1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* AIX requires this to be the first thing in the file. */
24 /* $DragonFly: src/gnu/lib/libregex/regex.c,v 1.2 2008/06/05 18:01:49 swildner Exp $ */
26 #if defined (_AIX) && !defined (REGEX_MALLOC)
36 #if defined(STDC_HEADERS) && !defined(emacs)
39 /* We need this for `regex.h', and perhaps for the Emacs include files. */
40 #include <sys/types.h>
43 /* The `emacs' switch turns on certain matching commands
44 that make sense only in Emacs. */
51 /* Emacs uses `NULL' as a predicate. */
56 /* We used to test for `BSTRING' here, but only GCC and Emacs define
57 `BSTRING', as far as I know, and neither of them use this code. */
58 #if HAVE_STRING_H || STDC_HEADERS
61 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
64 #define bcopy(s, d, n) memcpy ((d), (s), (n))
67 #define bzero(s, n) memset ((s), 0, (n))
81 /* Define the syntax stuff for \<, \>, etc. */
83 /* This must be nonzero for the wordchar and notwordchar pattern
84 commands in re_match_2. */
91 extern char *re_syntax_table
;
93 #else /* not SYNTAX_TABLE */
95 /* How many characters in the character set. */
96 #define CHAR_SET_SIZE 256
98 static char re_syntax_table
[CHAR_SET_SIZE
];
109 bzero (re_syntax_table
, sizeof re_syntax_table
);
111 for (c
= 'a'; c
<= 'z'; c
++)
112 re_syntax_table
[c
] = Sword
;
114 for (c
= 'A'; c
<= 'Z'; c
++)
115 re_syntax_table
[c
] = Sword
;
117 for (c
= '0'; c
<= '9'; c
++)
118 re_syntax_table
[c
] = Sword
;
120 re_syntax_table
['_'] = Sword
;
125 #endif /* not SYNTAX_TABLE */
127 #define SYNTAX(c) re_syntax_table[c]
129 #endif /* not emacs */
131 /* Get the interface, including the syntax bits. */
134 /* isalpha etc. are used for the character classes. */
137 /* Jim Meyering writes:
139 "... Some ctype macros are valid only for character codes that
140 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
141 using /bin/cc or gcc but without giving an ansi option). So, all
142 ctype uses should be through macros like ISPRINT... If
143 STDC_HEADERS is defined, then autoconf has verified that the ctype
144 macros don't need to be guarded with references to isascii. ...
145 Defining isascii to 1 should let any compiler worth its salt
146 eliminate the && through constant folding." */
147 #if ! defined (isascii) || defined (STDC_HEADERS)
153 #define ISBLANK(c) (isascii (c) && isblank (c))
155 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
158 #define ISGRAPH(c) (isascii (c) && isgraph (c))
160 #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
163 #define ISPRINT(c) (isascii (c) && isprint (c))
164 #define ISDIGIT(c) (isascii (c) && isdigit (c))
165 #define ISALNUM(c) (isascii (c) && isalnum (c))
166 #define ISALPHA(c) (isascii (c) && isalpha (c))
167 #define ISCNTRL(c) (isascii (c) && iscntrl (c))
168 #define ISLOWER(c) (isascii (c) && islower (c))
169 #define ISPUNCT(c) (isascii (c) && ispunct (c))
170 #define ISSPACE(c) (isascii (c) && isspace (c))
171 #define ISUPPER(c) (isascii (c) && isupper (c))
172 #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
174 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
175 since ours (we hope) works properly with all combinations of
176 machines, compilers, `char' and `unsigned char' argument types.
177 (Per Bothner suggested the basic approach.) */
178 #undef SIGN_EXTEND_CHAR
180 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
181 #else /* not __STDC__ */
182 /* As in Harbison and Steele. */
183 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
186 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
187 use `alloca' instead of `malloc'. This is because using malloc in
188 re_search* or re_match* could cause memory leaks when C-g is used in
189 Emacs; also, malloc is slower and causes storage fragmentation. On
190 the other hand, malloc is more portable, and easier to debug.
192 Because we sometimes use alloca, some routines have to be macros,
193 not functions -- `alloca'-allocated space disappears at the end of the
194 function it is called in. */
198 #define REGEX_ALLOCATE malloc
199 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
201 #else /* not REGEX_MALLOC */
203 /* Emacs already defines alloca, sometimes. */
206 /* Make alloca work the best possible way. */
208 #define alloca __builtin_alloca
209 #else /* not __GNUC__ */
212 #else /* not __GNUC__ or HAVE_ALLOCA_H */
213 #ifndef _AIX /* Already did AIX, up at the top. */
215 #endif /* not _AIX */
216 #endif /* not HAVE_ALLOCA_H */
217 #endif /* not __GNUC__ */
219 #endif /* not alloca */
221 #define REGEX_ALLOCATE alloca
223 /* Assumes a `char *destination' variable. */
224 #define REGEX_REALLOCATE(source, osize, nsize) \
225 (destination = (char *) alloca (nsize), \
226 bcopy (source, destination, osize), \
229 #endif /* not REGEX_MALLOC */
232 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
233 `string1' or just past its end. This works if PTR is NULL, which is
235 #define FIRST_STRING_P(ptr) \
236 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
238 /* (Re)Allocate N items of type T using malloc, or fail. */
239 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
240 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
241 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
243 #define BYTEWIDTH 8 /* In bits. */
245 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
247 #define MAX(a, b) ((a) > (b) ? (a) : (b))
248 #define MIN(a, b) ((a) < (b) ? (a) : (b))
250 typedef char boolean
;
254 /* These are the command codes that appear in compiled regular
255 expressions. Some opcodes are followed by argument bytes. A
256 command code can specify any interpretation whatsoever for its
257 arguments. Zero bytes may appear in the compiled regular expression.
259 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
260 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
261 `exactn' we use here must also be 1. */
267 /* Followed by one byte giving n, then by n literal bytes. */
270 /* Matches any (more or less) character. */
273 /* Matches any one char belonging to specified set. First
274 following byte is number of bitmap bytes. Then come bytes
275 for a bitmap saying which chars are in. Bits in each byte
276 are ordered low-bit-first. A character is in the set if its
277 bit is 1. A character too large to have a bit in the map is
278 automatically not in the set. */
281 /* Same parameters as charset, but match any character that is
282 not one of those specified. */
285 /* Start remembering the text that is matched, for storing in a
286 register. Followed by one byte with the register number, in
287 the range 0 to one less than the pattern buffer's re_nsub
288 field. Then followed by one byte with the number of groups
289 inner to this one. (This last has to be part of the
290 start_memory only because we need it in the on_failure_jump
294 /* Stop remembering the text that is matched and store it in a
295 memory register. Followed by one byte with the register
296 number, in the range 0 to one less than `re_nsub' in the
297 pattern buffer, and one byte with the number of inner groups,
298 just like `start_memory'. (We need the number of inner
299 groups here because we don't have any easy way of finding the
300 corresponding start_memory when we're at a stop_memory.) */
303 /* Match a duplicate of something remembered. Followed by one
304 byte containing the register number. */
307 /* Fail unless at beginning of line. */
310 /* Fail unless at end of line. */
313 /* Succeeds if at beginning of buffer (if emacs) or at beginning
314 of string to be matched (if not). */
317 /* Analogously, for end of buffer/string. */
320 /* Followed by two byte relative address to which to jump. */
323 /* Same as jump, but marks the end of an alternative. */
326 /* Followed by two-byte relative address of place to resume at
327 in case of failure. */
330 /* Like on_failure_jump, but pushes a placeholder instead of the
331 current string position when executed. */
332 on_failure_keep_string_jump
,
334 /* Throw away latest failure point and then jump to following
335 two-byte relative address. */
338 /* Change to pop_failure_jump if know won't have to backtrack to
339 match; otherwise change to jump. This is used to jump
340 back to the beginning of a repeat. If what follows this jump
341 clearly won't match what the repeat does, such that we can be
342 sure that there is no use backtracking out of repetitions
343 already matched, then we change it to a pop_failure_jump.
344 Followed by two-byte address. */
347 /* Jump to following two-byte address, and push a dummy failure
348 point. This failure point will be thrown away if an attempt
349 is made to use it for a failure. A `+' construct makes this
350 before the first repeat. Also used as an intermediary kind
351 of jump when compiling an alternative. */
354 /* Push a dummy failure point and continue. Used at the end of
358 /* Followed by two-byte relative address and two-byte number n.
359 After matching N times, jump to the address upon failure. */
362 /* Followed by two-byte relative address, and two-byte number n.
363 Jump to the address N times, then fail. */
366 /* Set the following two-byte relative address to the
367 subsequent two-byte number. The address *includes* the two
371 wordchar
, /* Matches any word-constituent character. */
372 notwordchar
, /* Matches any char that is not a word-constituent. */
374 wordbeg
, /* Succeeds if at word beginning. */
375 wordend
, /* Succeeds if at word end. */
377 wordbound
, /* Succeeds if at a word boundary. */
378 notwordbound
/* Succeeds if not at a word boundary. */
381 ,before_dot
, /* Succeeds if before point. */
382 at_dot
, /* Succeeds if at point. */
383 after_dot
, /* Succeeds if after point. */
385 /* Matches any character whose syntax is specified. Followed by
386 a byte which contains a syntax code, e.g., Sword. */
389 /* Matches any character whose syntax is not that specified. */
394 /* Common operations on the compiled pattern. */
396 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
398 #define STORE_NUMBER(destination, number) \
400 (destination)[0] = (number) & 0377; \
401 (destination)[1] = (number) >> 8; \
404 /* Same as STORE_NUMBER, except increment DESTINATION to
405 the byte after where the number is stored. Therefore, DESTINATION
406 must be an lvalue. */
408 #define STORE_NUMBER_AND_INCR(destination, number) \
410 STORE_NUMBER (destination, number); \
411 (destination) += 2; \
414 /* Put into DESTINATION a number stored in two contiguous bytes starting
417 #define EXTRACT_NUMBER(destination, source) \
419 (destination) = *(source) & 0377; \
420 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
424 static void extract_number
_RE_ARGS((int *dest
, unsigned char *source
));
426 extract_number (dest
, source
)
428 unsigned char *source
;
430 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
431 *dest
= *source
& 0377;
435 #ifndef EXTRACT_MACROS /* To debug the macros. */
436 #undef EXTRACT_NUMBER
437 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
438 #endif /* not EXTRACT_MACROS */
442 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
443 SOURCE must be an lvalue. */
445 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
447 EXTRACT_NUMBER (destination, source); \
452 static void extract_number_and_incr
_RE_ARGS((int *destination
,
453 unsigned char **source
));
455 extract_number_and_incr (destination
, source
)
457 unsigned char **source
;
459 extract_number (destination
, *source
);
463 #ifndef EXTRACT_MACROS
464 #undef EXTRACT_NUMBER_AND_INCR
465 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
466 extract_number_and_incr (&dest, &src)
467 #endif /* not EXTRACT_MACROS */
471 /* If DEBUG is defined, Regex prints many voluminous messages about what
472 it is doing (if the variable `debug' is nonzero). If linked with the
473 main program in `iregex.c', you can enter patterns and strings
474 interactively. And if linked with the main program in `main.c' and
475 the other test files, you can run the already-written tests. */
479 /* We use standard I/O for debugging. */
482 /* It is useful to test things that ``must'' be true when debugging. */
485 static int debug
= 0;
487 #define DEBUG_STATEMENT(e) e
488 #define DEBUG_PRINT1(x) if (debug) printf (x)
489 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
490 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
491 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
492 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
493 if (debug) print_partial_compiled_pattern (s, e)
494 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
495 if (debug) print_double_string (w, s1, sz1, s2, sz2)
498 extern void printchar ();
500 /* Print the fastmap in human-readable form. */
503 print_fastmap (fastmap
)
506 unsigned was_a_range
= 0;
509 while (i
< (1 << BYTEWIDTH
))
515 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
531 /* Print a compiled pattern string in human-readable form, starting at
532 the START pointer into it and ending just before the pointer END. */
535 print_partial_compiled_pattern (start
, end
)
536 unsigned char *start
;
540 unsigned char *p
= start
;
541 unsigned char *pend
= end
;
549 /* Loop over pattern commands. */
552 printf ("%d:\t", p
- start
);
554 switch ((re_opcode_t
) *p
++)
562 printf ("/exactn/%d", mcnt
);
573 printf ("/start_memory/%d/%d", mcnt
, *p
++);
578 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
582 printf ("/duplicate/%d", *p
++);
592 register int c
, last
= -100;
593 register int in_range
= 0;
595 printf ("/charset [%s",
596 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
598 assert (p
+ *p
< pend
);
600 for (c
= 0; c
< 256; c
++)
602 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
604 /* Are we starting a range? */
605 if (last
+ 1 == c
&& ! in_range
)
610 /* Have we broken a range? */
611 else if (last
+ 1 != c
&& in_range
)
640 case on_failure_jump
:
641 extract_number_and_incr (&mcnt
, &p
);
642 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
645 case on_failure_keep_string_jump
:
646 extract_number_and_incr (&mcnt
, &p
);
647 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
650 case dummy_failure_jump
:
651 extract_number_and_incr (&mcnt
, &p
);
652 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
655 case push_dummy_failure
:
656 printf ("/push_dummy_failure");
660 extract_number_and_incr (&mcnt
, &p
);
661 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
664 case pop_failure_jump
:
665 extract_number_and_incr (&mcnt
, &p
);
666 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
670 extract_number_and_incr (&mcnt
, &p
);
671 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
675 extract_number_and_incr (&mcnt
, &p
);
676 printf ("/jump to %d", p
+ mcnt
- start
);
680 extract_number_and_incr (&mcnt
, &p
);
681 extract_number_and_incr (&mcnt2
, &p
);
682 printf ("/succeed_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
686 extract_number_and_incr (&mcnt
, &p
);
687 extract_number_and_incr (&mcnt2
, &p
);
688 printf ("/jump_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
692 extract_number_and_incr (&mcnt
, &p
);
693 extract_number_and_incr (&mcnt2
, &p
);
694 printf ("/set_number_at location %d to %d", p
+ mcnt
- start
, mcnt2
);
698 printf ("/wordbound");
702 printf ("/notwordbound");
714 printf ("/before_dot");
722 printf ("/after_dot");
726 printf ("/syntaxspec");
728 printf ("/%d", mcnt
);
732 printf ("/notsyntaxspec");
734 printf ("/%d", mcnt
);
739 printf ("/wordchar");
743 printf ("/notwordchar");
755 printf ("?%d", *(p
-1));
761 printf ("%d:\tend of pattern.\n", p
- start
);
766 print_compiled_pattern (bufp
)
767 struct re_pattern_buffer
*bufp
;
769 unsigned char *buffer
= bufp
->buffer
;
771 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
772 printf ("%d bytes used/%d bytes allocated.\n", bufp
->used
, bufp
->allocated
);
774 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
776 printf ("fastmap: ");
777 print_fastmap (bufp
->fastmap
);
780 printf ("re_nsub: %d\t", bufp
->re_nsub
);
781 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
782 printf ("can_be_null: %d\t", bufp
->can_be_null
);
783 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
784 printf ("no_sub: %d\t", bufp
->no_sub
);
785 printf ("not_bol: %d\t", bufp
->not_bol
);
786 printf ("not_eol: %d\t", bufp
->not_eol
);
787 printf ("syntax: %d\n", bufp
->syntax
);
788 /* Perhaps we should print the translate table? */
793 print_double_string (where
, string1
, size1
, string2
, size2
)
806 if (FIRST_STRING_P (where
))
808 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
809 printchar (string1
[this_char
]);
814 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
815 printchar (string2
[this_char
]);
819 #else /* not DEBUG */
824 #define DEBUG_STATEMENT(e)
825 #define DEBUG_PRINT1(x)
826 #define DEBUG_PRINT2(x1, x2)
827 #define DEBUG_PRINT3(x1, x2, x3)
828 #define DEBUG_PRINT4(x1, x2, x3, x4)
829 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
830 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
832 #endif /* not DEBUG */
834 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
835 also be assigned to arbitrarily: each pattern buffer stores its own
836 syntax, so it can be changed between regex compilations. */
837 reg_syntax_t re_syntax_options
= RE_SYNTAX_EMACS
;
840 /* Specify the precise syntax of regexps for compilation. This provides
841 for compatibility for various utilities which historically have
842 different, incompatible syntaxes.
844 The argument SYNTAX is a bit mask comprised of the various bits
845 defined in regex.h. We return the old syntax. */
848 re_set_syntax (syntax
)
851 reg_syntax_t ret
= re_syntax_options
;
853 re_syntax_options
= syntax
;
857 /* This table gives an error message for each of the error codes listed
858 in regex.h. Obviously the order here has to be same as there. */
860 static const char *re_error_msg
[] =
861 { NULL
, /* REG_NOERROR */
862 "No match", /* REG_NOMATCH */
863 "Invalid regular expression", /* REG_BADPAT */
864 "Invalid collation character", /* REG_ECOLLATE */
865 "Invalid character class name", /* REG_ECTYPE */
866 "Trailing backslash", /* REG_EESCAPE */
867 "Invalid back reference", /* REG_ESUBREG */
868 "Unmatched [ or [^", /* REG_EBRACK */
869 "Unmatched ( or \\(", /* REG_EPAREN */
870 "Unmatched \\{", /* REG_EBRACE */
871 "Invalid content of \\{\\}", /* REG_BADBR */
872 "Invalid range end", /* REG_ERANGE */
873 "Memory exhausted", /* REG_ESPACE */
874 "Invalid preceding regular expression", /* REG_BADRPT */
875 "Premature end of regular expression", /* REG_EEND */
876 "Regular expression too big", /* REG_ESIZE */
877 "Unmatched ) or \\)", /* REG_ERPAREN */
880 /* Subroutine declarations and macros for regex_compile. */
882 static reg_errcode_t regex_compile
_RE_ARGS((const char *pattern
, size_t size
,
884 struct re_pattern_buffer
*bufp
));
885 static void store_op1
_RE_ARGS((re_opcode_t op
, unsigned char *loc
, int arg
));
886 static void store_op2
_RE_ARGS((re_opcode_t op
, unsigned char *loc
,
887 int arg1
, int arg2
));
888 static void insert_op1
_RE_ARGS((re_opcode_t op
, unsigned char *loc
,
889 int arg
, unsigned char *end
));
890 static void insert_op2
_RE_ARGS((re_opcode_t op
, unsigned char *loc
,
891 int arg1
, int arg2
, unsigned char *end
));
892 static boolean at_begline_loc_p
_RE_ARGS((const char *pattern
, const char *p
,
893 reg_syntax_t syntax
));
894 static boolean at_endline_loc_p
_RE_ARGS((const char *p
, const char *pend
,
895 reg_syntax_t syntax
));
896 static reg_errcode_t compile_range
_RE_ARGS((const char **p_ptr
,
902 /* Fetch the next character in the uncompiled pattern---translating it
903 if necessary. Also cast from a signed character in the constant
904 string passed to us by the user to an unsigned char that we can use
905 as an array index (in, e.g., `translate'). */
906 #define PATFETCH(c) \
907 do {if (p == pend) return REG_EEND; \
908 c = (unsigned char) *p++; \
909 if (translate) c = translate[c]; \
912 /* Fetch the next character in the uncompiled pattern, with no
914 #define PATFETCH_RAW(c) \
915 do {if (p == pend) return REG_EEND; \
916 c = (unsigned char) *p++; \
919 /* Go backwards one character in the pattern. */
920 #define PATUNFETCH p--
923 /* If `translate' is non-null, return translate[D], else just D. We
924 cast the subscript to translate because some data is declared as
925 `char *', to avoid warnings when a string constant is passed. But
926 when we use a character as a subscript we must make it unsigned. */
927 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
930 /* Macros for outputting the compiled pattern into `buffer'. */
932 /* If the buffer isn't allocated when it comes in, use this. */
933 #define INIT_BUF_SIZE 32
935 /* Make sure we have at least N more bytes of space in buffer. */
936 #define GET_BUFFER_SPACE(n) \
937 while (b - bufp->buffer + (n) > bufp->allocated) \
940 /* Make sure we have one more byte of buffer space and then add C to it. */
941 #define BUF_PUSH(c) \
943 GET_BUFFER_SPACE (1); \
944 *b++ = (unsigned char) (c); \
948 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
949 #define BUF_PUSH_2(c1, c2) \
951 GET_BUFFER_SPACE (2); \
952 *b++ = (unsigned char) (c1); \
953 *b++ = (unsigned char) (c2); \
957 /* As with BUF_PUSH_2, except for three bytes. */
958 #define BUF_PUSH_3(c1, c2, c3) \
960 GET_BUFFER_SPACE (3); \
961 *b++ = (unsigned char) (c1); \
962 *b++ = (unsigned char) (c2); \
963 *b++ = (unsigned char) (c3); \
967 /* Store a jump with opcode OP at LOC to location TO. We store a
968 relative address offset by the three bytes the jump itself occupies. */
969 #define STORE_JUMP(op, loc, to) \
970 store_op1 (op, loc, (int)((to) - (loc) - 3))
972 /* Likewise, for a two-argument jump. */
973 #define STORE_JUMP2(op, loc, to, arg) \
974 store_op2 (op, loc, (int)((to) - (loc) - 3), arg)
976 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
977 #define INSERT_JUMP(op, loc, to) \
978 insert_op1 (op, loc, (int)((to) - (loc) - 3), b)
980 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
981 #define INSERT_JUMP2(op, loc, to, arg) \
982 insert_op2 (op, loc, (int)((to) - (loc) - 3), arg, b)
985 /* This is not an arbitrary limit: the arguments which represent offsets
986 into the pattern are two bytes long. So if 2^16 bytes turns out to
987 be too small, many things would have to change. */
988 /* Any other compiler which, like MSC, has allocation limit below 2^16
989 bytes will have to use approach similar to what was done below for
990 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
991 reallocating to 0 bytes. Such thing is not going to work too well.
992 You have been warned!! */
994 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
995 The REALLOC define eliminates a flurry of conversion warnings,
996 but is not required. */
997 #define MAX_BUF_SIZE 65500L
998 #define REALLOC(p,s) realloc((p), (size_t) (s))
1000 #define MAX_BUF_SIZE (1L << 16)
1001 #define REALLOC realloc
1004 /* Extend the buffer by twice its current size via realloc and
1005 reset the pointers that pointed into the old block to point to the
1006 correct places in the new one. If extending the buffer results in it
1007 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1008 #define EXTEND_BUFFER() \
1010 unsigned char *old_buffer = bufp->buffer; \
1011 if (bufp->allocated == MAX_BUF_SIZE) \
1013 bufp->allocated <<= 1; \
1014 if (bufp->allocated > MAX_BUF_SIZE) \
1015 bufp->allocated = MAX_BUF_SIZE; \
1016 bufp->buffer = (unsigned char *) REALLOC(bufp->buffer, bufp->allocated);\
1017 if (bufp->buffer == NULL) \
1018 return REG_ESPACE; \
1019 /* If the buffer moved, move all the pointers into it. */ \
1020 if (old_buffer != bufp->buffer) \
1022 b = (b - old_buffer) + bufp->buffer; \
1023 begalt = (begalt - old_buffer) + bufp->buffer; \
1024 if (fixup_alt_jump) \
1025 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1027 laststart = (laststart - old_buffer) + bufp->buffer; \
1028 if (pending_exact) \
1029 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1034 /* Since we have one byte reserved for the register number argument to
1035 {start,stop}_memory, the maximum number of groups we can report
1036 things about is what fits in that byte. */
1037 #define MAX_REGNUM 255
1039 /* But patterns can have more than `MAX_REGNUM' registers. We just
1040 ignore the excess. */
1041 typedef unsigned regnum_t
;
1044 /* Macros for the compile stack. */
1046 /* Since offsets can go either forwards or backwards, this type needs to
1047 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1048 /* int may be not enough when sizeof(int) == 2 */
1049 typedef long pattern_offset_t
;
1053 pattern_offset_t begalt_offset
;
1054 pattern_offset_t fixup_alt_jump
;
1055 pattern_offset_t inner_group_offset
;
1056 pattern_offset_t laststart_offset
;
1058 } compile_stack_elt_t
;
1063 compile_stack_elt_t
*stack
;
1065 unsigned avail
; /* Offset of next open position. */
1066 } compile_stack_type
;
1069 #define INIT_COMPILE_STACK_SIZE 32
1071 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1072 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1074 /* The next available element. */
1075 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1078 /* Set the bit for character C in a list. */
1079 #define SET_LIST_BIT(c) \
1080 (b[((unsigned char) (c)) / BYTEWIDTH] \
1081 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1084 /* Get the next unsigned number in the uncompiled pattern. */
1085 #define GET_UNSIGNED_NUMBER(num) \
1089 while (ISDIGIT (c)) \
1093 num = num * 10 + c - '0'; \
1101 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1103 #define IS_CHAR_CLASS(string) \
1104 (STREQ (string, "alpha") || STREQ (string, "upper") \
1105 || STREQ (string, "lower") || STREQ (string, "digit") \
1106 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1107 || STREQ (string, "space") || STREQ (string, "print") \
1108 || STREQ (string, "punct") || STREQ (string, "graph") \
1109 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1111 static boolean group_in_compile_stack
_RE_ARGS((compile_stack_type
1116 static int collate_range_cmp (a
, b
)
1120 static char s
[2][2];
1122 if ((unsigned char)a
== (unsigned char)b
)
1126 if ((r
= strcoll(s
[0], s
[1])) == 0)
1127 r
= (unsigned char)a
- (unsigned char)b
;
1132 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1133 Returns one of error codes defined in `regex.h', or zero for success.
1135 Assumes the `allocated' (and perhaps `buffer') and `translate'
1136 fields are set in BUFP on entry.
1138 If it succeeds, results are put in BUFP (if it returns an error, the
1139 contents of BUFP are undefined):
1140 `buffer' is the compiled pattern;
1141 `syntax' is set to SYNTAX;
1142 `used' is set to the length of the compiled pattern;
1143 `fastmap_accurate' is zero;
1144 `re_nsub' is the number of subexpressions in PATTERN;
1145 `not_bol' and `not_eol' are zero;
1147 The `fastmap' and `newline_anchor' fields are neither
1148 examined nor set. */
1150 static reg_errcode_t
1151 regex_compile (pattern
, size
, syntax
, bufp
)
1152 const char *pattern
;
1154 reg_syntax_t syntax
;
1155 struct re_pattern_buffer
*bufp
;
1157 /* We fetch characters from PATTERN here. Even though PATTERN is
1158 `char *' (i.e., signed), we declare these variables as unsigned, so
1159 they can be reliably used as array indices. */
1160 register unsigned char c
, c1
;
1162 /* A random tempory spot in PATTERN. */
1165 /* Points to the end of the buffer, where we should append. */
1166 register unsigned char *b
;
1168 /* Keeps track of unclosed groups. */
1169 compile_stack_type compile_stack
;
1171 /* Points to the current (ending) position in the pattern. */
1172 const char *p
= pattern
;
1173 const char *pend
= pattern
+ size
;
1175 /* How to translate the characters in the pattern. */
1176 char *translate
= bufp
->translate
;
1178 /* Address of the count-byte of the most recently inserted `exactn'
1179 command. This makes it possible to tell if a new exact-match
1180 character can be added to that command or if the character requires
1181 a new `exactn' command. */
1182 unsigned char *pending_exact
= 0;
1184 /* Address of start of the most recently finished expression.
1185 This tells, e.g., postfix * where to find the start of its
1186 operand. Reset at the beginning of groups and alternatives. */
1187 unsigned char *laststart
= 0;
1189 /* Address of beginning of regexp, or inside of last group. */
1190 unsigned char *begalt
;
1192 /* Place in the uncompiled pattern (i.e., the {) to
1193 which to go back if the interval is invalid. */
1194 const char *beg_interval
;
1196 /* Address of the place where a forward jump should go to the end of
1197 the containing expression. Each alternative of an `or' -- except the
1198 last -- ends with a forward jump of this sort. */
1199 unsigned char *fixup_alt_jump
= 0;
1201 /* Counts open-groups as they are encountered. Remembered for the
1202 matching close-group on the compile stack, so the same register
1203 number is put in the stop_memory as the start_memory. */
1204 regnum_t regnum
= 0;
1207 DEBUG_PRINT1 ("\nCompiling pattern: ");
1210 unsigned debug_count
;
1212 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1213 printchar (pattern
[debug_count
]);
1218 /* Initialize the compile stack. */
1219 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1220 if (compile_stack
.stack
== NULL
)
1223 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1224 compile_stack
.avail
= 0;
1226 /* Initialize the pattern buffer. */
1227 bufp
->syntax
= syntax
;
1228 bufp
->fastmap_accurate
= 0;
1229 bufp
->not_bol
= bufp
->not_eol
= 0;
1231 /* Set `used' to zero, so that if we return an error, the pattern
1232 printer (for debugging) will think there's no pattern. We reset it
1236 /* Always count groups, whether or not bufp->no_sub is set. */
1239 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1240 /* Initialize the syntax table. */
1241 init_syntax_once ();
1244 if (bufp
->allocated
== 0)
1247 { /* If zero allocated, but buffer is non-null, try to realloc
1248 enough space. This loses if buffer's address is bogus, but
1249 that is the user's responsibility. */
1250 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1253 { /* Caller did not allocate a buffer. Do it for them. */
1254 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1256 if (!bufp
->buffer
) return REG_ESPACE
;
1258 bufp
->allocated
= INIT_BUF_SIZE
;
1261 begalt
= b
= bufp
->buffer
;
1263 /* Loop through the uncompiled pattern until we're at the end. */
1272 if ( /* If at start of pattern, it's an operator. */
1274 /* If context independent, it's an operator. */
1275 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1276 /* Otherwise, depends on what's come before. */
1277 || at_begline_loc_p (pattern
, p
, syntax
))
1287 if ( /* If at end of pattern, it's an operator. */
1289 /* If context independent, it's an operator. */
1290 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1291 /* Otherwise, depends on what's next. */
1292 || at_endline_loc_p (p
, pend
, syntax
))
1302 if ((syntax
& RE_BK_PLUS_QM
)
1303 || (syntax
& RE_LIMITED_OPS
))
1307 /* If there is no previous pattern... */
1310 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1312 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1317 /* Are we optimizing this jump? */
1318 boolean keep_string_p
= false;
1320 /* 1 means zero (many) matches is allowed. */
1321 char zero_times_ok
= 0, many_times_ok
= 0;
1323 /* If there is a sequence of repetition chars, collapse it
1324 down to just one (the right one). We can't combine
1325 interval operators with these because of, e.g., `a{2}*',
1326 which should only match an even number of `a's. */
1330 zero_times_ok
|= c
!= '+';
1331 many_times_ok
|= c
!= '?';
1339 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
1342 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
1344 if (p
== pend
) return REG_EESCAPE
;
1347 if (!(c1
== '+' || c1
== '?'))
1362 /* If we get here, we found another repeat character. */
1365 /* Star, etc. applied to an empty pattern is equivalent
1366 to an empty pattern. */
1370 /* Now we know whether or not zero matches is allowed
1371 and also whether or not two or more matches is allowed. */
1373 { /* More than one repetition is allowed, so put in at the
1374 end a backward relative jump from `b' to before the next
1375 jump we're going to put in below (which jumps from
1376 laststart to after this jump).
1378 But if we are at the `*' in the exact sequence `.*\n',
1379 insert an unconditional jump backwards to the .,
1380 instead of the beginning of the loop. This way we only
1381 push a failure point once, instead of every time
1382 through the loop. */
1383 assert (p
- 1 > pattern
);
1385 /* Allocate the space for the jump. */
1386 GET_BUFFER_SPACE (3);
1388 /* We know we are not at the first character of the pattern,
1389 because laststart was nonzero. And we've already
1390 incremented `p', by the way, to be the character after
1391 the `*'. Do we have to do something analogous here
1392 for null bytes, because of RE_DOT_NOT_NULL? */
1393 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
1395 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
1396 && !(syntax
& RE_DOT_NEWLINE
))
1397 { /* We have .*\n. */
1398 STORE_JUMP (jump
, b
, laststart
);
1399 keep_string_p
= true;
1402 /* Anything else. */
1403 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
1405 /* We've added more stuff to the buffer. */
1409 /* On failure, jump from laststart to b + 3, which will be the
1410 end of the buffer after this jump is inserted. */
1411 GET_BUFFER_SPACE (3);
1412 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
1420 /* At least one repetition is required, so insert a
1421 `dummy_failure_jump' before the initial
1422 `on_failure_jump' instruction of the loop. This
1423 effects a skip over that instruction the first time
1424 we hit that loop. */
1425 GET_BUFFER_SPACE (3);
1426 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
1441 boolean had_char_class
= false;
1443 if (p
== pend
) return REG_EBRACK
;
1445 /* Ensure that we have enough space to push a charset: the
1446 opcode, the length count, and the bitset; 34 bytes in all. */
1447 GET_BUFFER_SPACE (34);
1451 /* We test `*p == '^' twice, instead of using an if
1452 statement, so we only need one BUF_PUSH. */
1453 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
1457 /* Remember the first position in the bracket expression. */
1460 /* Push the number of bytes in the bitmap. */
1461 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
1463 /* Clear the whole map. */
1464 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
1466 /* charset_not matches newline according to a syntax bit. */
1467 if ((re_opcode_t
) b
[-2] == charset_not
1468 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
1469 SET_LIST_BIT ('\n');
1471 /* Read in characters and ranges, setting map bits. */
1474 if (p
== pend
) return REG_EBRACK
;
1478 /* \ might escape characters inside [...] and [^...]. */
1479 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
1481 if (p
== pend
) return REG_EESCAPE
;
1488 /* Could be the end of the bracket expression. If it's
1489 not (i.e., when the bracket expression is `[]' so
1490 far), the ']' character bit gets set way below. */
1491 if (c
== ']' && p
!= p1
+ 1)
1494 /* Look ahead to see if it's a range when the last thing
1495 was a character class. */
1496 if (had_char_class
&& c
== '-' && *p
!= ']')
1499 /* Look ahead to see if it's a range when the last thing
1500 was a character: if this is a hyphen not at the
1501 beginning or the end of a list, then it's the range
1504 && !(p
- 2 >= pattern
&& p
[-2] == '[')
1505 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
1509 = compile_range (&p
, pend
, translate
, syntax
, b
);
1510 if (ret
!= REG_NOERROR
) return ret
;
1513 else if (p
[0] == '-' && p
[1] != ']')
1514 { /* This handles ranges made up of characters only. */
1517 /* Move past the `-'. */
1520 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
1521 if (ret
!= REG_NOERROR
) return ret
;
1524 /* See if we're at the beginning of a possible character
1527 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
1528 { /* Leave room for the null. */
1529 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
1534 /* If pattern is `[[:'. */
1535 if (p
== pend
) return REG_EBRACK
;
1540 if (c
== ':' || c
== ']' || p
== pend
1541 || c1
== CHAR_CLASS_MAX_LENGTH
)
1547 /* If isn't a word bracketed by `[:' and:`]':
1548 undo the ending character, the letters, and leave
1549 the leading `:' and `[' (but set bits for them). */
1550 if (c
== ':' && *p
== ']')
1553 boolean is_alnum
= STREQ (str
, "alnum");
1554 boolean is_alpha
= STREQ (str
, "alpha");
1555 boolean is_blank
= STREQ (str
, "blank");
1556 boolean is_cntrl
= STREQ (str
, "cntrl");
1557 boolean is_digit
= STREQ (str
, "digit");
1558 boolean is_graph
= STREQ (str
, "graph");
1559 boolean is_lower
= STREQ (str
, "lower");
1560 boolean is_print
= STREQ (str
, "print");
1561 boolean is_punct
= STREQ (str
, "punct");
1562 boolean is_space
= STREQ (str
, "space");
1563 boolean is_upper
= STREQ (str
, "upper");
1564 boolean is_xdigit
= STREQ (str
, "xdigit");
1566 if (!IS_CHAR_CLASS (str
)) return REG_ECTYPE
;
1568 /* Throw away the ] at the end of the character
1572 if (p
== pend
) return REG_EBRACK
;
1574 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
1576 if ( (is_alnum
&& ISALNUM (ch
))
1577 || (is_alpha
&& ISALPHA (ch
))
1578 || (is_blank
&& ISBLANK (ch
))
1579 || (is_cntrl
&& ISCNTRL (ch
))
1580 || (is_digit
&& ISDIGIT (ch
))
1581 || (is_graph
&& ISGRAPH (ch
))
1582 || (is_lower
&& ISLOWER (ch
))
1583 || (is_print
&& ISPRINT (ch
))
1584 || (is_punct
&& ISPUNCT (ch
))
1585 || (is_space
&& ISSPACE (ch
))
1586 || (is_upper
&& ISUPPER (ch
))
1587 || (is_xdigit
&& ISXDIGIT (ch
)))
1590 had_char_class
= true;
1599 had_char_class
= false;
1604 had_char_class
= false;
1609 /* Discard any (non)matching list bytes that are all 0 at the
1610 end of the map. Decrease the map-length byte too. */
1611 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
1619 if (syntax
& RE_NO_BK_PARENS
)
1626 if (syntax
& RE_NO_BK_PARENS
)
1633 if (syntax
& RE_NEWLINE_ALT
)
1640 if (syntax
& RE_NO_BK_VBAR
)
1647 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
1648 goto handle_interval
;
1654 if (p
== pend
) return REG_EESCAPE
;
1656 /* Do not translate the character after the \, so that we can
1657 distinguish, e.g., \B from \b, even if we normally would
1658 translate, e.g., B to b. */
1664 if (syntax
& RE_NO_BK_PARENS
)
1665 goto normal_backslash
;
1671 if (COMPILE_STACK_FULL
)
1673 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
1674 compile_stack_elt_t
);
1675 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
1677 compile_stack
.size
<<= 1;
1680 /* These are the values to restore when we hit end of this
1681 group. They are all relative offsets, so that if the
1682 whole pattern moves because of realloc, they will still
1684 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
1685 COMPILE_STACK_TOP
.fixup_alt_jump
1686 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
1687 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
1688 COMPILE_STACK_TOP
.regnum
= regnum
;
1690 /* We will eventually replace the 0 with the number of
1691 groups inner to this one. But do not push a
1692 start_memory for groups beyond the last one we can
1693 represent in the compiled pattern. */
1694 if (regnum
<= MAX_REGNUM
)
1696 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
1697 BUF_PUSH_3 (start_memory
, regnum
, 0);
1700 compile_stack
.avail
++;
1705 /* If we've reached MAX_REGNUM groups, then this open
1706 won't actually generate any code, so we'll have to
1707 clear pending_exact explicitly. */
1713 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
1715 if (COMPILE_STACK_EMPTY
)
1716 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
1717 goto normal_backslash
;
1723 { /* Push a dummy failure point at the end of the
1724 alternative for a possible future
1725 `pop_failure_jump' to pop. See comments at
1726 `push_dummy_failure' in `re_match_2'. */
1727 BUF_PUSH (push_dummy_failure
);
1729 /* We allocated space for this jump when we assigned
1730 to `fixup_alt_jump', in the `handle_alt' case below. */
1731 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
1734 /* See similar code for backslashed left paren above. */
1735 if (COMPILE_STACK_EMPTY
)
1736 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
1741 /* Since we just checked for an empty stack above, this
1742 ``can't happen''. */
1743 assert (compile_stack
.avail
!= 0);
1745 /* We don't just want to restore into `regnum', because
1746 later groups should continue to be numbered higher,
1747 as in `(ab)c(de)' -- the second group is #2. */
1748 regnum_t this_group_regnum
;
1750 compile_stack
.avail
--;
1751 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
1753 = COMPILE_STACK_TOP
.fixup_alt_jump
1754 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
1756 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
1757 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
1758 /* If we've reached MAX_REGNUM groups, then this open
1759 won't actually generate any code, so we'll have to
1760 clear pending_exact explicitly. */
1763 /* We're at the end of the group, so now we know how many
1764 groups were inside this one. */
1765 if (this_group_regnum
<= MAX_REGNUM
)
1767 unsigned char *inner_group_loc
1768 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
1770 *inner_group_loc
= regnum
- this_group_regnum
;
1771 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
1772 regnum
- this_group_regnum
);
1778 case '|': /* `\|'. */
1779 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
1780 goto normal_backslash
;
1782 if (syntax
& RE_LIMITED_OPS
)
1785 /* Insert before the previous alternative a jump which
1786 jumps to this alternative if the former fails. */
1787 GET_BUFFER_SPACE (3);
1788 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
1792 /* The alternative before this one has a jump after it
1793 which gets executed if it gets matched. Adjust that
1794 jump so it will jump to this alternative's analogous
1795 jump (put in below, which in turn will jump to the next
1796 (if any) alternative's such jump, etc.). The last such
1797 jump jumps to the correct final destination. A picture:
1803 If we are at `b', then fixup_alt_jump right now points to a
1804 three-byte space after `a'. We'll put in the jump, set
1805 fixup_alt_jump to right after `b', and leave behind three
1806 bytes which we'll fill in when we get to after `c'. */
1809 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
1811 /* Mark and leave space for a jump after this alternative,
1812 to be filled in later either by next alternative or
1813 when know we're at the end of a series of alternatives. */
1815 GET_BUFFER_SPACE (3);
1824 /* If \{ is a literal. */
1825 if (!(syntax
& RE_INTERVALS
)
1826 /* If we're at `\{' and it's not the open-interval
1828 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
1829 || (p
- 2 == pattern
&& p
== pend
))
1830 goto normal_backslash
;
1834 /* If got here, then the syntax allows intervals. */
1836 /* At least (most) this many matches must be made. */
1837 int lower_bound
= -1, upper_bound
= -1;
1839 beg_interval
= p
- 1;
1843 if (syntax
& RE_NO_BK_BRACES
)
1844 goto unfetch_interval
;
1849 GET_UNSIGNED_NUMBER (lower_bound
);
1853 GET_UNSIGNED_NUMBER (upper_bound
);
1854 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
1857 /* Interval such as `{1}' => match exactly once. */
1858 upper_bound
= lower_bound
;
1860 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
1861 || lower_bound
> upper_bound
)
1863 if (syntax
& RE_NO_BK_BRACES
)
1864 goto unfetch_interval
;
1869 if (!(syntax
& RE_NO_BK_BRACES
))
1871 if (c
!= '\\') return REG_EBRACE
;
1878 if (syntax
& RE_NO_BK_BRACES
)
1879 goto unfetch_interval
;
1884 /* We just parsed a valid interval. */
1886 /* If it's invalid to have no preceding re. */
1889 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1891 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
1894 goto unfetch_interval
;
1897 /* If the upper bound is zero, don't want to succeed at
1898 all; jump from `laststart' to `b + 3', which will be
1899 the end of the buffer after we insert the jump. */
1900 if (upper_bound
== 0)
1902 GET_BUFFER_SPACE (3);
1903 INSERT_JUMP (jump
, laststart
, b
+ 3);
1907 /* Otherwise, we have a nontrivial interval. When
1908 we're all done, the pattern will look like:
1909 set_number_at <jump count> <upper bound>
1910 set_number_at <succeed_n count> <lower bound>
1911 succeed_n <after jump addr> <succed_n count>
1913 jump_n <succeed_n addr> <jump count>
1914 (The upper bound and `jump_n' are omitted if
1915 `upper_bound' is 1, though.) */
1917 { /* If the upper bound is > 1, we need to insert
1918 more at the end of the loop. */
1919 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
1921 GET_BUFFER_SPACE (nbytes
);
1923 /* Initialize lower bound of the `succeed_n', even
1924 though it will be set during matching by its
1925 attendant `set_number_at' (inserted next),
1926 because `re_compile_fastmap' needs to know.
1927 Jump to the `jump_n' we might insert below. */
1928 INSERT_JUMP2 (succeed_n
, laststart
,
1929 b
+ 5 + (upper_bound
> 1) * 5,
1933 /* Code to initialize the lower bound. Insert
1934 before the `succeed_n'. The `5' is the last two
1935 bytes of this `set_number_at', plus 3 bytes of
1936 the following `succeed_n'. */
1937 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
1940 if (upper_bound
> 1)
1941 { /* More than one repetition is allowed, so
1942 append a backward jump to the `succeed_n'
1943 that starts this interval.
1945 When we've reached this during matching,
1946 we'll have matched the interval once, so
1947 jump back only `upper_bound - 1' times. */
1948 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
1952 /* The location we want to set is the second
1953 parameter of the `jump_n'; that is `b-2' as
1954 an absolute address. `laststart' will be
1955 the `set_number_at' we're about to insert;
1956 `laststart+3' the number to set, the source
1957 for the relative address. But we are
1958 inserting into the middle of the pattern --
1959 so everything is getting moved up by 5.
1960 Conclusion: (b - 2) - (laststart + 3) + 5,
1961 i.e., b - laststart.
1963 We insert this at the beginning of the loop
1964 so that if we fail during matching, we'll
1965 reinitialize the bounds. */
1966 insert_op2 (set_number_at
, laststart
, b
- laststart
,
1967 upper_bound
- 1, b
);
1972 beg_interval
= NULL
;
1977 /* If an invalid interval, match the characters as literals. */
1978 assert (beg_interval
);
1980 beg_interval
= NULL
;
1982 /* normal_char and normal_backslash need `c'. */
1985 if (!(syntax
& RE_NO_BK_BRACES
))
1987 if (p
> pattern
&& p
[-1] == '\\')
1988 goto normal_backslash
;
1993 /* There is no way to specify the before_dot and after_dot
1994 operators. rms says this is ok. --karl */
2002 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2008 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2014 if (re_syntax_options
& RE_NO_GNU_OPS
)
2017 BUF_PUSH (wordchar
);
2022 if (re_syntax_options
& RE_NO_GNU_OPS
)
2025 BUF_PUSH (notwordchar
);
2030 if (re_syntax_options
& RE_NO_GNU_OPS
)
2036 if (re_syntax_options
& RE_NO_GNU_OPS
)
2042 if (re_syntax_options
& RE_NO_GNU_OPS
)
2044 BUF_PUSH (wordbound
);
2048 if (re_syntax_options
& RE_NO_GNU_OPS
)
2050 BUF_PUSH (notwordbound
);
2054 if (re_syntax_options
& RE_NO_GNU_OPS
)
2060 if (re_syntax_options
& RE_NO_GNU_OPS
)
2065 case '1': case '2': case '3': case '4': case '5':
2066 case '6': case '7': case '8': case '9':
2067 if (syntax
& RE_NO_BK_REFS
)
2075 /* Can't back reference to a subexpression if inside of it. */
2076 if (group_in_compile_stack (compile_stack
, (regnum_t
)c1
))
2080 BUF_PUSH_2 (duplicate
, c1
);
2086 if (syntax
& RE_BK_PLUS_QM
)
2089 goto normal_backslash
;
2093 /* You might think it would be useful for \ to mean
2094 not to translate; but if we don't translate it
2095 it will never match anything. */
2103 /* Expects the character in `c'. */
2105 /* If no exactn currently being built. */
2108 /* If last exactn not at current position. */
2109 || pending_exact
+ *pending_exact
+ 1 != b
2111 /* We have only one byte following the exactn for the count. */
2112 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2114 /* If followed by a repetition operator. */
2115 || *p
== '*' || *p
== '^'
2116 || ((syntax
& RE_BK_PLUS_QM
)
2117 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2118 : (*p
== '+' || *p
== '?'))
2119 || ((syntax
& RE_INTERVALS
)
2120 && ((syntax
& RE_NO_BK_BRACES
)
2122 : (p
[0] == '\\' && p
[1] == '{'))))
2124 /* Start building a new exactn. */
2128 BUF_PUSH_2 (exactn
, 0);
2129 pending_exact
= b
- 1;
2136 } /* while p != pend */
2139 /* Through the pattern now. */
2142 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2144 if (!COMPILE_STACK_EMPTY
)
2147 free (compile_stack
.stack
);
2149 /* We have succeeded; set the length of the buffer. */
2150 bufp
->used
= b
- bufp
->buffer
;
2155 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2156 print_compiled_pattern (bufp
);
2161 } /* regex_compile */
2163 /* Subroutines for `regex_compile'. */
2165 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2168 store_op1 (op
, loc
, arg
)
2173 *loc
= (unsigned char) op
;
2174 STORE_NUMBER (loc
+ 1, arg
);
2178 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2181 store_op2 (op
, loc
, arg1
, arg2
)
2186 *loc
= (unsigned char) op
;
2187 STORE_NUMBER (loc
+ 1, arg1
);
2188 STORE_NUMBER (loc
+ 3, arg2
);
2192 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2193 for OP followed by two-byte integer parameter ARG. */
2196 insert_op1 (op
, loc
, arg
, end
)
2202 register unsigned char *pfrom
= end
;
2203 register unsigned char *pto
= end
+ 3;
2205 while (pfrom
!= loc
)
2208 store_op1 (op
, loc
, arg
);
2212 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2215 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2221 register unsigned char *pfrom
= end
;
2222 register unsigned char *pto
= end
+ 5;
2224 while (pfrom
!= loc
)
2227 store_op2 (op
, loc
, arg1
, arg2
);
2231 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2232 after an alternative or a begin-subexpression. We assume there is at
2233 least one character before the ^. */
2236 at_begline_loc_p (pattern
, p
, syntax
)
2237 const char *pattern
, *p
;
2238 reg_syntax_t syntax
;
2240 const char *prev
= p
- 2;
2241 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
2244 /* After a subexpression? */
2245 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
2246 /* After an alternative? */
2247 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
2251 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2252 at least one character after the $, i.e., `P < PEND'. */
2255 at_endline_loc_p (p
, pend
, syntax
)
2256 const char *p
, *pend
;
2257 reg_syntax_t syntax
;
2259 const char *next
= p
;
2260 boolean next_backslash
= *next
== '\\';
2261 const char *next_next
= p
+ 1 < pend
? p
+ 1 : NULL
;
2264 /* Before a subexpression? */
2265 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
2266 : next_backslash
&& next_next
&& *next_next
== ')')
2267 /* Before an alternative? */
2268 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
2269 : next_backslash
&& next_next
&& *next_next
== '|');
2273 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2274 false if it's not. */
2277 group_in_compile_stack (compile_stack
, regnum
)
2278 compile_stack_type compile_stack
;
2283 for (this_element
= compile_stack
.avail
- 1;
2286 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
2293 /* Read the ending character of a range (in a bracket expression) from the
2294 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2295 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2296 Then we set the translation of all bits between the starting and
2297 ending characters (inclusive) in the compiled pattern B.
2299 Return an error code.
2301 We use these short variable names so we can use the same macros as
2302 `regex_compile' itself. */
2304 static reg_errcode_t
2305 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
2306 const char **p_ptr
, *pend
;
2308 reg_syntax_t syntax
;
2313 const char *p
= *p_ptr
;
2314 int range_start
, range_end
;
2319 /* Even though the pattern is a signed `char *', we need to fetch
2320 with unsigned char *'s; if the high bit of the pattern character
2321 is set, the range endpoints will be negative if we fetch using a
2324 We also want to fetch the endpoints without translating them; the
2325 appropriate translation is done in the bit-setting loop below. */
2326 range_start
= ((unsigned char *) p
)[-2];
2327 range_end
= ((unsigned char *) p
)[0];
2329 /* Have to increment the pointer into the pattern string, so the
2330 caller isn't still at the ending character. */
2333 /* If the start is after the end, the range is empty. */
2335 if (collate_range_cmp (range_start
, range_end
) > 0)
2337 if (range_start
> range_end
)
2339 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
2342 for (this_char
= 0; this_char
< 1 << BYTEWIDTH
; this_char
++)
2343 if ( collate_range_cmp (range_start
, this_char
) <= 0
2344 && collate_range_cmp (this_char
, range_end
) <= 0
2346 SET_LIST_BIT (TRANSLATE (this_char
));
2349 /* Here we see why `this_char' has to be larger than an `unsigned
2350 char' -- the range is inclusive, so if `range_end' == 0xff
2351 (assuming 8-bit characters), we would otherwise go into an infinite
2352 loop, since all characters <= 0xff. */
2353 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
2355 SET_LIST_BIT (TRANSLATE (this_char
));
2361 /* Failure stack declarations and macros; both re_compile_fastmap and
2362 re_match_2 use a failure stack. These have to be macros because of
2366 /* Number of failure points for which to initially allocate space
2367 when matching. If this number is exceeded, we allocate more
2368 space, so it is not a hard limit. */
2369 #ifndef INIT_FAILURE_ALLOC
2370 #define INIT_FAILURE_ALLOC 5
2373 /* Roughly the maximum number of failure points on the stack. Would be
2374 exactly that if always used MAX_FAILURE_SPACE each time we failed.
2375 This is a variable only so users of regex can assign to it; we never
2376 change it ourselves. */
2377 int re_max_failures
= 2000;
2379 typedef const unsigned char *fail_stack_elt_t
;
2383 fail_stack_elt_t
*stack
;
2385 unsigned avail
; /* Offset of next open position. */
2388 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
2389 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2390 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
2391 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
2394 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
2396 #define INIT_FAIL_STACK() \
2398 fail_stack.stack = (fail_stack_elt_t *) \
2399 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
2401 if (fail_stack.stack == NULL) \
2404 fail_stack.size = INIT_FAILURE_ALLOC; \
2405 fail_stack.avail = 0; \
2409 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2411 Return 1 if succeeds, and 0 if either ran out of memory
2412 allocating space for it or it was already too large.
2414 REGEX_REALLOCATE requires `destination' be declared. */
2416 #define DOUBLE_FAIL_STACK(fail_stack) \
2417 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
2419 : ((fail_stack).stack = (fail_stack_elt_t *) \
2420 REGEX_REALLOCATE ((fail_stack).stack, \
2421 (fail_stack).size * sizeof (fail_stack_elt_t), \
2422 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
2424 (fail_stack).stack == NULL \
2426 : ((fail_stack).size <<= 1, \
2430 /* Push PATTERN_OP on FAIL_STACK.
2432 Return 1 if was able to do so and 0 if ran out of memory allocating
2434 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
2435 ((FAIL_STACK_FULL () \
2436 && !DOUBLE_FAIL_STACK (fail_stack)) \
2438 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
2441 /* This pushes an item onto the failure stack. Must be a four-byte
2442 value. Assumes the variable `fail_stack'. Probably should only
2443 be called from within `PUSH_FAILURE_POINT'. */
2444 #define PUSH_FAILURE_ITEM(item) \
2445 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2447 /* The complement operation. Assumes `fail_stack' is nonempty. */
2448 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2450 /* Used to omit pushing failure point id's when we're not debugging. */
2452 #define DEBUG_PUSH PUSH_FAILURE_ITEM
2453 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2455 #define DEBUG_PUSH(item)
2456 #define DEBUG_POP(item_addr)
2460 /* Push the information about the state we will need
2461 if we ever fail back to it.
2463 Requires variables fail_stack, regstart, regend, reg_info, and
2464 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
2467 Does `return FAILURE_CODE' if runs out of memory. */
2469 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
2471 char *destination; \
2472 /* Must be int, so when we don't save any registers, the arithmetic \
2473 of 0 + -1 isn't done as unsigned. */ \
2474 /* Can't be int, since there is not a shred of a guarantee that int \
2475 is wide enough to hold a value of something to which pointer can \
2479 DEBUG_STATEMENT (failure_id++); \
2480 DEBUG_STATEMENT (nfailure_points_pushed++); \
2481 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
2482 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
2483 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
2485 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
2486 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
2488 /* Ensure we have enough space allocated for what we will push. */ \
2489 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
2491 if (!DOUBLE_FAIL_STACK (fail_stack)) \
2492 return failure_code; \
2494 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
2495 (fail_stack).size); \
2496 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2499 #define PUSH_FAILURE_POINT2(pattern_place, string_place, failure_code) \
2500 /* Push the info, starting with the registers. */ \
2501 DEBUG_PRINT1 ("\n"); \
2503 PUSH_FAILURE_POINT_LOOP (); \
2505 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
2506 PUSH_FAILURE_ITEM (lowest_active_reg); \
2508 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
2509 PUSH_FAILURE_ITEM (highest_active_reg); \
2511 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
2512 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
2513 PUSH_FAILURE_ITEM (pattern_place); \
2515 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
2516 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
2518 DEBUG_PRINT1 ("'\n"); \
2519 PUSH_FAILURE_ITEM (string_place); \
2521 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
2522 DEBUG_PUSH (failure_id); \
2525 /* Pulled out of PUSH_FAILURE_POINT() to shorten the definition
2526 of that macro. (for VAX C) */
2527 #define PUSH_FAILURE_POINT_LOOP() \
2528 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
2531 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
2532 DEBUG_STATEMENT (num_regs_pushed++); \
2534 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2535 PUSH_FAILURE_ITEM (regstart[this_reg]); \
2537 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2538 PUSH_FAILURE_ITEM (regend[this_reg]); \
2540 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
2541 DEBUG_PRINT2 (" match_null=%d", \
2542 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
2543 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
2544 DEBUG_PRINT2 (" matched_something=%d", \
2545 MATCHED_SOMETHING (reg_info[this_reg])); \
2546 DEBUG_PRINT2 (" ever_matched=%d", \
2547 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
2548 DEBUG_PRINT1 ("\n"); \
2549 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
2552 /* This is the number of items that are pushed and popped on the stack
2553 for each register. */
2554 #define NUM_REG_ITEMS 3
2556 /* Individual items aside from the registers. */
2558 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
2560 #define NUM_NONREG_ITEMS 4
2563 /* We push at most this many items on the stack. */
2564 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2566 /* We actually push this many items. */
2567 #define NUM_FAILURE_ITEMS \
2568 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
2571 /* How many items can still be added to the stack without overflowing it. */
2572 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2575 /* Pops what PUSH_FAIL_STACK pushes.
2577 We restore into the parameters, all of which should be lvalues:
2578 STR -- the saved data position.
2579 PAT -- the saved pattern position.
2580 LOW_REG, HIGH_REG -- the highest and lowest active registers.
2581 REGSTART, REGEND -- arrays of string positions.
2582 REG_INFO -- array of information about each subexpression.
2584 Also assumes the variables `fail_stack' and (if debugging), `bufp',
2585 `pend', `string1', `size1', `string2', and `size2'. */
2587 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2589 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
2591 const unsigned char *string_temp; \
2593 assert (!FAIL_STACK_EMPTY ()); \
2595 /* Remove failure points and point to how many regs pushed. */ \
2596 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
2597 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
2598 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
2600 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
2602 DEBUG_POP (&failure_id); \
2603 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
2605 /* If the saved string location is NULL, it came from an \
2606 on_failure_keep_string_jump opcode, and we want to throw away the \
2607 saved NULL, thus retaining our current position in the string. */ \
2608 string_temp = POP_FAILURE_ITEM (); \
2609 if (string_temp != NULL) \
2610 str = (const char *) string_temp; \
2612 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
2613 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
2614 DEBUG_PRINT1 ("'\n"); \
2616 pat = (unsigned char *) POP_FAILURE_ITEM (); \
2617 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
2618 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
2620 POP_FAILURE_POINT2 (low_reg, high_reg, regstart, regend, reg_info);
2622 /* Pulled out of POP_FAILURE_POINT() to shorten the definition
2623 of that macro. (for MSC 5.1) */
2624 #define POP_FAILURE_POINT2(low_reg, high_reg, regstart, regend, reg_info) \
2626 /* Restore register info. */ \
2627 high_reg = (active_reg_t) POP_FAILURE_ITEM (); \
2628 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
2630 low_reg = (active_reg_t) POP_FAILURE_ITEM (); \
2631 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
2633 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
2635 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2637 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
2638 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2640 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2641 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2643 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2644 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2647 DEBUG_STATEMENT (nfailure_points_popped++); \
2648 } /* POP_FAILURE_POINT */
2651 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2652 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2653 characters can start a string that matches the pattern. This fastmap
2654 is used by re_search to skip quickly over impossible starting points.
2656 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2657 area as BUFP->fastmap.
2659 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2662 Returns 0 if we succeed, -2 if an internal error. */
2665 re_compile_fastmap (bufp
)
2666 struct re_pattern_buffer
*bufp
;
2669 fail_stack_type fail_stack
;
2670 #ifndef REGEX_MALLOC
2673 /* We don't push any register information onto the failure stack. */
2674 unsigned num_regs
= 0;
2676 register char *fastmap
= bufp
->fastmap
;
2677 unsigned char *pattern
= bufp
->buffer
;
2678 const unsigned char *p
= pattern
;
2679 register unsigned char *pend
= pattern
+ bufp
->used
;
2681 /* Assume that each path through the pattern can be null until
2682 proven otherwise. We set this false at the bottom of switch
2683 statement, to which we get only if a particular path doesn't
2684 match the empty string. */
2685 boolean path_can_be_null
= true;
2687 /* We aren't doing a `succeed_n' to begin with. */
2688 boolean succeed_n_p
= false;
2690 assert (fastmap
!= NULL
&& p
!= NULL
);
2693 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
2694 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
2695 bufp
->can_be_null
= 0;
2697 while (p
!= pend
|| !FAIL_STACK_EMPTY ())
2701 bufp
->can_be_null
|= path_can_be_null
;
2703 /* Reset for next path. */
2704 path_can_be_null
= true;
2706 p
= fail_stack
.stack
[--fail_stack
.avail
];
2709 /* We should never be about to go beyond the end of the pattern. */
2712 #ifdef SWITCH_ENUM_BUG
2713 switch ((int) ((re_opcode_t
) *p
++))
2715 switch ((re_opcode_t
) *p
++)
2719 /* I guess the idea here is to simply not bother with a fastmap
2720 if a backreference is used, since it's too hard to figure out
2721 the fastmap for the corresponding group. Setting
2722 `can_be_null' stops `re_search_2' from using the fastmap, so
2723 that is all we do. */
2725 bufp
->can_be_null
= 1;
2729 /* Following are the cases which match a character. These end
2738 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2739 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
2745 /* Chars beyond end of map must be allowed. */
2746 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
2749 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2750 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
2756 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2757 if (SYNTAX (j
) == Sword
)
2763 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2764 if (SYNTAX (j
) != Sword
)
2770 /* `.' matches anything ... */
2771 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2774 /* ... except perhaps newline. */
2775 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
2778 /* Return if we have already set `can_be_null'; if we have,
2779 then the fastmap is irrelevant. Something's wrong here. */
2780 else if (bufp
->can_be_null
)
2783 /* Otherwise, have to check alternative paths. */
2790 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2791 if (SYNTAX (j
) == (enum syntaxcode
) k
)
2798 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2799 if (SYNTAX (j
) != (enum syntaxcode
) k
)
2804 /* All cases after this match the empty string. These end with
2812 #endif /* not emacs */
2824 case push_dummy_failure
:
2829 case pop_failure_jump
:
2830 case maybe_pop_jump
:
2833 case dummy_failure_jump
:
2834 EXTRACT_NUMBER_AND_INCR (j
, p
);
2839 /* Jump backward implies we just went through the body of a
2840 loop and matched nothing. Opcode jumped to should be
2841 `on_failure_jump' or `succeed_n'. Just treat it like an
2842 ordinary jump. For a * loop, it has pushed its failure
2843 point already; if so, discard that as redundant. */
2844 if ((re_opcode_t
) *p
!= on_failure_jump
2845 && (re_opcode_t
) *p
!= succeed_n
)
2849 EXTRACT_NUMBER_AND_INCR (j
, p
);
2852 /* If what's on the stack is where we are now, pop it. */
2853 if (!FAIL_STACK_EMPTY ()
2854 && fail_stack
.stack
[fail_stack
.avail
- 1] == p
)
2860 case on_failure_jump
:
2861 case on_failure_keep_string_jump
:
2862 handle_on_failure_jump
:
2863 EXTRACT_NUMBER_AND_INCR (j
, p
);
2865 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2866 end of the pattern. We don't want to push such a point,
2867 since when we restore it above, entering the switch will
2868 increment `p' past the end of the pattern. We don't need
2869 to push such a point since we obviously won't find any more
2870 fastmap entries beyond `pend'. Such a pattern can match
2871 the null string, though. */
2874 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
2878 bufp
->can_be_null
= 1;
2882 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
2883 succeed_n_p
= false;
2890 /* Get to the number of times to succeed. */
2893 /* Increment p past the n for when k != 0. */
2894 EXTRACT_NUMBER_AND_INCR (k
, p
);
2898 succeed_n_p
= true; /* Spaghetti code alert. */
2899 goto handle_on_failure_jump
;
2916 abort (); /* We have listed all the cases. */
2919 /* Getting here means we have found the possible starting
2920 characters for one path of the pattern -- and that the empty
2921 string does not match. We need not follow this path further.
2922 Instead, look at the next alternative (remembered on the
2923 stack), or quit if no more. The test at the top of the loop
2924 does these things. */
2925 path_can_be_null
= false;
2929 /* Set `can_be_null' for the last path (also the first path, if the
2930 pattern is empty). */
2931 bufp
->can_be_null
|= path_can_be_null
;
2933 } /* re_compile_fastmap */
2935 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2936 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2937 this memory for recording register information. STARTS and ENDS
2938 must be allocated using the malloc library routine, and must each
2939 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2941 If NUM_REGS == 0, then subsequent matches should allocate their own
2944 Unless this function is called, the first search or match using
2945 PATTERN_BUFFER will allocate its own register data, without
2946 freeing the old data. */
2949 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
2950 struct re_pattern_buffer
*bufp
;
2951 struct re_registers
*regs
;
2953 regoff_t
*starts
, *ends
;
2957 bufp
->regs_allocated
= REGS_REALLOCATE
;
2958 regs
->num_regs
= num_regs
;
2959 regs
->start
= starts
;
2964 bufp
->regs_allocated
= REGS_UNALLOCATED
;
2966 regs
->start
= regs
->end
= 0;
2970 /* Searching routines. */
2972 /* Like re_search_2, below, but only one string is specified, and
2973 doesn't let you say where to stop matching. */
2976 re_search (bufp
, string
, size
, startpos
, range
, regs
)
2977 struct re_pattern_buffer
*bufp
;
2979 int size
, startpos
, range
;
2980 struct re_registers
*regs
;
2982 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
2987 /* Using the compiled pattern in BUFP->buffer, first tries to match the
2988 virtual concatenation of STRING1 and STRING2, starting first at index
2989 STARTPOS, then at STARTPOS + 1, and so on.
2991 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2993 RANGE is how far to scan while trying to match. RANGE = 0 means try
2994 only at STARTPOS; in general, the last start tried is STARTPOS +
2997 In REGS, return the indices of the virtual concatenation of STRING1
2998 and STRING2 that matched the entire BUFP->buffer and its contained
3001 Do not consider matching one past the index STOP in the virtual
3002 concatenation of STRING1 and STRING2.
3004 We return either the position in the strings at which the match was
3005 found, -1 if no match, or -2 if error (such as failure
3009 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3010 struct re_pattern_buffer
*bufp
;
3011 const char *string1
, *string2
;
3015 struct re_registers
*regs
;
3019 register char *fastmap
= bufp
->fastmap
;
3020 register char *translate
= bufp
->translate
;
3021 int total_size
= size1
+ size2
;
3022 int endpos
= startpos
+ range
;
3024 /* Check for out-of-range STARTPOS. */
3025 if (startpos
< 0 || startpos
> total_size
)
3028 /* Fix up RANGE if it might eventually take us outside
3029 the virtual concatenation of STRING1 and STRING2. */
3031 range
= -1 - startpos
;
3032 else if (endpos
> total_size
)
3033 range
= total_size
- startpos
;
3035 /* If the search isn't to be a backwards one, don't waste time in a
3036 search for a pattern that must be anchored. */
3037 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3045 /* Update the fastmap now if not correct already. */
3046 if (fastmap
&& !bufp
->fastmap_accurate
)
3047 if (re_compile_fastmap (bufp
) == -2)
3050 /* Loop through the string, looking for a place to start matching. */
3053 /* If a fastmap is supplied, skip quickly over characters that
3054 cannot be the start of a match. If the pattern can match the
3055 null string, however, we don't need to skip characters; we want
3056 the first null string. */
3057 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3059 if (range
> 0) /* Searching forwards. */
3061 register const char *d
;
3062 register int lim
= 0;
3065 if (startpos
< size1
&& startpos
+ range
>= size1
)
3066 lim
= range
- (size1
- startpos
);
3068 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3070 /* Written out as an if-else to avoid testing `translate'
3074 && !fastmap
[(unsigned char)
3075 translate
[(unsigned char) *d
++]])
3078 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3081 startpos
+= irange
- range
;
3083 else /* Searching backwards. */
3085 register char c
= (size1
== 0 || startpos
>= size1
3086 ? string2
[startpos
- size1
]
3087 : string1
[startpos
]);
3089 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3094 /* If can't match the null string, and that's all we have left, fail. */
3095 if (range
>= 0 && startpos
== total_size
&& fastmap
3096 && !bufp
->can_be_null
)
3099 val
= re_match_2 (bufp
, string1
, size1
, string2
, size2
,
3100 startpos
, regs
, stop
);
3124 /* Structure for per-register (a.k.a. per-group) information.
3125 This must not be longer than one word, because we push this value
3126 onto the failure stack. Other register information, such as the
3127 starting and ending positions (which are addresses), and the list of
3128 inner groups (which is a bits list) are maintained in separate
3131 We are making a (strictly speaking) nonportable assumption here: that
3132 the compiler will pack our bit fields into something that fits into
3133 the type of `word', i.e., is something that fits into one item on the
3136 /* Declarations and macros for re_match_2. */
3140 fail_stack_elt_t word
;
3143 /* This field is one if this group can match the empty string,
3144 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
3145 #define MATCH_NULL_UNSET_VALUE 3
3146 unsigned match_null_string_p
: 2;
3147 unsigned is_active
: 1;
3148 unsigned matched_something
: 1;
3149 unsigned ever_matched_something
: 1;
3151 } register_info_type
;
3153 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
3154 #define IS_ACTIVE(R) ((R).bits.is_active)
3155 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
3156 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
3158 static boolean group_match_null_string_p
_RE_ARGS((unsigned char **p
,
3160 register_info_type
*reg_info
));
3161 static boolean alt_match_null_string_p
_RE_ARGS((unsigned char *p
,
3163 register_info_type
*reg_info
));
3164 static boolean common_op_match_null_string_p
_RE_ARGS((unsigned char **p
,
3166 register_info_type
*reg_info
));
3167 static int bcmp_translate
_RE_ARGS((const char *s1
, const char *s2
,
3168 int len
, char *translate
));
3170 /* Call this when have matched a real character; it sets `matched' flags
3171 for the subexpressions which we are currently inside. Also records
3172 that those subexprs have matched. */
3173 #define SET_REGS_MATCHED() \
3177 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
3179 MATCHED_SOMETHING (reg_info[r]) \
3180 = EVER_MATCHED_SOMETHING (reg_info[r]) \
3187 /* This converts PTR, a pointer into one of the search strings `string1'
3188 and `string2' into an offset from the beginning of that string. */
3189 #define POINTER_TO_OFFSET(ptr) \
3190 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3192 /* Registers are set to a sentinel when they haven't yet matched. */
3193 #define REG_UNSET_VALUE ((char *) -1)
3194 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3197 /* Macros for dealing with the split strings in re_match_2. */
3199 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3201 /* Call before fetching a character with *d. This switches over to
3202 string2 if necessary. */
3203 #define PREFETCH() \
3206 /* End of string2 => fail. */ \
3207 if (dend == end_match_2) \
3209 /* End of string1 => advance to string2. */ \
3211 dend = end_match_2; \
3215 /* Test if at very beginning or at very end of the virtual concatenation
3216 of `string1' and `string2'. If only one string, it's `string2'. */
3217 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3218 #define AT_STRINGS_END(d) ((d) == end2)
3221 /* Test if D points to a character which is word-constituent. We have
3222 two special cases to check for: if past the end of string1, look at
3223 the first character in string2; and if before the beginning of
3224 string2, look at the last character in string1. */
3225 #define WORDCHAR_P(d) \
3226 (SYNTAX ((d) == end1 ? *string2 \
3227 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3230 /* Test if the character before D and the one at D differ with respect
3231 to being word-constituent. */
3232 #define AT_WORD_BOUNDARY(d) \
3233 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3234 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3237 /* Free everything we malloc. */
3239 #define FREE_VAR(var) if (var) free (var); var = NULL
3240 #define FREE_VARIABLES() \
3242 FREE_VAR (fail_stack.stack); \
3243 FREE_VAR (regstart); \
3244 FREE_VAR (regend); \
3245 FREE_VAR (old_regstart); \
3246 FREE_VAR (old_regend); \
3247 FREE_VAR (best_regstart); \
3248 FREE_VAR (best_regend); \
3249 FREE_VAR (reg_info); \
3250 FREE_VAR (reg_dummy); \
3251 FREE_VAR (reg_info_dummy); \
3253 #else /* not REGEX_MALLOC */
3254 /* Some MIPS systems (at least) want this to free alloca'd storage. */
3255 #define FREE_VARIABLES() alloca (0)
3256 #endif /* not REGEX_MALLOC */
3259 /* These values must meet several constraints. They must not be valid
3260 register values; since we have a limit of 255 registers (because
3261 we use only one byte in the pattern for the register number), we can
3262 use numbers larger than 255. They must differ by 1, because of
3263 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3264 be larger than the value for the highest register, so we do not try
3265 to actually save any registers when none are active. */
3266 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3267 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3269 /* Matching routines. */
3271 #ifndef emacs /* Emacs never uses this. */
3272 /* re_match is like re_match_2 except it takes only a single string. */
3275 re_match (bufp
, string
, size
, pos
, regs
)
3276 struct re_pattern_buffer
*bufp
;
3279 struct re_registers
*regs
;
3281 return re_match_2 (bufp
, NULL
, 0, string
, size
, pos
, regs
, size
);
3283 #endif /* not emacs */
3286 /* re_match_2 matches the compiled pattern in BUFP against the
3287 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3288 and SIZE2, respectively). We start matching at POS, and stop
3291 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3292 store offsets for the substring each group matched in REGS. See the
3293 documentation for exactly how many groups we fill.
3295 We return -1 if no match, -2 if an internal error (such as the
3296 failure stack overflowing). Otherwise, we return the length of the
3297 matched substring. */
3300 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3301 struct re_pattern_buffer
*bufp
;
3302 const char *string1
, *string2
;
3305 struct re_registers
*regs
;
3308 /* General temporaries. */
3312 /* Just past the end of the corresponding string. */
3313 const char *end1
, *end2
;
3315 /* Pointers into string1 and string2, just past the last characters in
3316 each to consider matching. */
3317 const char *end_match_1
, *end_match_2
;
3319 /* Where we are in the data, and the end of the current string. */
3320 const char *d
, *dend
;
3322 /* Where we are in the pattern, and the end of the pattern. */
3323 unsigned char *p
= bufp
->buffer
;
3324 register unsigned char *pend
= p
+ bufp
->used
;
3326 /* We use this to map every character in the string. */
3327 char *translate
= bufp
->translate
;
3329 /* Failure point stack. Each place that can handle a failure further
3330 down the line pushes a failure point on this stack. It consists of
3331 restart, regend, and reg_info for all registers corresponding to
3332 the subexpressions we're currently inside, plus the number of such
3333 registers, and, finally, two char *'s. The first char * is where
3334 to resume scanning the pattern; the second one is where to resume
3335 scanning the strings. If the latter is zero, the failure point is
3336 a ``dummy''; if a failure happens and the failure point is a dummy,
3337 it gets discarded and the next next one is tried. */
3338 fail_stack_type fail_stack
;
3340 static unsigned failure_id
= 0;
3341 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3344 /* We fill all the registers internally, independent of what we
3345 return, for use in backreferences. The number here includes
3346 an element for register zero. */
3347 size_t num_regs
= bufp
->re_nsub
+ 1;
3349 /* The currently active registers. */
3350 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3351 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3353 /* Information on the contents of registers. These are pointers into
3354 the input strings; they record just what was matched (on this
3355 attempt) by a subexpression part of the pattern, that is, the
3356 regnum-th regstart pointer points to where in the pattern we began
3357 matching and the regnum-th regend points to right after where we
3358 stopped matching the regnum-th subexpression. (The zeroth register
3359 keeps track of what the whole pattern matches.) */
3360 const char **regstart
= 0, **regend
= 0;
3362 /* If a group that's operated upon by a repetition operator fails to
3363 match anything, then the register for its start will need to be
3364 restored because it will have been set to wherever in the string we
3365 are when we last see its open-group operator. Similarly for a
3367 const char **old_regstart
= 0, **old_regend
= 0;
3369 /* The is_active field of reg_info helps us keep track of which (possibly
3370 nested) subexpressions we are currently in. The matched_something
3371 field of reg_info[reg_num] helps us tell whether or not we have
3372 matched any of the pattern so far this time through the reg_num-th
3373 subexpression. These two fields get reset each time through any
3374 loop their register is in. */
3375 register_info_type
*reg_info
= 0;
3377 /* The following record the register info as found in the above
3378 variables when we find a match better than any we've seen before.
3379 This happens as we backtrack through the failure points, which in
3380 turn happens only if we have not yet matched the entire string. */
3381 unsigned best_regs_set
= false;
3382 const char **best_regstart
= 0, **best_regend
= 0;
3384 /* Logically, this is `best_regend[0]'. But we don't want to have to
3385 allocate space for that if we're not allocating space for anything
3386 else (see below). Also, we never need info about register 0 for
3387 any of the other register vectors, and it seems rather a kludge to
3388 treat `best_regend' differently than the rest. So we keep track of
3389 the end of the best match so far in a separate variable. We
3390 initialize this to NULL so that when we backtrack the first time
3391 and need to test it, it's not garbage. */
3392 const char *match_end
= NULL
;
3394 /* Used when we pop values we don't care about. */
3395 const char **reg_dummy
= 0;
3396 register_info_type
*reg_info_dummy
= 0;
3399 /* Counts the total number of registers pushed. */
3400 unsigned num_regs_pushed
= 0;
3403 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3407 /* Do not bother to initialize all the register variables if there are
3408 no groups in the pattern, as it takes a fair amount of time. If
3409 there are groups, we include space for register 0 (the whole
3410 pattern), even though we never use it, since it simplifies the
3411 array indexing. We should fix this. */
3414 regstart
= REGEX_TALLOC (num_regs
, const char *);
3415 regend
= REGEX_TALLOC (num_regs
, const char *);
3416 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3417 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3418 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3419 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3420 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3421 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3422 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3424 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3425 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3434 /* We must initialize all our variables to NULL, so that
3435 `FREE_VARIABLES' doesn't try to free them. */
3436 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3437 = best_regend
= reg_dummy
= NULL
;
3438 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3440 #endif /* REGEX_MALLOC */
3442 /* The starting position is bogus. */
3443 if (pos
< 0 || pos
> size1
+ size2
)
3449 /* Initialize subexpression text positions to -1 to mark ones that no
3450 start_memory/stop_memory has been seen for. Also initialize the
3451 register information struct. */
3452 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3454 regstart
[mcnt
] = regend
[mcnt
]
3455 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3457 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3458 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3459 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3460 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3463 /* We move `string1' into `string2' if the latter's empty -- but not if
3464 `string1' is null. */
3465 if (size2
== 0 && string1
!= NULL
)
3472 end1
= string1
+ size1
;
3473 end2
= string2
+ size2
;
3475 /* Compute where to stop matching, within the two strings. */
3478 end_match_1
= string1
+ stop
;
3479 end_match_2
= string2
;
3484 end_match_2
= string2
+ stop
- size1
;
3487 /* `p' scans through the pattern as `d' scans through the data.
3488 `dend' is the end of the input string that `d' points within. `d'
3489 is advanced into the following input string whenever necessary, but
3490 this happens before fetching; therefore, at the beginning of the
3491 loop, `d' can be pointing at the end of a string, but it cannot
3493 if (size1
> 0 && pos
<= size1
)
3500 d
= string2
+ pos
- size1
;
3504 DEBUG_PRINT1 ("The compiled pattern is: ");
3505 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
3506 DEBUG_PRINT1 ("The string to match is: `");
3507 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
3508 DEBUG_PRINT1 ("'\n");
3510 /* This loops over pattern commands. It exits by returning from the
3511 function if the match is complete, or it drops through if the match
3512 fails at this starting point in the input data. */
3515 DEBUG_PRINT2 ("\n0x%x: ", p
);
3518 { /* End of pattern means we might have succeeded. */
3519 DEBUG_PRINT1 ("end of pattern ... ");
3521 /* If we haven't matched the entire string, and we want the
3522 longest match, try backtracking. */
3523 if (d
!= end_match_2
)
3525 DEBUG_PRINT1 ("backtracking.\n");
3527 if (!FAIL_STACK_EMPTY ())
3528 { /* More failure points to try. */
3529 boolean same_str_p
= (FIRST_STRING_P (match_end
)
3530 == MATCHING_IN_FIRST_STRING
);
3532 /* If exceeds best match so far, save it. */
3534 || (same_str_p
&& d
> match_end
)
3535 || (!same_str_p
&& !MATCHING_IN_FIRST_STRING
))
3537 best_regs_set
= true;
3540 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3542 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3544 best_regstart
[mcnt
] = regstart
[mcnt
];
3545 best_regend
[mcnt
] = regend
[mcnt
];
3551 /* If no failure points, don't restore garbage. */
3552 else if (best_regs_set
)
3555 /* Restore best match. It may happen that `dend ==
3556 end_match_1' while the restored d is in string2.
3557 For example, the pattern `x.*y.*z' against the
3558 strings `x-' and `y-z-', if the two strings are
3559 not consecutive in memory. */
3560 DEBUG_PRINT1 ("Restoring best registers.\n");
3563 dend
= ((d
>= string1
&& d
<= end1
)
3564 ? end_match_1
: end_match_2
);
3566 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3568 regstart
[mcnt
] = best_regstart
[mcnt
];
3569 regend
[mcnt
] = best_regend
[mcnt
];
3572 } /* d != end_match_2 */
3574 DEBUG_PRINT1 ("Accepting match.\n");
3576 /* If caller wants register contents data back, do it. */
3577 if (regs
&& !bufp
->no_sub
)
3579 /* Have the register data arrays been allocated? */
3580 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
3581 { /* No. So allocate them with malloc. We need one
3582 extra element beyond `num_regs' for the `-1' marker
3584 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
3585 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
3586 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
3587 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3589 bufp
->regs_allocated
= REGS_REALLOCATE
;
3591 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
3592 { /* Yes. If we need more elements than were already
3593 allocated, reallocate them. If we need fewer, just
3595 if (regs
->num_regs
< num_regs
+ 1)
3597 regs
->num_regs
= num_regs
+ 1;
3598 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
3599 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
3600 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3606 /* These braces fend off a "empty body in an else-statement"
3607 warning under GCC when assert expands to nothing. */
3608 assert (bufp
->regs_allocated
== REGS_FIXED
);
3611 /* Convert the pointer data in `regstart' and `regend' to
3612 indices. Register zero has to be set differently,
3613 since we haven't kept track of any info for it. */
3614 if (regs
->num_regs
> 0)
3616 regs
->start
[0] = pos
;
3617 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
? d
- string1
3618 : d
- string2
+ size1
);
3621 /* Go through the first `min (num_regs, regs->num_regs)'
3622 registers, since that is all we initialized. */
3623 for (mcnt
= 1; mcnt
< MIN (num_regs
, regs
->num_regs
); mcnt
++)
3625 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
3626 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3629 regs
->start
[mcnt
] = POINTER_TO_OFFSET (regstart
[mcnt
]);
3630 regs
->end
[mcnt
] = POINTER_TO_OFFSET (regend
[mcnt
]);
3634 /* If the regs structure we return has more elements than
3635 were in the pattern, set the extra elements to -1. If
3636 we (re)allocated the registers, this is the case,
3637 because we always allocate enough to have at least one
3639 for (mcnt
= num_regs
; mcnt
< regs
->num_regs
; mcnt
++)
3640 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3641 } /* regs && !bufp->no_sub */
3644 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3645 nfailure_points_pushed
, nfailure_points_popped
,
3646 nfailure_points_pushed
- nfailure_points_popped
);
3647 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
3649 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
3653 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
3658 /* Otherwise match next pattern command. */
3659 #ifdef SWITCH_ENUM_BUG
3660 switch ((int) ((re_opcode_t
) *p
++))
3662 switch ((re_opcode_t
) *p
++)
3665 /* Ignore these. Used to ignore the n of succeed_n's which
3666 currently have n == 0. */
3668 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3672 /* Match the next n pattern characters exactly. The following
3673 byte in the pattern defines n, and the n bytes after that
3674 are the characters to match. */
3677 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
3679 /* This is written out as an if-else so we don't waste time
3680 testing `translate' inside the loop. */
3686 if (translate
[(unsigned char) *d
++] != (char) *p
++)
3696 if (*d
++ != (char) *p
++) goto fail
;
3700 SET_REGS_MATCHED ();
3704 /* Match any character except possibly a newline or a null. */
3706 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3710 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
3711 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
3714 SET_REGS_MATCHED ();
3715 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
3723 register unsigned char c
;
3724 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
3726 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3729 c
= TRANSLATE (*d
); /* The character to match. */
3731 /* Cast to `unsigned' instead of `unsigned char' in case the
3732 bit list is a full 32 bytes long. */
3733 if (c
< (unsigned) (*p
* BYTEWIDTH
)
3734 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
3739 if (!not) goto fail
;
3741 SET_REGS_MATCHED ();
3747 /* The beginning of a group is represented by start_memory.
3748 The arguments are the register number in the next byte, and the
3749 number of groups inner to this one in the next. The text
3750 matched within the group is recorded (in the internal
3751 registers data structure) under the register number. */
3753 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
3755 /* Find out if this group can match the empty string. */
3756 p1
= p
; /* To send to group_match_null_string_p. */
3758 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
3759 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3760 = group_match_null_string_p (&p1
, pend
, reg_info
);
3762 /* Save the position in the string where we were the last time
3763 we were at this open-group operator in case the group is
3764 operated upon by a repetition operator, e.g., with `(a*)*b'
3765 against `ab'; then we want to ignore where we are now in
3766 the string in case this attempt to match fails. */
3767 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3768 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
3770 DEBUG_PRINT2 (" old_regstart: %d\n",
3771 POINTER_TO_OFFSET (old_regstart
[*p
]));
3774 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
3776 IS_ACTIVE (reg_info
[*p
]) = 1;
3777 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3779 /* This is the new highest active register. */
3780 highest_active_reg
= *p
;
3782 /* If nothing was active before, this is the new lowest active
3784 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
3785 lowest_active_reg
= *p
;
3787 /* Move past the register number and inner group count. */
3792 /* The stop_memory opcode represents the end of a group. Its
3793 arguments are the same as start_memory's: the register
3794 number, and the number of inner groups. */
3796 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
3798 /* We need to save the string position the last time we were at
3799 this close-group operator in case the group is operated
3800 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3801 against `aba'; then we want to ignore where we are now in
3802 the string in case this attempt to match fails. */
3803 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3804 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
3806 DEBUG_PRINT2 (" old_regend: %d\n",
3807 POINTER_TO_OFFSET (old_regend
[*p
]));
3810 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
3812 /* This register isn't active anymore. */
3813 IS_ACTIVE (reg_info
[*p
]) = 0;
3815 /* If this was the only register active, nothing is active
3817 if (lowest_active_reg
== highest_active_reg
)
3819 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3820 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3823 { /* We must scan for the new highest active register, since
3824 it isn't necessarily one less than now: consider
3825 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3826 new highest active register is 1. */
3827 unsigned char r
= *p
- 1;
3828 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
3831 /* If we end up at register zero, that means that we saved
3832 the registers as the result of an `on_failure_jump', not
3833 a `start_memory', and we jumped to past the innermost
3834 `stop_memory'. For example, in ((.)*) we save
3835 registers 1 and 2 as a result of the *, but when we pop
3836 back to the second ), we are at the stop_memory 1.
3837 Thus, nothing is active. */
3840 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3841 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3844 highest_active_reg
= r
;
3847 /* If just failed to match something this time around with a
3848 group that's operated on by a repetition operator, try to
3849 force exit from the ``loop'', and restore the register
3850 information for this group that we had before trying this
3852 if ((!MATCHED_SOMETHING (reg_info
[*p
])
3853 || (re_opcode_t
) p
[-3] == start_memory
)
3856 boolean is_a_jump_n
= false;
3860 switch ((re_opcode_t
) *p1
++)
3864 case pop_failure_jump
:
3865 case maybe_pop_jump
:
3867 case dummy_failure_jump
:
3868 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3878 /* If the next operation is a jump backwards in the pattern
3879 to an on_failure_jump right before the start_memory
3880 corresponding to this stop_memory, exit from the loop
3881 by forcing a failure after pushing on the stack the
3882 on_failure_jump's jump in the pattern, and d. */
3883 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
3884 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
3886 /* If this group ever matched anything, then restore
3887 what its registers were before trying this last
3888 failed match, e.g., with `(a*)*b' against `ab' for
3889 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3890 against `aba' for regend[3].
3892 Also restore the registers for inner groups for,
3893 e.g., `((a*)(b*))*' against `aba' (register 3 would
3894 otherwise get trashed). */
3896 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
3900 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3902 /* Restore this and inner groups' (if any) registers. */
3903 for (r
= *p
; r
< *p
+ *(p
+ 1); r
++)
3905 regstart
[r
] = old_regstart
[r
];
3907 /* xx why this test? */
3908 if ((s_reg_t
) old_regend
[r
] >= (s_reg_t
) regstart
[r
])
3909 regend
[r
] = old_regend
[r
];
3913 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3914 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
3915 PUSH_FAILURE_POINT2(p1
+ mcnt
, d
, -2);
3921 /* Move past the register number and the inner group count. */
3926 /* \<digit> has been turned into a `duplicate' command which is
3927 followed by the numeric value of <digit> as the register number. */
3930 register const char *d2
, *dend2
;
3931 int regno
= *p
++; /* Get which register to match against. */
3932 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
3934 /* Can't back reference a group which we've never matched. */
3935 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
3938 /* Where in input to try to start matching. */
3939 d2
= regstart
[regno
];
3941 /* Where to stop matching; if both the place to start and
3942 the place to stop matching are in the same string, then
3943 set to the place to stop, otherwise, for now have to use
3944 the end of the first string. */
3946 dend2
= ((FIRST_STRING_P (regstart
[regno
])
3947 == FIRST_STRING_P (regend
[regno
]))
3948 ? regend
[regno
] : end_match_1
);
3951 /* If necessary, advance to next segment in register
3955 if (dend2
== end_match_2
) break;
3956 if (dend2
== regend
[regno
]) break;
3958 /* End of string1 => advance to string2. */
3960 dend2
= regend
[regno
];
3962 /* At end of register contents => success */
3963 if (d2
== dend2
) break;
3965 /* If necessary, advance to next segment in data. */
3968 /* How many characters left in this segment to match. */
3971 /* Want how many consecutive characters we can match in
3972 one shot, so, if necessary, adjust the count. */
3973 if (mcnt
> dend2
- d2
)
3976 /* Compare that many; failure if mismatch, else move
3979 ? bcmp_translate (d
, d2
, mcnt
, translate
)
3980 : bcmp (d
, d2
, mcnt
))
3982 d
+= mcnt
, d2
+= mcnt
;
3988 /* begline matches the empty string at the beginning of the string
3989 (unless `not_bol' is set in `bufp'), and, if
3990 `newline_anchor' is set, after newlines. */
3992 DEBUG_PRINT1 ("EXECUTING begline.\n");
3994 if (AT_STRINGS_BEG (d
))
3996 if (!bufp
->not_bol
) break;
3998 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4002 /* In all other cases, we fail. */
4006 /* endline is the dual of begline. */
4008 DEBUG_PRINT1 ("EXECUTING endline.\n");
4010 if (AT_STRINGS_END (d
))
4012 if (!bufp
->not_eol
) break;
4015 /* We have to ``prefetch'' the next character. */
4016 else if ((d
== end1
? *string2
: *d
) == '\n'
4017 && bufp
->newline_anchor
)
4024 /* Match at the very beginning of the data. */
4026 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4027 if (AT_STRINGS_BEG (d
))
4032 /* Match at the very end of the data. */
4034 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4035 if (AT_STRINGS_END (d
))
4040 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4041 pushes NULL as the value for the string on the stack. Then
4042 `pop_failure_point' will keep the current value for the
4043 string, instead of restoring it. To see why, consider
4044 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4045 then the . fails against the \n. But the next thing we want
4046 to do is match the \n against the \n; if we restored the
4047 string value, we would be back at the foo.
4049 Because this is used only in specific cases, we don't need to
4050 check all the things that `on_failure_jump' does, to make
4051 sure the right things get saved on the stack. Hence we don't
4052 share its code. The only reason to push anything on the
4053 stack at all is that otherwise we would have to change
4054 `anychar's code to do something besides goto fail in this
4055 case; that seems worse than this. */
4056 case on_failure_keep_string_jump
:
4057 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4059 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4060 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4062 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4063 PUSH_FAILURE_POINT2(p
+ mcnt
, NULL
, -2);
4067 /* Uses of on_failure_jump:
4069 Each alternative starts with an on_failure_jump that points
4070 to the beginning of the next alternative. Each alternative
4071 except the last ends with a jump that in effect jumps past
4072 the rest of the alternatives. (They really jump to the
4073 ending jump of the following alternative, because tensioning
4074 these jumps is a hassle.)
4076 Repeats start with an on_failure_jump that points past both
4077 the repetition text and either the following jump or
4078 pop_failure_jump back to this on_failure_jump. */
4079 case on_failure_jump
:
4081 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4083 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4084 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4086 /* If this on_failure_jump comes right before a group (i.e.,
4087 the original * applied to a group), save the information
4088 for that group and all inner ones, so that if we fail back
4089 to this point, the group's information will be correct.
4090 For example, in \(a*\)*\1, we need the preceding group,
4091 and in \(\(a*\)b*\)\2, we need the inner group. */
4093 /* We can't use `p' to check ahead because we push
4094 a failure point to `p + mcnt' after we do this. */
4097 /* We need to skip no_op's before we look for the
4098 start_memory in case this on_failure_jump is happening as
4099 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4101 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4104 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4106 /* We have a new highest active register now. This will
4107 get reset at the start_memory we are about to get to,
4108 but we will have saved all the registers relevant to
4109 this repetition op, as described above. */
4110 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4111 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4112 lowest_active_reg
= *(p1
+ 1);
4115 DEBUG_PRINT1 (":\n");
4116 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4117 PUSH_FAILURE_POINT2(p
+ mcnt
, d
, -2);
4121 /* A smart repeat ends with `maybe_pop_jump'.
4122 We change it to either `pop_failure_jump' or `jump'. */
4123 case maybe_pop_jump
:
4124 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4125 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4127 register unsigned char *p2
= p
;
4129 /* Compare the beginning of the repeat with what in the
4130 pattern follows its end. If we can establish that there
4131 is nothing that they would both match, i.e., that we
4132 would have to backtrack because of (as in, e.g., `a*a')
4133 then we can change to pop_failure_jump, because we'll
4134 never have to backtrack.
4136 This is not true in the case of alternatives: in
4137 `(a|ab)*' we do need to backtrack to the `ab' alternative
4138 (e.g., if the string was `ab'). But instead of trying to
4139 detect that here, the alternative has put on a dummy
4140 failure point which is what we will end up popping. */
4142 /* Skip over open/close-group commands. */
4143 while (p2
+ 2 < pend
4144 && ((re_opcode_t
) *p2
== stop_memory
4145 || (re_opcode_t
) *p2
== start_memory
))
4146 p2
+= 3; /* Skip over args, too. */
4148 /* If we're at the end of the pattern, we can change. */
4151 /* Consider what happens when matching ":\(.*\)"
4152 against ":/". I don't really understand this code
4154 p
[-3] = (unsigned char) pop_failure_jump
;
4156 (" End of pattern: change to `pop_failure_jump'.\n");
4159 else if ((re_opcode_t
) *p2
== exactn
4160 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4162 register unsigned char c
4163 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4166 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4167 to the `maybe_finalize_jump' of this case. Examine what
4169 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4171 p
[-3] = (unsigned char) pop_failure_jump
;
4172 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4176 else if ((re_opcode_t
) p1
[3] == charset
4177 || (re_opcode_t
) p1
[3] == charset_not
)
4179 int not = (re_opcode_t
) p1
[3] == charset_not
;
4181 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4182 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4185 /* `not' is equal to 1 if c would match, which means
4186 that we can't change to pop_failure_jump. */
4189 p
[-3] = (unsigned char) pop_failure_jump
;
4190 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4195 p
-= 2; /* Point at relative address again. */
4196 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4198 p
[-1] = (unsigned char) jump
;
4199 DEBUG_PRINT1 (" Match => jump.\n");
4200 goto unconditional_jump
;
4202 /* Note fall through. */
4205 /* The end of a simple repeat has a pop_failure_jump back to
4206 its matching on_failure_jump, where the latter will push a
4207 failure point. The pop_failure_jump takes off failure
4208 points put on by this pop_failure_jump's matching
4209 on_failure_jump; we got through the pattern to here from the
4210 matching on_failure_jump, so didn't fail. */
4211 case pop_failure_jump
:
4213 /* We need to pass separate storage for the lowest and
4214 highest registers, even though we don't care about the
4215 actual values. Otherwise, we will restore only one
4216 register from the stack, since lowest will == highest in
4217 `pop_failure_point'. */
4218 active_reg_t dummy_low_reg
, dummy_high_reg
;
4219 unsigned char *pdummy
;
4222 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4223 POP_FAILURE_POINT (sdummy
, pdummy
,
4224 dummy_low_reg
, dummy_high_reg
,
4225 reg_dummy
, reg_dummy
, reg_info_dummy
);
4227 /* Note fall through. */
4230 /* Unconditionally jump (without popping any failure points). */
4233 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4234 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4235 p
+= mcnt
; /* Do the jump. */
4236 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4240 /* We need this opcode so we can detect where alternatives end
4241 in `group_match_null_string_p' et al. */
4243 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4244 goto unconditional_jump
;
4247 /* Normally, the on_failure_jump pushes a failure point, which
4248 then gets popped at pop_failure_jump. We will end up at
4249 pop_failure_jump, also, and with a pattern of, say, `a+', we
4250 are skipping over the on_failure_jump, so we have to push
4251 something meaningless for pop_failure_jump to pop. */
4252 case dummy_failure_jump
:
4253 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4254 /* It doesn't matter what we push for the string here. What
4255 the code at `fail' tests is the value for the pattern. */
4256 PUSH_FAILURE_POINT (0, 0, -2);
4257 PUSH_FAILURE_POINT2(0, 0, -2);
4258 goto unconditional_jump
;
4261 /* At the end of an alternative, we need to push a dummy failure
4262 point in case we are followed by a `pop_failure_jump', because
4263 we don't want the failure point for the alternative to be
4264 popped. For example, matching `(a|ab)*' against `aab'
4265 requires that we match the `ab' alternative. */
4266 case push_dummy_failure
:
4267 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4268 /* See comments just above at `dummy_failure_jump' about the
4270 PUSH_FAILURE_POINT (0, 0, -2);
4271 PUSH_FAILURE_POINT2(0, 0, -2);
4274 /* Have to succeed matching what follows at least n times.
4275 After that, handle like `on_failure_jump'. */
4277 EXTRACT_NUMBER (mcnt
, p
+ 2);
4278 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4281 /* Originally, this is how many times we HAVE to succeed. */
4286 STORE_NUMBER_AND_INCR (p
, mcnt
);
4287 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
, mcnt
);
4291 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4292 p
[2] = (unsigned char) no_op
;
4293 p
[3] = (unsigned char) no_op
;
4299 EXTRACT_NUMBER (mcnt
, p
+ 2);
4300 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4302 /* Originally, this is how many times we CAN jump. */
4306 STORE_NUMBER (p
+ 2, mcnt
);
4307 goto unconditional_jump
;
4309 /* If don't have to jump any more, skip over the rest of command. */
4316 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4318 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4320 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4321 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4322 STORE_NUMBER (p1
, mcnt
);
4327 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4328 if (AT_WORD_BOUNDARY (d
))
4333 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4334 if (AT_WORD_BOUNDARY (d
))
4339 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4340 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
4345 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4346 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
4347 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
4354 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4355 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
4360 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4361 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
4366 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4367 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
4370 #else /* not emacs19 */
4372 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4373 if (PTR_CHAR_POS ((unsigned char *) d
) + 1 != point
)
4376 #endif /* not emacs19 */
4379 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
4384 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4388 if (SYNTAX (*d
++) != (enum syntaxcode
) mcnt
)
4390 SET_REGS_MATCHED ();
4394 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
4396 goto matchnotsyntax
;
4399 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4403 if (SYNTAX (*d
++) == (enum syntaxcode
) mcnt
)
4405 SET_REGS_MATCHED ();
4408 #else /* not emacs */
4410 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4412 if (!WORDCHAR_P (d
))
4414 SET_REGS_MATCHED ();
4419 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4423 SET_REGS_MATCHED ();
4426 #endif /* not emacs */
4431 continue; /* Successfully executed one pattern command; keep going. */
4434 /* We goto here if a matching operation fails. */
4436 if (!FAIL_STACK_EMPTY ())
4437 { /* A restart point is known. Restore to that state. */
4438 DEBUG_PRINT1 ("\nFAIL:\n");
4439 POP_FAILURE_POINT (d
, p
,
4440 lowest_active_reg
, highest_active_reg
,
4441 regstart
, regend
, reg_info
);
4443 /* If this failure point is a dummy, try the next one. */
4447 /* If we failed to the end of the pattern, don't examine *p. */
4451 boolean is_a_jump_n
= false;
4453 /* If failed to a backwards jump that's part of a repetition
4454 loop, need to pop this failure point and use the next one. */
4455 switch ((re_opcode_t
) *p
)
4459 case maybe_pop_jump
:
4460 case pop_failure_jump
:
4463 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4466 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
4468 && (re_opcode_t
) *p1
== on_failure_jump
))
4476 if (d
>= string1
&& d
<= end1
)
4480 break; /* Matching at this starting point really fails. */
4484 goto restore_best_regs
;
4488 return -1; /* Failure to match. */
4491 /* Subroutine definitions for re_match_2. */
4494 /* We are passed P pointing to a register number after a start_memory.
4496 Return true if the pattern up to the corresponding stop_memory can
4497 match the empty string, and false otherwise.
4499 If we find the matching stop_memory, sets P to point to one past its number.
4500 Otherwise, sets P to an undefined byte less than or equal to END.
4502 We don't handle duplicates properly (yet). */
4505 group_match_null_string_p (p
, end
, reg_info
)
4506 unsigned char **p
, *end
;
4507 register_info_type
*reg_info
;
4510 /* Point to after the args to the start_memory. */
4511 unsigned char *p1
= *p
+ 2;
4515 /* Skip over opcodes that can match nothing, and return true or
4516 false, as appropriate, when we get to one that can't, or to the
4517 matching stop_memory. */
4519 switch ((re_opcode_t
) *p1
)
4521 /* Could be either a loop or a series of alternatives. */
4522 case on_failure_jump
:
4524 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4526 /* If the next operation is not a jump backwards in the
4531 /* Go through the on_failure_jumps of the alternatives,
4532 seeing if any of the alternatives cannot match nothing.
4533 The last alternative starts with only a jump,
4534 whereas the rest start with on_failure_jump and end
4535 with a jump, e.g., here is the pattern for `a|b|c':
4537 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4538 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4541 So, we have to first go through the first (n-1)
4542 alternatives and then deal with the last one separately. */
4545 /* Deal with the first (n-1) alternatives, which start
4546 with an on_failure_jump (see above) that jumps to right
4547 past a jump_past_alt. */
4549 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
4551 /* `mcnt' holds how many bytes long the alternative
4552 is, including the ending `jump_past_alt' and
4555 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
4559 /* Move to right after this alternative, including the
4563 /* Break if it's the beginning of an n-th alternative
4564 that doesn't begin with an on_failure_jump. */
4565 if ((re_opcode_t
) *p1
!= on_failure_jump
)
4568 /* Still have to check that it's not an n-th
4569 alternative that starts with an on_failure_jump. */
4571 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4572 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
4574 /* Get to the beginning of the n-th alternative. */
4580 /* Deal with the last alternative: go back and get number
4581 of the `jump_past_alt' just before it. `mcnt' contains
4582 the length of the alternative. */
4583 EXTRACT_NUMBER (mcnt
, p1
- 2);
4585 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
4588 p1
+= mcnt
; /* Get past the n-th alternative. */
4594 assert (p1
[1] == **p
);
4600 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4603 } /* while p1 < end */
4606 } /* group_match_null_string_p */
4609 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4610 It expects P to be the first byte of a single alternative and END one
4611 byte past the last. The alternative can contain groups. */
4614 alt_match_null_string_p (p
, end
, reg_info
)
4615 unsigned char *p
, *end
;
4616 register_info_type
*reg_info
;
4619 unsigned char *p1
= p
;
4623 /* Skip over opcodes that can match nothing, and break when we get
4624 to one that can't. */
4626 switch ((re_opcode_t
) *p1
)
4629 case on_failure_jump
:
4631 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4636 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4639 } /* while p1 < end */
4642 } /* alt_match_null_string_p */
4645 /* Deals with the ops common to group_match_null_string_p and
4646 alt_match_null_string_p.
4648 Sets P to one after the op and its arguments, if any. */
4651 common_op_match_null_string_p (p
, end
, reg_info
)
4652 unsigned char **p
, *end
;
4653 register_info_type
*reg_info
;
4658 unsigned char *p1
= *p
;
4660 switch ((re_opcode_t
) *p1
++)
4680 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
4681 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
4683 /* Have to set this here in case we're checking a group which
4684 contains a group and a back reference to it. */
4686 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
4687 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
4693 /* If this is an optimized succeed_n for zero times, make the jump. */
4695 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4703 /* Get to the number of times to succeed. */
4705 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4710 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4718 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
4726 /* All other opcodes mean we cannot match the empty string. */
4732 } /* common_op_match_null_string_p */
4735 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4736 bytes; nonzero otherwise. */
4739 bcmp_translate (s1
, s2
, len
, translate
)
4740 const char *s1
, *s2
;
4744 register const unsigned char *p1
= (const unsigned char *) s1
,
4745 *p2
= (const unsigned char *) s2
;
4748 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
4754 /* Entry points for GNU code. */
4756 /* re_compile_pattern is the GNU regular expression compiler: it
4757 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4758 Returns 0 if the pattern was valid, otherwise an error string.
4760 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4761 are set in BUFP on entry.
4763 We call regex_compile to do the actual compilation. */
4766 re_compile_pattern (pattern
, length
, bufp
)
4767 const char *pattern
;
4769 struct re_pattern_buffer
*bufp
;
4773 /* GNU code is written to assume at least RE_NREGS registers will be set
4774 (and at least one extra will be -1). */
4775 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4777 /* And GNU code determines whether or not to get register information
4778 by passing null for the REGS argument to re_match, etc., not by
4782 /* Match anchors at newline. */
4783 bufp
->newline_anchor
= 1;
4785 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
4787 return re_error_msg
[(int) ret
];
4790 /* Entry points compatible with 4.2 BSD regex library. We don't define
4791 them if this is an Emacs or POSIX compilation. */
4793 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4795 /* BSD has one and only one pattern buffer. */
4796 static struct re_pattern_buffer re_comp_buf
;
4806 if (!re_comp_buf
.buffer
)
4807 return "No previous regular expression";
4811 if (!re_comp_buf
.buffer
)
4813 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
4814 if (re_comp_buf
.buffer
== NULL
)
4815 return "Memory exhausted";
4816 re_comp_buf
.allocated
= 200;
4818 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
4819 if (re_comp_buf
.fastmap
== NULL
)
4820 return "Memory exhausted";
4823 /* Since `re_exec' always passes NULL for the `regs' argument, we
4824 don't need to initialize the pattern buffer fields which affect it. */
4826 /* Match anchors at newlines. */
4827 re_comp_buf
.newline_anchor
= 1;
4829 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
4831 /* Yes, we're discarding `const' here. */
4832 return (char *) re_error_msg
[(int) ret
];
4840 const int len
= strlen (s
);
4842 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
4844 #endif /* not emacs and not _POSIX_SOURCE */
4846 /* POSIX.2 functions. Don't define these for Emacs. */
4849 #if !NO_POSIX_COMPAT
4851 /* regcomp takes a regular expression as a string and compiles it.
4853 PREG is a regex_t *. We do not expect any fields to be initialized,
4854 since POSIX says we shouldn't. Thus, we set
4856 `buffer' to the compiled pattern;
4857 `used' to the length of the compiled pattern;
4858 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4859 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4860 RE_SYNTAX_POSIX_BASIC;
4861 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4862 `fastmap' and `fastmap_accurate' to zero;
4863 `re_nsub' to the number of subexpressions in PATTERN.
4865 PATTERN is the address of the pattern string.
4867 CFLAGS is a series of bits which affect compilation.
4869 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4870 use POSIX basic syntax.
4872 If REG_NEWLINE is set, then . and [^...] don't match newline.
4873 Also, regexec will try a match beginning after every newline.
4875 If REG_ICASE is set, then we considers upper- and lowercase
4876 versions of letters to be equivalent when matching.
4878 If REG_NOSUB is set, then when PREG is passed to regexec, that
4879 routine will report only success or failure, and nothing about the
4882 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4883 the return codes and their meanings.) */
4886 regcomp (preg
, pattern
, cflags
)
4888 const char *pattern
;
4893 = (cflags
& REG_EXTENDED
) ?
4894 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
4896 /* regex_compile will allocate the space for the compiled pattern. */
4898 preg
->allocated
= 0;
4901 /* Don't bother to use a fastmap when searching. This simplifies the
4902 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4903 characters after newlines into the fastmap. This way, we just try
4907 if (cflags
& REG_ICASE
)
4911 preg
->translate
= (char *) malloc (CHAR_SET_SIZE
);
4912 if (preg
->translate
== NULL
)
4913 return (int) REG_ESPACE
;
4915 /* Map uppercase characters to corresponding lowercase ones. */
4916 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
4917 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
4920 preg
->translate
= NULL
;
4922 /* If REG_NEWLINE is set, newlines are treated differently. */
4923 if (cflags
& REG_NEWLINE
)
4924 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4925 syntax
&= ~RE_DOT_NEWLINE
;
4926 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
4927 /* It also changes the matching behavior. */
4928 preg
->newline_anchor
= 1;
4931 preg
->newline_anchor
= 0;
4933 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
4935 /* POSIX says a null character in the pattern terminates it, so we
4936 can use strlen here in compiling the pattern. */
4937 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
4939 /* POSIX doesn't distinguish between an unmatched open-group and an
4940 unmatched close-group: both are REG_EPAREN. */
4941 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
4947 /* regexec searches for a given pattern, specified by PREG, in the
4950 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4951 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
4952 least NMATCH elements, and we set them to the offsets of the
4953 corresponding matched substrings.
4955 EFLAGS specifies `execution flags' which affect matching: if
4956 REG_NOTBOL is set, then ^ does not match at the beginning of the
4957 string; if REG_NOTEOL is set, then $ does not match at the end.
4959 We return 0 if we find a match and REG_NOMATCH if not. */
4962 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
4963 const regex_t
*preg
;
4966 regmatch_t pmatch
[];
4970 struct re_registers regs
;
4971 regex_t private_preg
;
4972 int len
= strlen (string
);
4973 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
4975 private_preg
= *preg
;
4977 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
4978 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
4980 /* The user has told us exactly how many registers to return
4981 information about, via `nmatch'. We have to pass that on to the
4982 matching routines. */
4983 private_preg
.regs_allocated
= REGS_FIXED
;
4987 regs
.num_regs
= nmatch
;
4988 regs
.start
= TALLOC (nmatch
, regoff_t
);
4989 regs
.end
= TALLOC (nmatch
, regoff_t
);
4990 if (regs
.start
== NULL
|| regs
.end
== NULL
)
4991 return (int) REG_NOMATCH
;
4994 /* Perform the searching operation. */
4995 ret
= re_search (&private_preg
, string
, len
,
4996 /* start: */ 0, /* range: */ len
,
4997 want_reg_info
? ®s
: (struct re_registers
*) 0);
4999 /* Copy the register information to the POSIX structure. */
5006 for (r
= 0; r
< nmatch
; r
++)
5008 pmatch
[r
].rm_so
= regs
.start
[r
];
5009 pmatch
[r
].rm_eo
= regs
.end
[r
];
5013 /* If we needed the temporary register info, free the space now. */
5018 /* We want zero return to mean success, unlike `re_search'. */
5019 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5023 /* Returns a message corresponding to an error code, ERRCODE, returned
5024 from either regcomp or regexec. We don't use PREG here. */
5027 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5029 const regex_t
*preg
;
5037 || errcode
>= (sizeof (re_error_msg
) / sizeof (re_error_msg
[0])))
5038 /* Only error codes returned by the rest of the code should be passed
5039 to this routine. If we are given anything else, or if other regex
5040 code generates an invalid error code, then the program has a bug.
5041 Dump core so we can fix it. */
5044 msg
= re_error_msg
[errcode
];
5046 /* POSIX doesn't require that we do anything in this case, but why
5051 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5053 if (errbuf_size
!= 0)
5055 if (msg_size
> errbuf_size
)
5057 strncpy (errbuf
, msg
, errbuf_size
- 1);
5058 errbuf
[errbuf_size
- 1] = 0;
5061 strcpy (errbuf
, msg
);
5068 /* Free dynamically allocated space used by PREG. */
5074 if (preg
->buffer
!= NULL
)
5075 free (preg
->buffer
);
5076 preg
->buffer
= NULL
;
5078 preg
->allocated
= 0;
5081 if (preg
->fastmap
!= NULL
)
5082 free (preg
->fastmap
);
5083 preg
->fastmap
= NULL
;
5084 preg
->fastmap_accurate
= 0;
5086 if (preg
->translate
!= NULL
)
5087 free (preg
->translate
);
5088 preg
->translate
= NULL
;
5091 #endif /* !NO_POSIX_COMPAT */
5092 #endif /* not emacs */
5096 make-backup-files: t
5098 trim-versions-without-asking: nil