid;
1306 cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1307 addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1309 lwkt_migratecpu(cpu);
1311 inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1312 addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1313 if (inp == NULL || inp->inp_socket == NULL) {
1314 error = ENOENT;
1315 } else if (inp->inp_socket->so_cred != NULL) {
1316 cred0 = *(inp->inp_socket->so_cred);
1317 cred = &cred0;
1320 lwkt_migratecpu(origcpu);
1322 if (error)
1323 return (error);
1325 return SYSCTL_OUT(req, cred, sizeof(struct ucred));
1328 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1329 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1331 #ifdef INET6
1332 static int
1333 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1335 struct sockaddr_in6 addrs[2];
1336 struct inpcb *inp;
1337 int error;
1339 error = priv_check(req->td, PRIV_ROOT);
1340 if (error != 0)
1341 return (error);
1342 error = SYSCTL_IN(req, addrs, sizeof addrs);
1343 if (error != 0)
1344 return (error);
1345 crit_enter();
1346 inp = in6_pcblookup_hash(&tcbinfo[0],
1347 &addrs[1].sin6_addr, addrs[1].sin6_port,
1348 &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1349 if (inp == NULL || inp->inp_socket == NULL) {
1350 error = ENOENT;
1351 goto out;
1353 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1354 out:
1355 crit_exit();
1356 return (error);
1359 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1360 0, 0,
1361 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1362 #endif
1364 struct netmsg_tcp_notify {
1365 struct netmsg_base base;
1366 inp_notify_t nm_notify;
1367 struct in_addr nm_faddr;
1368 int nm_arg;
1371 static void
1372 tcp_notifyall_oncpu(netmsg_t msg)
1374 struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1375 int nextcpu;
1377 in_pcbnotifyall(&tcbinfo[mycpuid], nm->nm_faddr,
1378 nm->nm_arg, nm->nm_notify);
1380 nextcpu = mycpuid + 1;
1381 if (nextcpu < ncpus2)
1382 lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1383 else
1384 lwkt_replymsg(&nm->base.lmsg, 0);
1387 inp_notify_t
1388 tcp_get_inpnotify(int cmd, const struct sockaddr *sa,
1389 int *arg, struct ip **ip0, int *cpuid)
1391 struct ip *ip = *ip0;
1392 struct in_addr faddr;
1393 inp_notify_t notify = tcp_notify;
1395 faddr = ((const struct sockaddr_in *)sa)->sin_addr;
1396 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1397 return NULL;
1399 *arg = inetctlerrmap[cmd];
1400 if (cmd == PRC_QUENCH) {
1401 notify = tcp_quench;
1402 } else if (icmp_may_rst &&
1403 (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1404 cmd == PRC_UNREACH_PORT ||
1405 cmd == PRC_TIMXCEED_INTRANS) &&
1406 ip != NULL) {
1407 notify = tcp_drop_syn_sent;
1408 } else if (cmd == PRC_MSGSIZE) {
1409 const struct icmp *icmp = (const struct icmp *)
1410 ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1412 *arg = ntohs(icmp->icmp_nextmtu);
1413 notify = tcp_mtudisc;
1414 } else if (PRC_IS_REDIRECT(cmd)) {
1415 ip = NULL;
1416 notify = in_rtchange;
1417 } else if (cmd == PRC_HOSTDEAD) {
1418 ip = NULL;
1419 } else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1420 return NULL;
1423 if (cpuid != NULL) {
1424 if (ip == NULL) {
1425 /* Go through all CPUs */
1426 *cpuid = ncpus;
1427 } else {
1428 const struct tcphdr *th;
1430 th = (const struct tcphdr *)
1431 ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1432 *cpuid = tcp_addrcpu(faddr.s_addr, th->th_dport,
1433 ip->ip_src.s_addr, th->th_sport);
1437 *ip0 = ip;
1438 return notify;
1441 void
1442 tcp_ctlinput(netmsg_t msg)
1444 int cmd = msg->ctlinput.nm_cmd;
1445 struct sockaddr *sa = msg->ctlinput.nm_arg;
1446 struct ip *ip = msg->ctlinput.nm_extra;
1447 struct in_addr faddr;
1448 inp_notify_t notify;
1449 int arg, cpuid;
1451 notify = tcp_get_inpnotify(cmd, sa, &arg, &ip, &cpuid);
1452 if (notify == NULL)
1453 goto done;
1455 faddr = ((struct sockaddr_in *)sa)->sin_addr;
1456 if (ip != NULL) {
1457 const struct tcphdr *th;
1458 struct inpcb *inp;
1460 if (cpuid != mycpuid)
1461 goto done;
1463 th = (const struct tcphdr *)
1464 ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1465 inp = in_pcblookup_hash(&tcbinfo[mycpuid], faddr, th->th_dport,
1466 ip->ip_src, th->th_sport, 0, NULL);
1467 if (inp != NULL && inp->inp_socket != NULL) {
1468 tcp_seq icmpseq = htonl(th->th_seq);
1469 struct tcpcb *tp = intotcpcb(inp);
1471 if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1472 SEQ_LT(icmpseq, tp->snd_max))
1473 notify(inp, arg);
1474 } else {
1475 struct in_conninfo inc;
1477 inc.inc_fport = th->th_dport;
1478 inc.inc_lport = th->th_sport;
1479 inc.inc_faddr = faddr;
1480 inc.inc_laddr = ip->ip_src;
1481 #ifdef INET6
1482 inc.inc_isipv6 = 0;
1483 #endif
1484 syncache_unreach(&inc, th);
1486 } else if (msg->ctlinput.nm_direct) {
1487 if (cpuid != ncpus && cpuid != mycpuid)
1488 goto done;
1489 if (mycpuid >= ncpus2)
1490 goto done;
1492 in_pcbnotifyall(&tcbinfo[mycpuid], faddr, arg, notify);
1493 } else {
1494 struct netmsg_tcp_notify *nm;
1496 ASSERT_IN_NETISR(0);
1497 nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1498 netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1499 0, tcp_notifyall_oncpu);
1500 nm->nm_faddr = faddr;
1501 nm->nm_arg = arg;
1502 nm->nm_notify = notify;
1504 lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1506 done:
1507 lwkt_replymsg(&msg->lmsg, 0);
1510 #ifdef INET6
1512 void
1513 tcp6_ctlinput(netmsg_t msg)
1515 int cmd = msg->ctlinput.nm_cmd;
1516 struct sockaddr *sa = msg->ctlinput.nm_arg;
1517 void *d = msg->ctlinput.nm_extra;
1518 struct tcphdr th;
1519 inp_notify_t notify = tcp_notify;
1520 struct ip6_hdr *ip6;
1521 struct mbuf *m;
1522 struct ip6ctlparam *ip6cp = NULL;
1523 const struct sockaddr_in6 *sa6_src = NULL;
1524 int off;
1525 struct tcp_portonly {
1526 u_int16_t th_sport;
1527 u_int16_t th_dport;
1528 } *thp;
1529 int arg;
1531 if (sa->sa_family != AF_INET6 ||
1532 sa->sa_len != sizeof(struct sockaddr_in6)) {
1533 goto out;
1536 arg = 0;
1537 if (cmd == PRC_QUENCH)
1538 notify = tcp_quench;
1539 else if (cmd == PRC_MSGSIZE) {
1540 struct ip6ctlparam *ip6cp = d;
1541 struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1543 arg = ntohl(icmp6->icmp6_mtu);
1544 notify = tcp_mtudisc;
1545 } else if (!PRC_IS_REDIRECT(cmd) &&
1546 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1547 goto out;
1550 /* if the parameter is from icmp6, decode it. */
1551 if (d != NULL) {
1552 ip6cp = (struct ip6ctlparam *)d;
1553 m = ip6cp->ip6c_m;
1554 ip6 = ip6cp->ip6c_ip6;
1555 off = ip6cp->ip6c_off;
1556 sa6_src = ip6cp->ip6c_src;
1557 } else {
1558 m = NULL;
1559 ip6 = NULL;
1560 off = 0; /* fool gcc */
1561 sa6_src = &sa6_any;
1564 if (ip6 != NULL) {
1565 struct in_conninfo inc;
1567 * XXX: We assume that when IPV6 is non NULL,
1568 * M and OFF are valid.
1571 /* check if we can safely examine src and dst ports */
1572 if (m->m_pkthdr.len < off + sizeof *thp)
1573 goto out;
1575 bzero(&th, sizeof th);
1576 m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1578 in6_pcbnotify(&tcbinfo[0], sa, th.th_dport,
1579 (struct sockaddr *)ip6cp->ip6c_src,
1580 th.th_sport, cmd, arg, notify);
1582 inc.inc_fport = th.th_dport;
1583 inc.inc_lport = th.th_sport;
1584 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1585 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1586 inc.inc_isipv6 = 1;
1587 syncache_unreach(&inc, &th);
1588 } else {
1589 in6_pcbnotify(&tcbinfo[0], sa, 0,
1590 (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1592 out:
1593 lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1596 #endif
1599 * Following is where TCP initial sequence number generation occurs.
1601 * There are two places where we must use initial sequence numbers:
1602 * 1. In SYN-ACK packets.
1603 * 2. In SYN packets.
1605 * All ISNs for SYN-ACK packets are generated by the syncache. See
1606 * tcp_syncache.c for details.
1608 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1609 * depends on this property. In addition, these ISNs should be
1610 * unguessable so as to prevent connection hijacking. To satisfy
1611 * the requirements of this situation, the algorithm outlined in
1612 * RFC 1948 is used to generate sequence numbers.
1614 * Implementation details:
1616 * Time is based off the system timer, and is corrected so that it
1617 * increases by one megabyte per second. This allows for proper
1618 * recycling on high speed LANs while still leaving over an hour
1619 * before rollover.
1621 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1622 * between seeding of isn_secret. This is normally set to zero,
1623 * as reseeding should not be necessary.
1627 #define ISN_BYTES_PER_SECOND 1048576
1629 u_char isn_secret[32];
1630 int isn_last_reseed;
1631 MD5_CTX isn_ctx;
1633 tcp_seq
1634 tcp_new_isn(struct tcpcb *tp)
1636 u_int32_t md5_buffer[4];
1637 tcp_seq new_isn;
1639 /* Seed if this is the first use, reseed if requested. */
1640 if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1641 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1642 < (u_int)ticks))) {
1643 read_random_unlimited(&isn_secret, sizeof isn_secret);
1644 isn_last_reseed = ticks;
1647 /* Compute the md5 hash and return the ISN. */
1648 MD5Init(&isn_ctx);
1649 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1650 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1651 #ifdef INET6
1652 if (INP_ISIPV6(tp->t_inpcb)) {
1653 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1654 sizeof(struct in6_addr));
1655 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1656 sizeof(struct in6_addr));
1657 } else
1658 #endif
1660 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1661 sizeof(struct in_addr));
1662 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1663 sizeof(struct in_addr));
1665 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1666 MD5Final((u_char *) &md5_buffer, &isn_ctx);
1667 new_isn = (tcp_seq) md5_buffer[0];
1668 new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1669 return (new_isn);
1673 * When a source quench is received, close congestion window
1674 * to one segment. We will gradually open it again as we proceed.
1676 void
1677 tcp_quench(struct inpcb *inp, int error)
1679 struct tcpcb *tp = intotcpcb(inp);
1681 KASSERT(tp != NULL, ("tcp_quench: tp is NULL"));
1682 tp->snd_cwnd = tp->t_maxseg;
1683 tp->snd_wacked = 0;
1687 * When a specific ICMP unreachable message is received and the
1688 * connection state is SYN-SENT, drop the connection. This behavior
1689 * is controlled by the icmp_may_rst sysctl.
1691 void
1692 tcp_drop_syn_sent(struct inpcb *inp, int error)
1694 struct tcpcb *tp = intotcpcb(inp);
1696 KASSERT(tp != NULL, ("tcp_drop_syn_sent: tp is NULL"));
1697 if (tp->t_state == TCPS_SYN_SENT)
1698 tcp_drop(tp, error);
1702 * When a `need fragmentation' ICMP is received, update our idea of the MSS
1703 * based on the new value in the route. Also nudge TCP to send something,
1704 * since we know the packet we just sent was dropped.
1705 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1707 void
1708 tcp_mtudisc(struct inpcb *inp, int mtu)
1710 struct tcpcb *tp = intotcpcb(inp);
1711 struct rtentry *rt;
1712 struct socket *so = inp->inp_socket;
1713 int maxopd, mss;
1714 #ifdef INET6
1715 boolean_t isipv6 = INP_ISIPV6(inp);
1716 #else
1717 const boolean_t isipv6 = FALSE;
1718 #endif
1720 KASSERT(tp != NULL, ("tcp_mtudisc: tp is NULL"));
1723 * If no MTU is provided in the ICMP message, use the
1724 * next lower likely value, as specified in RFC 1191.
1726 if (mtu == 0) {
1727 int oldmtu;
1729 oldmtu = tp->t_maxopd +
1730 (isipv6 ?
1731 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1732 sizeof(struct tcpiphdr));
1733 mtu = ip_next_mtu(oldmtu, 0);
1736 if (isipv6)
1737 rt = tcp_rtlookup6(&inp->inp_inc);
1738 else
1739 rt = tcp_rtlookup(&inp->inp_inc);
1740 if (rt != NULL) {
1741 if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1742 mtu = rt->rt_rmx.rmx_mtu;
1744 maxopd = mtu -
1745 (isipv6 ?
1746 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1747 sizeof(struct tcpiphdr));
1750 * XXX - The following conditional probably violates the TCP
1751 * spec. The problem is that, since we don't know the
1752 * other end's MSS, we are supposed to use a conservative
1753 * default. But, if we do that, then MTU discovery will
1754 * never actually take place, because the conservative
1755 * default is much less than the MTUs typically seen
1756 * on the Internet today. For the moment, we'll sweep
1757 * this under the carpet.
1759 * The conservative default might not actually be a problem
1760 * if the only case this occurs is when sending an initial
1761 * SYN with options and data to a host we've never talked
1762 * to before. Then, they will reply with an MSS value which
1763 * will get recorded and the new parameters should get
1764 * recomputed. For Further Study.
1766 if (rt->rt_rmx.rmx_mssopt && rt->rt_rmx.rmx_mssopt < maxopd)
1767 maxopd = rt->rt_rmx.rmx_mssopt;
1768 } else
1769 maxopd = mtu -
1770 (isipv6 ?
1771 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1772 sizeof(struct tcpiphdr));
1774 if (tp->t_maxopd <= maxopd)
1775 return;
1776 tp->t_maxopd = maxopd;
1778 mss = maxopd;
1779 if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1780 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1781 mss -= TCPOLEN_TSTAMP_APPA;
1783 /* round down to multiple of MCLBYTES */
1784 #if (MCLBYTES & (MCLBYTES - 1)) == 0 /* test if MCLBYTES power of 2 */
1785 if (mss > MCLBYTES)
1786 mss &= ~(MCLBYTES - 1);
1787 #else
1788 if (mss > MCLBYTES)
1789 mss = (mss / MCLBYTES) * MCLBYTES;
1790 #endif
1792 if (so->so_snd.ssb_hiwat < mss)
1793 mss = so->so_snd.ssb_hiwat;
1795 tp->t_maxseg = mss;
1796 tp->t_rtttime = 0;
1797 tp->snd_nxt = tp->snd_una;
1798 tcp_output(tp);
1799 tcpstat.tcps_mturesent++;
1803 * Look-up the routing entry to the peer of this inpcb. If no route
1804 * is found and it cannot be allocated the return NULL. This routine
1805 * is called by TCP routines that access the rmx structure and by tcp_mss
1806 * to get the interface MTU.
1808 struct rtentry *
1809 tcp_rtlookup(struct in_conninfo *inc)
1811 struct route *ro = &inc->inc_route;
1813 if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1814 /* No route yet, so try to acquire one */
1815 if (inc->inc_faddr.s_addr != INADDR_ANY) {
1817 * unused portions of the structure MUST be zero'd
1818 * out because rtalloc() treats it as opaque data
1820 bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1821 ro->ro_dst.sa_family = AF_INET;
1822 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1823 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1824 inc->inc_faddr;
1825 rtalloc(ro);
1828 return (ro->ro_rt);
1831 #ifdef INET6
1832 struct rtentry *
1833 tcp_rtlookup6(struct in_conninfo *inc)
1835 struct route_in6 *ro6 = &inc->inc6_route;
1837 if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1838 /* No route yet, so try to acquire one */
1839 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1841 * unused portions of the structure MUST be zero'd
1842 * out because rtalloc() treats it as opaque data
1844 bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1845 ro6->ro_dst.sin6_family = AF_INET6;
1846 ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1847 ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1848 rtalloc((struct route *)ro6);
1851 return (ro6->ro_rt);
1853 #endif
1855 #ifdef IPSEC
1856 /* compute ESP/AH header size for TCP, including outer IP header. */
1857 size_t
1858 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1860 struct inpcb *inp;
1861 struct mbuf *m;
1862 size_t hdrsiz;
1863 struct ip *ip;
1864 struct tcphdr *th;
1866 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1867 return (0);
1868 MGETHDR(m, M_NOWAIT, MT_DATA);
1869 if (!m)
1870 return (0);
1872 #ifdef INET6
1873 if (INP_ISIPV6(inp)) {
1874 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1876 th = (struct tcphdr *)(ip6 + 1);
1877 m->m_pkthdr.len = m->m_len =
1878 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1879 tcp_fillheaders(tp, ip6, th, FALSE);
1880 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1881 } else
1882 #endif
1884 ip = mtod(m, struct ip *);
1885 th = (struct tcphdr *)(ip + 1);
1886 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1887 tcp_fillheaders(tp, ip, th, FALSE);
1888 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1891 m_free(m);
1892 return (hdrsiz);
1894 #endif
1897 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1899 * This code attempts to calculate the bandwidth-delay product as a
1900 * means of determining the optimal window size to maximize bandwidth,
1901 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1902 * routers. This code also does a fairly good job keeping RTTs in check
1903 * across slow links like modems. We implement an algorithm which is very
1904 * similar (but not meant to be) TCP/Vegas. The code operates on the
1905 * transmitter side of a TCP connection and so only effects the transmit
1906 * side of the connection.
1908 * BACKGROUND: TCP makes no provision for the management of buffer space
1909 * at the end points or at the intermediate routers and switches. A TCP
1910 * stream, whether using NewReno or not, will eventually buffer as
1911 * many packets as it is able and the only reason this typically works is
1912 * due to the fairly small default buffers made available for a connection
1913 * (typicaly 16K or 32K). As machines use larger windows and/or window
1914 * scaling it is now fairly easy for even a single TCP connection to blow-out
1915 * all available buffer space not only on the local interface, but on
1916 * intermediate routers and switches as well. NewReno makes a misguided
1917 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1918 * then backing off, then steadily increasing the window again until another
1919 * failure occurs, ad-infinitum. This results in terrible oscillation that
1920 * is only made worse as network loads increase and the idea of intentionally
1921 * blowing out network buffers is, frankly, a terrible way to manage network
1922 * resources.
1924 * It is far better to limit the transmit window prior to the failure
1925 * condition being achieved. There are two general ways to do this: First
1926 * you can 'scan' through different transmit window sizes and locate the
1927 * point where the RTT stops increasing, indicating that you have filled the
1928 * pipe, then scan backwards until you note that RTT stops decreasing, then
1929 * repeat ad-infinitum. This method works in principle but has severe
1930 * implementation issues due to RTT variances, timer granularity, and
1931 * instability in the algorithm which can lead to many false positives and
1932 * create oscillations as well as interact badly with other TCP streams
1933 * implementing the same algorithm.
1935 * The second method is to limit the window to the bandwidth delay product
1936 * of the link. This is the method we implement. RTT variances and our
1937 * own manipulation of the congestion window, bwnd, can potentially
1938 * destabilize the algorithm. For this reason we have to stabilize the
1939 * elements used to calculate the window. We do this by using the minimum
1940 * observed RTT, the long term average of the observed bandwidth, and
1941 * by adding two segments worth of slop. It isn't perfect but it is able
1942 * to react to changing conditions and gives us a very stable basis on
1943 * which to extend the algorithm.
1945 void
1946 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1948 u_long bw;
1949 u_long ibw;
1950 u_long bwnd;
1951 int save_ticks;
1952 int delta_ticks;
1955 * If inflight_enable is disabled in the middle of a tcp connection,
1956 * make sure snd_bwnd is effectively disabled.
1958 if (!tcp_inflight_enable) {
1959 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1960 tp->snd_bandwidth = 0;
1961 return;
1965 * Validate the delta time. If a connection is new or has been idle
1966 * a long time we have to reset the bandwidth calculator.
1968 save_ticks = ticks;
1969 cpu_ccfence();
1970 delta_ticks = save_ticks - tp->t_bw_rtttime;
1971 if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1972 tp->t_bw_rtttime = save_ticks;
1973 tp->t_bw_rtseq = ack_seq;
1974 if (tp->snd_bandwidth == 0)
1975 tp->snd_bandwidth = tcp_inflight_start;
1976 return;
1980 * A delta of at least 1 tick is required. Waiting 2 ticks will
1981 * result in better (bw) accuracy. More than that and the ramp-up
1982 * will be too slow.
1984 if (delta_ticks == 0 || delta_ticks == 1)
1985 return;
1988 * Sanity check, plus ignore pure window update acks.
1990 if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1991 return;
1994 * Figure out the bandwidth. Due to the tick granularity this
1995 * is a very rough number and it MUST be averaged over a fairly
1996 * long period of time. XXX we need to take into account a link
1997 * that is not using all available bandwidth, but for now our
1998 * slop will ramp us up if this case occurs and the bandwidth later
1999 * increases.
2001 ibw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
2002 tp->t_bw_rtttime = save_ticks;
2003 tp->t_bw_rtseq = ack_seq;
2004 bw = ((int64_t)tp->snd_bandwidth * 15 + ibw) >> 4;
2006 tp->snd_bandwidth = bw;
2009 * Calculate the semi-static bandwidth delay product, plus two maximal
2010 * segments. The additional slop puts us squarely in the sweet
2011 * spot and also handles the bandwidth run-up case. Without the
2012 * slop we could be locking ourselves into a lower bandwidth.
2014 * At very high speeds the bw calculation can become overly sensitive
2015 * and error prone when delta_ticks is low (e.g. usually 1). To deal
2016 * with the problem the stab must be scaled to the bw. A stab of 50
2017 * (the default) increases the bw for the purposes of the bwnd
2018 * calculation by 5%.
2020 * Situations Handled:
2021 * (1) Prevents over-queueing of packets on LANs, especially on
2022 * high speed LANs, allowing larger TCP buffers to be
2023 * specified, and also does a good job preventing
2024 * over-queueing of packets over choke points like modems
2025 * (at least for the transmit side).
2027 * (2) Is able to handle changing network loads (bandwidth
2028 * drops so bwnd drops, bandwidth increases so bwnd
2029 * increases).
2031 * (3) Theoretically should stabilize in the face of multiple
2032 * connections implementing the same algorithm (this may need
2033 * a little work).
2035 * (4) Stability value (defaults to 20 = 2 maximal packets) can
2036 * be adjusted with a sysctl but typically only needs to be on
2037 * very slow connections. A value no smaller then 5 should
2038 * be used, but only reduce this default if you have no other
2039 * choice.
2042 #define USERTT ((tp->t_srtt + tp->t_rttvar) + tcp_inflight_adjrtt)
2043 bw += bw * tcp_inflight_stab / 1000;
2044 bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2045 (int)tp->t_maxseg * 2;
2046 #undef USERTT
2048 if (tcp_inflight_debug > 0) {
2049 static int ltime;
2050 if ((u_int)(save_ticks - ltime) >= hz / tcp_inflight_debug) {
2051 ltime = save_ticks;
2052 kprintf("%p ibw %ld bw %ld rttvar %d srtt %d "
2053 "bwnd %ld delta %d snd_win %ld\n",
2054 tp, ibw, bw, tp->t_rttvar, tp->t_srtt,
2055 bwnd, delta_ticks, tp->snd_wnd);
2058 if ((long)bwnd < tcp_inflight_min)
2059 bwnd = tcp_inflight_min;
2060 if (bwnd > tcp_inflight_max)
2061 bwnd = tcp_inflight_max;
2062 if ((long)bwnd < tp->t_maxseg * 2)
2063 bwnd = tp->t_maxseg * 2;
2064 tp->snd_bwnd = bwnd;
2067 static void
2068 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2070 struct rtentry *rt;
2071 struct inpcb *inp = tp->t_inpcb;
2072 #ifdef INET6
2073 boolean_t isipv6 = INP_ISIPV6(inp);
2074 #else
2075 const boolean_t isipv6 = FALSE;
2076 #endif
2078 /* XXX */
2079 if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2080 tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2081 if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2082 tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2084 if (isipv6)
2085 rt = tcp_rtlookup6(&inp->inp_inc);
2086 else
2087 rt = tcp_rtlookup(&inp->inp_inc);
2088 if (rt == NULL ||
2089 rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2090 rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2091 *maxsegs = tcp_iw_maxsegs;
2092 *capsegs = tcp_iw_capsegs;
2093 return;
2095 *maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2096 *capsegs = rt->rt_rmx.rmx_iwcapsegs;
2099 u_long
2100 tcp_initial_window(struct tcpcb *tp)
2102 if (tcp_do_rfc3390) {
2104 * RFC3390:
2105 * "If the SYN or SYN/ACK is lost, the initial window
2106 * used by a sender after a correctly transmitted SYN
2107 * MUST be one segment consisting of MSS bytes."
2109 * However, we do something a little bit more aggressive
2110 * then RFC3390 here:
2111 * - Only if time spent in the SYN or SYN|ACK retransmition
2112 * >= 3 seconds, the IW is reduced. We do this mainly
2113 * because when RFC3390 is published, the initial RTO is
2114 * still 3 seconds (the threshold we test here), while
2115 * after RFC6298, the initial RTO is 1 second. This
2116 * behaviour probably still falls within the spirit of
2117 * RFC3390.
2118 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2119 * Mainly to avoid sender and receiver deadlock until
2120 * delayed ACK timer expires. And even RFC2581 does not
2121 * try to reduce IW upon SYN or SYN|ACK retransmition
2122 * timeout.
2124 * See also:
2125 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2127 if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2128 return (2 * tp->t_maxseg);
2129 } else {
2130 u_long maxsegs, capsegs;
2132 tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2133 return min(maxsegs * tp->t_maxseg,
2134 max(2 * tp->t_maxseg, capsegs * 1460));
2136 } else {
2138 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2140 * Mainly to avoid sender and receiver deadlock
2141 * until delayed ACK timer expires.
2143 return (2 * tp->t_maxseg);
2147 #ifdef TCP_SIGNATURE
2149 * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2151 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2152 * When called from tcp_input(), we can be sure that th_sum has been
2153 * zeroed out and verified already.
2155 * Return 0 if successful, otherwise return -1.
2157 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2158 * search with the destination IP address, and a 'magic SPI' to be
2159 * determined by the application. This is hardcoded elsewhere to 1179
2160 * right now. Another branch of this code exists which uses the SPD to
2161 * specify per-application flows but it is unstable.
2164 tcpsignature_compute(
2165 struct mbuf *m, /* mbuf chain */
2166 int len, /* length of TCP data */
2167 int optlen, /* length of TCP options */
2168 u_char *buf, /* storage for MD5 digest */
2169 u_int direction) /* direction of flow */
2171 struct ippseudo ippseudo;
2172 MD5_CTX ctx;
2173 int doff;
2174 struct ip *ip;
2175 struct ipovly *ipovly;
2176 struct secasvar *sav;
2177 struct tcphdr *th;
2178 #ifdef INET6
2179 struct ip6_hdr *ip6;
2180 struct in6_addr in6;
2181 uint32_t plen;
2182 uint16_t nhdr;
2183 #endif /* INET6 */
2184 u_short savecsum;
2186 KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2187 KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2189 * Extract the destination from the IP header in the mbuf.
2191 ip = mtod(m, struct ip *);
2192 #ifdef INET6
2193 ip6 = NULL; /* Make the compiler happy. */
2194 #endif /* INET6 */
2196 * Look up an SADB entry which matches the address found in
2197 * the segment.
2199 switch (IP_VHL_V(ip->ip_vhl)) {
2200 case IPVERSION:
2201 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2202 IPPROTO_TCP, htonl(TCP_SIG_SPI));
2203 break;
2204 #ifdef INET6
2205 case (IPV6_VERSION >> 4):
2206 ip6 = mtod(m, struct ip6_hdr *);
2207 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2208 IPPROTO_TCP, htonl(TCP_SIG_SPI));
2209 break;
2210 #endif /* INET6 */
2211 default:
2212 return (EINVAL);
2213 /* NOTREACHED */
2214 break;
2216 if (sav == NULL) {
2217 kprintf("%s: SADB lookup failed\n", __func__);
2218 return (EINVAL);
2220 MD5Init(&ctx);
2223 * Step 1: Update MD5 hash with IP pseudo-header.
2225 * XXX The ippseudo header MUST be digested in network byte order,
2226 * or else we'll fail the regression test. Assume all fields we've
2227 * been doing arithmetic on have been in host byte order.
2228 * XXX One cannot depend on ipovly->ih_len here. When called from
2229 * tcp_output(), the underlying ip_len member has not yet been set.
2231 switch (IP_VHL_V(ip->ip_vhl)) {
2232 case IPVERSION:
2233 ipovly = (struct ipovly *)ip;
2234 ippseudo.ippseudo_src = ipovly->ih_src;
2235 ippseudo.ippseudo_dst = ipovly->ih_dst;
2236 ippseudo.ippseudo_pad = 0;
2237 ippseudo.ippseudo_p = IPPROTO_TCP;
2238 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2239 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2240 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2241 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2242 break;
2243 #ifdef INET6
2245 * RFC 2385, 2.0 Proposal
2246 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2247 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2248 * extended next header value (to form 32 bits), and 32-bit segment
2249 * length.
2250 * Note: Upper-Layer Packet Length comes before Next Header.
2252 case (IPV6_VERSION >> 4):
2253 in6 = ip6->ip6_src;
2254 in6_clearscope(&in6);
2255 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2256 in6 = ip6->ip6_dst;
2257 in6_clearscope(&in6);
2258 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2259 plen = htonl(len + sizeof(struct tcphdr) + optlen);
2260 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2261 nhdr = 0;
2262 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2263 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2264 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2265 nhdr = IPPROTO_TCP;
2266 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2267 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2268 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2269 break;
2270 #endif /* INET6 */
2271 default:
2272 return (EINVAL);
2273 /* NOTREACHED */
2274 break;
2277 * Step 2: Update MD5 hash with TCP header, excluding options.
2278 * The TCP checksum must be set to zero.
2280 savecsum = th->th_sum;
2281 th->th_sum = 0;
2282 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2283 th->th_sum = savecsum;
2285 * Step 3: Update MD5 hash with TCP segment data.
2286 * Use m_apply() to avoid an early m_pullup().
2288 if (len > 0)
2289 m_apply(m, doff, len, tcpsignature_apply, &ctx);
2291 * Step 4: Update MD5 hash with shared secret.
2293 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2294 MD5Final(buf, &ctx);
2295 key_sa_recordxfer(sav, m);
2296 key_freesav(sav);
2297 return (0);
2301 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2304 MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2305 return (0);
2307 #endif /* TCP_SIGNATURE */
2309 static void
2310 tcp_drop_sysctl_dispatch(netmsg_t nmsg)
2312 struct lwkt_msg *lmsg = &nmsg->lmsg;
2313 /* addrs[0] is a foreign socket, addrs[1] is a local one. */
2314 struct sockaddr_storage *addrs = lmsg->u.ms_resultp;
2315 int error;
2316 struct sockaddr_in *fin, *lin;
2317 #ifdef INET6
2318 struct sockaddr_in6 *fin6, *lin6;
2319 struct in6_addr f6, l6;
2320 #endif
2321 struct inpcb *inp;
2323 switch (addrs[0].ss_family) {
2324 #ifdef INET6
2325 case AF_INET6:
2326 fin6 = (struct sockaddr_in6 *)&addrs[0];
2327 lin6 = (struct sockaddr_in6 *)&addrs[1];
2328 error = in6_embedscope(&f6, fin6, NULL, NULL);
2329 if (error)
2330 goto done;
2331 error = in6_embedscope(&l6, lin6, NULL, NULL);
2332 if (error)
2333 goto done;
2334 inp = in6_pcblookup_hash(&tcbinfo[mycpuid], &f6,
2335 fin6->sin6_port, &l6, lin6->sin6_port, FALSE, NULL);
2336 break;
2337 #endif
2338 #ifdef INET
2339 case AF_INET:
2340 fin = (struct sockaddr_in *)&addrs[0];
2341 lin = (struct sockaddr_in *)&addrs[1];
2342 inp = in_pcblookup_hash(&tcbinfo[mycpuid], fin->sin_addr,
2343 fin->sin_port, lin->sin_addr, lin->sin_port, FALSE, NULL);
2344 break;
2345 #endif
2346 default:
2348 * Must not reach here, since the address family was
2349 * checked in sysctl handler.
2351 panic("unknown address family %d", addrs[0].ss_family);
2353 if (inp != NULL) {
2354 struct tcpcb *tp = intotcpcb(inp);
2356 KASSERT((inp->inp_flags & INP_WILDCARD) == 0,
2357 ("in wildcard hash"));
2358 KASSERT(tp != NULL, ("tcp_drop_sysctl_dispatch: tp is NULL"));
2359 KASSERT((tp->t_flags & TF_LISTEN) == 0, ("listen socket"));
2360 tcp_drop(tp, ECONNABORTED);
2361 error = 0;
2362 } else {
2363 error = ESRCH;
2365 #ifdef INET6
2366 done:
2367 #endif
2368 lwkt_replymsg(lmsg, error);
2371 static int
2372 sysctl_tcp_drop(SYSCTL_HANDLER_ARGS)
2374 /* addrs[0] is a foreign socket, addrs[1] is a local one. */
2375 struct sockaddr_storage addrs[2];
2376 struct sockaddr_in *fin, *lin;
2377 #ifdef INET6
2378 struct sockaddr_in6 *fin6, *lin6;
2379 #endif
2380 struct netmsg_base nmsg;
2381 struct lwkt_msg *lmsg = &nmsg.lmsg;
2382 struct lwkt_port *port = NULL;
2383 int error;
2385 fin = lin = NULL;
2386 #ifdef INET6
2387 fin6 = lin6 = NULL;
2388 #endif
2389 error = 0;
2391 if (req->oldptr != NULL || req->oldlen != 0)
2392 return (EINVAL);
2393 if (req->newptr == NULL)
2394 return (EPERM);
2395 if (req->newlen < sizeof(addrs))
2396 return (ENOMEM);
2397 error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2398 if (error)
2399 return (error);
2401 switch (addrs[0].ss_family) {
2402 #ifdef INET6
2403 case AF_INET6:
2404 fin6 = (struct sockaddr_in6 *)&addrs[0];
2405 lin6 = (struct sockaddr_in6 *)&addrs[1];
2406 if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2407 lin6->sin6_len != sizeof(struct sockaddr_in6))
2408 return (EINVAL);
2409 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr) ||
2410 IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2411 return (EADDRNOTAVAIL);
2412 #if 0
2413 error = sa6_embedscope(fin6, V_ip6_use_defzone);
2414 if (error)
2415 return (error);
2416 error = sa6_embedscope(lin6, V_ip6_use_defzone);
2417 if (error)
2418 return (error);
2419 #endif
2420 port = tcp6_addrport();
2421 break;
2422 #endif
2423 #ifdef INET
2424 case AF_INET:
2425 fin = (struct sockaddr_in *)&addrs[0];
2426 lin = (struct sockaddr_in *)&addrs[1];
2427 if (fin->sin_len != sizeof(struct sockaddr_in) ||
2428 lin->sin_len != sizeof(struct sockaddr_in))
2429 return (EINVAL);
2430 port = tcp_addrport(fin->sin_addr.s_addr, fin->sin_port,
2431 lin->sin_addr.s_addr, lin->sin_port);
2432 break;
2433 #endif
2434 default:
2435 return (EINVAL);
2438 netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
2439 tcp_drop_sysctl_dispatch);
2440 lmsg->u.ms_resultp = addrs;
2441 return lwkt_domsg(port, lmsg, 0);
2444 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, drop,
2445 CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2446 0, sysctl_tcp_drop, "", "Drop TCP connection");