modules: disable dummy module declarations
[dragonfly.git] / sys / kern / vfs_bio.c
blob3c9d80cae4324b666ece269634843fbd3260a599
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
28 * see man buf(9) for more info.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
68 * Buffer queues.
70 enum bufq_type {
71 BQUEUE_NONE, /* not on any queue */
72 BQUEUE_LOCKED, /* locked buffers */
73 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
74 BQUEUE_DIRTY, /* B_DELWRI buffers */
75 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
76 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */
77 BQUEUE_EMPTY, /* empty buffer headers */
79 BUFFER_QUEUES /* number of buffer queues */
82 typedef enum bufq_type bufq_type_t;
84 #define BD_WAKE_SIZE 128
85 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
87 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
88 struct spinlock bufspin = SPINLOCK_INITIALIZER(&bufspin);
90 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
92 struct buf *buf; /* buffer header pool */
94 static void vfs_clean_pages(struct buf *bp);
95 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
96 static void vfs_vmio_release(struct buf *bp);
97 static int flushbufqueues(bufq_type_t q);
98 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
100 static void bd_signal(int totalspace);
101 static void buf_daemon(void);
102 static void buf_daemon_hw(void);
105 * bogus page -- for I/O to/from partially complete buffers
106 * this is a temporary solution to the problem, but it is not
107 * really that bad. it would be better to split the buffer
108 * for input in the case of buffers partially already in memory,
109 * but the code is intricate enough already.
111 vm_page_t bogus_page;
114 * These are all static, but make the ones we export globals so we do
115 * not need to use compiler magic.
117 int bufspace, maxbufspace,
118 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
119 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
120 static int lorunningspace, hirunningspace, runningbufreq;
121 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
122 int dirtybufcount, dirtybufcounthw;
123 int runningbufspace, runningbufcount;
124 static int getnewbufcalls;
125 static int getnewbufrestarts;
126 static int recoverbufcalls;
127 static int needsbuffer; /* locked by needsbuffer_spin */
128 static int bd_request; /* locked by needsbuffer_spin */
129 static int bd_request_hw; /* locked by needsbuffer_spin */
130 static u_int bd_wake_ary[BD_WAKE_SIZE];
131 static u_int bd_wake_index;
132 static struct spinlock needsbuffer_spin;
134 static struct thread *bufdaemon_td;
135 static struct thread *bufdaemonhw_td;
139 * Sysctls for operational control of the buffer cache.
141 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
142 "Number of dirty buffers to flush before bufdaemon becomes inactive");
143 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
144 "High watermark used to trigger explicit flushing of dirty buffers");
145 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
146 "Minimum amount of buffer space required for active I/O");
147 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
148 "Maximum amount of buffer space to usable for active I/O");
150 * Sysctls determining current state of the buffer cache.
152 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
153 "Total number of buffers in buffer cache");
154 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
155 "Pending bytes of dirty buffers (all)");
156 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
157 "Pending bytes of dirty buffers (heavy weight)");
158 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
159 "Pending number of dirty buffers");
160 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
161 "Pending number of dirty buffers (heavy weight)");
162 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
163 "I/O bytes currently in progress due to asynchronous writes");
164 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
165 "I/O buffers currently in progress due to asynchronous writes");
166 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
167 "Hard limit on maximum amount of memory usable for buffer space");
168 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
169 "Soft limit on maximum amount of memory usable for buffer space");
170 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
171 "Minimum amount of memory to reserve for system buffer space");
172 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
173 "Amount of memory available for buffers");
174 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
175 0, "Maximum amount of memory reserved for buffers using malloc");
176 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
177 "Amount of memory left for buffers using malloc-scheme");
178 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
179 "New buffer header acquisition requests");
180 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
181 0, "New buffer header acquisition restarts");
182 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
183 "Recover VM space in an emergency");
184 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
185 "Buffer acquisition restarts due to fragmented buffer map");
186 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
187 "Amount of time KVA space was deallocated in an arbitrary buffer");
188 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
189 "Amount of time buffer re-use operations were successful");
190 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
191 "sizeof(struct buf)");
193 char *buf_wmesg = BUF_WMESG;
195 extern int vm_swap_size;
197 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
198 #define VFS_BIO_NEED_UNUSED02 0x02
199 #define VFS_BIO_NEED_UNUSED04 0x04
200 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
203 * bufspacewakeup:
205 * Called when buffer space is potentially available for recovery.
206 * getnewbuf() will block on this flag when it is unable to free
207 * sufficient buffer space. Buffer space becomes recoverable when
208 * bp's get placed back in the queues.
211 static __inline void
212 bufspacewakeup(void)
215 * If someone is waiting for BUF space, wake them up. Even
216 * though we haven't freed the kva space yet, the waiting
217 * process will be able to now.
219 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
220 spin_lock_wr(&needsbuffer_spin);
221 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
222 spin_unlock_wr(&needsbuffer_spin);
223 wakeup(&needsbuffer);
228 * runningbufwakeup:
230 * Accounting for I/O in progress.
233 static __inline void
234 runningbufwakeup(struct buf *bp)
236 int totalspace;
237 int limit;
239 if ((totalspace = bp->b_runningbufspace) != 0) {
240 atomic_subtract_int(&runningbufspace, totalspace);
241 atomic_subtract_int(&runningbufcount, 1);
242 bp->b_runningbufspace = 0;
245 * see waitrunningbufspace() for limit test.
247 limit = hirunningspace * 2 / 3;
248 if (runningbufreq && runningbufspace <= limit) {
249 runningbufreq = 0;
250 wakeup(&runningbufreq);
252 bd_signal(totalspace);
257 * bufcountwakeup:
259 * Called when a buffer has been added to one of the free queues to
260 * account for the buffer and to wakeup anyone waiting for free buffers.
261 * This typically occurs when large amounts of metadata are being handled
262 * by the buffer cache ( else buffer space runs out first, usually ).
264 * MPSAFE
266 static __inline void
267 bufcountwakeup(void)
269 if (needsbuffer) {
270 spin_lock_wr(&needsbuffer_spin);
271 needsbuffer &= ~VFS_BIO_NEED_ANY;
272 spin_unlock_wr(&needsbuffer_spin);
273 wakeup(&needsbuffer);
278 * waitrunningbufspace()
280 * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3.
281 * This is the point where write bursting stops so we don't want to wait
282 * for the running amount to drop below it (at least if we still want bioq
283 * to burst writes).
285 * The caller may be using this function to block in a tight loop, we
286 * must block while runningbufspace is greater then or equal to
287 * hirunningspace * 2 / 3.
289 * And even with that it may not be enough, due to the presence of
290 * B_LOCKED dirty buffers, so also wait for at least one running buffer
291 * to complete.
293 static __inline void
294 waitrunningbufspace(void)
296 int limit = hirunningspace * 2 / 3;
298 crit_enter();
299 if (runningbufspace > limit) {
300 while (runningbufspace > limit) {
301 ++runningbufreq;
302 tsleep(&runningbufreq, 0, "wdrn1", 0);
304 } else if (runningbufspace) {
305 ++runningbufreq;
306 tsleep(&runningbufreq, 0, "wdrn2", 1);
308 crit_exit();
312 * buf_dirty_count_severe:
314 * Return true if we have too many dirty buffers.
317 buf_dirty_count_severe(void)
319 return (runningbufspace + dirtybufspace >= hidirtybufspace ||
320 dirtybufcount >= nbuf / 2);
324 * Return true if the amount of running I/O is severe and BIOQ should
325 * start bursting.
328 buf_runningbufspace_severe(void)
330 return (runningbufspace >= hirunningspace * 2 / 3);
334 * vfs_buf_test_cache:
336 * Called when a buffer is extended. This function clears the B_CACHE
337 * bit if the newly extended portion of the buffer does not contain
338 * valid data.
340 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
341 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
342 * them while a clean buffer was present.
344 static __inline__
345 void
346 vfs_buf_test_cache(struct buf *bp,
347 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
348 vm_page_t m)
350 if (bp->b_flags & B_CACHE) {
351 int base = (foff + off) & PAGE_MASK;
352 if (vm_page_is_valid(m, base, size) == 0)
353 bp->b_flags &= ~B_CACHE;
358 * bd_speedup()
360 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
361 * low water mark.
363 * MPSAFE
365 static __inline__
366 void
367 bd_speedup(void)
369 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
370 return;
372 if (bd_request == 0 &&
373 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
374 dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
375 spin_lock_wr(&needsbuffer_spin);
376 bd_request = 1;
377 spin_unlock_wr(&needsbuffer_spin);
378 wakeup(&bd_request);
380 if (bd_request_hw == 0 &&
381 (dirtybufspacehw > lodirtybufspace / 2 ||
382 dirtybufcounthw >= nbuf / 2)) {
383 spin_lock_wr(&needsbuffer_spin);
384 bd_request_hw = 1;
385 spin_unlock_wr(&needsbuffer_spin);
386 wakeup(&bd_request_hw);
391 * bd_heatup()
393 * Get the buf_daemon heated up when the number of running and dirty
394 * buffers exceeds the mid-point.
396 * MPSAFE
399 bd_heatup(void)
401 int mid1;
402 int mid2;
403 int totalspace;
405 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
407 totalspace = runningbufspace + dirtybufspace;
408 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
409 bd_speedup();
410 mid2 = mid1 + (hidirtybufspace - mid1) / 2;
411 if (totalspace >= mid2)
412 return(totalspace - mid2);
414 return(0);
418 * bd_wait()
420 * Wait for the buffer cache to flush (totalspace) bytes worth of
421 * buffers, then return.
423 * Regardless this function blocks while the number of dirty buffers
424 * exceeds hidirtybufspace.
426 * MPSAFE
428 void
429 bd_wait(int totalspace)
431 u_int i;
432 int count;
434 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
435 return;
437 while (totalspace > 0) {
438 bd_heatup();
439 if (totalspace > runningbufspace + dirtybufspace)
440 totalspace = runningbufspace + dirtybufspace;
441 count = totalspace / BKVASIZE;
442 if (count >= BD_WAKE_SIZE)
443 count = BD_WAKE_SIZE - 1;
445 spin_lock_wr(&needsbuffer_spin);
446 i = (bd_wake_index + count) & BD_WAKE_MASK;
447 ++bd_wake_ary[i];
448 tsleep_interlock(&bd_wake_ary[i], 0);
449 spin_unlock_wr(&needsbuffer_spin);
450 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
452 totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
457 * bd_signal()
459 * This function is called whenever runningbufspace or dirtybufspace
460 * is reduced. Track threads waiting for run+dirty buffer I/O
461 * complete.
463 * MPSAFE
465 static void
466 bd_signal(int totalspace)
468 u_int i;
470 if (totalspace > 0) {
471 if (totalspace > BKVASIZE * BD_WAKE_SIZE)
472 totalspace = BKVASIZE * BD_WAKE_SIZE;
473 spin_lock_wr(&needsbuffer_spin);
474 while (totalspace > 0) {
475 i = bd_wake_index++;
476 i &= BD_WAKE_MASK;
477 if (bd_wake_ary[i]) {
478 bd_wake_ary[i] = 0;
479 spin_unlock_wr(&needsbuffer_spin);
480 wakeup(&bd_wake_ary[i]);
481 spin_lock_wr(&needsbuffer_spin);
483 totalspace -= BKVASIZE;
485 spin_unlock_wr(&needsbuffer_spin);
490 * BIO tracking support routines.
492 * Release a ref on a bio_track. Wakeup requests are atomically released
493 * along with the last reference so bk_active will never wind up set to
494 * only 0x80000000.
496 * MPSAFE
498 static
499 void
500 bio_track_rel(struct bio_track *track)
502 int active;
503 int desired;
506 * Shortcut
508 active = track->bk_active;
509 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
510 return;
513 * Full-on. Note that the wait flag is only atomically released on
514 * the 1->0 count transition.
516 * We check for a negative count transition using bit 30 since bit 31
517 * has a different meaning.
519 for (;;) {
520 desired = (active & 0x7FFFFFFF) - 1;
521 if (desired)
522 desired |= active & 0x80000000;
523 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
524 if (desired & 0x40000000)
525 panic("bio_track_rel: bad count: %p\n", track);
526 if (active & 0x80000000)
527 wakeup(track);
528 break;
530 active = track->bk_active;
535 * Wait for the tracking count to reach 0.
537 * Use atomic ops such that the wait flag is only set atomically when
538 * bk_active is non-zero.
540 * MPSAFE
543 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
545 int active;
546 int desired;
547 int error;
550 * Shortcut
552 if (track->bk_active == 0)
553 return(0);
556 * Full-on. Note that the wait flag may only be atomically set if
557 * the active count is non-zero.
559 error = 0;
560 while ((active = track->bk_active) != 0) {
561 desired = active | 0x80000000;
562 tsleep_interlock(track, slp_flags);
563 if (active == desired ||
564 atomic_cmpset_int(&track->bk_active, active, desired)) {
565 error = tsleep(track, slp_flags | PINTERLOCKED,
566 "iowait", slp_timo);
567 if (error)
568 break;
571 return (error);
575 * bufinit:
577 * Load time initialisation of the buffer cache, called from machine
578 * dependant initialization code.
580 void
581 bufinit(void)
583 struct buf *bp;
584 vm_offset_t bogus_offset;
585 int i;
587 spin_init(&needsbuffer_spin);
589 /* next, make a null set of free lists */
590 for (i = 0; i < BUFFER_QUEUES; i++)
591 TAILQ_INIT(&bufqueues[i]);
593 /* finally, initialize each buffer header and stick on empty q */
594 for (i = 0; i < nbuf; i++) {
595 bp = &buf[i];
596 bzero(bp, sizeof *bp);
597 bp->b_flags = B_INVAL; /* we're just an empty header */
598 bp->b_cmd = BUF_CMD_DONE;
599 bp->b_qindex = BQUEUE_EMPTY;
600 initbufbio(bp);
601 xio_init(&bp->b_xio);
602 buf_dep_init(bp);
603 BUF_LOCKINIT(bp);
604 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
608 * maxbufspace is the absolute maximum amount of buffer space we are
609 * allowed to reserve in KVM and in real terms. The absolute maximum
610 * is nominally used by buf_daemon. hibufspace is the nominal maximum
611 * used by most other processes. The differential is required to
612 * ensure that buf_daemon is able to run when other processes might
613 * be blocked waiting for buffer space.
615 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
616 * this may result in KVM fragmentation which is not handled optimally
617 * by the system.
619 maxbufspace = nbuf * BKVASIZE;
620 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
621 lobufspace = hibufspace - MAXBSIZE;
623 lorunningspace = 512 * 1024;
624 /* hirunningspace -- see below */
627 * Limit the amount of malloc memory since it is wired permanently
628 * into the kernel space. Even though this is accounted for in
629 * the buffer allocation, we don't want the malloced region to grow
630 * uncontrolled. The malloc scheme improves memory utilization
631 * significantly on average (small) directories.
633 maxbufmallocspace = hibufspace / 20;
636 * Reduce the chance of a deadlock occuring by limiting the number
637 * of delayed-write dirty buffers we allow to stack up.
639 * We don't want too much actually queued to the device at once
640 * (XXX this needs to be per-mount!), because the buffers will
641 * wind up locked for a very long period of time while the I/O
642 * drains.
644 hidirtybufspace = hibufspace / 2; /* dirty + running */
645 hirunningspace = hibufspace / 16; /* locked & queued to device */
646 if (hirunningspace < 1024 * 1024)
647 hirunningspace = 1024 * 1024;
649 dirtybufspace = 0;
650 dirtybufspacehw = 0;
652 lodirtybufspace = hidirtybufspace / 2;
655 * Maximum number of async ops initiated per buf_daemon loop. This is
656 * somewhat of a hack at the moment, we really need to limit ourselves
657 * based on the number of bytes of I/O in-transit that were initiated
658 * from buf_daemon.
661 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
662 bogus_page = vm_page_alloc(&kernel_object,
663 (bogus_offset >> PAGE_SHIFT),
664 VM_ALLOC_NORMAL);
665 vmstats.v_wire_count++;
670 * Initialize the embedded bio structures
672 void
673 initbufbio(struct buf *bp)
675 bp->b_bio1.bio_buf = bp;
676 bp->b_bio1.bio_prev = NULL;
677 bp->b_bio1.bio_offset = NOOFFSET;
678 bp->b_bio1.bio_next = &bp->b_bio2;
679 bp->b_bio1.bio_done = NULL;
680 bp->b_bio1.bio_flags = 0;
682 bp->b_bio2.bio_buf = bp;
683 bp->b_bio2.bio_prev = &bp->b_bio1;
684 bp->b_bio2.bio_offset = NOOFFSET;
685 bp->b_bio2.bio_next = NULL;
686 bp->b_bio2.bio_done = NULL;
687 bp->b_bio2.bio_flags = 0;
691 * Reinitialize the embedded bio structures as well as any additional
692 * translation cache layers.
694 void
695 reinitbufbio(struct buf *bp)
697 struct bio *bio;
699 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
700 bio->bio_done = NULL;
701 bio->bio_offset = NOOFFSET;
706 * Push another BIO layer onto an existing BIO and return it. The new
707 * BIO layer may already exist, holding cached translation data.
709 struct bio *
710 push_bio(struct bio *bio)
712 struct bio *nbio;
714 if ((nbio = bio->bio_next) == NULL) {
715 int index = bio - &bio->bio_buf->b_bio_array[0];
716 if (index >= NBUF_BIO - 1) {
717 panic("push_bio: too many layers bp %p\n",
718 bio->bio_buf);
720 nbio = &bio->bio_buf->b_bio_array[index + 1];
721 bio->bio_next = nbio;
722 nbio->bio_prev = bio;
723 nbio->bio_buf = bio->bio_buf;
724 nbio->bio_offset = NOOFFSET;
725 nbio->bio_done = NULL;
726 nbio->bio_next = NULL;
728 KKASSERT(nbio->bio_done == NULL);
729 return(nbio);
733 * Pop a BIO translation layer, returning the previous layer. The
734 * must have been previously pushed.
736 struct bio *
737 pop_bio(struct bio *bio)
739 return(bio->bio_prev);
742 void
743 clearbiocache(struct bio *bio)
745 while (bio) {
746 bio->bio_offset = NOOFFSET;
747 bio = bio->bio_next;
752 * bfreekva:
754 * Free the KVA allocation for buffer 'bp'.
756 * Must be called from a critical section as this is the only locking for
757 * buffer_map.
759 * Since this call frees up buffer space, we call bufspacewakeup().
761 * MPALMOSTSAFE
763 static void
764 bfreekva(struct buf *bp)
766 int count;
768 if (bp->b_kvasize) {
769 get_mplock();
770 ++buffreekvacnt;
771 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
772 vm_map_lock(&buffer_map);
773 bufspace -= bp->b_kvasize;
774 vm_map_delete(&buffer_map,
775 (vm_offset_t) bp->b_kvabase,
776 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
777 &count
779 vm_map_unlock(&buffer_map);
780 vm_map_entry_release(count);
781 bp->b_kvasize = 0;
782 bufspacewakeup();
783 rel_mplock();
788 * bremfree:
790 * Remove the buffer from the appropriate free list.
792 static __inline void
793 _bremfree(struct buf *bp)
795 if (bp->b_qindex != BQUEUE_NONE) {
796 KASSERT(BUF_REFCNTNB(bp) == 1,
797 ("bremfree: bp %p not locked",bp));
798 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
799 bp->b_qindex = BQUEUE_NONE;
800 } else {
801 if (BUF_REFCNTNB(bp) <= 1)
802 panic("bremfree: removing a buffer not on a queue");
806 void
807 bremfree(struct buf *bp)
809 spin_lock_wr(&bufspin);
810 _bremfree(bp);
811 spin_unlock_wr(&bufspin);
814 static void
815 bremfree_locked(struct buf *bp)
817 _bremfree(bp);
821 * bread:
823 * Get a buffer with the specified data. Look in the cache first. We
824 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
825 * is set, the buffer is valid and we do not have to do anything ( see
826 * getblk() ).
828 * MPALMOSTSAFE
831 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
833 struct buf *bp;
835 bp = getblk(vp, loffset, size, 0, 0);
836 *bpp = bp;
838 /* if not found in cache, do some I/O */
839 if ((bp->b_flags & B_CACHE) == 0) {
840 get_mplock();
841 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
842 bp->b_cmd = BUF_CMD_READ;
843 bp->b_bio1.bio_done = biodone_sync;
844 bp->b_bio1.bio_flags |= BIO_SYNC;
845 vfs_busy_pages(vp, bp);
846 vn_strategy(vp, &bp->b_bio1);
847 rel_mplock();
848 return (biowait(&bp->b_bio1, "biord"));
850 return (0);
854 * breadn:
856 * Operates like bread, but also starts asynchronous I/O on
857 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
858 * to initiating I/O . If B_CACHE is set, the buffer is valid
859 * and we do not have to do anything.
861 * MPALMOSTSAFE
864 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
865 int *rabsize, int cnt, struct buf **bpp)
867 struct buf *bp, *rabp;
868 int i;
869 int rv = 0, readwait = 0;
871 *bpp = bp = getblk(vp, loffset, size, 0, 0);
873 /* if not found in cache, do some I/O */
874 if ((bp->b_flags & B_CACHE) == 0) {
875 get_mplock();
876 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
877 bp->b_cmd = BUF_CMD_READ;
878 bp->b_bio1.bio_done = biodone_sync;
879 bp->b_bio1.bio_flags |= BIO_SYNC;
880 vfs_busy_pages(vp, bp);
881 vn_strategy(vp, &bp->b_bio1);
882 ++readwait;
883 rel_mplock();
886 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
887 if (inmem(vp, *raoffset))
888 continue;
889 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
891 if ((rabp->b_flags & B_CACHE) == 0) {
892 get_mplock();
893 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
894 rabp->b_cmd = BUF_CMD_READ;
895 vfs_busy_pages(vp, rabp);
896 BUF_KERNPROC(rabp);
897 vn_strategy(vp, &rabp->b_bio1);
898 rel_mplock();
899 } else {
900 brelse(rabp);
903 if (readwait)
904 rv = biowait(&bp->b_bio1, "biord");
905 return (rv);
909 * bwrite:
911 * Synchronous write, waits for completion.
913 * Write, release buffer on completion. (Done by iodone
914 * if async). Do not bother writing anything if the buffer
915 * is invalid.
917 * Note that we set B_CACHE here, indicating that buffer is
918 * fully valid and thus cacheable. This is true even of NFS
919 * now so we set it generally. This could be set either here
920 * or in biodone() since the I/O is synchronous. We put it
921 * here.
924 bwrite(struct buf *bp)
926 int error;
928 if (bp->b_flags & B_INVAL) {
929 brelse(bp);
930 return (0);
932 if (BUF_REFCNTNB(bp) == 0)
933 panic("bwrite: buffer is not busy???");
935 /* Mark the buffer clean */
936 bundirty(bp);
938 bp->b_flags &= ~(B_ERROR | B_EINTR);
939 bp->b_flags |= B_CACHE;
940 bp->b_cmd = BUF_CMD_WRITE;
941 bp->b_bio1.bio_done = biodone_sync;
942 bp->b_bio1.bio_flags |= BIO_SYNC;
943 vfs_busy_pages(bp->b_vp, bp);
946 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
947 * valid for vnode-backed buffers.
949 bp->b_runningbufspace = bp->b_bufsize;
950 if (bp->b_runningbufspace) {
951 runningbufspace += bp->b_runningbufspace;
952 ++runningbufcount;
955 vn_strategy(bp->b_vp, &bp->b_bio1);
956 error = biowait(&bp->b_bio1, "biows");
957 brelse(bp);
958 return (error);
962 * bawrite:
964 * Asynchronous write. Start output on a buffer, but do not wait for
965 * it to complete. The buffer is released when the output completes.
967 * bwrite() ( or the VOP routine anyway ) is responsible for handling
968 * B_INVAL buffers. Not us.
970 void
971 bawrite(struct buf *bp)
973 if (bp->b_flags & B_INVAL) {
974 brelse(bp);
975 return;
977 if (BUF_REFCNTNB(bp) == 0)
978 panic("bwrite: buffer is not busy???");
980 /* Mark the buffer clean */
981 bundirty(bp);
983 bp->b_flags &= ~(B_ERROR | B_EINTR);
984 bp->b_flags |= B_CACHE;
985 bp->b_cmd = BUF_CMD_WRITE;
986 KKASSERT(bp->b_bio1.bio_done == NULL);
987 vfs_busy_pages(bp->b_vp, bp);
990 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
991 * valid for vnode-backed buffers.
993 bp->b_runningbufspace = bp->b_bufsize;
994 if (bp->b_runningbufspace) {
995 runningbufspace += bp->b_runningbufspace;
996 ++runningbufcount;
999 BUF_KERNPROC(bp);
1000 vn_strategy(bp->b_vp, &bp->b_bio1);
1004 * bowrite:
1006 * Ordered write. Start output on a buffer, and flag it so that the
1007 * device will write it in the order it was queued. The buffer is
1008 * released when the output completes. bwrite() ( or the VOP routine
1009 * anyway ) is responsible for handling B_INVAL buffers.
1012 bowrite(struct buf *bp)
1014 bp->b_flags |= B_ORDERED;
1015 bawrite(bp);
1016 return (0);
1020 * bdwrite:
1022 * Delayed write. (Buffer is marked dirty). Do not bother writing
1023 * anything if the buffer is marked invalid.
1025 * Note that since the buffer must be completely valid, we can safely
1026 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1027 * biodone() in order to prevent getblk from writing the buffer
1028 * out synchronously.
1030 void
1031 bdwrite(struct buf *bp)
1033 if (BUF_REFCNTNB(bp) == 0)
1034 panic("bdwrite: buffer is not busy");
1036 if (bp->b_flags & B_INVAL) {
1037 brelse(bp);
1038 return;
1040 bdirty(bp);
1043 * Set B_CACHE, indicating that the buffer is fully valid. This is
1044 * true even of NFS now.
1046 bp->b_flags |= B_CACHE;
1049 * This bmap keeps the system from needing to do the bmap later,
1050 * perhaps when the system is attempting to do a sync. Since it
1051 * is likely that the indirect block -- or whatever other datastructure
1052 * that the filesystem needs is still in memory now, it is a good
1053 * thing to do this. Note also, that if the pageout daemon is
1054 * requesting a sync -- there might not be enough memory to do
1055 * the bmap then... So, this is important to do.
1057 if (bp->b_bio2.bio_offset == NOOFFSET) {
1058 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1059 NULL, NULL, BUF_CMD_WRITE);
1063 * Because the underlying pages may still be mapped and
1064 * writable trying to set the dirty buffer (b_dirtyoff/end)
1065 * range here will be inaccurate.
1067 * However, we must still clean the pages to satisfy the
1068 * vnode_pager and pageout daemon, so theythink the pages
1069 * have been "cleaned". What has really occured is that
1070 * they've been earmarked for later writing by the buffer
1071 * cache.
1073 * So we get the b_dirtyoff/end update but will not actually
1074 * depend on it (NFS that is) until the pages are busied for
1075 * writing later on.
1077 vfs_clean_pages(bp);
1078 bqrelse(bp);
1081 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1082 * due to the softdep code.
1087 * bdirty:
1089 * Turn buffer into delayed write request by marking it B_DELWRI.
1090 * B_RELBUF and B_NOCACHE must be cleared.
1092 * We reassign the buffer to itself to properly update it in the
1093 * dirty/clean lists.
1095 * Must be called from a critical section.
1096 * The buffer must be on BQUEUE_NONE.
1098 void
1099 bdirty(struct buf *bp)
1101 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1102 if (bp->b_flags & B_NOCACHE) {
1103 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1104 bp->b_flags &= ~B_NOCACHE;
1106 if (bp->b_flags & B_INVAL) {
1107 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1109 bp->b_flags &= ~B_RELBUF;
1111 if ((bp->b_flags & B_DELWRI) == 0) {
1112 bp->b_flags |= B_DELWRI;
1113 reassignbuf(bp);
1114 atomic_add_int(&dirtybufcount, 1);
1115 dirtybufspace += bp->b_bufsize;
1116 if (bp->b_flags & B_HEAVY) {
1117 atomic_add_int(&dirtybufcounthw, 1);
1118 atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1120 bd_heatup();
1125 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1126 * needs to be flushed with a different buf_daemon thread to avoid
1127 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1129 void
1130 bheavy(struct buf *bp)
1132 if ((bp->b_flags & B_HEAVY) == 0) {
1133 bp->b_flags |= B_HEAVY;
1134 if (bp->b_flags & B_DELWRI) {
1135 atomic_add_int(&dirtybufcounthw, 1);
1136 atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1142 * bundirty:
1144 * Clear B_DELWRI for buffer.
1146 * Must be called from a critical section.
1148 * The buffer is typically on BQUEUE_NONE but there is one case in
1149 * brelse() that calls this function after placing the buffer on
1150 * a different queue.
1152 * MPSAFE
1154 void
1155 bundirty(struct buf *bp)
1157 if (bp->b_flags & B_DELWRI) {
1158 bp->b_flags &= ~B_DELWRI;
1159 reassignbuf(bp);
1160 atomic_subtract_int(&dirtybufcount, 1);
1161 atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1162 if (bp->b_flags & B_HEAVY) {
1163 atomic_subtract_int(&dirtybufcounthw, 1);
1164 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1166 bd_signal(bp->b_bufsize);
1169 * Since it is now being written, we can clear its deferred write flag.
1171 bp->b_flags &= ~B_DEFERRED;
1175 * brelse:
1177 * Release a busy buffer and, if requested, free its resources. The
1178 * buffer will be stashed in the appropriate bufqueue[] allowing it
1179 * to be accessed later as a cache entity or reused for other purposes.
1181 * MPALMOSTSAFE
1183 void
1184 brelse(struct buf *bp)
1186 #ifdef INVARIANTS
1187 int saved_flags = bp->b_flags;
1188 #endif
1190 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1193 * If B_NOCACHE is set we are being asked to destroy the buffer and
1194 * its backing store. Clear B_DELWRI.
1196 * B_NOCACHE is set in two cases: (1) when the caller really wants
1197 * to destroy the buffer and backing store and (2) when the caller
1198 * wants to destroy the buffer and backing store after a write
1199 * completes.
1201 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1202 bundirty(bp);
1205 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1207 * A re-dirtied buffer is only subject to destruction
1208 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1210 /* leave buffer intact */
1211 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1212 (bp->b_bufsize <= 0)) {
1214 * Either a failed read or we were asked to free or not
1215 * cache the buffer. This path is reached with B_DELWRI
1216 * set only if B_INVAL is already set. B_NOCACHE governs
1217 * backing store destruction.
1219 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1220 * buffer cannot be immediately freed.
1222 bp->b_flags |= B_INVAL;
1223 if (LIST_FIRST(&bp->b_dep) != NULL) {
1224 get_mplock();
1225 buf_deallocate(bp);
1226 rel_mplock();
1228 if (bp->b_flags & B_DELWRI) {
1229 atomic_subtract_int(&dirtybufcount, 1);
1230 atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1231 if (bp->b_flags & B_HEAVY) {
1232 atomic_subtract_int(&dirtybufcounthw, 1);
1233 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1235 bd_signal(bp->b_bufsize);
1237 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1241 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1242 * If vfs_vmio_release() is called with either bit set, the
1243 * underlying pages may wind up getting freed causing a previous
1244 * write (bdwrite()) to get 'lost' because pages associated with
1245 * a B_DELWRI bp are marked clean. Pages associated with a
1246 * B_LOCKED buffer may be mapped by the filesystem.
1248 * If we want to release the buffer ourselves (rather then the
1249 * originator asking us to release it), give the originator a
1250 * chance to countermand the release by setting B_LOCKED.
1252 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1253 * if B_DELWRI is set.
1255 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1256 * on pages to return pages to the VM page queues.
1258 if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1259 bp->b_flags &= ~B_RELBUF;
1260 } else if (vm_page_count_severe()) {
1261 if (LIST_FIRST(&bp->b_dep) != NULL) {
1262 get_mplock();
1263 buf_deallocate(bp); /* can set B_LOCKED */
1264 rel_mplock();
1266 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1267 bp->b_flags &= ~B_RELBUF;
1268 else
1269 bp->b_flags |= B_RELBUF;
1273 * Make sure b_cmd is clear. It may have already been cleared by
1274 * biodone().
1276 * At this point destroying the buffer is governed by the B_INVAL
1277 * or B_RELBUF flags.
1279 bp->b_cmd = BUF_CMD_DONE;
1282 * VMIO buffer rundown. Make sure the VM page array is restored
1283 * after an I/O may have replaces some of the pages with bogus pages
1284 * in order to not destroy dirty pages in a fill-in read.
1286 * Note that due to the code above, if a buffer is marked B_DELWRI
1287 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1288 * B_INVAL may still be set, however.
1290 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1291 * but not the backing store. B_NOCACHE will destroy the backing
1292 * store.
1294 * Note that dirty NFS buffers contain byte-granular write ranges
1295 * and should not be destroyed w/ B_INVAL even if the backing store
1296 * is left intact.
1298 if (bp->b_flags & B_VMIO) {
1300 * Rundown for VMIO buffers which are not dirty NFS buffers.
1302 int i, j, resid;
1303 vm_page_t m;
1304 off_t foff;
1305 vm_pindex_t poff;
1306 vm_object_t obj;
1307 struct vnode *vp;
1309 vp = bp->b_vp;
1312 * Get the base offset and length of the buffer. Note that
1313 * in the VMIO case if the buffer block size is not
1314 * page-aligned then b_data pointer may not be page-aligned.
1315 * But our b_xio.xio_pages array *IS* page aligned.
1317 * block sizes less then DEV_BSIZE (usually 512) are not
1318 * supported due to the page granularity bits (m->valid,
1319 * m->dirty, etc...).
1321 * See man buf(9) for more information
1324 resid = bp->b_bufsize;
1325 foff = bp->b_loffset;
1327 get_mplock();
1328 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1329 m = bp->b_xio.xio_pages[i];
1330 vm_page_flag_clear(m, PG_ZERO);
1332 * If we hit a bogus page, fixup *all* of them
1333 * now. Note that we left these pages wired
1334 * when we removed them so they had better exist,
1335 * and they cannot be ripped out from under us so
1336 * no critical section protection is necessary.
1338 if (m == bogus_page) {
1339 obj = vp->v_object;
1340 poff = OFF_TO_IDX(bp->b_loffset);
1342 for (j = i; j < bp->b_xio.xio_npages; j++) {
1343 vm_page_t mtmp;
1345 mtmp = bp->b_xio.xio_pages[j];
1346 if (mtmp == bogus_page) {
1347 mtmp = vm_page_lookup(obj, poff + j);
1348 if (!mtmp) {
1349 panic("brelse: page missing");
1351 bp->b_xio.xio_pages[j] = mtmp;
1355 if ((bp->b_flags & B_INVAL) == 0) {
1356 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1357 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1359 m = bp->b_xio.xio_pages[i];
1363 * Invalidate the backing store if B_NOCACHE is set
1364 * (e.g. used with vinvalbuf()). If this is NFS
1365 * we impose a requirement that the block size be
1366 * a multiple of PAGE_SIZE and create a temporary
1367 * hack to basically invalidate the whole page. The
1368 * problem is that NFS uses really odd buffer sizes
1369 * especially when tracking piecemeal writes and
1370 * it also vinvalbuf()'s a lot, which would result
1371 * in only partial page validation and invalidation
1372 * here. If the file page is mmap()'d, however,
1373 * all the valid bits get set so after we invalidate
1374 * here we would end up with weird m->valid values
1375 * like 0xfc. nfs_getpages() can't handle this so
1376 * we clear all the valid bits for the NFS case
1377 * instead of just some of them.
1379 * The real bug is the VM system having to set m->valid
1380 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1381 * itself is an artifact of the whole 512-byte
1382 * granular mess that exists to support odd block
1383 * sizes and UFS meta-data block sizes (e.g. 6144).
1384 * A complete rewrite is required.
1386 * XXX
1388 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1389 int poffset = foff & PAGE_MASK;
1390 int presid;
1392 presid = PAGE_SIZE - poffset;
1393 if (bp->b_vp->v_tag == VT_NFS &&
1394 bp->b_vp->v_type == VREG) {
1395 ; /* entire page */
1396 } else if (presid > resid) {
1397 presid = resid;
1399 KASSERT(presid >= 0, ("brelse: extra page"));
1400 vm_page_set_invalid(m, poffset, presid);
1402 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1403 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1405 if (bp->b_flags & (B_INVAL | B_RELBUF))
1406 vfs_vmio_release(bp);
1407 rel_mplock();
1408 } else {
1410 * Rundown for non-VMIO buffers.
1412 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1413 get_mplock();
1414 if (bp->b_bufsize)
1415 allocbuf(bp, 0);
1416 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1417 if (bp->b_vp)
1418 brelvp(bp);
1419 rel_mplock();
1423 if (bp->b_qindex != BQUEUE_NONE)
1424 panic("brelse: free buffer onto another queue???");
1425 if (BUF_REFCNTNB(bp) > 1) {
1426 /* Temporary panic to verify exclusive locking */
1427 /* This panic goes away when we allow shared refs */
1428 panic("brelse: multiple refs");
1429 /* NOT REACHED */
1430 return;
1434 * Figure out the correct queue to place the cleaned up buffer on.
1435 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1436 * disassociated from their vnode.
1438 spin_lock_wr(&bufspin);
1439 if (bp->b_flags & B_LOCKED) {
1441 * Buffers that are locked are placed in the locked queue
1442 * immediately, regardless of their state.
1444 bp->b_qindex = BQUEUE_LOCKED;
1445 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1446 } else if (bp->b_bufsize == 0) {
1448 * Buffers with no memory. Due to conditionals near the top
1449 * of brelse() such buffers should probably already be
1450 * marked B_INVAL and disassociated from their vnode.
1452 bp->b_flags |= B_INVAL;
1453 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1454 KKASSERT((bp->b_flags & B_HASHED) == 0);
1455 if (bp->b_kvasize) {
1456 bp->b_qindex = BQUEUE_EMPTYKVA;
1457 } else {
1458 bp->b_qindex = BQUEUE_EMPTY;
1460 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1461 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1463 * Buffers with junk contents. Again these buffers had better
1464 * already be disassociated from their vnode.
1466 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1467 KKASSERT((bp->b_flags & B_HASHED) == 0);
1468 bp->b_flags |= B_INVAL;
1469 bp->b_qindex = BQUEUE_CLEAN;
1470 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1471 } else {
1473 * Remaining buffers. These buffers are still associated with
1474 * their vnode.
1476 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1477 case B_DELWRI:
1478 bp->b_qindex = BQUEUE_DIRTY;
1479 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1480 break;
1481 case B_DELWRI | B_HEAVY:
1482 bp->b_qindex = BQUEUE_DIRTY_HW;
1483 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1484 b_freelist);
1485 break;
1486 default:
1488 * NOTE: Buffers are always placed at the end of the
1489 * queue. If B_AGE is not set the buffer will cycle
1490 * through the queue twice.
1492 bp->b_qindex = BQUEUE_CLEAN;
1493 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1494 break;
1497 spin_unlock_wr(&bufspin);
1500 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1501 * on the correct queue.
1503 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1504 bundirty(bp);
1507 * The bp is on an appropriate queue unless locked. If it is not
1508 * locked or dirty we can wakeup threads waiting for buffer space.
1510 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1511 * if B_INVAL is set ).
1513 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1514 bufcountwakeup();
1517 * Something we can maybe free or reuse
1519 if (bp->b_bufsize || bp->b_kvasize)
1520 bufspacewakeup();
1523 * Clean up temporary flags and unlock the buffer.
1525 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1526 BUF_UNLOCK(bp);
1530 * bqrelse:
1532 * Release a buffer back to the appropriate queue but do not try to free
1533 * it. The buffer is expected to be used again soon.
1535 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1536 * biodone() to requeue an async I/O on completion. It is also used when
1537 * known good buffers need to be requeued but we think we may need the data
1538 * again soon.
1540 * XXX we should be able to leave the B_RELBUF hint set on completion.
1542 * MPSAFE
1544 void
1545 bqrelse(struct buf *bp)
1547 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1549 if (bp->b_qindex != BQUEUE_NONE)
1550 panic("bqrelse: free buffer onto another queue???");
1551 if (BUF_REFCNTNB(bp) > 1) {
1552 /* do not release to free list */
1553 panic("bqrelse: multiple refs");
1554 return;
1557 spin_lock_wr(&bufspin);
1558 if (bp->b_flags & B_LOCKED) {
1560 * Locked buffers are released to the locked queue. However,
1561 * if the buffer is dirty it will first go into the dirty
1562 * queue and later on after the I/O completes successfully it
1563 * will be released to the locked queue.
1565 bp->b_qindex = BQUEUE_LOCKED;
1566 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1567 } else if (bp->b_flags & B_DELWRI) {
1568 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1569 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1570 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1571 } else if (vm_page_count_severe()) {
1573 * We are too low on memory, we have to try to free the
1574 * buffer (most importantly: the wired pages making up its
1575 * backing store) *now*.
1577 spin_unlock_wr(&bufspin);
1578 brelse(bp);
1579 return;
1580 } else {
1581 bp->b_qindex = BQUEUE_CLEAN;
1582 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1584 spin_unlock_wr(&bufspin);
1586 if ((bp->b_flags & B_LOCKED) == 0 &&
1587 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1588 bufcountwakeup();
1592 * Something we can maybe free or reuse.
1594 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1595 bufspacewakeup();
1598 * Final cleanup and unlock. Clear bits that are only used while a
1599 * buffer is actively locked.
1601 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1602 BUF_UNLOCK(bp);
1606 * vfs_vmio_release:
1608 * Return backing pages held by the buffer 'bp' back to the VM system
1609 * if possible. The pages are freed if they are no longer valid or
1610 * attempt to free if it was used for direct I/O otherwise they are
1611 * sent to the page cache.
1613 * Pages that were marked busy are left alone and skipped.
1615 * The KVA mapping (b_data) for the underlying pages is removed by
1616 * this function.
1618 static void
1619 vfs_vmio_release(struct buf *bp)
1621 int i;
1622 vm_page_t m;
1624 crit_enter();
1625 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1626 m = bp->b_xio.xio_pages[i];
1627 bp->b_xio.xio_pages[i] = NULL;
1629 * In order to keep page LRU ordering consistent, put
1630 * everything on the inactive queue.
1632 vm_page_unwire(m, 0);
1634 * We don't mess with busy pages, it is
1635 * the responsibility of the process that
1636 * busied the pages to deal with them.
1638 if ((m->flags & PG_BUSY) || (m->busy != 0))
1639 continue;
1641 if (m->wire_count == 0) {
1642 vm_page_flag_clear(m, PG_ZERO);
1644 * Might as well free the page if we can and it has
1645 * no valid data. We also free the page if the
1646 * buffer was used for direct I/O.
1648 #if 0
1649 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1650 m->hold_count == 0) {
1651 vm_page_busy(m);
1652 vm_page_protect(m, VM_PROT_NONE);
1653 vm_page_free(m);
1654 } else
1655 #endif
1656 if (bp->b_flags & B_DIRECT) {
1657 vm_page_try_to_free(m);
1658 } else if (vm_page_count_severe()) {
1659 vm_page_try_to_cache(m);
1663 crit_exit();
1664 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1665 if (bp->b_bufsize) {
1666 bufspacewakeup();
1667 bp->b_bufsize = 0;
1669 bp->b_xio.xio_npages = 0;
1670 bp->b_flags &= ~B_VMIO;
1671 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1672 if (bp->b_vp) {
1673 get_mplock();
1674 brelvp(bp);
1675 rel_mplock();
1680 * vfs_bio_awrite:
1682 * Implement clustered async writes for clearing out B_DELWRI buffers.
1683 * This is much better then the old way of writing only one buffer at
1684 * a time. Note that we may not be presented with the buffers in the
1685 * correct order, so we search for the cluster in both directions.
1687 * The buffer is locked on call.
1690 vfs_bio_awrite(struct buf *bp)
1692 int i;
1693 int j;
1694 off_t loffset = bp->b_loffset;
1695 struct vnode *vp = bp->b_vp;
1696 int nbytes;
1697 struct buf *bpa;
1698 int nwritten;
1699 int size;
1702 * right now we support clustered writing only to regular files. If
1703 * we find a clusterable block we could be in the middle of a cluster
1704 * rather then at the beginning.
1706 * NOTE: b_bio1 contains the logical loffset and is aliased
1707 * to b_loffset. b_bio2 contains the translated block number.
1709 if ((vp->v_type == VREG) &&
1710 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1711 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1713 size = vp->v_mount->mnt_stat.f_iosize;
1715 for (i = size; i < MAXPHYS; i += size) {
1716 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1717 BUF_REFCNT(bpa) == 0 &&
1718 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1719 (B_DELWRI | B_CLUSTEROK)) &&
1720 (bpa->b_bufsize == size)) {
1721 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1722 (bpa->b_bio2.bio_offset !=
1723 bp->b_bio2.bio_offset + i))
1724 break;
1725 } else {
1726 break;
1729 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1730 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1731 BUF_REFCNT(bpa) == 0 &&
1732 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1733 (B_DELWRI | B_CLUSTEROK)) &&
1734 (bpa->b_bufsize == size)) {
1735 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1736 (bpa->b_bio2.bio_offset !=
1737 bp->b_bio2.bio_offset - j))
1738 break;
1739 } else {
1740 break;
1743 j -= size;
1744 nbytes = (i + j);
1747 * this is a possible cluster write
1749 if (nbytes != size) {
1750 BUF_UNLOCK(bp);
1751 nwritten = cluster_wbuild(vp, size,
1752 loffset - j, nbytes);
1753 return nwritten;
1758 * default (old) behavior, writing out only one block
1760 * XXX returns b_bufsize instead of b_bcount for nwritten?
1762 nwritten = bp->b_bufsize;
1763 bremfree(bp);
1764 bawrite(bp);
1766 return nwritten;
1770 * getnewbuf:
1772 * Find and initialize a new buffer header, freeing up existing buffers
1773 * in the bufqueues as necessary. The new buffer is returned locked.
1775 * Important: B_INVAL is not set. If the caller wishes to throw the
1776 * buffer away, the caller must set B_INVAL prior to calling brelse().
1778 * We block if:
1779 * We have insufficient buffer headers
1780 * We have insufficient buffer space
1781 * buffer_map is too fragmented ( space reservation fails )
1782 * If we have to flush dirty buffers ( but we try to avoid this )
1784 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1785 * Instead we ask the buf daemon to do it for us. We attempt to
1786 * avoid piecemeal wakeups of the pageout daemon.
1788 * MPALMOSTSAFE
1790 static struct buf *
1791 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1793 struct buf *bp;
1794 struct buf *nbp;
1795 int defrag = 0;
1796 int nqindex;
1797 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1798 static int flushingbufs;
1801 * We can't afford to block since we might be holding a vnode lock,
1802 * which may prevent system daemons from running. We deal with
1803 * low-memory situations by proactively returning memory and running
1804 * async I/O rather then sync I/O.
1807 ++getnewbufcalls;
1808 --getnewbufrestarts;
1809 restart:
1810 ++getnewbufrestarts;
1813 * Setup for scan. If we do not have enough free buffers,
1814 * we setup a degenerate case that immediately fails. Note
1815 * that if we are specially marked process, we are allowed to
1816 * dip into our reserves.
1818 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1820 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1821 * However, there are a number of cases (defragging, reusing, ...)
1822 * where we cannot backup.
1824 nqindex = BQUEUE_EMPTYKVA;
1825 spin_lock_wr(&bufspin);
1826 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1828 if (nbp == NULL) {
1830 * If no EMPTYKVA buffers and we are either
1831 * defragging or reusing, locate a CLEAN buffer
1832 * to free or reuse. If bufspace useage is low
1833 * skip this step so we can allocate a new buffer.
1835 if (defrag || bufspace >= lobufspace) {
1836 nqindex = BQUEUE_CLEAN;
1837 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1841 * If we could not find or were not allowed to reuse a
1842 * CLEAN buffer, check to see if it is ok to use an EMPTY
1843 * buffer. We can only use an EMPTY buffer if allocating
1844 * its KVA would not otherwise run us out of buffer space.
1846 if (nbp == NULL && defrag == 0 &&
1847 bufspace + maxsize < hibufspace) {
1848 nqindex = BQUEUE_EMPTY;
1849 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1854 * Run scan, possibly freeing data and/or kva mappings on the fly
1855 * depending.
1857 * WARNING! bufspin is held!
1859 while ((bp = nbp) != NULL) {
1860 int qindex = nqindex;
1862 nbp = TAILQ_NEXT(bp, b_freelist);
1865 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
1866 * cycles through the queue twice before being selected.
1868 if (qindex == BQUEUE_CLEAN &&
1869 (bp->b_flags & B_AGE) == 0 && nbp) {
1870 bp->b_flags |= B_AGE;
1871 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1872 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1873 continue;
1877 * Calculate next bp ( we can only use it if we do not block
1878 * or do other fancy things ).
1880 if (nbp == NULL) {
1881 switch(qindex) {
1882 case BQUEUE_EMPTY:
1883 nqindex = BQUEUE_EMPTYKVA;
1884 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1885 break;
1886 /* fall through */
1887 case BQUEUE_EMPTYKVA:
1888 nqindex = BQUEUE_CLEAN;
1889 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1890 break;
1891 /* fall through */
1892 case BQUEUE_CLEAN:
1894 * nbp is NULL.
1896 break;
1901 * Sanity Checks
1903 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1906 * Note: we no longer distinguish between VMIO and non-VMIO
1907 * buffers.
1910 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1913 * If we are defragging then we need a buffer with
1914 * b_kvasize != 0. XXX this situation should no longer
1915 * occur, if defrag is non-zero the buffer's b_kvasize
1916 * should also be non-zero at this point. XXX
1918 if (defrag && bp->b_kvasize == 0) {
1919 kprintf("Warning: defrag empty buffer %p\n", bp);
1920 continue;
1924 * Start freeing the bp. This is somewhat involved. nbp
1925 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
1926 * on the clean list must be disassociated from their
1927 * current vnode. Buffers on the empty[kva] lists have
1928 * already been disassociated.
1931 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1932 spin_unlock_wr(&bufspin);
1933 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1934 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1935 goto restart;
1937 if (bp->b_qindex != qindex) {
1938 spin_unlock_wr(&bufspin);
1939 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1940 BUF_UNLOCK(bp);
1941 goto restart;
1943 bremfree_locked(bp);
1944 spin_unlock_wr(&bufspin);
1947 * Dependancies must be handled before we disassociate the
1948 * vnode.
1950 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1951 * be immediately disassociated. HAMMER then becomes
1952 * responsible for releasing the buffer.
1954 * NOTE: bufspin is UNLOCKED now.
1956 if (LIST_FIRST(&bp->b_dep) != NULL) {
1957 get_mplock();
1958 buf_deallocate(bp);
1959 rel_mplock();
1960 if (bp->b_flags & B_LOCKED) {
1961 bqrelse(bp);
1962 goto restart;
1964 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1967 if (qindex == BQUEUE_CLEAN) {
1968 get_mplock();
1969 if (bp->b_flags & B_VMIO) {
1970 get_mplock();
1971 vfs_vmio_release(bp);
1972 rel_mplock();
1974 if (bp->b_vp)
1975 brelvp(bp);
1976 rel_mplock();
1980 * NOTE: nbp is now entirely invalid. We can only restart
1981 * the scan from this point on.
1983 * Get the rest of the buffer freed up. b_kva* is still
1984 * valid after this operation.
1987 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1988 KKASSERT((bp->b_flags & B_HASHED) == 0);
1991 * critical section protection is not required when
1992 * scrapping a buffer's contents because it is already
1993 * wired.
1995 if (bp->b_bufsize) {
1996 get_mplock();
1997 allocbuf(bp, 0);
1998 rel_mplock();
2001 bp->b_flags = B_BNOCLIP;
2002 bp->b_cmd = BUF_CMD_DONE;
2003 bp->b_vp = NULL;
2004 bp->b_error = 0;
2005 bp->b_resid = 0;
2006 bp->b_bcount = 0;
2007 bp->b_xio.xio_npages = 0;
2008 bp->b_dirtyoff = bp->b_dirtyend = 0;
2009 reinitbufbio(bp);
2010 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2011 buf_dep_init(bp);
2012 if (blkflags & GETBLK_BHEAVY)
2013 bp->b_flags |= B_HEAVY;
2016 * If we are defragging then free the buffer.
2018 if (defrag) {
2019 bp->b_flags |= B_INVAL;
2020 bfreekva(bp);
2021 brelse(bp);
2022 defrag = 0;
2023 goto restart;
2027 * If we are overcomitted then recover the buffer and its
2028 * KVM space. This occurs in rare situations when multiple
2029 * processes are blocked in getnewbuf() or allocbuf().
2031 if (bufspace >= hibufspace)
2032 flushingbufs = 1;
2033 if (flushingbufs && bp->b_kvasize != 0) {
2034 bp->b_flags |= B_INVAL;
2035 bfreekva(bp);
2036 brelse(bp);
2037 goto restart;
2039 if (bufspace < lobufspace)
2040 flushingbufs = 0;
2041 break;
2042 /* NOT REACHED, bufspin not held */
2046 * If we exhausted our list, sleep as appropriate. We may have to
2047 * wakeup various daemons and write out some dirty buffers.
2049 * Generally we are sleeping due to insufficient buffer space.
2051 * NOTE: bufspin is held if bp is NULL, else it is not held.
2053 if (bp == NULL) {
2054 int flags;
2055 char *waitmsg;
2057 spin_unlock_wr(&bufspin);
2058 if (defrag) {
2059 flags = VFS_BIO_NEED_BUFSPACE;
2060 waitmsg = "nbufkv";
2061 } else if (bufspace >= hibufspace) {
2062 waitmsg = "nbufbs";
2063 flags = VFS_BIO_NEED_BUFSPACE;
2064 } else {
2065 waitmsg = "newbuf";
2066 flags = VFS_BIO_NEED_ANY;
2069 needsbuffer |= flags;
2070 bd_speedup(); /* heeeelp */
2071 while (needsbuffer & flags) {
2072 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
2073 return (NULL);
2075 } else {
2077 * We finally have a valid bp. We aren't quite out of the
2078 * woods, we still have to reserve kva space. In order
2079 * to keep fragmentation sane we only allocate kva in
2080 * BKVASIZE chunks.
2082 * (bufspin is not held)
2084 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2086 if (maxsize != bp->b_kvasize) {
2087 vm_offset_t addr = 0;
2088 int count;
2090 bfreekva(bp);
2092 get_mplock();
2093 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2094 vm_map_lock(&buffer_map);
2096 if (vm_map_findspace(&buffer_map,
2097 vm_map_min(&buffer_map), maxsize,
2098 maxsize, 0, &addr)) {
2100 * Uh oh. Buffer map is too fragmented. We
2101 * must defragment the map.
2103 vm_map_unlock(&buffer_map);
2104 vm_map_entry_release(count);
2105 ++bufdefragcnt;
2106 defrag = 1;
2107 bp->b_flags |= B_INVAL;
2108 rel_mplock();
2109 brelse(bp);
2110 goto restart;
2112 if (addr) {
2113 vm_map_insert(&buffer_map, &count,
2114 NULL, 0,
2115 addr, addr + maxsize,
2116 VM_MAPTYPE_NORMAL,
2117 VM_PROT_ALL, VM_PROT_ALL,
2118 MAP_NOFAULT);
2120 bp->b_kvabase = (caddr_t) addr;
2121 bp->b_kvasize = maxsize;
2122 bufspace += bp->b_kvasize;
2123 ++bufreusecnt;
2125 vm_map_unlock(&buffer_map);
2126 vm_map_entry_release(count);
2127 rel_mplock();
2129 bp->b_data = bp->b_kvabase;
2131 return(bp);
2135 * This routine is called in an emergency to recover VM pages from the
2136 * buffer cache by cashing in clean buffers. The idea is to recover
2137 * enough pages to be able to satisfy a stuck bio_page_alloc().
2139 static int
2140 recoverbufpages(void)
2142 struct buf *bp;
2143 int bytes = 0;
2145 ++recoverbufcalls;
2147 spin_lock_wr(&bufspin);
2148 while (bytes < MAXBSIZE) {
2149 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2150 if (bp == NULL)
2151 break;
2154 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2155 * cycles through the queue twice before being selected.
2157 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2158 bp->b_flags |= B_AGE;
2159 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2160 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2161 bp, b_freelist);
2162 continue;
2166 * Sanity Checks
2168 KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2169 KKASSERT((bp->b_flags & B_DELWRI) == 0);
2172 * Start freeing the bp. This is somewhat involved.
2174 * Buffers on the clean list must be disassociated from
2175 * their current vnode
2178 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2179 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
2180 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2181 continue;
2183 if (bp->b_qindex != BQUEUE_CLEAN) {
2184 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
2185 BUF_UNLOCK(bp);
2186 continue;
2188 bremfree_locked(bp);
2189 spin_unlock_wr(&bufspin);
2192 * Dependancies must be handled before we disassociate the
2193 * vnode.
2195 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2196 * be immediately disassociated. HAMMER then becomes
2197 * responsible for releasing the buffer.
2199 if (LIST_FIRST(&bp->b_dep) != NULL) {
2200 buf_deallocate(bp);
2201 if (bp->b_flags & B_LOCKED) {
2202 bqrelse(bp);
2203 spin_lock_wr(&bufspin);
2204 continue;
2206 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2209 bytes += bp->b_bufsize;
2211 get_mplock();
2212 if (bp->b_flags & B_VMIO) {
2213 bp->b_flags |= B_DIRECT; /* try to free pages */
2214 vfs_vmio_release(bp);
2216 if (bp->b_vp)
2217 brelvp(bp);
2219 KKASSERT(bp->b_vp == NULL);
2220 KKASSERT((bp->b_flags & B_HASHED) == 0);
2223 * critical section protection is not required when
2224 * scrapping a buffer's contents because it is already
2225 * wired.
2227 if (bp->b_bufsize)
2228 allocbuf(bp, 0);
2229 rel_mplock();
2231 bp->b_flags = B_BNOCLIP;
2232 bp->b_cmd = BUF_CMD_DONE;
2233 bp->b_vp = NULL;
2234 bp->b_error = 0;
2235 bp->b_resid = 0;
2236 bp->b_bcount = 0;
2237 bp->b_xio.xio_npages = 0;
2238 bp->b_dirtyoff = bp->b_dirtyend = 0;
2239 reinitbufbio(bp);
2240 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2241 buf_dep_init(bp);
2242 bp->b_flags |= B_INVAL;
2243 /* bfreekva(bp); */
2244 brelse(bp);
2245 spin_lock_wr(&bufspin);
2247 spin_unlock_wr(&bufspin);
2248 return(bytes);
2252 * buf_daemon:
2254 * Buffer flushing daemon. Buffers are normally flushed by the
2255 * update daemon but if it cannot keep up this process starts to
2256 * take the load in an attempt to prevent getnewbuf() from blocking.
2258 * Once a flush is initiated it does not stop until the number
2259 * of buffers falls below lodirtybuffers, but we will wake up anyone
2260 * waiting at the mid-point.
2263 static struct kproc_desc buf_kp = {
2264 "bufdaemon",
2265 buf_daemon,
2266 &bufdaemon_td
2268 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2269 kproc_start, &buf_kp)
2271 static struct kproc_desc bufhw_kp = {
2272 "bufdaemon_hw",
2273 buf_daemon_hw,
2274 &bufdaemonhw_td
2276 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2277 kproc_start, &bufhw_kp)
2279 static void
2280 buf_daemon(void)
2282 int limit;
2285 * This process needs to be suspended prior to shutdown sync.
2287 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2288 bufdaemon_td, SHUTDOWN_PRI_LAST);
2289 curthread->td_flags |= TDF_SYSTHREAD;
2292 * This process is allowed to take the buffer cache to the limit
2294 crit_enter();
2296 for (;;) {
2297 kproc_suspend_loop();
2300 * Do the flush as long as the number of dirty buffers
2301 * (including those running) exceeds lodirtybufspace.
2303 * When flushing limit running I/O to hirunningspace
2304 * Do the flush. Limit the amount of in-transit I/O we
2305 * allow to build up, otherwise we would completely saturate
2306 * the I/O system. Wakeup any waiting processes before we
2307 * normally would so they can run in parallel with our drain.
2309 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2310 * but because we split the operation into two threads we
2311 * have to cut it in half for each thread.
2313 waitrunningbufspace();
2314 limit = lodirtybufspace / 2;
2315 while (runningbufspace + dirtybufspace > limit ||
2316 dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2317 if (flushbufqueues(BQUEUE_DIRTY) == 0)
2318 break;
2319 if (runningbufspace < hirunningspace)
2320 continue;
2321 waitrunningbufspace();
2325 * We reached our low water mark, reset the
2326 * request and sleep until we are needed again.
2327 * The sleep is just so the suspend code works.
2329 spin_lock_wr(&needsbuffer_spin);
2330 if (bd_request == 0) {
2331 ssleep(&bd_request, &needsbuffer_spin, 0,
2332 "psleep", hz);
2334 bd_request = 0;
2335 spin_unlock_wr(&needsbuffer_spin);
2339 static void
2340 buf_daemon_hw(void)
2342 int limit;
2345 * This process needs to be suspended prior to shutdown sync.
2347 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2348 bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2349 curthread->td_flags |= TDF_SYSTHREAD;
2352 * This process is allowed to take the buffer cache to the limit
2354 crit_enter();
2356 for (;;) {
2357 kproc_suspend_loop();
2360 * Do the flush. Limit the amount of in-transit I/O we
2361 * allow to build up, otherwise we would completely saturate
2362 * the I/O system. Wakeup any waiting processes before we
2363 * normally would so they can run in parallel with our drain.
2365 * Once we decide to flush push the queued I/O up to
2366 * hirunningspace in order to trigger bursting by the bioq
2367 * subsystem.
2369 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2370 * but because we split the operation into two threads we
2371 * have to cut it in half for each thread.
2373 waitrunningbufspace();
2374 limit = lodirtybufspace / 2;
2375 while (runningbufspace + dirtybufspacehw > limit ||
2376 dirtybufcounthw >= nbuf / 2) {
2377 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2378 break;
2379 if (runningbufspace < hirunningspace)
2380 continue;
2381 waitrunningbufspace();
2385 * We reached our low water mark, reset the
2386 * request and sleep until we are needed again.
2387 * The sleep is just so the suspend code works.
2389 spin_lock_wr(&needsbuffer_spin);
2390 if (bd_request_hw == 0) {
2391 ssleep(&bd_request_hw, &needsbuffer_spin, 0,
2392 "psleep", hz);
2394 bd_request_hw = 0;
2395 spin_unlock_wr(&needsbuffer_spin);
2400 * flushbufqueues:
2402 * Try to flush a buffer in the dirty queue. We must be careful to
2403 * free up B_INVAL buffers instead of write them, which NFS is
2404 * particularly sensitive to.
2406 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate
2407 * that we really want to try to get the buffer out and reuse it
2408 * due to the write load on the machine.
2410 static int
2411 flushbufqueues(bufq_type_t q)
2413 struct buf *bp;
2414 int r = 0;
2415 int spun;
2417 spin_lock_wr(&bufspin);
2418 spun = 1;
2420 bp = TAILQ_FIRST(&bufqueues[q]);
2421 while (bp) {
2422 KASSERT((bp->b_flags & B_DELWRI),
2423 ("unexpected clean buffer %p", bp));
2425 if (bp->b_flags & B_DELWRI) {
2426 if (bp->b_flags & B_INVAL) {
2427 spin_unlock_wr(&bufspin);
2428 spun = 0;
2429 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2430 panic("flushbufqueues: locked buf");
2431 bremfree(bp);
2432 brelse(bp);
2433 ++r;
2434 break;
2436 if (LIST_FIRST(&bp->b_dep) != NULL &&
2437 (bp->b_flags & B_DEFERRED) == 0 &&
2438 buf_countdeps(bp, 0)) {
2439 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2440 TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2441 b_freelist);
2442 bp->b_flags |= B_DEFERRED;
2443 bp = TAILQ_FIRST(&bufqueues[q]);
2444 continue;
2448 * Only write it out if we can successfully lock
2449 * it. If the buffer has a dependancy,
2450 * buf_checkwrite must also return 0 for us to
2451 * be able to initate the write.
2453 * If the buffer is flagged B_ERROR it may be
2454 * requeued over and over again, we try to
2455 * avoid a live lock.
2457 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2458 spin_unlock_wr(&bufspin);
2459 spun = 0;
2460 if (LIST_FIRST(&bp->b_dep) != NULL &&
2461 buf_checkwrite(bp)) {
2462 bremfree(bp);
2463 brelse(bp);
2464 } else if (bp->b_flags & B_ERROR) {
2465 tsleep(bp, 0, "bioer", 1);
2466 bp->b_flags &= ~B_AGE;
2467 vfs_bio_awrite(bp);
2468 } else {
2469 bp->b_flags |= B_AGE;
2470 vfs_bio_awrite(bp);
2472 ++r;
2473 break;
2476 bp = TAILQ_NEXT(bp, b_freelist);
2478 if (spun)
2479 spin_unlock_wr(&bufspin);
2480 return (r);
2484 * inmem:
2486 * Returns true if no I/O is needed to access the associated VM object.
2487 * This is like findblk except it also hunts around in the VM system for
2488 * the data.
2490 * Note that we ignore vm_page_free() races from interrupts against our
2491 * lookup, since if the caller is not protected our return value will not
2492 * be any more valid then otherwise once we exit the critical section.
2495 inmem(struct vnode *vp, off_t loffset)
2497 vm_object_t obj;
2498 vm_offset_t toff, tinc, size;
2499 vm_page_t m;
2501 if (findblk(vp, loffset, FINDBLK_TEST))
2502 return 1;
2503 if (vp->v_mount == NULL)
2504 return 0;
2505 if ((obj = vp->v_object) == NULL)
2506 return 0;
2508 size = PAGE_SIZE;
2509 if (size > vp->v_mount->mnt_stat.f_iosize)
2510 size = vp->v_mount->mnt_stat.f_iosize;
2512 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2513 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2514 if (m == NULL)
2515 return 0;
2516 tinc = size;
2517 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2518 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2519 if (vm_page_is_valid(m,
2520 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2521 return 0;
2523 return 1;
2527 * findblk:
2529 * Locate and return the specified buffer. Unless flagged otherwise,
2530 * a locked buffer will be returned if it exists or NULL if it does not.
2532 * findblk()'d buffers are still on the bufqueues and if you intend
2533 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2534 * and possibly do other stuff to it.
2536 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2537 * for locking the buffer and ensuring that it remains
2538 * the desired buffer after locking.
2540 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2541 * to acquire the lock we return NULL, even if the
2542 * buffer exists.
2544 * (0) - Lock the buffer blocking.
2546 * MPSAFE
2548 struct buf *
2549 findblk(struct vnode *vp, off_t loffset, int flags)
2551 lwkt_tokref vlock;
2552 struct buf *bp;
2553 int lkflags;
2555 lkflags = LK_EXCLUSIVE;
2556 if (flags & FINDBLK_NBLOCK)
2557 lkflags |= LK_NOWAIT;
2559 for (;;) {
2560 lwkt_gettoken(&vlock, &vp->v_token);
2561 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2562 lwkt_reltoken(&vlock);
2563 if (bp == NULL || (flags & FINDBLK_TEST))
2564 break;
2565 if (BUF_LOCK(bp, lkflags)) {
2566 bp = NULL;
2567 break;
2569 if (bp->b_vp == vp && bp->b_loffset == loffset)
2570 break;
2571 BUF_UNLOCK(bp);
2573 return(bp);
2577 * getcacheblk:
2579 * Similar to getblk() except only returns the buffer if it is
2580 * B_CACHE and requires no other manipulation. Otherwise NULL
2581 * is returned.
2583 * If B_RAM is set the buffer might be just fine, but we return
2584 * NULL anyway because we want the code to fall through to the
2585 * cluster read. Otherwise read-ahead breaks.
2587 struct buf *
2588 getcacheblk(struct vnode *vp, off_t loffset)
2590 struct buf *bp;
2592 bp = findblk(vp, loffset, 0);
2593 if (bp) {
2594 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2595 bp->b_flags &= ~B_AGE;
2596 bremfree(bp);
2597 } else {
2598 BUF_UNLOCK(bp);
2599 bp = NULL;
2602 return (bp);
2606 * getblk:
2608 * Get a block given a specified block and offset into a file/device.
2609 * B_INVAL may or may not be set on return. The caller should clear
2610 * B_INVAL prior to initiating a READ.
2612 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2613 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2614 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2615 * without doing any of those things the system will likely believe
2616 * the buffer to be valid (especially if it is not B_VMIO), and the
2617 * next getblk() will return the buffer with B_CACHE set.
2619 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2620 * an existing buffer.
2622 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2623 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2624 * and then cleared based on the backing VM. If the previous buffer is
2625 * non-0-sized but invalid, B_CACHE will be cleared.
2627 * If getblk() must create a new buffer, the new buffer is returned with
2628 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2629 * case it is returned with B_INVAL clear and B_CACHE set based on the
2630 * backing VM.
2632 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2633 * B_CACHE bit is clear.
2635 * What this means, basically, is that the caller should use B_CACHE to
2636 * determine whether the buffer is fully valid or not and should clear
2637 * B_INVAL prior to issuing a read. If the caller intends to validate
2638 * the buffer by loading its data area with something, the caller needs
2639 * to clear B_INVAL. If the caller does this without issuing an I/O,
2640 * the caller should set B_CACHE ( as an optimization ), else the caller
2641 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2642 * a write attempt or if it was a successfull read. If the caller
2643 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2644 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2646 * getblk flags:
2648 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2649 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2651 * MPALMOSTSAFE
2653 struct buf *
2654 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2656 struct buf *bp;
2657 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2658 int error;
2659 int lkflags;
2661 if (size > MAXBSIZE)
2662 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2663 if (vp->v_object == NULL)
2664 panic("getblk: vnode %p has no object!", vp);
2666 loop:
2667 if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) {
2669 * The buffer was found in the cache, but we need to lock it.
2670 * Even with LK_NOWAIT the lockmgr may break our critical
2671 * section, so double-check the validity of the buffer
2672 * once the lock has been obtained.
2674 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2675 if (blkflags & GETBLK_NOWAIT)
2676 return(NULL);
2677 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2678 if (blkflags & GETBLK_PCATCH)
2679 lkflags |= LK_PCATCH;
2680 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2681 if (error) {
2682 if (error == ENOLCK)
2683 goto loop;
2684 return (NULL);
2686 /* buffer may have changed on us */
2690 * Once the buffer has been locked, make sure we didn't race
2691 * a buffer recyclement. Buffers that are no longer hashed
2692 * will have b_vp == NULL, so this takes care of that check
2693 * as well.
2695 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2696 kprintf("Warning buffer %p (vp %p loffset %lld) "
2697 "was recycled\n",
2698 bp, vp, (long long)loffset);
2699 BUF_UNLOCK(bp);
2700 goto loop;
2704 * If SZMATCH any pre-existing buffer must be of the requested
2705 * size or NULL is returned. The caller absolutely does not
2706 * want getblk() to bwrite() the buffer on a size mismatch.
2708 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2709 BUF_UNLOCK(bp);
2710 return(NULL);
2714 * All vnode-based buffers must be backed by a VM object.
2716 KKASSERT(bp->b_flags & B_VMIO);
2717 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2718 bp->b_flags &= ~B_AGE;
2721 * Make sure that B_INVAL buffers do not have a cached
2722 * block number translation.
2724 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2725 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2726 " did not have cleared bio_offset cache\n",
2727 bp, vp, (long long)loffset);
2728 clearbiocache(&bp->b_bio2);
2732 * The buffer is locked. B_CACHE is cleared if the buffer is
2733 * invalid.
2735 if (bp->b_flags & B_INVAL)
2736 bp->b_flags &= ~B_CACHE;
2737 bremfree(bp);
2740 * Any size inconsistancy with a dirty buffer or a buffer
2741 * with a softupdates dependancy must be resolved. Resizing
2742 * the buffer in such circumstances can lead to problems.
2744 * Dirty or dependant buffers are written synchronously.
2745 * Other types of buffers are simply released and
2746 * reconstituted as they may be backed by valid, dirty VM
2747 * pages (but not marked B_DELWRI).
2749 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2750 * and may be left over from a prior truncation (and thus
2751 * no longer represent the actual EOF point), so we
2752 * definitely do not want to B_NOCACHE the backing store.
2754 if (size != bp->b_bcount) {
2755 get_mplock();
2756 if (bp->b_flags & B_DELWRI) {
2757 bp->b_flags |= B_RELBUF;
2758 bwrite(bp);
2759 } else if (LIST_FIRST(&bp->b_dep)) {
2760 bp->b_flags |= B_RELBUF;
2761 bwrite(bp);
2762 } else {
2763 bp->b_flags |= B_RELBUF;
2764 brelse(bp);
2766 rel_mplock();
2767 goto loop;
2769 KKASSERT(size <= bp->b_kvasize);
2770 KASSERT(bp->b_loffset != NOOFFSET,
2771 ("getblk: no buffer offset"));
2774 * A buffer with B_DELWRI set and B_CACHE clear must
2775 * be committed before we can return the buffer in
2776 * order to prevent the caller from issuing a read
2777 * ( due to B_CACHE not being set ) and overwriting
2778 * it.
2780 * Most callers, including NFS and FFS, need this to
2781 * operate properly either because they assume they
2782 * can issue a read if B_CACHE is not set, or because
2783 * ( for example ) an uncached B_DELWRI might loop due
2784 * to softupdates re-dirtying the buffer. In the latter
2785 * case, B_CACHE is set after the first write completes,
2786 * preventing further loops.
2788 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2789 * above while extending the buffer, we cannot allow the
2790 * buffer to remain with B_CACHE set after the write
2791 * completes or it will represent a corrupt state. To
2792 * deal with this we set B_NOCACHE to scrap the buffer
2793 * after the write.
2795 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2796 * I'm not even sure this state is still possible
2797 * now that getblk() writes out any dirty buffers
2798 * on size changes.
2800 * We might be able to do something fancy, like setting
2801 * B_CACHE in bwrite() except if B_DELWRI is already set,
2802 * so the below call doesn't set B_CACHE, but that gets real
2803 * confusing. This is much easier.
2806 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2807 get_mplock();
2808 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2809 "and CACHE clear, b_flags %08x\n",
2810 bp, (intmax_t)bp->b_loffset, bp->b_flags);
2811 bp->b_flags |= B_NOCACHE;
2812 bwrite(bp);
2813 rel_mplock();
2814 goto loop;
2816 } else {
2818 * Buffer is not in-core, create new buffer. The buffer
2819 * returned by getnewbuf() is locked. Note that the returned
2820 * buffer is also considered valid (not marked B_INVAL).
2822 * Calculating the offset for the I/O requires figuring out
2823 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2824 * the mount's f_iosize otherwise. If the vnode does not
2825 * have an associated mount we assume that the passed size is
2826 * the block size.
2828 * Note that vn_isdisk() cannot be used here since it may
2829 * return a failure for numerous reasons. Note that the
2830 * buffer size may be larger then the block size (the caller
2831 * will use block numbers with the proper multiple). Beware
2832 * of using any v_* fields which are part of unions. In
2833 * particular, in DragonFly the mount point overloading
2834 * mechanism uses the namecache only and the underlying
2835 * directory vnode is not a special case.
2837 int bsize, maxsize;
2839 if (vp->v_type == VBLK || vp->v_type == VCHR)
2840 bsize = DEV_BSIZE;
2841 else if (vp->v_mount)
2842 bsize = vp->v_mount->mnt_stat.f_iosize;
2843 else
2844 bsize = size;
2846 maxsize = size + (loffset & PAGE_MASK);
2847 maxsize = imax(maxsize, bsize);
2849 bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2850 if (bp == NULL) {
2851 if (slpflags || slptimeo)
2852 return NULL;
2853 goto loop;
2857 * Atomically insert the buffer into the hash, so that it can
2858 * be found by findblk().
2860 * If bgetvp() returns non-zero a collision occured, and the
2861 * bp will not be associated with the vnode.
2863 * Make sure the translation layer has been cleared.
2865 bp->b_loffset = loffset;
2866 bp->b_bio2.bio_offset = NOOFFSET;
2867 /* bp->b_bio2.bio_next = NULL; */
2869 if (bgetvp(vp, bp)) {
2870 bp->b_flags |= B_INVAL;
2871 brelse(bp);
2872 goto loop;
2876 * All vnode-based buffers must be backed by a VM object.
2878 KKASSERT(vp->v_object != NULL);
2879 bp->b_flags |= B_VMIO;
2880 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2882 get_mplock();
2883 allocbuf(bp, size);
2884 rel_mplock();
2886 return (bp);
2890 * regetblk(bp)
2892 * Reacquire a buffer that was previously released to the locked queue,
2893 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2894 * set B_LOCKED (which handles the acquisition race).
2896 * To this end, either B_LOCKED must be set or the dependancy list must be
2897 * non-empty.
2899 * MPSAFE
2901 void
2902 regetblk(struct buf *bp)
2904 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2905 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2906 bremfree(bp);
2910 * geteblk:
2912 * Get an empty, disassociated buffer of given size. The buffer is
2913 * initially set to B_INVAL.
2915 * critical section protection is not required for the allocbuf()
2916 * call because races are impossible here.
2918 * MPALMOSTSAFE
2920 struct buf *
2921 geteblk(int size)
2923 struct buf *bp;
2924 int maxsize;
2926 maxsize = (size + BKVAMASK) & ~BKVAMASK;
2928 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2930 get_mplock();
2931 allocbuf(bp, size);
2932 rel_mplock();
2933 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
2934 return (bp);
2939 * allocbuf:
2941 * This code constitutes the buffer memory from either anonymous system
2942 * memory (in the case of non-VMIO operations) or from an associated
2943 * VM object (in the case of VMIO operations). This code is able to
2944 * resize a buffer up or down.
2946 * Note that this code is tricky, and has many complications to resolve
2947 * deadlock or inconsistant data situations. Tread lightly!!!
2948 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2949 * the caller. Calling this code willy nilly can result in the loss of data.
2951 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2952 * B_CACHE for the non-VMIO case.
2954 * This routine does not need to be called from a critical section but you
2955 * must own the buffer.
2957 * NOTMPSAFE
2960 allocbuf(struct buf *bp, int size)
2962 int newbsize, mbsize;
2963 int i;
2965 if (BUF_REFCNT(bp) == 0)
2966 panic("allocbuf: buffer not busy");
2968 if (bp->b_kvasize < size)
2969 panic("allocbuf: buffer too small");
2971 if ((bp->b_flags & B_VMIO) == 0) {
2972 caddr_t origbuf;
2973 int origbufsize;
2975 * Just get anonymous memory from the kernel. Don't
2976 * mess with B_CACHE.
2978 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2979 if (bp->b_flags & B_MALLOC)
2980 newbsize = mbsize;
2981 else
2982 newbsize = round_page(size);
2984 if (newbsize < bp->b_bufsize) {
2986 * Malloced buffers are not shrunk
2988 if (bp->b_flags & B_MALLOC) {
2989 if (newbsize) {
2990 bp->b_bcount = size;
2991 } else {
2992 kfree(bp->b_data, M_BIOBUF);
2993 if (bp->b_bufsize) {
2994 bufmallocspace -= bp->b_bufsize;
2995 bufspacewakeup();
2996 bp->b_bufsize = 0;
2998 bp->b_data = bp->b_kvabase;
2999 bp->b_bcount = 0;
3000 bp->b_flags &= ~B_MALLOC;
3002 return 1;
3004 vm_hold_free_pages(
3006 (vm_offset_t) bp->b_data + newbsize,
3007 (vm_offset_t) bp->b_data + bp->b_bufsize);
3008 } else if (newbsize > bp->b_bufsize) {
3010 * We only use malloced memory on the first allocation.
3011 * and revert to page-allocated memory when the buffer
3012 * grows.
3014 if ((bufmallocspace < maxbufmallocspace) &&
3015 (bp->b_bufsize == 0) &&
3016 (mbsize <= PAGE_SIZE/2)) {
3018 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3019 bp->b_bufsize = mbsize;
3020 bp->b_bcount = size;
3021 bp->b_flags |= B_MALLOC;
3022 bufmallocspace += mbsize;
3023 return 1;
3025 origbuf = NULL;
3026 origbufsize = 0;
3028 * If the buffer is growing on its other-than-first
3029 * allocation, then we revert to the page-allocation
3030 * scheme.
3032 if (bp->b_flags & B_MALLOC) {
3033 origbuf = bp->b_data;
3034 origbufsize = bp->b_bufsize;
3035 bp->b_data = bp->b_kvabase;
3036 if (bp->b_bufsize) {
3037 bufmallocspace -= bp->b_bufsize;
3038 bufspacewakeup();
3039 bp->b_bufsize = 0;
3041 bp->b_flags &= ~B_MALLOC;
3042 newbsize = round_page(newbsize);
3044 vm_hold_load_pages(
3046 (vm_offset_t) bp->b_data + bp->b_bufsize,
3047 (vm_offset_t) bp->b_data + newbsize);
3048 if (origbuf) {
3049 bcopy(origbuf, bp->b_data, origbufsize);
3050 kfree(origbuf, M_BIOBUF);
3053 } else {
3054 vm_page_t m;
3055 int desiredpages;
3057 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3058 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3059 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3060 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3062 if (bp->b_flags & B_MALLOC)
3063 panic("allocbuf: VMIO buffer can't be malloced");
3065 * Set B_CACHE initially if buffer is 0 length or will become
3066 * 0-length.
3068 if (size == 0 || bp->b_bufsize == 0)
3069 bp->b_flags |= B_CACHE;
3071 if (newbsize < bp->b_bufsize) {
3073 * DEV_BSIZE aligned new buffer size is less then the
3074 * DEV_BSIZE aligned existing buffer size. Figure out
3075 * if we have to remove any pages.
3077 if (desiredpages < bp->b_xio.xio_npages) {
3078 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3080 * the page is not freed here -- it
3081 * is the responsibility of
3082 * vnode_pager_setsize
3084 m = bp->b_xio.xio_pages[i];
3085 KASSERT(m != bogus_page,
3086 ("allocbuf: bogus page found"));
3087 while (vm_page_sleep_busy(m, TRUE, "biodep"))
3090 bp->b_xio.xio_pages[i] = NULL;
3091 vm_page_unwire(m, 0);
3093 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3094 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3095 bp->b_xio.xio_npages = desiredpages;
3097 } else if (size > bp->b_bcount) {
3099 * We are growing the buffer, possibly in a
3100 * byte-granular fashion.
3102 struct vnode *vp;
3103 vm_object_t obj;
3104 vm_offset_t toff;
3105 vm_offset_t tinc;
3108 * Step 1, bring in the VM pages from the object,
3109 * allocating them if necessary. We must clear
3110 * B_CACHE if these pages are not valid for the
3111 * range covered by the buffer.
3113 * critical section protection is required to protect
3114 * against interrupts unbusying and freeing pages
3115 * between our vm_page_lookup() and our
3116 * busycheck/wiring call.
3118 vp = bp->b_vp;
3119 obj = vp->v_object;
3121 crit_enter();
3122 while (bp->b_xio.xio_npages < desiredpages) {
3123 vm_page_t m;
3124 vm_pindex_t pi;
3126 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3127 if ((m = vm_page_lookup(obj, pi)) == NULL) {
3129 * note: must allocate system pages
3130 * since blocking here could intefere
3131 * with paging I/O, no matter which
3132 * process we are.
3134 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3135 if (m) {
3136 vm_page_wire(m);
3137 vm_page_wakeup(m);
3138 bp->b_flags &= ~B_CACHE;
3139 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3140 ++bp->b_xio.xio_npages;
3142 continue;
3146 * We found a page. If we have to sleep on it,
3147 * retry because it might have gotten freed out
3148 * from under us.
3150 * We can only test PG_BUSY here. Blocking on
3151 * m->busy might lead to a deadlock:
3153 * vm_fault->getpages->cluster_read->allocbuf
3157 if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3158 continue;
3159 vm_page_flag_clear(m, PG_ZERO);
3160 vm_page_wire(m);
3161 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3162 ++bp->b_xio.xio_npages;
3164 crit_exit();
3167 * Step 2. We've loaded the pages into the buffer,
3168 * we have to figure out if we can still have B_CACHE
3169 * set. Note that B_CACHE is set according to the
3170 * byte-granular range ( bcount and size ), not the
3171 * aligned range ( newbsize ).
3173 * The VM test is against m->valid, which is DEV_BSIZE
3174 * aligned. Needless to say, the validity of the data
3175 * needs to also be DEV_BSIZE aligned. Note that this
3176 * fails with NFS if the server or some other client
3177 * extends the file's EOF. If our buffer is resized,
3178 * B_CACHE may remain set! XXX
3181 toff = bp->b_bcount;
3182 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3184 while ((bp->b_flags & B_CACHE) && toff < size) {
3185 vm_pindex_t pi;
3187 if (tinc > (size - toff))
3188 tinc = size - toff;
3190 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3191 PAGE_SHIFT;
3193 vfs_buf_test_cache(
3194 bp,
3195 bp->b_loffset,
3196 toff,
3197 tinc,
3198 bp->b_xio.xio_pages[pi]
3200 toff += tinc;
3201 tinc = PAGE_SIZE;
3205 * Step 3, fixup the KVM pmap. Remember that
3206 * bp->b_data is relative to bp->b_loffset, but
3207 * bp->b_loffset may be offset into the first page.
3210 bp->b_data = (caddr_t)
3211 trunc_page((vm_offset_t)bp->b_data);
3212 pmap_qenter(
3213 (vm_offset_t)bp->b_data,
3214 bp->b_xio.xio_pages,
3215 bp->b_xio.xio_npages
3217 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3218 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3222 /* adjust space use on already-dirty buffer */
3223 if (bp->b_flags & B_DELWRI) {
3224 dirtybufspace += newbsize - bp->b_bufsize;
3225 if (bp->b_flags & B_HEAVY)
3226 dirtybufspacehw += newbsize - bp->b_bufsize;
3228 if (newbsize < bp->b_bufsize)
3229 bufspacewakeup();
3230 bp->b_bufsize = newbsize; /* actual buffer allocation */
3231 bp->b_bcount = size; /* requested buffer size */
3232 return 1;
3236 * biowait:
3238 * Wait for buffer I/O completion, returning error status. B_EINTR
3239 * is converted into an EINTR error but not cleared (since a chain
3240 * of biowait() calls may occur).
3242 * On return bpdone() will have been called but the buffer will remain
3243 * locked and will not have been brelse()'d.
3245 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3246 * likely still in progress on return.
3248 * NOTE! This operation is on a BIO, not a BUF.
3250 * NOTE! BIO_DONE is cleared by vn_strategy()
3252 * MPSAFE
3254 static __inline int
3255 _biowait(struct bio *bio, const char *wmesg, int to)
3257 struct buf *bp = bio->bio_buf;
3258 u_int32_t flags;
3259 u_int32_t nflags;
3260 int error;
3262 KKASSERT(bio == &bp->b_bio1);
3263 for (;;) {
3264 flags = bio->bio_flags;
3265 if (flags & BIO_DONE)
3266 break;
3267 tsleep_interlock(bio, 0);
3268 nflags = flags | BIO_WANT;
3269 tsleep_interlock(bio, 0);
3270 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3271 if (wmesg)
3272 error = tsleep(bio, PINTERLOCKED, wmesg, to);
3273 else if (bp->b_cmd == BUF_CMD_READ)
3274 error = tsleep(bio, PINTERLOCKED, "biord", to);
3275 else
3276 error = tsleep(bio, PINTERLOCKED, "biowr", to);
3277 if (error) {
3278 kprintf("tsleep error biowait %d\n", error);
3279 return (error);
3281 break;
3286 * Finish up.
3288 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3289 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3290 if (bp->b_flags & B_EINTR)
3291 return (EINTR);
3292 if (bp->b_flags & B_ERROR)
3293 return (bp->b_error ? bp->b_error : EIO);
3294 return (0);
3298 biowait(struct bio *bio, const char *wmesg)
3300 return(_biowait(bio, wmesg, 0));
3304 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3306 return(_biowait(bio, wmesg, to));
3310 * This associates a tracking count with an I/O. vn_strategy() and
3311 * dev_dstrategy() do this automatically but there are a few cases
3312 * where a vnode or device layer is bypassed when a block translation
3313 * is cached. In such cases bio_start_transaction() may be called on
3314 * the bypassed layers so the system gets an I/O in progress indication
3315 * for those higher layers.
3317 void
3318 bio_start_transaction(struct bio *bio, struct bio_track *track)
3320 bio->bio_track = track;
3321 bio_track_ref(track);
3325 * Initiate I/O on a vnode.
3327 void
3328 vn_strategy(struct vnode *vp, struct bio *bio)
3330 struct bio_track *track;
3332 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
3333 if (bio->bio_buf->b_cmd == BUF_CMD_READ)
3334 track = &vp->v_track_read;
3335 else
3336 track = &vp->v_track_write;
3337 KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3338 bio->bio_track = track;
3339 bio_track_ref(track);
3340 vop_strategy(*vp->v_ops, vp, bio);
3344 * bpdone:
3346 * Finish I/O on a buffer after all BIOs have been processed.
3347 * Called when the bio chain is exhausted or by biowait. If called
3348 * by biowait, elseit is typically 0.
3350 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3351 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3352 * assuming B_INVAL is clear.
3354 * For the VMIO case, we set B_CACHE if the op was a read and no
3355 * read error occured, or if the op was a write. B_CACHE is never
3356 * set if the buffer is invalid or otherwise uncacheable.
3358 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3359 * initiator to leave B_INVAL set to brelse the buffer out of existance
3360 * in the biodone routine.
3362 void
3363 bpdone(struct buf *bp, int elseit)
3365 buf_cmd_t cmd;
3367 KASSERT(BUF_REFCNTNB(bp) > 0,
3368 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3369 KASSERT(bp->b_cmd != BUF_CMD_DONE,
3370 ("biodone: bp %p already done!", bp));
3373 * No more BIOs are left. All completion functions have been dealt
3374 * with, now we clean up the buffer.
3376 cmd = bp->b_cmd;
3377 bp->b_cmd = BUF_CMD_DONE;
3380 * Only reads and writes are processed past this point.
3382 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3383 if (cmd == BUF_CMD_FREEBLKS)
3384 bp->b_flags |= B_NOCACHE;
3385 if (elseit)
3386 brelse(bp);
3387 return;
3391 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3392 * a lot worse. XXX - move this above the clearing of b_cmd
3394 if (LIST_FIRST(&bp->b_dep) != NULL)
3395 buf_complete(bp);
3398 * A failed write must re-dirty the buffer unless B_INVAL
3399 * was set. Only applicable to normal buffers (with VPs).
3400 * vinum buffers may not have a vp.
3402 if (cmd == BUF_CMD_WRITE &&
3403 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3404 bp->b_flags &= ~B_NOCACHE;
3405 if (bp->b_vp)
3406 bdirty(bp);
3409 if (bp->b_flags & B_VMIO) {
3410 int i;
3411 vm_ooffset_t foff;
3412 vm_page_t m;
3413 vm_object_t obj;
3414 int iosize;
3415 struct vnode *vp = bp->b_vp;
3417 obj = vp->v_object;
3419 #if defined(VFS_BIO_DEBUG)
3420 if (vp->v_auxrefs == 0)
3421 panic("biodone: zero vnode hold count");
3422 if ((vp->v_flag & VOBJBUF) == 0)
3423 panic("biodone: vnode is not setup for merged cache");
3424 #endif
3426 foff = bp->b_loffset;
3427 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3428 KASSERT(obj != NULL, ("biodone: missing VM object"));
3430 #if defined(VFS_BIO_DEBUG)
3431 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3432 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3433 obj->paging_in_progress, bp->b_xio.xio_npages);
3435 #endif
3438 * Set B_CACHE if the op was a normal read and no error
3439 * occured. B_CACHE is set for writes in the b*write()
3440 * routines.
3442 iosize = bp->b_bcount - bp->b_resid;
3443 if (cmd == BUF_CMD_READ &&
3444 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3445 bp->b_flags |= B_CACHE;
3448 crit_enter();
3449 get_mplock();
3450 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3451 int bogusflag = 0;
3452 int resid;
3454 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3455 if (resid > iosize)
3456 resid = iosize;
3459 * cleanup bogus pages, restoring the originals. Since
3460 * the originals should still be wired, we don't have
3461 * to worry about interrupt/freeing races destroying
3462 * the VM object association.
3464 m = bp->b_xio.xio_pages[i];
3465 if (m == bogus_page) {
3466 bogusflag = 1;
3467 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3468 if (m == NULL)
3469 panic("biodone: page disappeared");
3470 bp->b_xio.xio_pages[i] = m;
3471 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3472 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3474 #if defined(VFS_BIO_DEBUG)
3475 if (OFF_TO_IDX(foff) != m->pindex) {
3476 kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3477 "mismatch\n",
3478 (unsigned long)foff, (long)m->pindex);
3480 #endif
3483 * In the write case, the valid and clean bits are
3484 * already changed correctly (see bdwrite()), so we
3485 * only need to do this here in the read case.
3487 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3488 vfs_clean_one_page(bp, i, m);
3490 vm_page_flag_clear(m, PG_ZERO);
3493 * when debugging new filesystems or buffer I/O
3494 * methods, this is the most common error that pops
3495 * up. if you see this, you have not set the page
3496 * busy flag correctly!!!
3498 if (m->busy == 0) {
3499 kprintf("biodone: page busy < 0, "
3500 "pindex: %d, foff: 0x(%x,%x), "
3501 "resid: %d, index: %d\n",
3502 (int) m->pindex, (int)(foff >> 32),
3503 (int) foff & 0xffffffff, resid, i);
3504 if (!vn_isdisk(vp, NULL))
3505 kprintf(" iosize: %ld, loffset: %lld, "
3506 "flags: 0x%08x, npages: %d\n",
3507 bp->b_vp->v_mount->mnt_stat.f_iosize,
3508 (long long)bp->b_loffset,
3509 bp->b_flags, bp->b_xio.xio_npages);
3510 else
3511 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3512 (long long)bp->b_loffset,
3513 bp->b_flags, bp->b_xio.xio_npages);
3514 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3515 m->valid, m->dirty, m->wire_count);
3516 panic("biodone: page busy < 0");
3518 vm_page_io_finish(m);
3519 vm_object_pip_subtract(obj, 1);
3520 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3521 iosize -= resid;
3523 if (obj)
3524 vm_object_pip_wakeupn(obj, 0);
3525 rel_mplock();
3526 crit_exit();
3530 * Finish up by releasing the buffer. There are no more synchronous
3531 * or asynchronous completions, those were handled by bio_done
3532 * callbacks.
3534 if (elseit) {
3535 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3536 brelse(bp);
3537 else
3538 bqrelse(bp);
3543 * Normal biodone.
3545 void
3546 biodone(struct bio *bio)
3548 struct buf *bp = bio->bio_buf;
3550 runningbufwakeup(bp);
3553 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3555 while (bio) {
3556 biodone_t *done_func;
3557 struct bio_track *track;
3560 * BIO tracking. Most but not all BIOs are tracked.
3562 if ((track = bio->bio_track) != NULL) {
3563 bio_track_rel(track);
3564 bio->bio_track = NULL;
3568 * A bio_done function terminates the loop. The function
3569 * will be responsible for any further chaining and/or
3570 * buffer management.
3572 * WARNING! The done function can deallocate the buffer!
3574 if ((done_func = bio->bio_done) != NULL) {
3575 bio->bio_done = NULL;
3576 done_func(bio);
3577 return;
3579 bio = bio->bio_prev;
3583 * If we've run out of bio's do normal [a]synchronous completion.
3585 bpdone(bp, 1);
3589 * Synchronous biodone - this terminates a synchronous BIO.
3591 * bpdone() is called with elseit=FALSE, leaving the buffer completed
3592 * but still locked. The caller must brelse() the buffer after waiting
3593 * for completion.
3595 void
3596 biodone_sync(struct bio *bio)
3598 struct buf *bp = bio->bio_buf;
3599 int flags;
3600 int nflags;
3602 KKASSERT(bio == &bp->b_bio1);
3603 bpdone(bp, 0);
3605 for (;;) {
3606 flags = bio->bio_flags;
3607 nflags = (flags | BIO_DONE) & ~BIO_WANT;
3609 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3610 if (flags & BIO_WANT)
3611 wakeup(bio);
3612 break;
3618 * vfs_unbusy_pages:
3620 * This routine is called in lieu of iodone in the case of
3621 * incomplete I/O. This keeps the busy status for pages
3622 * consistant.
3624 void
3625 vfs_unbusy_pages(struct buf *bp)
3627 int i;
3629 runningbufwakeup(bp);
3630 if (bp->b_flags & B_VMIO) {
3631 struct vnode *vp = bp->b_vp;
3632 vm_object_t obj;
3634 obj = vp->v_object;
3636 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3637 vm_page_t m = bp->b_xio.xio_pages[i];
3640 * When restoring bogus changes the original pages
3641 * should still be wired, so we are in no danger of
3642 * losing the object association and do not need
3643 * critical section protection particularly.
3645 if (m == bogus_page) {
3646 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3647 if (!m) {
3648 panic("vfs_unbusy_pages: page missing");
3650 bp->b_xio.xio_pages[i] = m;
3651 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3652 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3654 vm_object_pip_subtract(obj, 1);
3655 vm_page_flag_clear(m, PG_ZERO);
3656 vm_page_io_finish(m);
3658 vm_object_pip_wakeupn(obj, 0);
3663 * vfs_busy_pages:
3665 * This routine is called before a device strategy routine.
3666 * It is used to tell the VM system that paging I/O is in
3667 * progress, and treat the pages associated with the buffer
3668 * almost as being PG_BUSY. Also the object 'paging_in_progress'
3669 * flag is handled to make sure that the object doesn't become
3670 * inconsistant.
3672 * Since I/O has not been initiated yet, certain buffer flags
3673 * such as B_ERROR or B_INVAL may be in an inconsistant state
3674 * and should be ignored.
3676 void
3677 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3679 int i, bogus;
3680 struct lwp *lp = curthread->td_lwp;
3683 * The buffer's I/O command must already be set. If reading,
3684 * B_CACHE must be 0 (double check against callers only doing
3685 * I/O when B_CACHE is 0).
3687 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3688 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3690 if (bp->b_flags & B_VMIO) {
3691 vm_object_t obj;
3693 obj = vp->v_object;
3694 KASSERT(bp->b_loffset != NOOFFSET,
3695 ("vfs_busy_pages: no buffer offset"));
3698 * Loop until none of the pages are busy.
3700 retry:
3701 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3702 vm_page_t m = bp->b_xio.xio_pages[i];
3704 if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3705 goto retry;
3709 * Setup for I/O, soft-busy the page right now because
3710 * the next loop may block.
3712 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3713 vm_page_t m = bp->b_xio.xio_pages[i];
3715 vm_page_flag_clear(m, PG_ZERO);
3716 if ((bp->b_flags & B_CLUSTER) == 0) {
3717 vm_object_pip_add(obj, 1);
3718 vm_page_io_start(m);
3723 * Adjust protections for I/O and do bogus-page mapping.
3724 * Assume that vm_page_protect() can block (it can block
3725 * if VM_PROT_NONE, don't take any chances regardless).
3727 * In particularly note that for writes we must incorporate
3728 * page dirtyness from the VM system into the buffer's
3729 * dirty range.
3731 * For reads we theoretically must incorporate page dirtyness
3732 * from the VM system to determine if the page needs bogus
3733 * replacement, but we shortcut the test by simply checking
3734 * that all m->valid bits are set, indicating that the page
3735 * is fully valid and does not need to be re-read. For any
3736 * VM system dirtyness the page will also be fully valid
3737 * since it was mapped at one point.
3739 bogus = 0;
3740 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3741 vm_page_t m = bp->b_xio.xio_pages[i];
3743 vm_page_flag_clear(m, PG_ZERO); /* XXX */
3744 if (bp->b_cmd == BUF_CMD_WRITE) {
3746 * When readying a vnode-backed buffer for
3747 * a write we must zero-fill any invalid
3748 * portions of the backing VM pages, mark
3749 * it valid and clear related dirty bits.
3751 * vfs_clean_one_page() incorporates any
3752 * VM dirtyness and updates the b_dirtyoff
3753 * range (after we've made the page RO).
3755 * It is also expected that the pmap modified
3756 * bit has already been cleared by the
3757 * vm_page_protect(). We may not be able
3758 * to clear all dirty bits for a page if it
3759 * was also memory mapped (NFS).
3761 vm_page_protect(m, VM_PROT_READ);
3762 vfs_clean_one_page(bp, i, m);
3763 } else if (m->valid == VM_PAGE_BITS_ALL) {
3765 * When readying a vnode-backed buffer for
3766 * read we must replace any dirty pages with
3767 * a bogus page so dirty data is not destroyed
3768 * when filling gaps.
3770 * To avoid testing whether the page is
3771 * dirty we instead test that the page was
3772 * at some point mapped (m->valid fully
3773 * valid) with the understanding that
3774 * this also covers the dirty case.
3776 bp->b_xio.xio_pages[i] = bogus_page;
3777 bogus++;
3778 } else if (m->valid & m->dirty) {
3780 * This case should not occur as partial
3781 * dirtyment can only happen if the buffer
3782 * is B_CACHE, and this code is not entered
3783 * if the buffer is B_CACHE.
3785 kprintf("Warning: vfs_busy_pages - page not "
3786 "fully valid! loff=%jx bpf=%08x "
3787 "idx=%d val=%02x dir=%02x\n",
3788 (intmax_t)bp->b_loffset, bp->b_flags,
3789 i, m->valid, m->dirty);
3790 vm_page_protect(m, VM_PROT_NONE);
3791 } else {
3793 * The page is not valid and can be made
3794 * part of the read.
3796 vm_page_protect(m, VM_PROT_NONE);
3799 if (bogus) {
3800 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3801 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3806 * This is the easiest place to put the process accounting for the I/O
3807 * for now.
3809 if (lp != NULL) {
3810 if (bp->b_cmd == BUF_CMD_READ)
3811 lp->lwp_ru.ru_inblock++;
3812 else
3813 lp->lwp_ru.ru_oublock++;
3818 * vfs_clean_pages:
3820 * Tell the VM system that the pages associated with this buffer
3821 * are clean. This is used for delayed writes where the data is
3822 * going to go to disk eventually without additional VM intevention.
3824 * Note that while we only really need to clean through to b_bcount, we
3825 * just go ahead and clean through to b_bufsize.
3827 static void
3828 vfs_clean_pages(struct buf *bp)
3830 vm_page_t m;
3831 int i;
3833 if ((bp->b_flags & B_VMIO) == 0)
3834 return;
3836 KASSERT(bp->b_loffset != NOOFFSET,
3837 ("vfs_clean_pages: no buffer offset"));
3839 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3840 m = bp->b_xio.xio_pages[i];
3841 vfs_clean_one_page(bp, i, m);
3846 * vfs_clean_one_page:
3848 * Set the valid bits and clear the dirty bits in a page within a
3849 * buffer. The range is restricted to the buffer's size and the
3850 * buffer's logical offset might index into the first page.
3852 * The caller has busied or soft-busied the page and it is not mapped,
3853 * test and incorporate the dirty bits into b_dirtyoff/end before
3854 * clearing them. Note that we need to clear the pmap modified bits
3855 * after determining the the page was dirty, vm_page_set_validclean()
3856 * does not do it for us.
3858 * This routine is typically called after a read completes (dirty should
3859 * be zero in that case as we are not called on bogus-replace pages),
3860 * or before a write is initiated.
3862 static void
3863 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
3865 int bcount;
3866 int xoff;
3867 int soff;
3868 int eoff;
3871 * Calculate offset range within the page but relative to buffer's
3872 * loffset. loffset might be offset into the first page.
3874 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
3875 bcount = bp->b_bcount + xoff; /* offset adjusted */
3877 if (pageno == 0) {
3878 soff = xoff;
3879 eoff = PAGE_SIZE;
3880 } else {
3881 soff = (pageno << PAGE_SHIFT);
3882 eoff = soff + PAGE_SIZE;
3884 if (eoff > bcount)
3885 eoff = bcount;
3886 if (soff >= eoff)
3887 return;
3890 * Test dirty bits and adjust b_dirtyoff/end.
3892 * If dirty pages are incorporated into the bp any prior
3893 * B_NEEDCOMMIT state (NFS) must be cleared because the
3894 * caller has not taken into account the new dirty data.
3896 * If the page was memory mapped the dirty bits might go beyond the
3897 * end of the buffer, but we can't really make the assumption that
3898 * a file EOF straddles the buffer (even though this is the case for
3899 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
3900 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
3901 * This also saves some console spam.
3903 vm_page_test_dirty(m);
3904 if (m->dirty) {
3905 pmap_clear_modify(m);
3906 if ((bp->b_flags & B_NEEDCOMMIT) &&
3907 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
3908 kprintf("Warning: vfs_clean_one_page: bp %p "
3909 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT\n",
3910 bp, (intmax_t)bp->b_loffset, bp->b_bcount,
3911 bp->b_flags);
3912 bp->b_flags &= ~B_NEEDCOMMIT;
3914 if (bp->b_dirtyoff > soff - xoff)
3915 bp->b_dirtyoff = soff - xoff;
3916 if (bp->b_dirtyend < eoff - xoff)
3917 bp->b_dirtyend = eoff - xoff;
3921 * Set related valid bits, clear related dirty bits.
3922 * Does not mess with the pmap modified bit.
3924 * WARNING! We cannot just clear all of m->dirty here as the
3925 * buffer cache buffers may use a DEV_BSIZE'd aligned
3926 * block size, or have an odd size (e.g. NFS at file EOF).
3927 * The putpages code can clear m->dirty to 0.
3929 * If a VOP_WRITE generates a buffer cache buffer which
3930 * covers the same space as mapped writable pages the
3931 * buffer flush might not be able to clear all the dirty
3932 * bits and still require a putpages from the VM system
3933 * to finish it off.
3935 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
3939 * vfs_bio_clrbuf:
3941 * Clear a buffer. This routine essentially fakes an I/O, so we need
3942 * to clear B_ERROR and B_INVAL.
3944 * Note that while we only theoretically need to clear through b_bcount,
3945 * we go ahead and clear through b_bufsize.
3948 void
3949 vfs_bio_clrbuf(struct buf *bp)
3951 int i, mask = 0;
3952 caddr_t sa, ea;
3953 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3954 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
3955 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3956 (bp->b_loffset & PAGE_MASK) == 0) {
3957 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3958 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3959 bp->b_resid = 0;
3960 return;
3962 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3963 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3964 bzero(bp->b_data, bp->b_bufsize);
3965 bp->b_xio.xio_pages[0]->valid |= mask;
3966 bp->b_resid = 0;
3967 return;
3970 sa = bp->b_data;
3971 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3972 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3973 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3974 ea = (caddr_t)(vm_offset_t)ulmin(
3975 (u_long)(vm_offset_t)ea,
3976 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3977 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3978 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3979 continue;
3980 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3981 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3982 bzero(sa, ea - sa);
3984 } else {
3985 for (; sa < ea; sa += DEV_BSIZE, j++) {
3986 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3987 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3988 bzero(sa, DEV_BSIZE);
3991 bp->b_xio.xio_pages[i]->valid |= mask;
3992 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3994 bp->b_resid = 0;
3995 } else {
3996 clrbuf(bp);
4001 * vm_hold_load_pages:
4003 * Load pages into the buffer's address space. The pages are
4004 * allocated from the kernel object in order to reduce interference
4005 * with the any VM paging I/O activity. The range of loaded
4006 * pages will be wired.
4008 * If a page cannot be allocated, the 'pagedaemon' is woken up to
4009 * retrieve the full range (to - from) of pages.
4012 void
4013 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4015 vm_offset_t pg;
4016 vm_page_t p;
4017 int index;
4019 to = round_page(to);
4020 from = round_page(from);
4021 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4023 pg = from;
4024 while (pg < to) {
4026 * Note: must allocate system pages since blocking here
4027 * could intefere with paging I/O, no matter which
4028 * process we are.
4030 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4031 (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4032 if (p) {
4033 vm_page_wire(p);
4034 p->valid = VM_PAGE_BITS_ALL;
4035 vm_page_flag_clear(p, PG_ZERO);
4036 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4037 bp->b_xio.xio_pages[index] = p;
4038 vm_page_wakeup(p);
4040 pg += PAGE_SIZE;
4041 ++index;
4044 bp->b_xio.xio_npages = index;
4048 * Allocate pages for a buffer cache buffer.
4050 * Under extremely severe memory conditions even allocating out of the
4051 * system reserve can fail. If this occurs we must allocate out of the
4052 * interrupt reserve to avoid a deadlock with the pageout daemon.
4054 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4055 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4056 * against the pageout daemon if pages are not freed from other sources.
4058 static
4059 vm_page_t
4060 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4062 vm_page_t p;
4065 * Try a normal allocation, allow use of system reserve.
4067 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4068 if (p)
4069 return(p);
4072 * The normal allocation failed and we clearly have a page
4073 * deficit. Try to reclaim some clean VM pages directly
4074 * from the buffer cache.
4076 vm_pageout_deficit += deficit;
4077 recoverbufpages();
4080 * We may have blocked, the caller will know what to do if the
4081 * page now exists.
4083 if (vm_page_lookup(obj, pg))
4084 return(NULL);
4087 * Allocate and allow use of the interrupt reserve.
4089 * If after all that we still can't allocate a VM page we are
4090 * in real trouble, but we slog on anyway hoping that the system
4091 * won't deadlock.
4093 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4094 VM_ALLOC_INTERRUPT);
4095 if (p) {
4096 if (vm_page_count_severe()) {
4097 kprintf("bio_page_alloc: WARNING emergency page "
4098 "allocation\n");
4099 vm_wait(hz / 20);
4101 } else {
4102 kprintf("bio_page_alloc: WARNING emergency page "
4103 "allocation failed\n");
4104 vm_wait(hz * 5);
4106 return(p);
4110 * vm_hold_free_pages:
4112 * Return pages associated with the buffer back to the VM system.
4114 * The range of pages underlying the buffer's address space will
4115 * be unmapped and un-wired.
4117 void
4118 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4120 vm_offset_t pg;
4121 vm_page_t p;
4122 int index, newnpages;
4124 from = round_page(from);
4125 to = round_page(to);
4126 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4128 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4129 p = bp->b_xio.xio_pages[index];
4130 if (p && (index < bp->b_xio.xio_npages)) {
4131 if (p->busy) {
4132 kprintf("vm_hold_free_pages: doffset: %lld, "
4133 "loffset: %lld\n",
4134 (long long)bp->b_bio2.bio_offset,
4135 (long long)bp->b_loffset);
4137 bp->b_xio.xio_pages[index] = NULL;
4138 pmap_kremove(pg);
4139 vm_page_busy(p);
4140 vm_page_unwire(p, 0);
4141 vm_page_free(p);
4144 bp->b_xio.xio_npages = newnpages;
4148 * vmapbuf:
4150 * Map a user buffer into KVM via a pbuf. On return the buffer's
4151 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4152 * initialized.
4155 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4157 caddr_t addr;
4158 vm_offset_t va;
4159 vm_page_t m;
4160 int vmprot;
4161 int error;
4162 int pidx;
4163 int i;
4166 * bp had better have a command and it better be a pbuf.
4168 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4169 KKASSERT(bp->b_flags & B_PAGING);
4171 if (bytes < 0)
4172 return (-1);
4175 * Map the user data into KVM. Mappings have to be page-aligned.
4177 addr = (caddr_t)trunc_page((vm_offset_t)udata);
4178 pidx = 0;
4180 vmprot = VM_PROT_READ;
4181 if (bp->b_cmd == BUF_CMD_READ)
4182 vmprot |= VM_PROT_WRITE;
4184 while (addr < udata + bytes) {
4186 * Do the vm_fault if needed; do the copy-on-write thing
4187 * when reading stuff off device into memory.
4189 * vm_fault_page*() returns a held VM page.
4191 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4192 va = trunc_page(va);
4194 m = vm_fault_page_quick(va, vmprot, &error);
4195 if (m == NULL) {
4196 for (i = 0; i < pidx; ++i) {
4197 vm_page_unhold(bp->b_xio.xio_pages[i]);
4198 bp->b_xio.xio_pages[i] = NULL;
4200 return(-1);
4202 bp->b_xio.xio_pages[pidx] = m;
4203 addr += PAGE_SIZE;
4204 ++pidx;
4208 * Map the page array and set the buffer fields to point to
4209 * the mapped data buffer.
4211 if (pidx > btoc(MAXPHYS))
4212 panic("vmapbuf: mapped more than MAXPHYS");
4213 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4215 bp->b_xio.xio_npages = pidx;
4216 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4217 bp->b_bcount = bytes;
4218 bp->b_bufsize = bytes;
4219 return(0);
4223 * vunmapbuf:
4225 * Free the io map PTEs associated with this IO operation.
4226 * We also invalidate the TLB entries and restore the original b_addr.
4228 void
4229 vunmapbuf(struct buf *bp)
4231 int pidx;
4232 int npages;
4234 KKASSERT(bp->b_flags & B_PAGING);
4236 npages = bp->b_xio.xio_npages;
4237 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4238 for (pidx = 0; pidx < npages; ++pidx) {
4239 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4240 bp->b_xio.xio_pages[pidx] = NULL;
4242 bp->b_xio.xio_npages = 0;
4243 bp->b_data = bp->b_kvabase;
4247 * Scan all buffers in the system and issue the callback.
4250 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4252 int count = 0;
4253 int error;
4254 int n;
4256 for (n = 0; n < nbuf; ++n) {
4257 if ((error = callback(&buf[n], info)) < 0) {
4258 count = error;
4259 break;
4261 count += error;
4263 return (count);
4267 * print out statistics from the current status of the buffer pool
4268 * this can be toggeled by the system control option debug.syncprt
4270 #ifdef DEBUG
4271 void
4272 vfs_bufstats(void)
4274 int i, j, count;
4275 struct buf *bp;
4276 struct bqueues *dp;
4277 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4278 static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4280 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4281 count = 0;
4282 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4283 counts[j] = 0;
4284 crit_enter();
4285 TAILQ_FOREACH(bp, dp, b_freelist) {
4286 counts[bp->b_bufsize/PAGE_SIZE]++;
4287 count++;
4289 crit_exit();
4290 kprintf("%s: total-%d", bname[i], count);
4291 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4292 if (counts[j] != 0)
4293 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4294 kprintf("\n");
4297 #endif
4299 #ifdef DDB
4301 DB_SHOW_COMMAND(buffer, db_show_buffer)
4303 /* get args */
4304 struct buf *bp = (struct buf *)addr;
4306 if (!have_addr) {
4307 db_printf("usage: show buffer <addr>\n");
4308 return;
4311 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4312 db_printf("b_cmd = %d\n", bp->b_cmd);
4313 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4314 "b_resid = %d\n, b_data = %p, "
4315 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4316 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4317 bp->b_data,
4318 (long long)bp->b_bio2.bio_offset,
4319 (long long)(bp->b_bio2.bio_next ?
4320 bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4321 if (bp->b_xio.xio_npages) {
4322 int i;
4323 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4324 bp->b_xio.xio_npages);
4325 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4326 vm_page_t m;
4327 m = bp->b_xio.xio_pages[i];
4328 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4329 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4330 if ((i + 1) < bp->b_xio.xio_npages)
4331 db_printf(",");
4333 db_printf("\n");
4336 #endif /* DDB */