sysctl(8): support setting acpi temperature in K, C and F
[dragonfly.git] / sys / kern / lwkt_thread.c
blob288b152e945453c137ef6fbce5eed0de3439b83e
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * Each cpu in a system has its own self-contained light weight kernel
37 * thread scheduler, which means that generally speaking we only need
38 * to use a critical section to avoid problems. Foreign thread
39 * scheduling is queued via (async) IPIs.
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 #include <machine/cpu.h>
51 #include <sys/lock.h>
52 #include <sys/caps.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
60 #include <vm/vm.h>
61 #include <vm/vm_param.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_map.h>
66 #include <vm/vm_pager.h>
67 #include <vm/vm_extern.h>
69 #include <machine/stdarg.h>
70 #include <machine/smp.h>
72 #if !defined(KTR_CTXSW)
73 #define KTR_CTXSW KTR_ALL
74 #endif
75 KTR_INFO_MASTER(ctxsw);
76 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "sw %p > %p", 2 * sizeof(struct thread *));
77 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "pre %p > %p", 2 * sizeof(struct thread *));
78 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "new_td %p %s", sizeof (struct thread *) +
79 sizeof(char *));
80 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "dead_td %p", sizeof (struct thread *));
82 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
84 #ifdef INVARIANTS
85 static int panic_on_cscount = 0;
86 #endif
87 static __int64_t switch_count = 0;
88 static __int64_t preempt_hit = 0;
89 static __int64_t preempt_miss = 0;
90 static __int64_t preempt_weird = 0;
91 static __int64_t token_contention_count __debugvar = 0;
92 static int lwkt_use_spin_port;
93 static struct objcache *thread_cache;
95 #ifdef SMP
96 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
97 #endif
99 extern void cpu_heavy_restore(void);
100 extern void cpu_lwkt_restore(void);
101 extern void cpu_kthread_restore(void);
102 extern void cpu_idle_restore(void);
104 #ifdef __x86_64__
106 static int
107 jg_tos_ok(struct thread *td)
109 void *tos;
110 int tos_ok;
112 if (td == NULL) {
113 return 1;
115 KKASSERT(td->td_sp != NULL);
116 tos = ((void **)td->td_sp)[0];
117 tos_ok = 0;
118 if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore) ||
119 (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
120 tos_ok = 1;
122 return tos_ok;
125 #endif
128 * We can make all thread ports use the spin backend instead of the thread
129 * backend. This should only be set to debug the spin backend.
131 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
133 #ifdef INVARIANTS
134 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
135 #endif
136 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
137 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
138 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
139 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
140 #ifdef INVARIANTS
141 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
142 &token_contention_count, 0, "spinning due to token contention");
143 #endif
146 * These helper procedures handle the runq, they can only be called from
147 * within a critical section.
149 * WARNING! Prior to SMP being brought up it is possible to enqueue and
150 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
151 * instead of 'mycpu' when referencing the globaldata structure. Once
152 * SMP live enqueuing and dequeueing only occurs on the current cpu.
154 static __inline
155 void
156 _lwkt_dequeue(thread_t td)
158 if (td->td_flags & TDF_RUNQ) {
159 int nq = td->td_pri & TDPRI_MASK;
160 struct globaldata *gd = td->td_gd;
162 td->td_flags &= ~TDF_RUNQ;
163 TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
164 /* runqmask is passively cleaned up by the switcher */
168 static __inline
169 void
170 _lwkt_enqueue(thread_t td)
172 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
173 int nq = td->td_pri & TDPRI_MASK;
174 struct globaldata *gd = td->td_gd;
176 td->td_flags |= TDF_RUNQ;
177 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
178 gd->gd_runqmask |= 1 << nq;
182 static __boolean_t
183 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
185 struct thread *td = (struct thread *)obj;
187 td->td_kstack = NULL;
188 td->td_kstack_size = 0;
189 td->td_flags = TDF_ALLOCATED_THREAD;
190 return (1);
193 static void
194 _lwkt_thread_dtor(void *obj, void *privdata)
196 struct thread *td = (struct thread *)obj;
198 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
199 ("_lwkt_thread_dtor: not allocated from objcache"));
200 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
201 td->td_kstack_size > 0,
202 ("_lwkt_thread_dtor: corrupted stack"));
203 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
207 * Initialize the lwkt s/system.
209 void
210 lwkt_init(void)
212 /* An objcache has 2 magazines per CPU so divide cache size by 2. */
213 thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
214 NULL, CACHE_NTHREADS/2,
215 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
219 * Schedule a thread to run. As the current thread we can always safely
220 * schedule ourselves, and a shortcut procedure is provided for that
221 * function.
223 * (non-blocking, self contained on a per cpu basis)
225 void
226 lwkt_schedule_self(thread_t td)
228 crit_enter_quick(td);
229 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
230 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
231 _lwkt_enqueue(td);
232 crit_exit_quick(td);
236 * Deschedule a thread.
238 * (non-blocking, self contained on a per cpu basis)
240 void
241 lwkt_deschedule_self(thread_t td)
243 crit_enter_quick(td);
244 _lwkt_dequeue(td);
245 crit_exit_quick(td);
249 * LWKTs operate on a per-cpu basis
251 * WARNING! Called from early boot, 'mycpu' may not work yet.
253 void
254 lwkt_gdinit(struct globaldata *gd)
256 int i;
258 for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
259 TAILQ_INIT(&gd->gd_tdrunq[i]);
260 gd->gd_runqmask = 0;
261 TAILQ_INIT(&gd->gd_tdallq);
265 * Create a new thread. The thread must be associated with a process context
266 * or LWKT start address before it can be scheduled. If the target cpu is
267 * -1 the thread will be created on the current cpu.
269 * If you intend to create a thread without a process context this function
270 * does everything except load the startup and switcher function.
272 thread_t
273 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
275 globaldata_t gd = mycpu;
276 void *stack;
279 * If static thread storage is not supplied allocate a thread. Reuse
280 * a cached free thread if possible. gd_freetd is used to keep an exiting
281 * thread intact through the exit.
283 if (td == NULL) {
284 if ((td = gd->gd_freetd) != NULL)
285 gd->gd_freetd = NULL;
286 else
287 td = objcache_get(thread_cache, M_WAITOK);
288 KASSERT((td->td_flags &
289 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
290 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
291 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
295 * Try to reuse cached stack.
297 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
298 if (flags & TDF_ALLOCATED_STACK) {
299 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
300 stack = NULL;
303 if (stack == NULL) {
304 stack = (void *)kmem_alloc(&kernel_map, stksize);
305 flags |= TDF_ALLOCATED_STACK;
307 if (cpu < 0)
308 lwkt_init_thread(td, stack, stksize, flags, gd);
309 else
310 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
311 return(td);
315 * Initialize a preexisting thread structure. This function is used by
316 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
318 * All threads start out in a critical section at a priority of
319 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
320 * appropriate. This function may send an IPI message when the
321 * requested cpu is not the current cpu and consequently gd_tdallq may
322 * not be initialized synchronously from the point of view of the originating
323 * cpu.
325 * NOTE! we have to be careful in regards to creating threads for other cpus
326 * if SMP has not yet been activated.
328 #ifdef SMP
330 static void
331 lwkt_init_thread_remote(void *arg)
333 thread_t td = arg;
336 * Protected by critical section held by IPI dispatch
338 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
341 #endif
343 void
344 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
345 struct globaldata *gd)
347 globaldata_t mygd = mycpu;
349 bzero(td, sizeof(struct thread));
350 td->td_kstack = stack;
351 td->td_kstack_size = stksize;
352 td->td_flags = flags;
353 td->td_gd = gd;
354 td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
355 #ifdef SMP
356 if ((flags & TDF_MPSAFE) == 0)
357 td->td_mpcount = 1;
358 #endif
359 if (lwkt_use_spin_port)
360 lwkt_initport_spin(&td->td_msgport);
361 else
362 lwkt_initport_thread(&td->td_msgport, td);
363 pmap_init_thread(td);
364 #ifdef SMP
366 * Normally initializing a thread for a remote cpu requires sending an
367 * IPI. However, the idlethread is setup before the other cpus are
368 * activated so we have to treat it as a special case. XXX manipulation
369 * of gd_tdallq requires the BGL.
371 if (gd == mygd || td == &gd->gd_idlethread) {
372 crit_enter_gd(mygd);
373 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
374 crit_exit_gd(mygd);
375 } else {
376 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
378 #else
379 crit_enter_gd(mygd);
380 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
381 crit_exit_gd(mygd);
382 #endif
385 void
386 lwkt_set_comm(thread_t td, const char *ctl, ...)
388 __va_list va;
390 __va_start(va, ctl);
391 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
392 __va_end(va);
393 KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
396 void
397 lwkt_hold(thread_t td)
399 ++td->td_refs;
402 void
403 lwkt_rele(thread_t td)
405 KKASSERT(td->td_refs > 0);
406 --td->td_refs;
409 void
410 lwkt_wait_free(thread_t td)
412 while (td->td_refs)
413 tsleep(td, 0, "tdreap", hz);
416 void
417 lwkt_free_thread(thread_t td)
419 KASSERT((td->td_flags & TDF_RUNNING) == 0,
420 ("lwkt_free_thread: did not exit! %p", td));
422 if (td->td_flags & TDF_ALLOCATED_THREAD) {
423 objcache_put(thread_cache, td);
424 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
425 /* client-allocated struct with internally allocated stack */
426 KASSERT(td->td_kstack && td->td_kstack_size > 0,
427 ("lwkt_free_thread: corrupted stack"));
428 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
429 td->td_kstack = NULL;
430 td->td_kstack_size = 0;
432 KTR_LOG(ctxsw_deadtd, td);
437 * Switch to the next runnable lwkt. If no LWKTs are runnable then
438 * switch to the idlethread. Switching must occur within a critical
439 * section to avoid races with the scheduling queue.
441 * We always have full control over our cpu's run queue. Other cpus
442 * that wish to manipulate our queue must use the cpu_*msg() calls to
443 * talk to our cpu, so a critical section is all that is needed and
444 * the result is very, very fast thread switching.
446 * The LWKT scheduler uses a fixed priority model and round-robins at
447 * each priority level. User process scheduling is a totally
448 * different beast and LWKT priorities should not be confused with
449 * user process priorities.
451 * The MP lock may be out of sync with the thread's td_mpcount. lwkt_switch()
452 * cleans it up. Note that the td_switch() function cannot do anything that
453 * requires the MP lock since the MP lock will have already been setup for
454 * the target thread (not the current thread). It's nice to have a scheduler
455 * that does not need the MP lock to work because it allows us to do some
456 * really cool high-performance MP lock optimizations.
458 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
459 * is not called by the current thread in the preemption case, only when
460 * the preempting thread blocks (in order to return to the original thread).
462 void
463 lwkt_switch(void)
465 globaldata_t gd = mycpu;
466 thread_t td = gd->gd_curthread;
467 thread_t ntd;
468 #ifdef SMP
469 int mpheld;
470 #endif
473 * Switching from within a 'fast' (non thread switched) interrupt or IPI
474 * is illegal. However, we may have to do it anyway if we hit a fatal
475 * kernel trap or we have paniced.
477 * If this case occurs save and restore the interrupt nesting level.
479 if (gd->gd_intr_nesting_level) {
480 int savegdnest;
481 int savegdtrap;
483 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
484 panic("lwkt_switch: cannot switch from within "
485 "a fast interrupt, yet, td %p\n", td);
486 } else {
487 savegdnest = gd->gd_intr_nesting_level;
488 savegdtrap = gd->gd_trap_nesting_level;
489 gd->gd_intr_nesting_level = 0;
490 gd->gd_trap_nesting_level = 0;
491 if ((td->td_flags & TDF_PANICWARN) == 0) {
492 td->td_flags |= TDF_PANICWARN;
493 kprintf("Warning: thread switch from interrupt or IPI, "
494 "thread %p (%s)\n", td, td->td_comm);
495 print_backtrace();
497 lwkt_switch();
498 gd->gd_intr_nesting_level = savegdnest;
499 gd->gd_trap_nesting_level = savegdtrap;
500 return;
505 * Passive release (used to transition from user to kernel mode
506 * when we block or switch rather then when we enter the kernel).
507 * This function is NOT called if we are switching into a preemption
508 * or returning from a preemption. Typically this causes us to lose
509 * our current process designation (if we have one) and become a true
510 * LWKT thread, and may also hand the current process designation to
511 * another process and schedule thread.
513 if (td->td_release)
514 td->td_release(td);
516 crit_enter_gd(gd);
517 if (td->td_toks)
518 lwkt_relalltokens(td);
521 * We had better not be holding any spin locks, but don't get into an
522 * endless panic loop.
524 KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
525 ("lwkt_switch: still holding a shared spinlock %p!",
526 gd->gd_spinlock_rd));
527 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
528 ("lwkt_switch: still holding %d exclusive spinlocks!",
529 gd->gd_spinlocks_wr));
532 #ifdef SMP
534 * td_mpcount cannot be used to determine if we currently hold the
535 * MP lock because get_mplock() will increment it prior to attempting
536 * to get the lock, and switch out if it can't. Our ownership of
537 * the actual lock will remain stable while we are in a critical section
538 * (but, of course, another cpu may own or release the lock so the
539 * actual value of mp_lock is not stable).
541 mpheld = MP_LOCK_HELD();
542 #ifdef INVARIANTS
543 if (td->td_cscount) {
544 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
545 td);
546 if (panic_on_cscount)
547 panic("switching while mastering cpusync");
549 #endif
550 #endif
551 if ((ntd = td->td_preempted) != NULL) {
553 * We had preempted another thread on this cpu, resume the preempted
554 * thread. This occurs transparently, whether the preempted thread
555 * was scheduled or not (it may have been preempted after descheduling
556 * itself).
558 * We have to setup the MP lock for the original thread after backing
559 * out the adjustment that was made to curthread when the original
560 * was preempted.
562 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
563 #ifdef SMP
564 if (ntd->td_mpcount && mpheld == 0) {
565 panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
566 td, ntd, td->td_mpcount, ntd->td_mpcount);
568 if (ntd->td_mpcount) {
569 td->td_mpcount -= ntd->td_mpcount;
570 KKASSERT(td->td_mpcount >= 0);
572 #endif
573 ntd->td_flags |= TDF_PREEMPT_DONE;
576 * The interrupt may have woken a thread up, we need to properly
577 * set the reschedule flag if the originally interrupted thread is
578 * at a lower priority.
580 if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
581 need_lwkt_resched();
582 /* YYY release mp lock on switchback if original doesn't need it */
583 } else {
585 * Priority queue / round-robin at each priority. Note that user
586 * processes run at a fixed, low priority and the user process
587 * scheduler deals with interactions between user processes
588 * by scheduling and descheduling them from the LWKT queue as
589 * necessary.
591 * We have to adjust the MP lock for the target thread. If we
592 * need the MP lock and cannot obtain it we try to locate a
593 * thread that does not need the MP lock. If we cannot, we spin
594 * instead of HLT.
596 * A similar issue exists for the tokens held by the target thread.
597 * If we cannot obtain ownership of the tokens we cannot immediately
598 * schedule the thread.
602 * If an LWKT reschedule was requested, well that is what we are
603 * doing now so clear it.
605 clear_lwkt_resched();
606 again:
607 if (gd->gd_runqmask) {
608 int nq = bsrl(gd->gd_runqmask);
609 if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
610 gd->gd_runqmask &= ~(1 << nq);
611 goto again;
613 #ifdef SMP
615 * THREAD SELECTION FOR AN SMP MACHINE BUILD
617 * If the target needs the MP lock and we couldn't get it,
618 * or if the target is holding tokens and we could not
619 * gain ownership of the tokens, continue looking for a
620 * thread to schedule and spin instead of HLT if we can't.
622 * NOTE: the mpheld variable invalid after this conditional, it
623 * can change due to both cpu_try_mplock() returning success
624 * AND interactions in lwkt_getalltokens() due to the fact that
625 * we are trying to check the mpcount of a thread other then
626 * the current thread. Because of this, if the current thread
627 * is not holding td_mpcount, an IPI indirectly run via
628 * lwkt_getalltokens() can obtain and release the MP lock and
629 * cause the core MP lock to be released.
631 if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
632 (ntd->td_toks && lwkt_getalltokens(ntd) == 0)
634 u_int32_t rqmask = gd->gd_runqmask;
636 mpheld = MP_LOCK_HELD();
637 ntd = NULL;
638 while (rqmask) {
639 TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
640 if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
641 /* spinning due to MP lock being held */
642 continue;
646 * mpheld state invalid after getalltokens call returns
647 * failure, but the variable is only needed for
648 * the loop.
650 if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
651 /* spinning due to token contention */
652 #ifdef INVARIANTS
653 ++token_contention_count;
654 #endif
655 mpheld = MP_LOCK_HELD();
656 continue;
658 break;
660 if (ntd)
661 break;
662 rqmask &= ~(1 << nq);
663 nq = bsrl(rqmask);
666 * We have two choices. We can either refuse to run a
667 * user thread when a kernel thread needs the MP lock
668 * but could not get it, or we can allow it to run but
669 * then expect an IPI (hopefully) later on to force a
670 * reschedule when the MP lock might become available.
672 if (nq < TDPRI_KERN_LPSCHED) {
673 break; /* for now refuse to run */
674 #if 0
675 if (chain_mplock == 0)
676 break;
677 /* continue loop, allow user threads to be scheduled */
678 #endif
683 * Case where a (kernel) thread needed the MP lock and could
684 * not get one, and we may or may not have found another
685 * thread which does not need the MP lock to run while
686 * we wait (ntd).
688 if (ntd == NULL) {
689 ntd = &gd->gd_idlethread;
690 ntd->td_flags |= TDF_IDLE_NOHLT;
691 set_mplock_contention_mask(gd);
692 cpu_mplock_contested();
693 goto using_idle_thread;
694 } else {
695 clr_mplock_contention_mask(gd);
696 ++gd->gd_cnt.v_swtch;
697 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
698 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
700 } else {
701 clr_mplock_contention_mask(gd);
702 ++gd->gd_cnt.v_swtch;
703 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
704 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
706 #else
708 * THREAD SELECTION FOR A UP MACHINE BUILD. We don't have to
709 * worry about tokens or the BGL. However, we still have
710 * to call lwkt_getalltokens() in order to properly detect
711 * stale tokens. This call cannot fail for a UP build!
713 lwkt_getalltokens(ntd);
714 ++gd->gd_cnt.v_swtch;
715 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
716 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
717 #endif
718 } else {
720 * We have nothing to run but only let the idle loop halt
721 * the cpu if there are no pending interrupts.
723 ntd = &gd->gd_idlethread;
724 if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
725 ntd->td_flags |= TDF_IDLE_NOHLT;
726 #ifdef SMP
727 using_idle_thread:
729 * The idle thread should not be holding the MP lock unless we
730 * are trapping in the kernel or in a panic. Since we select the
731 * idle thread unconditionally when no other thread is available,
732 * if the MP lock is desired during a panic or kernel trap, we
733 * have to loop in the scheduler until we get it.
735 if (ntd->td_mpcount) {
736 mpheld = MP_LOCK_HELD();
737 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
738 panic("Idle thread %p was holding the BGL!", ntd);
739 if (mpheld == 0)
740 goto again;
742 #endif
745 KASSERT(ntd->td_pri >= TDPRI_CRIT,
746 ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
749 * Do the actual switch. If the new target does not need the MP lock
750 * and we are holding it, release the MP lock. If the new target requires
751 * the MP lock we have already acquired it for the target.
753 #ifdef SMP
754 if (ntd->td_mpcount == 0 ) {
755 if (MP_LOCK_HELD())
756 cpu_rel_mplock();
757 } else {
758 ASSERT_MP_LOCK_HELD(ntd);
760 #endif
761 if (td != ntd) {
762 ++switch_count;
763 #ifdef __x86_64__
765 int tos_ok __debugvar = jg_tos_ok(ntd);
766 KKASSERT(tos_ok);
768 #endif
769 KTR_LOG(ctxsw_sw, td, ntd);
770 td->td_switch(ntd);
772 /* NOTE: current cpu may have changed after switch */
773 crit_exit_quick(td);
777 * Request that the target thread preempt the current thread. Preemption
778 * only works under a specific set of conditions:
780 * - We are not preempting ourselves
781 * - The target thread is owned by the current cpu
782 * - We are not currently being preempted
783 * - The target is not currently being preempted
784 * - We are not holding any spin locks
785 * - The target thread is not holding any tokens
786 * - We are able to satisfy the target's MP lock requirements (if any).
788 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
789 * this is called via lwkt_schedule() through the td_preemptable callback.
790 * critpri is the managed critical priority that we should ignore in order
791 * to determine whether preemption is possible (aka usually just the crit
792 * priority of lwkt_schedule() itself).
794 * XXX at the moment we run the target thread in a critical section during
795 * the preemption in order to prevent the target from taking interrupts
796 * that *WE* can't. Preemption is strictly limited to interrupt threads
797 * and interrupt-like threads, outside of a critical section, and the
798 * preempted source thread will be resumed the instant the target blocks
799 * whether or not the source is scheduled (i.e. preemption is supposed to
800 * be as transparent as possible).
802 * The target thread inherits our MP count (added to its own) for the
803 * duration of the preemption in order to preserve the atomicy of the
804 * MP lock during the preemption. Therefore, any preempting targets must be
805 * careful in regards to MP assertions. Note that the MP count may be
806 * out of sync with the physical mp_lock, but we do not have to preserve
807 * the original ownership of the lock if it was out of synch (that is, we
808 * can leave it synchronized on return).
810 void
811 lwkt_preempt(thread_t ntd, int critpri)
813 struct globaldata *gd = mycpu;
814 thread_t td;
815 #ifdef SMP
816 int mpheld;
817 int savecnt;
818 #endif
821 * The caller has put us in a critical section. We can only preempt
822 * if the caller of the caller was not in a critical section (basically
823 * a local interrupt), as determined by the 'critpri' parameter. We
824 * also can't preempt if the caller is holding any spinlocks (even if
825 * he isn't in a critical section). This also handles the tokens test.
827 * YYY The target thread must be in a critical section (else it must
828 * inherit our critical section? I dunno yet).
830 * Set need_lwkt_resched() unconditionally for now YYY.
832 KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
834 td = gd->gd_curthread;
835 if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
836 ++preempt_miss;
837 return;
839 if ((td->td_pri & ~TDPRI_MASK) > critpri) {
840 ++preempt_miss;
841 need_lwkt_resched();
842 return;
844 #ifdef SMP
845 if (ntd->td_gd != gd) {
846 ++preempt_miss;
847 need_lwkt_resched();
848 return;
850 #endif
852 * Take the easy way out and do not preempt if we are holding
853 * any spinlocks. We could test whether the thread(s) being
854 * preempted interlock against the target thread's tokens and whether
855 * we can get all the target thread's tokens, but this situation
856 * should not occur very often so its easier to simply not preempt.
857 * Also, plain spinlocks are impossible to figure out at this point so
858 * just don't preempt.
860 * Do not try to preempt if the target thread is holding any tokens.
861 * We could try to acquire the tokens but this case is so rare there
862 * is no need to support it.
864 if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
865 ++preempt_miss;
866 need_lwkt_resched();
867 return;
869 if (ntd->td_toks) {
870 ++preempt_miss;
871 need_lwkt_resched();
872 return;
874 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
875 ++preempt_weird;
876 need_lwkt_resched();
877 return;
879 if (ntd->td_preempted) {
880 ++preempt_hit;
881 need_lwkt_resched();
882 return;
884 #ifdef SMP
886 * note: an interrupt might have occured just as we were transitioning
887 * to or from the MP lock. In this case td_mpcount will be pre-disposed
888 * (non-zero) but not actually synchronized with the actual state of the
889 * lock. We can use it to imply an MP lock requirement for the
890 * preemption but we cannot use it to test whether we hold the MP lock
891 * or not.
893 savecnt = td->td_mpcount;
894 mpheld = MP_LOCK_HELD();
895 ntd->td_mpcount += td->td_mpcount;
896 if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
897 ntd->td_mpcount -= td->td_mpcount;
898 ++preempt_miss;
899 need_lwkt_resched();
900 return;
902 #endif
905 * Since we are able to preempt the current thread, there is no need to
906 * call need_lwkt_resched().
908 ++preempt_hit;
909 ntd->td_preempted = td;
910 td->td_flags |= TDF_PREEMPT_LOCK;
911 KTR_LOG(ctxsw_pre, td, ntd);
912 td->td_switch(ntd);
914 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
915 #ifdef SMP
916 KKASSERT(savecnt == td->td_mpcount);
917 mpheld = MP_LOCK_HELD();
918 if (mpheld && td->td_mpcount == 0)
919 cpu_rel_mplock();
920 else if (mpheld == 0 && td->td_mpcount)
921 panic("lwkt_preempt(): MP lock was not held through");
922 #endif
923 ntd->td_preempted = NULL;
924 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
928 * Conditionally call splz() if gd_reqflags indicates work is pending.
930 * td_nest_count prevents deep nesting via splz() or doreti() which
931 * might otherwise blow out the kernel stack. Note that except for
932 * this special case, we MUST call splz() here to handle any
933 * pending ints, particularly after we switch, or we might accidently
934 * halt the cpu with interrupts pending.
936 * (self contained on a per cpu basis)
938 void
939 splz_check(void)
941 globaldata_t gd = mycpu;
942 thread_t td = gd->gd_curthread;
944 if (gd->gd_reqflags && td->td_nest_count < 2)
945 splz();
949 * This implements a normal yield which will yield to equal priority
950 * threads as well as higher priority threads. Note that gd_reqflags
951 * tests will be handled by the crit_exit() call in lwkt_switch().
953 * (self contained on a per cpu basis)
955 void
956 lwkt_yield(void)
958 lwkt_schedule_self(curthread);
959 lwkt_switch();
963 * This function is used along with the lwkt_passive_recover() inline
964 * by the trap code to negotiate a passive release of the current
965 * process/lwp designation with the user scheduler.
967 void
968 lwkt_passive_release(struct thread *td)
970 struct lwp *lp = td->td_lwp;
972 td->td_release = NULL;
973 lwkt_setpri_self(TDPRI_KERN_USER);
974 lp->lwp_proc->p_usched->release_curproc(lp);
978 * Make a kernel thread act as if it were in user mode with regards
979 * to scheduling, to avoid becoming cpu-bound in the kernel. Kernel
980 * loops which may be potentially cpu-bound can call lwkt_user_yield().
982 * The lwkt_user_yield() function is designed to have very low overhead
983 * if no yield is determined to be needed.
985 void
986 lwkt_user_yield(void)
988 thread_t td = curthread;
989 struct lwp *lp = td->td_lwp;
991 #ifdef SMP
993 * XXX SEVERE TEMPORARY HACK. A cpu-bound operation running in the
994 * kernel can prevent other cpus from servicing interrupt threads
995 * which still require the MP lock (which is a lot of them). This
996 * has a chaining effect since if the interrupt is blocked, so is
997 * the event, so normal scheduling will not pick up on the problem.
999 if (mp_lock_contention_mask && td->td_mpcount) {
1000 yield_mplock(td);
1002 #endif
1005 * Another kernel thread wants the cpu
1007 if (lwkt_resched_wanted())
1008 lwkt_switch();
1011 * If the user scheduler has asynchronously determined that the current
1012 * process (when running in user mode) needs to lose the cpu then make
1013 * sure we are released.
1015 if (user_resched_wanted()) {
1016 if (td->td_release)
1017 td->td_release(td);
1021 * If we are released reduce our priority
1023 if (td->td_release == NULL) {
1024 if (lwkt_check_resched(td) > 0)
1025 lwkt_switch();
1026 if (lp) {
1027 lp->lwp_proc->p_usched->acquire_curproc(lp);
1028 td->td_release = lwkt_passive_release;
1029 lwkt_setpri_self(TDPRI_USER_NORM);
1035 * Return 0 if no runnable threads are pending at the same or higher
1036 * priority as the passed thread.
1038 * Return 1 if runnable threads are pending at the same priority.
1040 * Return 2 if runnable threads are pending at a higher priority.
1043 lwkt_check_resched(thread_t td)
1045 int pri = td->td_pri & TDPRI_MASK;
1047 if (td->td_gd->gd_runqmask > (2 << pri) - 1)
1048 return(2);
1049 if (TAILQ_NEXT(td, td_threadq))
1050 return(1);
1051 return(0);
1055 * Generic schedule. Possibly schedule threads belonging to other cpus and
1056 * deal with threads that might be blocked on a wait queue.
1058 * We have a little helper inline function which does additional work after
1059 * the thread has been enqueued, including dealing with preemption and
1060 * setting need_lwkt_resched() (which prevents the kernel from returning
1061 * to userland until it has processed higher priority threads).
1063 * It is possible for this routine to be called after a failed _enqueue
1064 * (due to the target thread migrating, sleeping, or otherwise blocked).
1065 * We have to check that the thread is actually on the run queue!
1067 * reschedok is an optimized constant propagated from lwkt_schedule() or
1068 * lwkt_schedule_noresched(). By default it is non-zero, causing a
1069 * reschedule to be requested if the target thread has a higher priority.
1070 * The port messaging code will set MSG_NORESCHED and cause reschedok to
1071 * be 0, prevented undesired reschedules.
1073 static __inline
1074 void
1075 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri, int reschedok)
1077 thread_t otd;
1079 if (ntd->td_flags & TDF_RUNQ) {
1080 if (ntd->td_preemptable && reschedok) {
1081 ntd->td_preemptable(ntd, cpri); /* YYY +token */
1082 } else if (reschedok) {
1083 otd = curthread;
1084 if ((ntd->td_pri & TDPRI_MASK) > (otd->td_pri & TDPRI_MASK))
1085 need_lwkt_resched();
1090 static __inline
1091 void
1092 _lwkt_schedule(thread_t td, int reschedok)
1094 globaldata_t mygd = mycpu;
1096 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1097 crit_enter_gd(mygd);
1098 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1099 if (td == mygd->gd_curthread) {
1100 _lwkt_enqueue(td);
1101 } else {
1103 * If we own the thread, there is no race (since we are in a
1104 * critical section). If we do not own the thread there might
1105 * be a race but the target cpu will deal with it.
1107 #ifdef SMP
1108 if (td->td_gd == mygd) {
1109 _lwkt_enqueue(td);
1110 _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1111 } else {
1112 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1114 #else
1115 _lwkt_enqueue(td);
1116 _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1117 #endif
1119 crit_exit_gd(mygd);
1122 void
1123 lwkt_schedule(thread_t td)
1125 _lwkt_schedule(td, 1);
1128 void
1129 lwkt_schedule_noresched(thread_t td)
1131 _lwkt_schedule(td, 0);
1134 #ifdef SMP
1137 * When scheduled remotely if frame != NULL the IPIQ is being
1138 * run via doreti or an interrupt then preemption can be allowed.
1140 * To allow preemption we have to drop the critical section so only
1141 * one is present in _lwkt_schedule_post.
1143 static void
1144 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1146 thread_t td = curthread;
1147 thread_t ntd = arg;
1149 if (frame && ntd->td_preemptable) {
1150 crit_exit_noyield(td);
1151 _lwkt_schedule(ntd, 1);
1152 crit_enter_quick(td);
1153 } else {
1154 _lwkt_schedule(ntd, 1);
1159 * Thread migration using a 'Pull' method. The thread may or may not be
1160 * the current thread. It MUST be descheduled and in a stable state.
1161 * lwkt_giveaway() must be called on the cpu owning the thread.
1163 * At any point after lwkt_giveaway() is called, the target cpu may
1164 * 'pull' the thread by calling lwkt_acquire().
1166 * We have to make sure the thread is not sitting on a per-cpu tsleep
1167 * queue or it will blow up when it moves to another cpu.
1169 * MPSAFE - must be called under very specific conditions.
1171 void
1172 lwkt_giveaway(thread_t td)
1174 globaldata_t gd = mycpu;
1176 crit_enter_gd(gd);
1177 if (td->td_flags & TDF_TSLEEPQ)
1178 tsleep_remove(td);
1179 KKASSERT(td->td_gd == gd);
1180 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1181 td->td_flags |= TDF_MIGRATING;
1182 crit_exit_gd(gd);
1185 void
1186 lwkt_acquire(thread_t td)
1188 globaldata_t gd;
1189 globaldata_t mygd;
1191 KKASSERT(td->td_flags & TDF_MIGRATING);
1192 gd = td->td_gd;
1193 mygd = mycpu;
1194 if (gd != mycpu) {
1195 cpu_lfence();
1196 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1197 crit_enter_gd(mygd);
1198 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1199 #ifdef SMP
1200 lwkt_process_ipiq();
1201 #endif
1202 cpu_lfence();
1204 td->td_gd = mygd;
1205 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1206 td->td_flags &= ~TDF_MIGRATING;
1207 crit_exit_gd(mygd);
1208 } else {
1209 crit_enter_gd(mygd);
1210 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1211 td->td_flags &= ~TDF_MIGRATING;
1212 crit_exit_gd(mygd);
1216 #endif
1219 * Generic deschedule. Descheduling threads other then your own should be
1220 * done only in carefully controlled circumstances. Descheduling is
1221 * asynchronous.
1223 * This function may block if the cpu has run out of messages.
1225 void
1226 lwkt_deschedule(thread_t td)
1228 crit_enter();
1229 #ifdef SMP
1230 if (td == curthread) {
1231 _lwkt_dequeue(td);
1232 } else {
1233 if (td->td_gd == mycpu) {
1234 _lwkt_dequeue(td);
1235 } else {
1236 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1239 #else
1240 _lwkt_dequeue(td);
1241 #endif
1242 crit_exit();
1246 * Set the target thread's priority. This routine does not automatically
1247 * switch to a higher priority thread, LWKT threads are not designed for
1248 * continuous priority changes. Yield if you want to switch.
1250 * We have to retain the critical section count which uses the high bits
1251 * of the td_pri field. The specified priority may also indicate zero or
1252 * more critical sections by adding TDPRI_CRIT*N.
1254 * Note that we requeue the thread whether it winds up on a different runq
1255 * or not. uio_yield() depends on this and the routine is not normally
1256 * called with the same priority otherwise.
1258 void
1259 lwkt_setpri(thread_t td, int pri)
1261 KKASSERT(pri >= 0);
1262 KKASSERT(td->td_gd == mycpu);
1263 crit_enter();
1264 if (td->td_flags & TDF_RUNQ) {
1265 _lwkt_dequeue(td);
1266 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1267 _lwkt_enqueue(td);
1268 } else {
1269 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1271 crit_exit();
1275 * Set the initial priority for a thread prior to it being scheduled for
1276 * the first time. The thread MUST NOT be scheduled before or during
1277 * this call. The thread may be assigned to a cpu other then the current
1278 * cpu.
1280 * Typically used after a thread has been created with TDF_STOPPREQ,
1281 * and before the thread is initially scheduled.
1283 void
1284 lwkt_setpri_initial(thread_t td, int pri)
1286 KKASSERT(pri >= 0);
1287 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1288 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1291 void
1292 lwkt_setpri_self(int pri)
1294 thread_t td = curthread;
1296 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1297 crit_enter();
1298 if (td->td_flags & TDF_RUNQ) {
1299 _lwkt_dequeue(td);
1300 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1301 _lwkt_enqueue(td);
1302 } else {
1303 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1305 crit_exit();
1309 * Migrate the current thread to the specified cpu.
1311 * This is accomplished by descheduling ourselves from the current cpu,
1312 * moving our thread to the tdallq of the target cpu, IPI messaging the
1313 * target cpu, and switching out. TDF_MIGRATING prevents scheduling
1314 * races while the thread is being migrated.
1316 * We must be sure to remove ourselves from the current cpu's tsleepq
1317 * before potentially moving to another queue. The thread can be on
1318 * a tsleepq due to a left-over tsleep_interlock().
1320 #ifdef SMP
1321 static void lwkt_setcpu_remote(void *arg);
1322 #endif
1324 void
1325 lwkt_setcpu_self(globaldata_t rgd)
1327 #ifdef SMP
1328 thread_t td = curthread;
1330 if (td->td_gd != rgd) {
1331 crit_enter_quick(td);
1332 if (td->td_flags & TDF_TSLEEPQ)
1333 tsleep_remove(td);
1334 td->td_flags |= TDF_MIGRATING;
1335 lwkt_deschedule_self(td);
1336 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1337 lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1338 lwkt_switch();
1339 /* we are now on the target cpu */
1340 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1341 crit_exit_quick(td);
1343 #endif
1346 void
1347 lwkt_migratecpu(int cpuid)
1349 #ifdef SMP
1350 globaldata_t rgd;
1352 rgd = globaldata_find(cpuid);
1353 lwkt_setcpu_self(rgd);
1354 #endif
1358 * Remote IPI for cpu migration (called while in a critical section so we
1359 * do not have to enter another one). The thread has already been moved to
1360 * our cpu's allq, but we must wait for the thread to be completely switched
1361 * out on the originating cpu before we schedule it on ours or the stack
1362 * state may be corrupt. We clear TDF_MIGRATING after flushing the GD
1363 * change to main memory.
1365 * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1366 * against wakeups. It is best if this interface is used only when there
1367 * are no pending events that might try to schedule the thread.
1369 #ifdef SMP
1370 static void
1371 lwkt_setcpu_remote(void *arg)
1373 thread_t td = arg;
1374 globaldata_t gd = mycpu;
1376 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1377 #ifdef SMP
1378 lwkt_process_ipiq();
1379 #endif
1380 cpu_lfence();
1382 td->td_gd = gd;
1383 cpu_sfence();
1384 td->td_flags &= ~TDF_MIGRATING;
1385 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1386 _lwkt_enqueue(td);
1388 #endif
1390 struct lwp *
1391 lwkt_preempted_proc(void)
1393 thread_t td = curthread;
1394 while (td->td_preempted)
1395 td = td->td_preempted;
1396 return(td->td_lwp);
1400 * Create a kernel process/thread/whatever. It shares it's address space
1401 * with proc0 - ie: kernel only.
1403 * NOTE! By default new threads are created with the MP lock held. A
1404 * thread which does not require the MP lock should release it by calling
1405 * rel_mplock() at the start of the new thread.
1408 lwkt_create(void (*func)(void *), void *arg,
1409 struct thread **tdp, thread_t template, int tdflags, int cpu,
1410 const char *fmt, ...)
1412 thread_t td;
1413 __va_list ap;
1415 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1416 tdflags);
1417 if (tdp)
1418 *tdp = td;
1419 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1422 * Set up arg0 for 'ps' etc
1424 __va_start(ap, fmt);
1425 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1426 __va_end(ap);
1429 * Schedule the thread to run
1431 if ((td->td_flags & TDF_STOPREQ) == 0)
1432 lwkt_schedule(td);
1433 else
1434 td->td_flags &= ~TDF_STOPREQ;
1435 return 0;
1439 * Destroy an LWKT thread. Warning! This function is not called when
1440 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1441 * uses a different reaping mechanism.
1443 void
1444 lwkt_exit(void)
1446 thread_t td = curthread;
1447 thread_t std;
1448 globaldata_t gd;
1450 if (td->td_flags & TDF_VERBOSE)
1451 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1452 caps_exit(td);
1455 * Get us into a critical section to interlock gd_freetd and loop
1456 * until we can get it freed.
1458 * We have to cache the current td in gd_freetd because objcache_put()ing
1459 * it would rip it out from under us while our thread is still active.
1461 gd = mycpu;
1462 crit_enter_quick(td);
1463 while ((std = gd->gd_freetd) != NULL) {
1464 gd->gd_freetd = NULL;
1465 objcache_put(thread_cache, std);
1469 * Remove thread resources from kernel lists and deschedule us for
1470 * the last time.
1472 if (td->td_flags & TDF_TSLEEPQ)
1473 tsleep_remove(td);
1474 biosched_done(td);
1475 lwkt_deschedule_self(td);
1476 lwkt_remove_tdallq(td);
1477 if (td->td_flags & TDF_ALLOCATED_THREAD)
1478 gd->gd_freetd = td;
1479 cpu_thread_exit();
1482 void
1483 lwkt_remove_tdallq(thread_t td)
1485 KKASSERT(td->td_gd == mycpu);
1486 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1489 void
1490 crit_panic(void)
1492 thread_t td = curthread;
1493 int lpri = td->td_pri;
1495 td->td_pri = 0;
1496 panic("td_pri is/would-go negative! %p %d", td, lpri);
1499 #ifdef SMP
1502 * Called from debugger/panic on cpus which have been stopped. We must still
1503 * process the IPIQ while stopped, even if we were stopped while in a critical
1504 * section (XXX).
1506 * If we are dumping also try to process any pending interrupts. This may
1507 * or may not work depending on the state of the cpu at the point it was
1508 * stopped.
1510 void
1511 lwkt_smp_stopped(void)
1513 globaldata_t gd = mycpu;
1515 crit_enter_gd(gd);
1516 if (dumping) {
1517 lwkt_process_ipiq();
1518 splz();
1519 } else {
1520 lwkt_process_ipiq();
1522 crit_exit_gd(gd);
1525 #endif