Merge branches 'master' and 'suser_to_priv'
[dragonfly.git] / sys / platform / pc64 / amd64 / machdep.c
blobef52eccd7b48b579e7e0b07331197cc326f524af
1 /*-
2 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 2003 Peter Wemm.
5 * Copyright (c) 2008 The DragonFly Project.
6 * All rights reserved.
8 * This code is derived from software contributed to Berkeley by
9 * William Jolitz.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
39 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
40 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41 * $DragonFly: src/sys/platform/pc64/amd64/machdep.c,v 1.1 2008/08/29 17:07:10 dillon Exp $
44 #include "use_ether.h"
45 //#include "use_npx.h"
46 #include "use_isa.h"
47 #include "opt_atalk.h"
48 #include "opt_compat.h"
49 #include "opt_cpu.h"
50 #include "opt_ddb.h"
51 #include "opt_directio.h"
52 #include "opt_inet.h"
53 #include "opt_ipx.h"
54 #include "opt_msgbuf.h"
55 #include "opt_swap.h"
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sysproto.h>
60 #include <sys/signalvar.h>
61 #include <sys/kernel.h>
62 #include <sys/linker.h>
63 #include <sys/malloc.h>
64 #include <sys/proc.h>
65 #include <sys/priv.h>
66 #include <sys/buf.h>
67 #include <sys/reboot.h>
68 #include <sys/mbuf.h>
69 #include <sys/msgbuf.h>
70 #include <sys/sysent.h>
71 #include <sys/sysctl.h>
72 #include <sys/vmmeter.h>
73 #include <sys/bus.h>
74 #include <sys/upcall.h>
75 #include <sys/usched.h>
76 #include <sys/reg.h>
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_pager.h>
86 #include <vm/vm_extern.h>
88 #include <sys/thread2.h>
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/cons.h>
94 #include <ddb/ddb.h>
96 #include <machine/cpu.h>
97 #include <machine/clock.h>
98 #include <machine/specialreg.h>
99 #if JG
100 #include <machine/bootinfo.h>
101 #endif
102 #include <machine/intr_machdep.h> /* for inthand_t */
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h> /* CPU_prvspace */
108 #include <machine/smp.h>
109 #ifdef PERFMON
110 #include <machine/perfmon.h>
111 #endif
112 #include <machine/cputypes.h>
114 #ifdef OLD_BUS_ARCH
115 #include <bus/isa/i386/isa_device.h>
116 #endif
117 #include <machine_base/isa/intr_machdep.h>
118 #include <bus/isa/rtc.h>
119 #include <sys/random.h>
120 #include <sys/ptrace.h>
121 #include <machine/sigframe.h>
123 #define PHYSMAP_ENTRIES 10
125 extern void init386(int first);
126 extern void dblfault_handler(void);
127 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
129 extern void printcpuinfo(void); /* XXX header file */
130 extern void identify_cpu(void);
131 #if JG
132 extern void finishidentcpu(void);
133 #endif
134 extern void panicifcpuunsupported(void);
135 extern void initializecpu(void);
137 extern void init_paging(vm_paddr_t *);
139 static void cpu_startup(void *);
140 #ifndef CPU_DISABLE_SSE
141 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
142 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
143 #endif /* CPU_DISABLE_SSE */
144 #ifdef DIRECTIO
145 extern void ffs_rawread_setup(void);
146 #endif /* DIRECTIO */
147 static void init_locks(void);
149 SYSINIT(cpu, SI_BOOT2_SMP, SI_ORDER_FIRST, cpu_startup, NULL)
151 #ifdef DDB
152 extern vm_offset_t ksym_start, ksym_end;
153 #endif
155 uint64_t common_lvl4_phys;
156 uint64_t common_lvl3_phys;
157 uint64_t IdlePTD;
158 uint64_t KPTphys;
159 uint64_t SMPptpa;
160 pt_entry_t *SMPpt;
161 pdp_entry_t *link_pdpe;
164 int _udatasel, _ucodesel, _ucode32sel;
165 u_long atdevbase;
166 #ifdef SMP
167 int64_t tsc_offsets[MAXCPU];
168 #else
169 int64_t tsc_offsets[1];
170 #endif
172 #if defined(SWTCH_OPTIM_STATS)
173 extern int swtch_optim_stats;
174 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
175 CTLFLAG_RD, &swtch_optim_stats, 0, "");
176 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
177 CTLFLAG_RD, &tlb_flush_count, 0, "");
178 #endif
180 int physmem = 0;
182 static int
183 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
185 int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
186 return (error);
189 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
190 0, 0, sysctl_hw_physmem, "IU", "");
192 static int
193 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
195 int error = sysctl_handle_int(oidp, 0,
196 ctob(physmem - vmstats.v_wire_count), req);
197 return (error);
200 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
201 0, 0, sysctl_hw_usermem, "IU", "");
203 static int
204 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
206 #if JG
207 int error = sysctl_handle_int(oidp, 0,
208 i386_btop(avail_end - avail_start), req);
209 return (error);
210 #else
211 return -1;
212 #endif
215 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
216 0, 0, sysctl_hw_availpages, "I", "");
218 static int
219 sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
221 int error;
223 /* Unwind the buffer, so that it's linear (possibly starting with
224 * some initial nulls).
226 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
227 msgbufp->msg_size-msgbufp->msg_bufr,req);
228 if(error) return(error);
229 if(msgbufp->msg_bufr>0) {
230 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
231 msgbufp->msg_bufr,req);
233 return(error);
236 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
237 0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
239 static int msgbuf_clear;
241 static int
242 sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
244 int error;
245 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
246 req);
247 if (!error && req->newptr) {
248 /* Clear the buffer and reset write pointer */
249 bzero(msgbufp->msg_ptr,msgbufp->msg_size);
250 msgbufp->msg_bufr=msgbufp->msg_bufx=0;
251 msgbuf_clear=0;
253 return (error);
256 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
257 &msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
258 "Clear kernel message buffer");
260 vm_paddr_t Maxmem = 0;
263 * The number of PHYSMAP entries must be one less than the number of
264 * PHYSSEG entries because the PHYSMAP entry that spans the largest
265 * physical address that is accessible by ISA DMA is split into two
266 * PHYSSEG entries.
268 #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
270 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
271 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
273 /* must be 2 less so 0 0 can signal end of chunks */
274 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
275 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
277 static vm_offset_t buffer_sva, buffer_eva;
278 vm_offset_t clean_sva, clean_eva;
279 static vm_offset_t pager_sva, pager_eva;
280 static struct trapframe proc0_tf;
282 static void
283 cpu_startup(void *dummy)
285 caddr_t v;
286 vm_size_t size = 0;
287 vm_offset_t firstaddr;
289 if (boothowto & RB_VERBOSE)
290 bootverbose++;
293 * Good {morning,afternoon,evening,night}.
295 kprintf("%s", version);
296 startrtclock();
297 printcpuinfo();
298 panicifcpuunsupported();
299 #ifdef PERFMON
300 perfmon_init();
301 #endif
302 kprintf("real memory = %llu (%lluK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
304 * Display any holes after the first chunk of extended memory.
306 if (bootverbose) {
307 int indx;
309 kprintf("Physical memory chunk(s):\n");
310 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
311 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
313 kprintf("0x%08llx - 0x%08llx, %llu bytes (%llu pages)\n",
314 phys_avail[indx], phys_avail[indx + 1] - 1, size1,
315 size1 / PAGE_SIZE);
320 * Allocate space for system data structures.
321 * The first available kernel virtual address is in "v".
322 * As pages of kernel virtual memory are allocated, "v" is incremented.
323 * As pages of memory are allocated and cleared,
324 * "firstaddr" is incremented.
325 * An index into the kernel page table corresponding to the
326 * virtual memory address maintained in "v" is kept in "mapaddr".
330 * Make two passes. The first pass calculates how much memory is
331 * needed and allocates it. The second pass assigns virtual
332 * addresses to the various data structures.
334 firstaddr = 0;
335 again:
336 v = (caddr_t)firstaddr;
338 #define valloc(name, type, num) \
339 (name) = (type *)v; v = (caddr_t)((name)+(num))
340 #define valloclim(name, type, num, lim) \
341 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
344 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
345 * For the first 64MB of ram nominally allocate sufficient buffers to
346 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
347 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
348 * the buffer cache we limit the eventual kva reservation to
349 * maxbcache bytes.
351 * factor represents the 1/4 x ram conversion.
353 if (nbuf == 0) {
354 int factor = 4 * BKVASIZE / 1024;
355 int kbytes = physmem * (PAGE_SIZE / 1024);
357 nbuf = 50;
358 if (kbytes > 4096)
359 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
360 if (kbytes > 65536)
361 nbuf += (kbytes - 65536) * 2 / (factor * 5);
362 if (maxbcache && nbuf > maxbcache / BKVASIZE)
363 nbuf = maxbcache / BKVASIZE;
367 * Do not allow the buffer_map to be more then 1/2 the size of the
368 * kernel_map.
370 if (nbuf > (virtual_end - virtual_start) / (BKVASIZE * 2)) {
371 nbuf = (virtual_end - virtual_start) / (BKVASIZE * 2);
372 kprintf("Warning: nbufs capped at %d\n", nbuf);
375 nswbuf = max(min(nbuf/4, 256), 16);
376 #ifdef NSWBUF_MIN
377 if (nswbuf < NSWBUF_MIN)
378 nswbuf = NSWBUF_MIN;
379 #endif
380 #ifdef DIRECTIO
381 ffs_rawread_setup();
382 #endif
384 valloc(swbuf, struct buf, nswbuf);
385 valloc(buf, struct buf, nbuf);
388 * End of first pass, size has been calculated so allocate memory
390 if (firstaddr == 0) {
391 size = (vm_size_t)(v - firstaddr);
392 firstaddr = kmem_alloc(&kernel_map, round_page(size));
393 if (firstaddr == 0)
394 panic("startup: no room for tables");
395 goto again;
399 * End of second pass, addresses have been assigned
401 if ((vm_size_t)(v - firstaddr) != size)
402 panic("startup: table size inconsistency");
404 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
405 (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
406 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
407 (nbuf*BKVASIZE));
408 buffer_map.system_map = 1;
409 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
410 (nswbuf*MAXPHYS) + pager_map_size);
411 pager_map.system_map = 1;
413 #if defined(USERCONFIG)
414 userconfig();
415 cninit(); /* the preferred console may have changed */
416 #endif
418 kprintf("avail memory = %u (%uK bytes)\n", ptoa(vmstats.v_free_count),
419 ptoa(vmstats.v_free_count) / 1024);
422 * Set up buffers, so they can be used to read disk labels.
424 bufinit();
425 vm_pager_bufferinit();
427 #ifdef SMP
429 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
431 mp_start(); /* fire up the APs and APICs */
432 mp_announce();
433 #endif /* SMP */
434 cpu_setregs();
438 * Send an interrupt to process.
440 * Stack is set up to allow sigcode stored
441 * at top to call routine, followed by kcall
442 * to sigreturn routine below. After sigreturn
443 * resets the signal mask, the stack, and the
444 * frame pointer, it returns to the user
445 * specified pc, psl.
447 void
448 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
450 kprintf0("sendsig\n");
451 struct lwp *lp = curthread->td_lwp;
452 struct proc *p = lp->lwp_proc;
453 struct trapframe *regs;
454 struct sigacts *psp = p->p_sigacts;
455 struct sigframe sf, *sfp;
456 int oonstack;
458 regs = lp->lwp_md.md_regs;
459 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
461 /* save user context */
462 bzero(&sf, sizeof(struct sigframe));
463 sf.sf_uc.uc_sigmask = *mask;
464 sf.sf_uc.uc_stack = lp->lwp_sigstk;
465 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
466 #if JG
467 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_gs, sizeof(struct trapframe));
468 #endif
470 /* make the size of the saved context visible to userland */
471 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
473 /* save mailbox pending state for syscall interlock semantics */
474 #if JG
475 if (p->p_flag & P_MAILBOX)
476 sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
477 #endif
479 /* Allocate and validate space for the signal handler context. */
480 if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
481 SIGISMEMBER(psp->ps_sigonstack, sig)) {
482 sfp = (struct sigframe *)(lp->lwp_sigstk.ss_sp +
483 lp->lwp_sigstk.ss_size - sizeof(struct sigframe));
484 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
485 } else {
486 #if JG
487 sfp = (struct sigframe *)regs->tf_esp - 1;
488 #endif
491 /* Translate the signal is appropriate */
492 if (p->p_sysent->sv_sigtbl) {
493 if (sig <= p->p_sysent->sv_sigsize)
494 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
497 /* Build the argument list for the signal handler. */
498 sf.sf_signum = sig;
499 sf.sf_ucontext = (register_t)&sfp->sf_uc;
500 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
501 /* Signal handler installed with SA_SIGINFO. */
502 sf.sf_siginfo = (register_t)&sfp->sf_si;
503 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
505 /* fill siginfo structure */
506 sf.sf_si.si_signo = sig;
507 sf.sf_si.si_code = code;
508 sf.sf_si.si_addr = (void*)regs->tf_err;
510 else {
511 /* Old FreeBSD-style arguments. */
512 sf.sf_siginfo = code;
513 sf.sf_addr = regs->tf_err;
514 sf.sf_ahu.sf_handler = catcher;
518 * If we're a vm86 process, we want to save the segment registers.
519 * We also change eflags to be our emulated eflags, not the actual
520 * eflags.
522 #if JG
523 if (regs->tf_eflags & PSL_VM) {
524 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
525 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
527 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
528 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
529 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
530 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
532 if (vm86->vm86_has_vme == 0)
533 sf.sf_uc.uc_mcontext.mc_eflags =
534 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
535 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
538 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
539 * syscalls made by the signal handler. This just avoids
540 * wasting time for our lazy fixup of such faults. PSL_NT
541 * does nothing in vm86 mode, but vm86 programs can set it
542 * almost legitimately in probes for old cpu types.
544 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
546 #endif
549 * Save the FPU state and reinit the FP unit
551 #if JG
552 npxpush(&sf.sf_uc.uc_mcontext);
553 #endif
556 * Copy the sigframe out to the user's stack.
558 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
560 * Something is wrong with the stack pointer.
561 * ...Kill the process.
563 sigexit(lp, SIGILL);
566 #if JG
567 regs->tf_esp = (int)sfp;
568 regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
569 #endif
572 * i386 abi specifies that the direction flag must be cleared
573 * on function entry
575 #if JG
576 regs->tf_eflags &= ~(PSL_T|PSL_D);
577 #endif
579 regs->tf_cs = _ucodesel;
580 #if JG
581 regs->tf_ds = _udatasel;
582 regs->tf_es = _udatasel;
583 #endif
586 * Allow the signal handler to inherit %fs in addition to %gs as
587 * the userland program might be using both.
589 * However, if a T_PROTFLT occured the segment registers could be
590 * totally broken. They must be reset in order to be able to
591 * return to userland.
593 if (regs->tf_trapno == T_PROTFLT) {
594 #if JG
595 regs->tf_fs = _udatasel;
596 regs->tf_gs = _udatasel;
597 #endif
599 regs->tf_ss = _udatasel;
603 * Sanitize the trapframe for a virtual kernel passing control to a custom
604 * VM context. Remove any items that would otherwise create a privilage
605 * issue.
607 * XXX at the moment we allow userland to set the resume flag. Is this a
608 * bad idea?
611 cpu_sanitize_frame(struct trapframe *frame)
613 kprintf0("cpu_sanitize_frame\n");
614 frame->tf_cs = _ucodesel;
615 #if JG
616 frame->tf_ds = _udatasel;
617 frame->tf_es = _udatasel; /* XXX allow userland this one too? */
618 #endif
619 #if 0
620 frame->tf_fs = _udatasel;
621 frame->tf_gs = _udatasel;
622 #endif
623 frame->tf_ss = _udatasel;
624 #if JG
625 frame->tf_eflags &= (PSL_RF | PSL_USERCHANGE);
626 frame->tf_eflags |= PSL_RESERVED_DEFAULT | PSL_I;
627 #endif
628 return(0);
632 * Sanitize the tls so loading the descriptor does not blow up
633 * on us. For AMD64 we don't have to do anything.
636 cpu_sanitize_tls(struct savetls *tls)
638 return(0);
642 * sigreturn(ucontext_t *sigcntxp)
644 * System call to cleanup state after a signal
645 * has been taken. Reset signal mask and
646 * stack state from context left by sendsig (above).
647 * Return to previous pc and psl as specified by
648 * context left by sendsig. Check carefully to
649 * make sure that the user has not modified the
650 * state to gain improper privileges.
652 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
653 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
656 sys_sigreturn(struct sigreturn_args *uap)
658 struct lwp *lp = curthread->td_lwp;
659 struct proc *p = lp->lwp_proc;
660 struct trapframe *regs;
661 ucontext_t uc;
662 ucontext_t *ucp;
663 int cs;
664 int eflags;
665 int error;
668 * We have to copy the information into kernel space so userland
669 * can't modify it while we are sniffing it.
671 regs = lp->lwp_md.md_regs;
672 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
673 if (error)
674 return (error);
675 ucp = &uc;
676 #if JG
677 eflags = ucp->uc_mcontext.mc_eflags;
678 #endif
680 #if JG
681 if (eflags & PSL_VM) {
682 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
683 struct vm86_kernel *vm86;
686 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
687 * set up the vm86 area, and we can't enter vm86 mode.
689 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
690 return (EINVAL);
691 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
692 if (vm86->vm86_inited == 0)
693 return (EINVAL);
695 /* go back to user mode if both flags are set */
696 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
697 trapsignal(lp, SIGBUS, 0);
699 if (vm86->vm86_has_vme) {
700 #if JG
701 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
702 (eflags & VME_USERCHANGE) | PSL_VM;
703 #endif
704 } else {
705 #if JG
706 vm86->vm86_eflags = eflags; /* save VIF, VIP */
707 eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
708 (eflags & VM_USERCHANGE) | PSL_VM;
709 #endif
711 #if JG
712 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
713 tf->tf_eflags = eflags;
714 #endif
715 tf->tf_vm86_ds = tf->tf_ds;
716 tf->tf_vm86_es = tf->tf_es;
717 tf->tf_vm86_fs = tf->tf_fs;
718 tf->tf_vm86_gs = tf->tf_gs;
719 tf->tf_ds = _udatasel;
720 tf->tf_es = _udatasel;
721 #if 0
722 tf->tf_fs = _udatasel;
723 tf->tf_gs = _udatasel;
724 #endif
725 } else {
727 * Don't allow users to change privileged or reserved flags.
730 * XXX do allow users to change the privileged flag PSL_RF.
731 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
732 * should sometimes set it there too. tf_eflags is kept in
733 * the signal context during signal handling and there is no
734 * other place to remember it, so the PSL_RF bit may be
735 * corrupted by the signal handler without us knowing.
736 * Corruption of the PSL_RF bit at worst causes one more or
737 * one less debugger trap, so allowing it is fairly harmless.
739 #if JG
740 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
741 kprintf("sigreturn: eflags = 0x%x\n", eflags);
742 return(EINVAL);
744 #endif
747 * Don't allow users to load a valid privileged %cs. Let the
748 * hardware check for invalid selectors, excess privilege in
749 * other selectors, invalid %eip's and invalid %esp's.
751 cs = ucp->uc_mcontext.mc_cs;
752 if (!CS_SECURE(cs)) {
753 kprintf("sigreturn: cs = 0x%x\n", cs);
754 trapsignal(lp, SIGBUS, T_PROTFLT);
755 return(EINVAL);
757 #if JG
758 bcopy(&ucp->uc_mcontext.mc_gs, regs, sizeof(struct trapframe));
759 #endif
761 #endif
764 * Restore the FPU state from the frame
766 #if JG
767 npxpop(&ucp->uc_mcontext);
768 #endif
771 * Merge saved signal mailbox pending flag to maintain interlock
772 * semantics against system calls.
774 #if JG
775 if (ucp->uc_mcontext.mc_xflags & PGEX_MAILBOX)
776 p->p_flag |= P_MAILBOX;
777 #endif
779 if (ucp->uc_mcontext.mc_onstack & 1)
780 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
781 else
782 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
784 lp->lwp_sigmask = ucp->uc_sigmask;
785 SIG_CANTMASK(lp->lwp_sigmask);
786 return(EJUSTRETURN);
790 * Stack frame on entry to function. %eax will contain the function vector,
791 * %ecx will contain the function data. flags, ecx, and eax will have
792 * already been pushed on the stack.
794 struct upc_frame {
795 register_t eax;
796 register_t ecx;
797 register_t edx;
798 register_t flags;
799 register_t oldip;
802 void
803 sendupcall(struct vmupcall *vu, int morepending)
805 struct lwp *lp = curthread->td_lwp;
806 struct trapframe *regs;
807 struct upcall upcall;
808 struct upc_frame upc_frame;
809 int crit_count = 0;
812 * If we are a virtual kernel running an emulated user process
813 * context, switch back to the virtual kernel context before
814 * trying to post the signal.
816 if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
817 lp->lwp_md.md_regs->tf_trapno = 0;
818 vkernel_trap(lp, lp->lwp_md.md_regs);
822 * Get the upcall data structure
824 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
825 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
827 vu->vu_pending = 0;
828 kprintf("bad upcall address\n");
829 return;
833 * If the data structure is already marked pending or has a critical
834 * section count, mark the data structure as pending and return
835 * without doing an upcall. vu_pending is left set.
837 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
838 if (upcall.upc_pending < vu->vu_pending) {
839 upcall.upc_pending = vu->vu_pending;
840 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
841 sizeof(upcall.upc_pending));
843 return;
847 * We can run this upcall now, clear vu_pending.
849 * Bump our critical section count and set or clear the
850 * user pending flag depending on whether more upcalls are
851 * pending. The user will be responsible for calling
852 * upc_dispatch(-1) to process remaining upcalls.
854 vu->vu_pending = 0;
855 upcall.upc_pending = morepending;
856 crit_count += TDPRI_CRIT;
857 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
858 sizeof(upcall.upc_pending));
859 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
860 sizeof(int));
863 * Construct a stack frame and issue the upcall
865 regs = lp->lwp_md.md_regs;
866 #if JG
867 upc_frame.eax = regs->tf_eax;
868 upc_frame.ecx = regs->tf_ecx;
869 upc_frame.edx = regs->tf_edx;
870 upc_frame.flags = regs->tf_eflags;
871 upc_frame.oldip = regs->tf_eip;
872 if (copyout(&upc_frame, (void *)(regs->tf_esp - sizeof(upc_frame)),
873 sizeof(upc_frame)) != 0) {
874 kprintf("bad stack on upcall\n");
875 } else {
876 regs->tf_eax = (register_t)vu->vu_func;
877 regs->tf_ecx = (register_t)vu->vu_data;
878 regs->tf_edx = (register_t)lp->lwp_upcall;
879 regs->tf_eip = (register_t)vu->vu_ctx;
880 regs->tf_esp -= sizeof(upc_frame);
882 #endif
886 * fetchupcall occurs in the context of a system call, which means that
887 * we have to return EJUSTRETURN in order to prevent eax and edx from
888 * being overwritten by the syscall return value.
890 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
891 * and the function pointer in %eax.
894 fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
896 struct upc_frame upc_frame;
897 struct lwp *lp = curthread->td_lwp;
898 struct trapframe *regs;
899 int error;
900 struct upcall upcall;
901 int crit_count;
903 regs = lp->lwp_md.md_regs;
905 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
906 if (error == 0) {
907 if (vu) {
909 * This jumps us to the next ready context.
911 vu->vu_pending = 0;
912 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
913 crit_count = 0;
914 if (error == 0)
915 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
916 crit_count += TDPRI_CRIT;
917 if (error == 0)
918 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
919 #if JG
920 regs->tf_eax = (register_t)vu->vu_func;
921 regs->tf_ecx = (register_t)vu->vu_data;
922 regs->tf_edx = (register_t)lp->lwp_upcall;
923 regs->tf_eip = (register_t)vu->vu_ctx;
924 regs->tf_esp = (register_t)rsp;
925 #endif
926 } else {
928 * This returns us to the originally interrupted code.
930 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
931 #if JG
932 regs->tf_eax = upc_frame.eax;
933 regs->tf_ecx = upc_frame.ecx;
934 regs->tf_edx = upc_frame.edx;
935 regs->tf_eflags = (regs->tf_eflags & ~PSL_USERCHANGE) |
936 (upc_frame.flags & PSL_USERCHANGE);
937 regs->tf_eip = upc_frame.oldip;
938 regs->tf_esp = (register_t)((char *)rsp + sizeof(upc_frame));
939 #endif
942 if (error == 0)
943 error = EJUSTRETURN;
944 return(error);
948 * Machine dependent boot() routine
950 * I haven't seen anything to put here yet
951 * Possibly some stuff might be grafted back here from boot()
953 void
954 cpu_boot(int howto)
959 * Shutdown the CPU as much as possible
961 void
962 cpu_halt(void)
964 for (;;)
965 __asm__ __volatile("hlt");
969 * cpu_idle() represents the idle LWKT. You cannot return from this function
970 * (unless you want to blow things up!). Instead we look for runnable threads
971 * and loop or halt as appropriate. Giant is not held on entry to the thread.
973 * The main loop is entered with a critical section held, we must release
974 * the critical section before doing anything else. lwkt_switch() will
975 * check for pending interrupts due to entering and exiting its own
976 * critical section.
978 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
979 * to wake a HLTed cpu up. However, there are cases where the idlethread
980 * will be entered with the possibility that no IPI will occur and in such
981 * cases lwkt_switch() sets TDF_IDLE_NOHLT.
983 static int cpu_idle_hlt = 1;
984 static int cpu_idle_hltcnt;
985 static int cpu_idle_spincnt;
986 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
987 &cpu_idle_hlt, 0, "Idle loop HLT enable");
988 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
989 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
990 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
991 &cpu_idle_spincnt, 0, "Idle loop entry spins");
993 static void
994 cpu_idle_default_hook(void)
997 * We must guarentee that hlt is exactly the instruction
998 * following the sti.
1000 __asm __volatile("sti; hlt");
1003 /* Other subsystems (e.g., ACPI) can hook this later. */
1004 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1006 void
1007 cpu_idle(void)
1009 struct thread *td = curthread;
1011 crit_exit();
1012 KKASSERT(td->td_pri < TDPRI_CRIT);
1013 for (;;) {
1015 * See if there are any LWKTs ready to go.
1017 lwkt_switch();
1020 * If we are going to halt call splz unconditionally after
1021 * CLIing to catch any interrupt races. Note that we are
1022 * at SPL0 and interrupts are enabled.
1024 if (cpu_idle_hlt && !lwkt_runnable() &&
1025 (td->td_flags & TDF_IDLE_NOHLT) == 0) {
1026 __asm __volatile("cli");
1027 splz();
1028 if (!lwkt_runnable())
1029 cpu_idle_hook();
1030 #ifdef SMP
1031 else
1032 __asm __volatile("pause");
1033 #endif
1034 ++cpu_idle_hltcnt;
1035 } else {
1036 td->td_flags &= ~TDF_IDLE_NOHLT;
1037 splz();
1038 #ifdef SMP
1039 __asm __volatile("sti; pause");
1040 #else
1041 __asm __volatile("sti");
1042 #endif
1043 ++cpu_idle_spincnt;
1049 * This routine is called when the only runnable threads require
1050 * the MP lock, and the scheduler couldn't get it. On a real cpu
1051 * we let the scheduler spin.
1053 void
1054 cpu_mplock_contested(void)
1056 cpu_pause();
1060 * This routine is called if a spinlock has been held through the
1061 * exponential backoff period and is seriously contested. On a real cpu
1062 * we let it spin.
1064 void
1065 cpu_spinlock_contested(void)
1067 cpu_pause();
1071 * Clear registers on exec
1073 void
1074 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1076 struct thread *td = curthread;
1077 struct lwp *lp = td->td_lwp;
1078 struct pcb *pcb = td->td_pcb;
1079 struct trapframe *regs = lp->lwp_md.md_regs;
1081 kprintf0("exec_setregs\n");
1083 /* was i386_user_cleanup() in NetBSD */
1084 user_ldt_free(pcb);
1086 bzero((char *)regs, sizeof(struct trapframe));
1087 regs->tf_rip = entry;
1088 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1089 regs->tf_rdi = stack; /* argv */
1090 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1091 regs->tf_ss = _udatasel;
1092 regs->tf_cs = _ucodesel;
1093 regs->tf_rbx = ps_strings;
1096 * Reset the hardware debug registers if they were in use.
1097 * They won't have any meaning for the newly exec'd process.
1099 if (pcb->pcb_flags & PCB_DBREGS) {
1100 pcb->pcb_dr0 = 0;
1101 pcb->pcb_dr1 = 0;
1102 pcb->pcb_dr2 = 0;
1103 pcb->pcb_dr3 = 0;
1104 pcb->pcb_dr6 = 0;
1105 pcb->pcb_dr7 = 0; /* JG set bit 10? */
1106 if (pcb == td->td_pcb) {
1108 * Clear the debug registers on the running
1109 * CPU, otherwise they will end up affecting
1110 * the next process we switch to.
1112 reset_dbregs();
1114 pcb->pcb_flags &= ~PCB_DBREGS;
1118 * Initialize the math emulator (if any) for the current process.
1119 * Actually, just clear the bit that says that the emulator has
1120 * been initialized. Initialization is delayed until the process
1121 * traps to the emulator (if it is done at all) mainly because
1122 * emulators don't provide an entry point for initialization.
1124 #if JG
1125 pcb->pcb_flags &= ~FP_SOFTFP;
1126 #endif
1129 * note: do not set CR0_TS here. npxinit() must do it after clearing
1130 * gd_npxthread. Otherwise a preemptive interrupt thread may panic
1131 * in npxdna().
1133 crit_enter();
1134 load_cr0(rcr0() | CR0_MP);
1136 wrmsr(MSR_FSBASE, 0);
1137 wrmsr(MSR_KGSBASE, 0); /* User value while we're in the kernel */
1138 pcb->pcb_fsbase = 0;
1139 pcb->pcb_gsbase = 0;
1141 #if NNPX > 0
1142 /* Initialize the npx (if any) for the current process. */
1143 npxinit(__INITIAL_NPXCW__);
1144 #endif
1145 crit_exit();
1147 pcb->pcb_ds = _udatasel;
1148 pcb->pcb_es = _udatasel;
1149 pcb->pcb_fs = _udatasel;
1150 pcb->pcb_gs = _udatasel;
1153 void
1154 cpu_setregs(void)
1156 register_t cr0;
1158 cr0 = rcr0();
1159 cr0 |= CR0_NE; /* Done by npxinit() */
1160 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1161 cr0 |= CR0_WP | CR0_AM;
1162 load_cr0(cr0);
1163 load_gs(_udatasel);
1166 static int
1167 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1169 int error;
1170 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1171 req);
1172 if (!error && req->newptr)
1173 resettodr();
1174 return (error);
1177 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1178 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1180 #if JG
1181 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1182 CTLFLAG_RW, &disable_rtc_set, 0, "");
1183 #endif
1185 #if JG
1186 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1187 CTLFLAG_RD, &bootinfo, bootinfo, "");
1188 #endif
1190 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1191 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1193 extern u_long bootdev; /* not a cdev_t - encoding is different */
1194 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1195 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1198 * Initialize 386 and configure to run kernel
1202 * Initialize segments & interrupt table
1205 int _default_ldt;
1206 struct user_segment_descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1207 static struct gate_descriptor idt0[NIDT];
1208 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
1209 #if JG
1210 union descriptor ldt[NLDT]; /* local descriptor table */
1211 #endif
1213 /* table descriptors - used to load tables by cpu */
1214 struct region_descriptor r_gdt, r_idt;
1216 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1217 extern int has_f00f_bug;
1218 #endif
1220 static char dblfault_stack[PAGE_SIZE] __aligned(16);
1222 /* JG proc0paddr is a virtual address */
1223 void *proc0paddr;
1224 /* JG alignment? */
1225 char proc0paddr_buff[LWKT_THREAD_STACK];
1228 /* software prototypes -- in more palatable form */
1229 struct soft_segment_descriptor gdt_segs[] = {
1230 /* GNULL_SEL 0 Null Descriptor */
1231 { 0x0, /* segment base address */
1232 0x0, /* length */
1233 0, /* segment type */
1234 0, /* segment descriptor priority level */
1235 0, /* segment descriptor present */
1236 0, /* long */
1237 0, /* default 32 vs 16 bit size */
1238 0 /* limit granularity (byte/page units)*/ },
1239 /* GCODE_SEL 1 Code Descriptor for kernel */
1240 { 0x0, /* segment base address */
1241 0xfffff, /* length - all address space */
1242 SDT_MEMERA, /* segment type */
1243 SEL_KPL, /* segment descriptor priority level */
1244 1, /* segment descriptor present */
1245 1, /* long */
1246 0, /* default 32 vs 16 bit size */
1247 1 /* limit granularity (byte/page units)*/ },
1248 /* GDATA_SEL 2 Data Descriptor for kernel */
1249 { 0x0, /* segment base address */
1250 0xfffff, /* length - all address space */
1251 SDT_MEMRWA, /* segment type */
1252 SEL_KPL, /* segment descriptor priority level */
1253 1, /* segment descriptor present */
1254 1, /* long */
1255 0, /* default 32 vs 16 bit size */
1256 1 /* limit granularity (byte/page units)*/ },
1257 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
1258 { 0x0, /* segment base address */
1259 0xfffff, /* length - all address space */
1260 SDT_MEMERA, /* segment type */
1261 SEL_UPL, /* segment descriptor priority level */
1262 1, /* segment descriptor present */
1263 0, /* long */
1264 1, /* default 32 vs 16 bit size */
1265 1 /* limit granularity (byte/page units)*/ },
1266 /* GUDATA_SEL 4 32/64 bit Data Descriptor for user */
1267 { 0x0, /* segment base address */
1268 0xfffff, /* length - all address space */
1269 SDT_MEMRWA, /* segment type */
1270 SEL_UPL, /* segment descriptor priority level */
1271 1, /* segment descriptor present */
1272 0, /* long */
1273 1, /* default 32 vs 16 bit size */
1274 1 /* limit granularity (byte/page units)*/ },
1275 /* GUCODE_SEL 5 64 bit Code Descriptor for user */
1276 { 0x0, /* segment base address */
1277 0xfffff, /* length - all address space */
1278 SDT_MEMERA, /* segment type */
1279 SEL_UPL, /* segment descriptor priority level */
1280 1, /* segment descriptor present */
1281 1, /* long */
1282 0, /* default 32 vs 16 bit size */
1283 1 /* limit granularity (byte/page units)*/ },
1284 /* GPROC0_SEL 6 Proc 0 Tss Descriptor */
1286 0x0, /* segment base address */
1287 sizeof(struct amd64tss)-1,/* length - all address space */
1288 SDT_SYSTSS, /* segment type */
1289 SEL_KPL, /* segment descriptor priority level */
1290 1, /* segment descriptor present */
1291 0, /* long */
1292 0, /* unused - default 32 vs 16 bit size */
1293 0 /* limit granularity (byte/page units)*/ },
1294 /* Actually, the TSS is a system descriptor which is double size */
1295 { 0x0, /* segment base address */
1296 0x0, /* length */
1297 0, /* segment type */
1298 0, /* segment descriptor priority level */
1299 0, /* segment descriptor present */
1300 0, /* long */
1301 0, /* default 32 vs 16 bit size */
1302 0 /* limit granularity (byte/page units)*/ },
1303 /* GUGS32_SEL 8 32 bit GS Descriptor for user */
1304 { 0x0, /* segment base address */
1305 0xfffff, /* length - all address space */
1306 SDT_MEMRWA, /* segment type */
1307 SEL_UPL, /* segment descriptor priority level */
1308 1, /* segment descriptor present */
1309 0, /* long */
1310 1, /* default 32 vs 16 bit size */
1311 1 /* limit granularity (byte/page units)*/ },
1314 void
1315 setidt(int idx, inthand_t *func, int typ, int dpl, int ist)
1317 struct gate_descriptor *ip;
1319 ip = idt + idx;
1320 ip->gd_looffset = (uintptr_t)func;
1321 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1322 ip->gd_ist = ist;
1323 ip->gd_xx = 0;
1324 ip->gd_type = typ;
1325 ip->gd_dpl = dpl;
1326 ip->gd_p = 1;
1327 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1330 #define IDTVEC(name) __CONCAT(X,name)
1332 extern inthand_t
1333 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1334 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1335 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1336 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1337 IDTVEC(xmm), IDTVEC(dblfault),
1338 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1340 #ifdef DEBUG_INTERRUPTS
1341 extern inthand_t *Xrsvdary[256];
1342 #endif
1344 void
1345 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1347 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1348 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1349 ssd->ssd_type = sd->sd_type;
1350 ssd->ssd_dpl = sd->sd_dpl;
1351 ssd->ssd_p = sd->sd_p;
1352 ssd->ssd_def32 = sd->sd_def32;
1353 ssd->ssd_gran = sd->sd_gran;
1356 void
1357 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1360 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1361 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1362 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1363 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1364 sd->sd_type = ssd->ssd_type;
1365 sd->sd_dpl = ssd->ssd_dpl;
1366 sd->sd_p = ssd->ssd_p;
1367 sd->sd_long = ssd->ssd_long;
1368 sd->sd_def32 = ssd->ssd_def32;
1369 sd->sd_gran = ssd->ssd_gran;
1372 void
1373 ssdtosyssd(struct soft_segment_descriptor *ssd,
1374 struct system_segment_descriptor *sd)
1377 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1378 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1379 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1380 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1381 sd->sd_type = ssd->ssd_type;
1382 sd->sd_dpl = ssd->ssd_dpl;
1383 sd->sd_p = ssd->ssd_p;
1384 sd->sd_gran = ssd->ssd_gran;
1387 u_int basemem;
1390 * Populate the (physmap) array with base/bound pairs describing the
1391 * available physical memory in the system, then test this memory and
1392 * build the phys_avail array describing the actually-available memory.
1394 * If we cannot accurately determine the physical memory map, then use
1395 * value from the 0xE801 call, and failing that, the RTC.
1397 * Total memory size may be set by the kernel environment variable
1398 * hw.physmem or the compile-time define MAXMEM.
1400 * XXX first should be vm_paddr_t.
1402 static void
1403 getmemsize(caddr_t kmdp, u_int64_t first)
1405 int i, off, physmap_idx, pa_indx, da_indx;
1406 vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1407 u_long physmem_tunable;
1408 pt_entry_t *pte;
1409 struct bios_smap *smapbase, *smap, *smapend;
1410 u_int32_t smapsize;
1411 quad_t dcons_addr, dcons_size;
1413 bzero(physmap, sizeof(physmap));
1414 basemem = 0;
1415 physmap_idx = 0;
1418 * get memory map from INT 15:E820, kindly supplied by the loader.
1420 * subr_module.c says:
1421 * "Consumer may safely assume that size value precedes data."
1422 * ie: an int32_t immediately precedes smap.
1424 smapbase = (struct bios_smap *)preload_search_info(kmdp,
1425 MODINFO_METADATA | MODINFOMD_SMAP);
1426 if (smapbase == NULL)
1427 panic("No BIOS smap info from loader!");
1429 smapsize = *((u_int32_t *)smapbase - 1);
1430 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1432 for (smap = smapbase; smap < smapend; smap++) {
1433 if (boothowto & RB_VERBOSE)
1434 kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1435 smap->type, smap->base, smap->length);
1437 if (smap->type != SMAP_TYPE_MEMORY)
1438 continue;
1440 if (smap->length == 0)
1441 continue;
1443 for (i = 0; i <= physmap_idx; i += 2) {
1444 if (smap->base < physmap[i + 1]) {
1445 if (boothowto & RB_VERBOSE)
1446 kprintf(
1447 "Overlapping or non-monotonic memory region, ignoring second region\n");
1448 continue;
1452 if (smap->base == physmap[physmap_idx + 1]) {
1453 physmap[physmap_idx + 1] += smap->length;
1454 continue;
1457 physmap_idx += 2;
1458 if (physmap_idx == PHYSMAP_SIZE) {
1459 kprintf(
1460 "Too many segments in the physical address map, giving up\n");
1461 break;
1463 physmap[physmap_idx] = smap->base;
1464 physmap[physmap_idx + 1] = smap->base + smap->length;
1468 * Find the 'base memory' segment for SMP
1470 basemem = 0;
1471 for (i = 0; i <= physmap_idx; i += 2) {
1472 if (physmap[i] == 0x00000000) {
1473 basemem = physmap[i + 1] / 1024;
1474 break;
1477 if (basemem == 0)
1478 panic("BIOS smap did not include a basemem segment!");
1480 #ifdef SMP
1481 /* make hole for AP bootstrap code */
1482 physmap[1] = mp_bootaddress(physmap[1] / 1024);
1483 #endif
1486 * Maxmem isn't the "maximum memory", it's one larger than the
1487 * highest page of the physical address space. It should be
1488 * called something like "Maxphyspage". We may adjust this
1489 * based on ``hw.physmem'' and the results of the memory test.
1491 Maxmem = atop(physmap[physmap_idx + 1]);
1493 #ifdef MAXMEM
1494 Maxmem = MAXMEM / 4;
1495 #endif
1497 if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1498 Maxmem = atop(physmem_tunable);
1501 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1502 * in the system.
1504 if (Maxmem > atop(physmap[physmap_idx + 1]))
1505 Maxmem = atop(physmap[physmap_idx + 1]);
1507 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1508 (boothowto & RB_VERBOSE))
1509 kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1511 /* call pmap initialization to make new kernel address space */
1512 pmap_bootstrap(&first, 0);
1515 * Size up each available chunk of physical memory.
1517 physmap[0] = PAGE_SIZE; /* mask off page 0 */
1518 pa_indx = 0;
1519 da_indx = 1;
1520 phys_avail[pa_indx++] = physmap[0];
1521 phys_avail[pa_indx] = physmap[0];
1522 dump_avail[da_indx] = physmap[0];
1523 pte = CMAP1;
1526 * Get dcons buffer address
1528 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1529 kgetenv_quad("dcons.size", &dcons_size) == 0)
1530 dcons_addr = 0;
1533 * physmap is in bytes, so when converting to page boundaries,
1534 * round up the start address and round down the end address.
1536 for (i = 0; i <= physmap_idx; i += 2) {
1537 vm_paddr_t end;
1539 end = ptoa((vm_paddr_t)Maxmem);
1540 if (physmap[i + 1] < end)
1541 end = trunc_page(physmap[i + 1]);
1542 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1543 int tmp, page_bad, full;
1544 int *ptr = (int *)CADDR1;
1546 full = FALSE;
1548 * block out kernel memory as not available.
1550 if (pa >= 0x100000 && pa < first)
1551 goto do_dump_avail;
1554 * block out dcons buffer
1556 if (dcons_addr > 0
1557 && pa >= trunc_page(dcons_addr)
1558 && pa < dcons_addr + dcons_size)
1559 goto do_dump_avail;
1561 page_bad = FALSE;
1564 * map page into kernel: valid, read/write,non-cacheable
1566 *pte = pa | PG_V | PG_RW | PG_N;
1567 cpu_invltlb();
1569 tmp = *(int *)ptr;
1571 * Test for alternating 1's and 0's
1573 *(volatile int *)ptr = 0xaaaaaaaa;
1574 if (*(volatile int *)ptr != 0xaaaaaaaa)
1575 page_bad = TRUE;
1577 * Test for alternating 0's and 1's
1579 *(volatile int *)ptr = 0x55555555;
1580 if (*(volatile int *)ptr != 0x55555555)
1581 page_bad = TRUE;
1583 * Test for all 1's
1585 *(volatile int *)ptr = 0xffffffff;
1586 if (*(volatile int *)ptr != 0xffffffff)
1587 page_bad = TRUE;
1589 * Test for all 0's
1591 *(volatile int *)ptr = 0x0;
1592 if (*(volatile int *)ptr != 0x0)
1593 page_bad = TRUE;
1595 * Restore original value.
1597 *(int *)ptr = tmp;
1600 * Adjust array of valid/good pages.
1602 if (page_bad == TRUE)
1603 continue;
1605 * If this good page is a continuation of the
1606 * previous set of good pages, then just increase
1607 * the end pointer. Otherwise start a new chunk.
1608 * Note that "end" points one higher than end,
1609 * making the range >= start and < end.
1610 * If we're also doing a speculative memory
1611 * test and we at or past the end, bump up Maxmem
1612 * so that we keep going. The first bad page
1613 * will terminate the loop.
1615 if (phys_avail[pa_indx] == pa) {
1616 phys_avail[pa_indx] += PAGE_SIZE;
1617 } else {
1618 pa_indx++;
1619 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1620 kprintf(
1621 "Too many holes in the physical address space, giving up\n");
1622 pa_indx--;
1623 full = TRUE;
1624 goto do_dump_avail;
1626 phys_avail[pa_indx++] = pa; /* start */
1627 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1629 physmem++;
1630 do_dump_avail:
1631 if (dump_avail[da_indx] == pa) {
1632 dump_avail[da_indx] += PAGE_SIZE;
1633 } else {
1634 da_indx++;
1635 if (da_indx == DUMP_AVAIL_ARRAY_END) {
1636 da_indx--;
1637 goto do_next;
1639 dump_avail[da_indx++] = pa; /* start */
1640 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1642 do_next:
1643 if (full)
1644 break;
1647 *pte = 0;
1648 cpu_invltlb();
1651 * XXX
1652 * The last chunk must contain at least one page plus the message
1653 * buffer to avoid complicating other code (message buffer address
1654 * calculation, etc.).
1656 while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1657 round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1658 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1659 phys_avail[pa_indx--] = 0;
1660 phys_avail[pa_indx--] = 0;
1663 Maxmem = atop(phys_avail[pa_indx]);
1665 /* Trim off space for the message buffer. */
1666 phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1668 /* Map the message buffer. */
1669 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1670 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1671 off);
1675 * IDT VECTORS:
1676 * 0 Divide by zero
1677 * 1 Debug
1678 * 2 NMI
1679 * 3 BreakPoint
1680 * 4 OverFlow
1681 * 5 Bound-Range
1682 * 6 Invalid OpCode
1683 * 7 Device Not Available (x87)
1684 * 8 Double-Fault
1685 * 9 Coprocessor Segment overrun (unsupported, reserved)
1686 * 10 Invalid-TSS
1687 * 11 Segment not present
1688 * 12 Stack
1689 * 13 General Protection
1690 * 14 Page Fault
1691 * 15 Reserved
1692 * 16 x87 FP Exception pending
1693 * 17 Alignment Check
1694 * 18 Machine Check
1695 * 19 SIMD floating point
1696 * 20-31 reserved
1697 * 32-255 INTn/external sources
1699 u_int64_t
1700 hammer_time(u_int64_t modulep, u_int64_t physfree)
1702 caddr_t kmdp;
1703 int gsel_tss, metadata_missing, off, x;
1704 struct mdglobaldata *gd;
1705 u_int64_t msr;
1706 char *env;
1709 * This must be done before the first references
1710 * to CPU_prvspace[0] are made.
1712 init_paging(&physfree);
1715 * Prevent lowering of the ipl if we call tsleep() early.
1717 gd = &CPU_prvspace[0].mdglobaldata;
1718 bzero(gd, sizeof(*gd));
1721 * Note: on both UP and SMP curthread must be set non-NULL
1722 * early in the boot sequence because the system assumes
1723 * that 'curthread' is never NULL.
1726 gd->mi.gd_curthread = &thread0;
1727 thread0.td_gd = &gd->mi;
1729 atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1731 #if JG
1732 metadata_missing = 0;
1733 if (bootinfo.bi_modulep) {
1734 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1735 preload_bootstrap_relocate(KERNBASE);
1736 } else {
1737 metadata_missing = 1;
1739 if (bootinfo.bi_envp)
1740 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1741 #endif
1743 preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1744 preload_bootstrap_relocate(PTOV_OFFSET);
1745 kmdp = preload_search_by_type("elf kernel");
1746 if (kmdp == NULL)
1747 kmdp = preload_search_by_type("elf64 kernel");
1748 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1749 kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1750 #ifdef DDB
1751 ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1752 ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1753 #endif
1756 * start with one cpu. Note: with one cpu, ncpus2_shift, ncpus2_mask,
1757 * and ncpus_fit_mask remain 0.
1759 ncpus = 1;
1760 ncpus2 = 1;
1761 ncpus_fit = 1;
1762 /* Init basic tunables, hz etc */
1763 init_param1();
1766 * make gdt memory segments
1768 gdt_segs[GPROC0_SEL].ssd_base =
1769 (uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1771 gd->mi.gd_prvspace = &CPU_prvspace[0];
1773 for (x = 0; x < NGDT; x++) {
1774 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1775 ssdtosd(&gdt_segs[x], &gdt[x]);
1777 ssdtosyssd(&gdt_segs[GPROC0_SEL],
1778 (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1779 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1780 r_gdt.rd_base = (long) gdt;
1781 lgdt(&r_gdt);
1783 wrmsr(MSR_FSBASE, 0); /* User value */
1784 wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1785 wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */
1787 mi_gdinit(&gd->mi, 0);
1788 cpu_gdinit(gd, 0);
1789 proc0paddr = proc0paddr_buff;
1790 mi_proc0init(&gd->mi, proc0paddr);
1791 safepri = TDPRI_MAX;
1793 /* spinlocks and the BGL */
1794 init_locks();
1796 /* exceptions */
1797 for (x = 0; x < NIDT; x++)
1798 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1799 setidt(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0);
1800 setidt(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0);
1801 setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 1);
1802 setidt(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0);
1803 setidt(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0);
1804 setidt(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0);
1805 setidt(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0);
1806 setidt(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0);
1807 setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1808 setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0);
1809 setidt(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0);
1810 setidt(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0);
1811 setidt(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0);
1812 setidt(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0);
1813 setidt(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0);
1814 setidt(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0);
1815 setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1816 setidt(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0);
1817 setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1819 r_idt.rd_limit = sizeof(idt0) - 1;
1820 r_idt.rd_base = (long) idt;
1821 lidt(&r_idt);
1824 * Initialize the console before we print anything out.
1826 cninit();
1828 #if JG
1829 if (metadata_missing)
1830 kprintf("WARNING: loader(8) metadata is missing!\n");
1831 #endif
1833 #if NISA >0
1834 isa_defaultirq();
1835 #endif
1836 rand_initialize();
1838 #ifdef DDB
1839 kdb_init();
1840 if (boothowto & RB_KDB)
1841 Debugger("Boot flags requested debugger");
1842 #endif
1844 #if JG
1845 finishidentcpu(); /* Final stage of CPU initialization */
1846 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1847 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1848 #endif
1849 identify_cpu(); /* Final stage of CPU initialization */
1850 initializecpu(); /* Initialize CPU registers */
1852 /* make an initial tss so cpu can get interrupt stack on syscall! */
1853 gd->gd_common_tss.tss_rsp0 = thread0.td_kstack + \
1854 KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1855 /* Ensure the stack is aligned to 16 bytes */
1856 gd->gd_common_tss.tss_rsp0 &= ~0xFul;
1857 gd->gd_rsp0 = gd->gd_common_tss.tss_rsp0;
1859 /* doublefault stack space, runs on ist1 */
1860 gd->gd_common_tss.tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1862 /* Set the IO permission bitmap (empty due to tss seg limit) */
1863 gd->gd_common_tss.tss_iobase = sizeof(struct amd64tss);
1865 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1866 gd->gd_tss_gdt = &gdt[GPROC0_SEL];
1867 gd->gd_common_tssd = *gd->gd_tss_gdt;
1868 ltr(gsel_tss);
1870 /* Set up the fast syscall stuff */
1871 msr = rdmsr(MSR_EFER) | EFER_SCE;
1872 wrmsr(MSR_EFER, msr);
1873 wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1874 wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1875 msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1876 ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1877 wrmsr(MSR_STAR, msr);
1878 wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1880 getmemsize(kmdp, physfree);
1881 init_param2(physmem);
1883 /* now running on new page tables, configured,and u/iom is accessible */
1885 /* Map the message buffer. */
1886 #if JG
1887 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1888 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1889 #endif
1891 msgbufinit(msgbufp, MSGBUF_SIZE);
1894 /* transfer to user mode */
1896 _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1897 _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1898 _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1900 load_ds(_udatasel);
1901 load_es(_udatasel);
1902 load_fs(_udatasel);
1904 /* setup proc 0's pcb */
1905 thread0.td_pcb->pcb_flags = 0;
1906 #if JG
1907 thread0.td_pcb->pcb_cr3 = KPML4phys;
1908 #else
1909 thread0.td_pcb->pcb_cr3 = IdlePTD;
1910 #endif
1911 thread0.td_pcb->pcb_ext = 0;
1912 lwp0.lwp_md.md_regs = &proc0_tf;
1913 env = kgetenv("kernelname");
1914 if (env != NULL)
1915 strlcpy(kernelname, env, sizeof(kernelname));
1917 /* Location of kernel stack for locore */
1918 return ((u_int64_t)thread0.td_pcb);
1922 * Initialize machine-dependant portions of the global data structure.
1923 * Note that the global data area and cpu0's idlestack in the private
1924 * data space were allocated in locore.
1926 * Note: the idlethread's cpl is 0
1928 * WARNING! Called from early boot, 'mycpu' may not work yet.
1930 void
1931 cpu_gdinit(struct mdglobaldata *gd, int cpu)
1933 if (cpu)
1934 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
1936 lwkt_init_thread(&gd->mi.gd_idlethread,
1937 gd->mi.gd_prvspace->idlestack,
1938 sizeof(gd->mi.gd_prvspace->idlestack),
1939 TDF_MPSAFE, &gd->mi);
1940 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
1941 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
1942 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
1943 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
1947 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
1949 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
1950 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
1951 return (TRUE);
1953 return (FALSE);
1956 struct globaldata *
1957 globaldata_find(int cpu)
1959 KKASSERT(cpu >= 0 && cpu < ncpus);
1960 return(&CPU_prvspace[cpu].mdglobaldata.mi);
1963 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1964 static void f00f_hack(void *unused);
1965 SYSINIT(f00f_hack, SI_BOOT2_BIOS, SI_ORDER_ANY, f00f_hack, NULL);
1967 static void
1968 f00f_hack(void *unused)
1970 struct gate_descriptor *new_idt;
1971 vm_offset_t tmp;
1973 if (!has_f00f_bug)
1974 return;
1976 kprintf("Intel Pentium detected, installing workaround for F00F bug\n");
1978 r_idt.rd_limit = sizeof(idt0) - 1;
1980 tmp = kmem_alloc(&kernel_map, PAGE_SIZE * 2);
1981 if (tmp == 0)
1982 panic("kmem_alloc returned 0");
1983 if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1984 panic("kmem_alloc returned non-page-aligned memory");
1985 /* Put the first seven entries in the lower page */
1986 new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1987 bcopy(idt, new_idt, sizeof(idt0));
1988 r_idt.rd_base = (int)new_idt;
1989 lidt(&r_idt);
1990 idt = new_idt;
1991 if (vm_map_protect(&kernel_map, tmp, tmp + PAGE_SIZE,
1992 VM_PROT_READ, FALSE) != KERN_SUCCESS)
1993 panic("vm_map_protect failed");
1994 return;
1996 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
1999 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2001 #if JG
2002 lp->lwp_md.md_regs->tf_eip = addr;
2003 #endif
2004 return (0);
2008 ptrace_single_step(struct lwp *lp)
2010 #if JG
2011 lp->lwp_md.md_regs->tf_eflags |= PSL_T;
2012 #endif
2013 return (0);
2017 fill_regs(struct lwp *lp, struct reg *regs)
2019 struct pcb *pcb;
2020 struct trapframe *tp;
2022 tp = lp->lwp_md.md_regs;
2023 #if JG
2024 regs->r_gs = tp->tf_gs;
2025 regs->r_fs = tp->tf_fs;
2026 regs->r_es = tp->tf_es;
2027 regs->r_ds = tp->tf_ds;
2028 regs->r_edi = tp->tf_edi;
2029 regs->r_esi = tp->tf_esi;
2030 regs->r_ebp = tp->tf_ebp;
2031 regs->r_ebx = tp->tf_ebx;
2032 regs->r_edx = tp->tf_edx;
2033 regs->r_ecx = tp->tf_ecx;
2034 regs->r_eax = tp->tf_eax;
2035 regs->r_eip = tp->tf_eip;
2036 #endif
2037 regs->r_cs = tp->tf_cs;
2038 #if JG
2039 regs->r_eflags = tp->tf_eflags;
2040 regs->r_esp = tp->tf_esp;
2041 #endif
2042 regs->r_ss = tp->tf_ss;
2043 pcb = lp->lwp_thread->td_pcb;
2044 return (0);
2048 set_regs(struct lwp *lp, struct reg *regs)
2050 struct pcb *pcb;
2051 struct trapframe *tp;
2053 tp = lp->lwp_md.md_regs;
2054 #if JG
2055 if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2056 !CS_SECURE(regs->r_cs))
2057 return (EINVAL);
2058 tp->tf_gs = regs->r_gs;
2059 tp->tf_fs = regs->r_fs;
2060 tp->tf_es = regs->r_es;
2061 tp->tf_ds = regs->r_ds;
2062 tp->tf_edi = regs->r_edi;
2063 tp->tf_esi = regs->r_esi;
2064 tp->tf_ebp = regs->r_ebp;
2065 tp->tf_ebx = regs->r_ebx;
2066 tp->tf_edx = regs->r_edx;
2067 tp->tf_ecx = regs->r_ecx;
2068 tp->tf_eax = regs->r_eax;
2069 tp->tf_eip = regs->r_eip;
2070 #endif
2071 tp->tf_cs = regs->r_cs;
2072 #if JG
2073 tp->tf_eflags = regs->r_eflags;
2074 tp->tf_esp = regs->r_esp;
2075 #endif
2076 tp->tf_ss = regs->r_ss;
2077 pcb = lp->lwp_thread->td_pcb;
2078 return (0);
2081 #ifndef CPU_DISABLE_SSE
2082 static void
2083 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2085 struct env87 *penv_87 = &sv_87->sv_env;
2086 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2087 int i;
2089 /* FPU control/status */
2090 penv_87->en_cw = penv_xmm->en_cw;
2091 penv_87->en_sw = penv_xmm->en_sw;
2092 penv_87->en_tw = penv_xmm->en_tw;
2093 penv_87->en_fip = penv_xmm->en_fip;
2094 penv_87->en_fcs = penv_xmm->en_fcs;
2095 penv_87->en_opcode = penv_xmm->en_opcode;
2096 penv_87->en_foo = penv_xmm->en_foo;
2097 penv_87->en_fos = penv_xmm->en_fos;
2099 /* FPU registers */
2100 for (i = 0; i < 8; ++i)
2101 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2103 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
2106 static void
2107 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2109 struct env87 *penv_87 = &sv_87->sv_env;
2110 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2111 int i;
2113 /* FPU control/status */
2114 penv_xmm->en_cw = penv_87->en_cw;
2115 penv_xmm->en_sw = penv_87->en_sw;
2116 penv_xmm->en_tw = penv_87->en_tw;
2117 penv_xmm->en_fip = penv_87->en_fip;
2118 penv_xmm->en_fcs = penv_87->en_fcs;
2119 penv_xmm->en_opcode = penv_87->en_opcode;
2120 penv_xmm->en_foo = penv_87->en_foo;
2121 penv_xmm->en_fos = penv_87->en_fos;
2123 /* FPU registers */
2124 for (i = 0; i < 8; ++i)
2125 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2127 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2129 #endif /* CPU_DISABLE_SSE */
2132 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2134 #ifndef CPU_DISABLE_SSE
2135 if (cpu_fxsr) {
2136 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2137 (struct save87 *)fpregs);
2138 return (0);
2140 #endif /* CPU_DISABLE_SSE */
2141 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2142 return (0);
2146 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2148 #ifndef CPU_DISABLE_SSE
2149 if (cpu_fxsr) {
2150 set_fpregs_xmm((struct save87 *)fpregs,
2151 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2152 return (0);
2154 #endif /* CPU_DISABLE_SSE */
2155 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2156 return (0);
2160 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2162 if (lp == NULL) {
2163 dbregs->dr[0] = rdr0();
2164 dbregs->dr[1] = rdr1();
2165 dbregs->dr[2] = rdr2();
2166 dbregs->dr[3] = rdr3();
2167 dbregs->dr[4] = rdr4();
2168 dbregs->dr[5] = rdr5();
2169 dbregs->dr[6] = rdr6();
2170 dbregs->dr[7] = rdr7();
2171 } else {
2172 struct pcb *pcb;
2174 pcb = lp->lwp_thread->td_pcb;
2175 dbregs->dr[0] = pcb->pcb_dr0;
2176 dbregs->dr[1] = pcb->pcb_dr1;
2177 dbregs->dr[2] = pcb->pcb_dr2;
2178 dbregs->dr[3] = pcb->pcb_dr3;
2179 dbregs->dr[4] = 0;
2180 dbregs->dr[5] = 0;
2181 dbregs->dr[6] = pcb->pcb_dr6;
2182 dbregs->dr[7] = pcb->pcb_dr7;
2184 return (0);
2188 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2190 if (lp == NULL) {
2191 load_dr0(dbregs->dr[0]);
2192 load_dr1(dbregs->dr[1]);
2193 load_dr2(dbregs->dr[2]);
2194 load_dr3(dbregs->dr[3]);
2195 load_dr4(dbregs->dr[4]);
2196 load_dr5(dbregs->dr[5]);
2197 load_dr6(dbregs->dr[6]);
2198 load_dr7(dbregs->dr[7]);
2199 } else {
2200 struct pcb *pcb;
2201 struct ucred *ucred;
2202 int i;
2203 uint64_t mask1, mask2;
2206 * Don't let an illegal value for dr7 get set. Specifically,
2207 * check for undefined settings. Setting these bit patterns
2208 * result in undefined behaviour and can lead to an unexpected
2209 * TRCTRAP.
2211 /* JG this loop looks unreadable */
2212 /* Check 4 2-bit fields for invalid patterns.
2213 * These fields are R/Wi, for i = 0..3
2215 /* Is 10 in LENi allowed when running in compatibility mode? */
2216 /* Pattern 10 in R/Wi might be used to indicate
2217 * breakpoint on I/O. Further analysis should be
2218 * carried to decide if it is safe and useful to
2219 * provide access to that capability
2221 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2222 i++, mask1 <<= 4, mask2 <<= 4)
2223 if ((dbregs->dr[7] & mask1) == mask2)
2224 return (EINVAL);
2226 pcb = lp->lwp_thread->td_pcb;
2227 ucred = lp->lwp_proc->p_ucred;
2230 * Don't let a process set a breakpoint that is not within the
2231 * process's address space. If a process could do this, it
2232 * could halt the system by setting a breakpoint in the kernel
2233 * (if ddb was enabled). Thus, we need to check to make sure
2234 * that no breakpoints are being enabled for addresses outside
2235 * process's address space, unless, perhaps, we were called by
2236 * uid 0.
2238 * XXX - what about when the watched area of the user's
2239 * address space is written into from within the kernel
2240 * ... wouldn't that still cause a breakpoint to be generated
2241 * from within kernel mode?
2244 if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2245 if (dbregs->dr[7] & 0x3) {
2246 /* dr0 is enabled */
2247 if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2248 return (EINVAL);
2251 if (dbregs->dr[7] & (0x3<<2)) {
2252 /* dr1 is enabled */
2253 if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2254 return (EINVAL);
2257 if (dbregs->dr[7] & (0x3<<4)) {
2258 /* dr2 is enabled */
2259 if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2260 return (EINVAL);
2263 if (dbregs->dr[7] & (0x3<<6)) {
2264 /* dr3 is enabled */
2265 if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2266 return (EINVAL);
2270 pcb->pcb_dr0 = dbregs->dr[0];
2271 pcb->pcb_dr1 = dbregs->dr[1];
2272 pcb->pcb_dr2 = dbregs->dr[2];
2273 pcb->pcb_dr3 = dbregs->dr[3];
2274 pcb->pcb_dr6 = dbregs->dr[6];
2275 pcb->pcb_dr7 = dbregs->dr[7];
2277 pcb->pcb_flags |= PCB_DBREGS;
2280 return (0);
2284 * Return > 0 if a hardware breakpoint has been hit, and the
2285 * breakpoint was in user space. Return 0, otherwise.
2288 user_dbreg_trap(void)
2290 u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2291 u_int64_t bp; /* breakpoint bits extracted from dr6 */
2292 int nbp; /* number of breakpoints that triggered */
2293 caddr_t addr[4]; /* breakpoint addresses */
2294 int i;
2296 dr7 = rdr7();
2297 if ((dr7 & 0xff) == 0) {
2299 * all GE and LE bits in the dr7 register are zero,
2300 * thus the trap couldn't have been caused by the
2301 * hardware debug registers
2303 return 0;
2306 nbp = 0;
2307 dr6 = rdr6();
2308 bp = dr6 & 0xf;
2310 if (bp == 0) {
2312 * None of the breakpoint bits are set meaning this
2313 * trap was not caused by any of the debug registers
2315 return 0;
2319 * at least one of the breakpoints were hit, check to see
2320 * which ones and if any of them are user space addresses
2323 if (bp & 0x01) {
2324 addr[nbp++] = (caddr_t)rdr0();
2326 if (bp & 0x02) {
2327 addr[nbp++] = (caddr_t)rdr1();
2329 if (bp & 0x04) {
2330 addr[nbp++] = (caddr_t)rdr2();
2332 if (bp & 0x08) {
2333 addr[nbp++] = (caddr_t)rdr3();
2336 for (i=0; i<nbp; i++) {
2337 if (addr[i] <
2338 (caddr_t)VM_MAX_USER_ADDRESS) {
2340 * addr[i] is in user space
2342 return nbp;
2347 * None of the breakpoints are in user space.
2349 return 0;
2353 #ifndef DDB
2354 void
2355 Debugger(const char *msg)
2357 kprintf("Debugger(\"%s\") called.\n", msg);
2359 #endif /* no DDB */
2361 #ifdef DDB
2364 * Provide inb() and outb() as functions. They are normally only
2365 * available as macros calling inlined functions, thus cannot be
2366 * called inside DDB.
2368 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2371 #undef inb
2372 #undef outb
2374 /* silence compiler warnings */
2375 u_char inb(u_int);
2376 void outb(u_int, u_char);
2378 u_char
2379 inb(u_int port)
2381 u_char data;
2383 * We use %%dx and not %1 here because i/o is done at %dx and not at
2384 * %edx, while gcc generates inferior code (movw instead of movl)
2385 * if we tell it to load (u_short) port.
2387 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2388 return (data);
2391 void
2392 outb(u_int port, u_char data)
2394 u_char al;
2396 * Use an unnecessary assignment to help gcc's register allocator.
2397 * This make a large difference for gcc-1.40 and a tiny difference
2398 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2399 * best results. gcc-2.6.0 can't handle this.
2401 al = data;
2402 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2405 #endif /* DDB */
2409 #include "opt_cpu.h"
2413 * initialize all the SMP locks
2416 /* critical region when masking or unmasking interupts */
2417 struct spinlock_deprecated imen_spinlock;
2419 /* Make FAST_INTR() routines sequential */
2420 struct spinlock_deprecated fast_intr_spinlock;
2422 /* critical region for old style disable_intr/enable_intr */
2423 struct spinlock_deprecated mpintr_spinlock;
2425 /* critical region around INTR() routines */
2426 struct spinlock_deprecated intr_spinlock;
2428 /* lock region used by kernel profiling */
2429 struct spinlock_deprecated mcount_spinlock;
2431 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2432 struct spinlock_deprecated com_spinlock;
2434 /* locks kernel kprintfs */
2435 struct spinlock_deprecated cons_spinlock;
2437 /* lock regions around the clock hardware */
2438 struct spinlock_deprecated clock_spinlock;
2440 /* lock around the MP rendezvous */
2441 struct spinlock_deprecated smp_rv_spinlock;
2443 static void
2444 init_locks(void)
2447 * mp_lock = 0; BSP already owns the MP lock
2450 * Get the initial mp_lock with a count of 1 for the BSP.
2451 * This uses a LOGICAL cpu ID, ie BSP == 0.
2453 #ifdef SMP
2454 cpu_get_initial_mplock();
2455 #endif
2456 /* DEPRECATED */
2457 spin_lock_init(&mcount_spinlock);
2458 spin_lock_init(&fast_intr_spinlock);
2459 spin_lock_init(&intr_spinlock);
2460 spin_lock_init(&mpintr_spinlock);
2461 spin_lock_init(&imen_spinlock);
2462 spin_lock_init(&smp_rv_spinlock);
2463 spin_lock_init(&com_spinlock);
2464 spin_lock_init(&clock_spinlock);
2465 spin_lock_init(&cons_spinlock);
2467 /* our token pool needs to work early */
2468 lwkt_token_pool_init();