suser_* to priv_* conversion
[dragonfly.git] / sys / dev / netif / an / if_an.c
blobc2ff0bd042caae493e1b03790dfe12bd20368152
1 /*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
32 * $FreeBSD: src/sys/dev/an/if_an.c,v 1.2.2.13 2003/02/11 03:32:48 ambrisko Exp $
33 * $DragonFly: src/sys/dev/netif/an/if_an.c,v 1.44 2008/05/23 15:34:03 sephe Exp $
37 * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
39 * Written by Bill Paul <wpaul@ctr.columbia.edu>
40 * Electrical Engineering Department
41 * Columbia University, New York City
45 * The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form.
46 * This driver supports all three device types (PCI devices are supported
47 * through an extra PCI shim: /sys/dev/an/if_an_pci.c). ISA devices can be
48 * supported either using hard-coded IO port/IRQ settings or via Plug
49 * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
50 * The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
52 * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
53 * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
54 * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
55 * a couple of important differences though:
57 * - Lucent ISA card looks to the host like a PCMCIA controller with
58 * a PCMCIA WaveLAN card inserted. This means that even desktop
59 * machines need to be configured with PCMCIA support in order to
60 * use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
61 * actually look like normal ISA and PCI devices to the host, so
62 * no PCMCIA controller support is needed
64 * The latter point results in a small gotcha. The Aironet PCMCIA
65 * cards can be configured for one of two operating modes depending
66 * on how the Vpp1 and Vpp2 programming voltages are set when the
67 * card is activated. In order to put the card in proper PCMCIA
68 * operation (where the CIS table is visible and the interface is
69 * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
70 * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
71 * which leaves the card in ISA/PCI mode, which prevents it from
72 * being activated as an PCMCIA device.
74 * Note that some PCMCIA controller software packages for Windows NT
75 * fail to set the voltages as well.
77 * The Aironet devices can operate in both station mode and access point
78 * mode. Typically, when programmed for station mode, the card can be set
79 * to automatically perform encapsulation/decapsulation of Ethernet II
80 * and 802.3 frames within 802.11 frames so that the host doesn't have
81 * to do it itself. This driver doesn't program the card that way: the
82 * driver handles all of the encapsulation/decapsulation itself.
85 #include "opt_inet.h"
87 #ifdef INET
88 #define ANCACHE /* enable signal strength cache */
89 #endif
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/kernel.h>
96 #include <sys/proc.h>
97 #include <sys/priv.h>
98 #include <sys/ucred.h>
99 #include <sys/socket.h>
100 #ifdef ANCACHE
101 #include <sys/syslog.h>
102 #endif
103 #include <sys/sysctl.h>
104 #include <sys/thread2.h>
106 #include <sys/module.h>
107 #include <sys/sysctl.h>
108 #include <sys/bus.h>
109 #include <sys/rman.h>
110 #include <sys/malloc.h>
112 #include <net/if.h>
113 #include <net/ifq_var.h>
114 #include <net/if_arp.h>
115 #include <net/ethernet.h>
116 #include <net/if_dl.h>
117 #include <net/if_types.h>
118 #include <net/if_media.h>
119 #include <netproto/802_11/ieee80211.h>
120 #include <netproto/802_11/ieee80211_ioctl.h>
122 #ifdef INET
123 #include <netinet/in.h>
124 #include <netinet/in_systm.h>
125 #include <netinet/in_var.h>
126 #include <netinet/ip.h>
127 #endif
129 #include <net/bpf.h>
131 #include <machine/md_var.h>
133 #include "if_aironet_ieee.h"
134 #include "if_anreg.h"
136 /* These are global because we need them in sys/pci/if_an_p.c. */
137 static void an_reset (struct an_softc *);
138 static int an_init_mpi350_desc (struct an_softc *);
139 static int an_ioctl (struct ifnet *, u_long, caddr_t,
140 struct ucred *);
141 static void an_init (void *);
142 static int an_init_tx_ring (struct an_softc *);
143 static void an_start (struct ifnet *);
144 static void an_watchdog (struct ifnet *);
145 static void an_rxeof (struct an_softc *);
146 static void an_txeof (struct an_softc *, int);
148 static void an_promisc (struct an_softc *, int);
149 static int an_cmd (struct an_softc *, int, int);
150 static int an_cmd_struct (struct an_softc *, struct an_command *,
151 struct an_reply *);
152 static int an_read_record (struct an_softc *, struct an_ltv_gen *);
153 static int an_write_record (struct an_softc *, struct an_ltv_gen *);
154 static int an_read_data (struct an_softc *, int,
155 int, caddr_t, int);
156 static int an_write_data (struct an_softc *, int,
157 int, caddr_t, int);
158 static int an_seek (struct an_softc *, int, int, int);
159 static int an_alloc_nicmem (struct an_softc *, int, int *);
160 static int an_dma_malloc (struct an_softc *, bus_size_t,
161 struct an_dma_alloc *, int);
162 static void an_dma_free (struct an_softc *,
163 struct an_dma_alloc *);
164 static void an_dma_malloc_cb (void *, bus_dma_segment_t *, int, int);
165 static void an_stats_update (void *);
166 static void an_setdef (struct an_softc *, struct an_req *);
167 #ifdef ANCACHE
168 static void an_cache_store (struct an_softc *, struct mbuf *,
169 uint8_t, uint8_t);
170 #endif
172 /* function definitions for use with the Cisco's Linux configuration
173 utilities
176 static int readrids (struct ifnet*, struct aironet_ioctl*);
177 static int writerids (struct ifnet*, struct aironet_ioctl*);
178 static int flashcard (struct ifnet*, struct aironet_ioctl*);
180 static int cmdreset (struct ifnet *);
181 static int setflashmode (struct ifnet *);
182 static int flashgchar (struct ifnet *,int,int);
183 static int flashpchar (struct ifnet *,int,int);
184 static int flashputbuf (struct ifnet *);
185 static int flashrestart (struct ifnet *);
186 static int WaitBusy (struct ifnet *, int);
187 static int unstickbusy (struct ifnet *);
189 static void an_dump_record (struct an_softc *,struct an_ltv_gen *,
190 char *);
192 static int an_media_change (struct ifnet *);
193 static void an_media_status (struct ifnet *, struct ifmediareq *);
195 static int an_dump = 0;
196 static int an_cache_mode = 0;
198 #define DBM 0
199 #define PERCENT 1
200 #define RAW 2
202 static char an_conf[256];
203 static char an_conf_cache[256];
205 DECLARE_DUMMY_MODULE(if_an);
207 /* sysctl vars */
209 SYSCTL_NODE(_hw, OID_AUTO, an, CTLFLAG_RD, 0, "Wireless driver parameters");
211 static int
212 sysctl_an_dump(SYSCTL_HANDLER_ARGS)
214 int error, r, last;
215 char *s = an_conf;
217 last = an_dump;
219 switch (an_dump) {
220 case 0:
221 strcpy(an_conf, "off");
222 break;
223 case 1:
224 strcpy(an_conf, "type");
225 break;
226 case 2:
227 strcpy(an_conf, "dump");
228 break;
229 default:
230 ksnprintf(an_conf, 5, "%x", an_dump);
231 break;
234 error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req);
236 if (strncmp(an_conf,"off", 3) == 0) {
237 an_dump = 0;
239 if (strncmp(an_conf,"dump", 4) == 0) {
240 an_dump = 1;
242 if (strncmp(an_conf,"type", 4) == 0) {
243 an_dump = 2;
245 if (*s == 'f') {
246 r = 0;
247 for (;;s++) {
248 if ((*s >= '0') && (*s <= '9')) {
249 r = r * 16 + (*s - '0');
250 } else if ((*s >= 'a') && (*s <= 'f')) {
251 r = r * 16 + (*s - 'a' + 10);
252 } else {
253 break;
256 an_dump = r;
258 if (an_dump != last)
259 kprintf("Sysctl changed for Aironet driver\n");
261 return error;
264 SYSCTL_PROC(_hw_an, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW,
265 0, sizeof(an_conf), sysctl_an_dump, "A", "");
267 static int
268 sysctl_an_cache_mode(SYSCTL_HANDLER_ARGS)
270 int error, last;
272 last = an_cache_mode;
274 switch (an_cache_mode) {
275 case 1:
276 strcpy(an_conf_cache, "per");
277 break;
278 case 2:
279 strcpy(an_conf_cache, "raw");
280 break;
281 default:
282 strcpy(an_conf_cache, "dbm");
283 break;
286 error = sysctl_handle_string(oidp, an_conf_cache,
287 sizeof(an_conf_cache), req);
289 if (strncmp(an_conf_cache,"dbm", 3) == 0) {
290 an_cache_mode = 0;
292 if (strncmp(an_conf_cache,"per", 3) == 0) {
293 an_cache_mode = 1;
295 if (strncmp(an_conf_cache,"raw", 3) == 0) {
296 an_cache_mode = 2;
299 return error;
302 SYSCTL_PROC(_hw_an, OID_AUTO, an_cache_mode, CTLTYPE_STRING | CTLFLAG_RW,
303 0, sizeof(an_conf_cache), sysctl_an_cache_mode, "A", "");
306 * We probe for an Aironet 4500/4800 card by attempting to
307 * read the default SSID list. On reset, the first entry in
308 * the SSID list will contain the name "tsunami." If we don't
309 * find this, then there's no card present.
312 an_probe(device_t dev)
314 struct an_softc *sc = device_get_softc(dev);
315 struct an_ltv_ssidlist_new ssid;
316 int error;
318 bzero((char *)&ssid, sizeof(ssid));
320 error = an_alloc_port(dev, 0, AN_IOSIZ);
321 if (error)
322 return (error);
324 /* can't do autoprobing */
325 if (rman_get_start(sc->port_res) == -1)
326 return(ENXIO);
329 * We need to fake up a softc structure long enough
330 * to be able to issue commands and call some of the
331 * other routines.
333 sc->an_bhandle = rman_get_bushandle(sc->port_res);
334 sc->an_btag = rman_get_bustag(sc->port_res);
336 ssid.an_len = sizeof(ssid);
337 ssid.an_type = AN_RID_SSIDLIST;
339 /* Make sure interrupts are disabled. */
340 sc->mpi350 = 0;
341 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
342 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 0xFFFF);
344 if_initname(&sc->arpcom.ac_if, device_get_name(dev),
345 device_get_unit(dev));
346 an_reset(sc);
348 if (an_cmd(sc, AN_CMD_READCFG, 0))
349 return(ENXIO);
351 if (an_read_record(sc, (struct an_ltv_gen *)&ssid))
352 return(ENXIO);
354 /* See if the ssid matches what we expect ... but doesn't have to */
355 if (strcmp(ssid.an_entry[0].an_ssid, AN_DEF_SSID))
356 return(ENXIO);
358 return(0);
362 * Allocate a port resource with the given resource id.
365 an_alloc_port(device_t dev, int rid, int size)
367 struct an_softc *sc = device_get_softc(dev);
368 struct resource *res;
370 res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
371 0ul, ~0ul, size, RF_ACTIVE);
372 if (res) {
373 sc->port_rid = rid;
374 sc->port_res = res;
375 return (0);
376 } else {
377 return (ENOENT);
382 * Allocate a memory resource with the given resource id.
385 an_alloc_memory(device_t dev, int rid, int size)
387 struct an_softc *sc = device_get_softc(dev);
388 struct resource *res;
390 res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
391 0ul, ~0ul, size, RF_ACTIVE);
392 if (res) {
393 sc->mem_rid = rid;
394 sc->mem_res = res;
395 sc->mem_used = size;
396 return (0);
397 } else {
398 return (ENOENT);
403 * Allocate a auxilary memory resource with the given resource id.
406 an_alloc_aux_memory(device_t dev, int rid, int size)
408 struct an_softc *sc = device_get_softc(dev);
409 struct resource *res;
411 res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
412 0ul, ~0ul, size, RF_ACTIVE);
413 if (res) {
414 sc->mem_aux_rid = rid;
415 sc->mem_aux_res = res;
416 sc->mem_aux_used = size;
417 return (0);
418 } else {
419 return (ENOENT);
424 * Allocate an irq resource with the given resource id.
427 an_alloc_irq(device_t dev, int rid, int flags)
429 struct an_softc *sc = device_get_softc(dev);
430 struct resource *res;
432 res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
433 (RF_ACTIVE | flags));
434 if (res) {
435 sc->irq_rid = rid;
436 sc->irq_res = res;
437 return (0);
438 } else {
439 return (ENOENT);
443 static void
444 an_dma_malloc_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
446 bus_addr_t *paddr = (bus_addr_t*) arg;
447 *paddr = segs->ds_addr;
451 * Alloc DMA memory and set the pointer to it
453 static int
454 an_dma_malloc(struct an_softc *sc, bus_size_t size, struct an_dma_alloc *dma,
455 int mapflags)
457 int r;
459 r = bus_dmamap_create(sc->an_dtag, 0, &dma->an_dma_map);
460 if (r != 0)
461 goto fail_0;
463 r = bus_dmamem_alloc(sc->an_dtag, (void**) &dma->an_dma_vaddr,
464 BUS_DMA_WAITOK, &dma->an_dma_map);
465 if (r != 0)
466 goto fail_1;
468 r = bus_dmamap_load(sc->an_dtag, dma->an_dma_map, dma->an_dma_vaddr,
469 size,
470 an_dma_malloc_cb,
471 &dma->an_dma_paddr,
472 mapflags);
473 if (r != 0)
474 goto fail_2;
476 dma->an_dma_size = size;
477 return (0);
479 fail_2:
480 bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
481 fail_1:
482 bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
483 fail_0:
484 bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
485 dma->an_dma_map = NULL;
486 return (r);
489 static void
490 an_dma_free(struct an_softc *sc, struct an_dma_alloc *dma)
492 bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
493 bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
494 dma->an_dma_vaddr = NULL;
495 bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
499 * Release all resources
501 void
502 an_release_resources(device_t dev)
504 struct an_softc *sc = device_get_softc(dev);
505 int i;
507 if (sc->port_res) {
508 bus_release_resource(dev, SYS_RES_IOPORT,
509 sc->port_rid, sc->port_res);
510 sc->port_res = 0;
512 if (sc->mem_res) {
513 bus_release_resource(dev, SYS_RES_MEMORY,
514 sc->mem_rid, sc->mem_res);
515 sc->mem_res = 0;
517 if (sc->mem_aux_res) {
518 bus_release_resource(dev, SYS_RES_MEMORY,
519 sc->mem_aux_rid, sc->mem_aux_res);
520 sc->mem_aux_res = 0;
522 if (sc->irq_res) {
523 bus_release_resource(dev, SYS_RES_IRQ,
524 sc->irq_rid, sc->irq_res);
525 sc->irq_res = 0;
527 if (sc->an_rid_buffer.an_dma_paddr) {
528 an_dma_free(sc, &sc->an_rid_buffer);
530 for (i = 0; i < AN_MAX_RX_DESC; i++)
531 if (sc->an_rx_buffer[i].an_dma_paddr) {
532 an_dma_free(sc, &sc->an_rx_buffer[i]);
534 for (i = 0; i < AN_MAX_TX_DESC; i++)
535 if (sc->an_tx_buffer[i].an_dma_paddr) {
536 an_dma_free(sc, &sc->an_tx_buffer[i]);
538 if (sc->an_dtag) {
539 bus_dma_tag_destroy(sc->an_dtag);
545 an_init_mpi350_desc(struct an_softc *sc)
547 struct an_command cmd_struct;
548 struct an_reply reply;
549 struct an_card_rid_desc an_rid_desc;
550 struct an_card_rx_desc an_rx_desc;
551 struct an_card_tx_desc an_tx_desc;
552 int i, desc;
554 if(!sc->an_rid_buffer.an_dma_paddr)
555 an_dma_malloc(sc, AN_RID_BUFFER_SIZE,
556 &sc->an_rid_buffer, 0);
557 for (i = 0; i < AN_MAX_RX_DESC; i++)
558 if(!sc->an_rx_buffer[i].an_dma_paddr)
559 an_dma_malloc(sc, AN_RX_BUFFER_SIZE,
560 &sc->an_rx_buffer[i], 0);
561 for (i = 0; i < AN_MAX_TX_DESC; i++)
562 if(!sc->an_tx_buffer[i].an_dma_paddr)
563 an_dma_malloc(sc, AN_TX_BUFFER_SIZE,
564 &sc->an_tx_buffer[i], 0);
567 * Allocate RX descriptor
569 bzero(&reply,sizeof(reply));
570 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
571 cmd_struct.an_parm0 = AN_DESCRIPTOR_RX;
572 cmd_struct.an_parm1 = AN_RX_DESC_OFFSET;
573 cmd_struct.an_parm2 = AN_MAX_RX_DESC;
574 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
575 if_printf(&sc->arpcom.ac_if,
576 "failed to allocate RX descriptor\n");
577 return(EIO);
580 for (desc = 0; desc < AN_MAX_RX_DESC; desc++) {
581 bzero(&an_rx_desc, sizeof(an_rx_desc));
582 an_rx_desc.an_valid = 1;
583 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
584 an_rx_desc.an_done = 0;
585 an_rx_desc.an_phys = sc->an_rx_buffer[desc].an_dma_paddr;
587 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
588 CSR_MEM_AUX_WRITE_4(sc, AN_RX_DESC_OFFSET
589 + (desc * sizeof(an_rx_desc))
590 + (i * 4),
591 ((u_int32_t*)&an_rx_desc)[i]);
595 * Allocate TX descriptor
598 bzero(&reply,sizeof(reply));
599 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
600 cmd_struct.an_parm0 = AN_DESCRIPTOR_TX;
601 cmd_struct.an_parm1 = AN_TX_DESC_OFFSET;
602 cmd_struct.an_parm2 = AN_MAX_TX_DESC;
603 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
604 if_printf(&sc->arpcom.ac_if,
605 "failed to allocate TX descriptor\n");
606 return(EIO);
609 for (desc = 0; desc < AN_MAX_TX_DESC; desc++) {
610 bzero(&an_tx_desc, sizeof(an_tx_desc));
611 an_tx_desc.an_offset = 0;
612 an_tx_desc.an_eoc = 0;
613 an_tx_desc.an_valid = 0;
614 an_tx_desc.an_len = 0;
615 an_tx_desc.an_phys = sc->an_tx_buffer[desc].an_dma_paddr;
617 for (i = 0; i < sizeof(an_tx_desc) / 4; i++)
618 CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
619 + (desc * sizeof(an_tx_desc))
620 + (i * 4),
621 ((u_int32_t*)&an_tx_desc)[i]);
625 * Allocate RID descriptor
628 bzero(&reply,sizeof(reply));
629 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
630 cmd_struct.an_parm0 = AN_DESCRIPTOR_HOSTRW;
631 cmd_struct.an_parm1 = AN_HOST_DESC_OFFSET;
632 cmd_struct.an_parm2 = 1;
633 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
634 if_printf(&sc->arpcom.ac_if,
635 "failed to allocate host descriptor\n");
636 return(EIO);
639 bzero(&an_rid_desc, sizeof(an_rid_desc));
640 an_rid_desc.an_valid = 1;
641 an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
642 an_rid_desc.an_rid = 0;
643 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
645 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
646 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
647 ((u_int32_t*)&an_rid_desc)[i]);
649 return(0);
653 an_attach(struct an_softc *sc, device_t dev, int flags)
655 struct ifnet *ifp = &sc->arpcom.ac_if;
656 int error;
658 callout_init(&sc->an_stat_timer);
659 sc->an_associated = 0;
660 sc->an_monitor = 0;
661 sc->an_was_monitor = 0;
662 sc->an_flash_buffer = NULL;
664 ifp->if_softc = sc;
665 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
667 /* Reset the NIC. */
668 an_reset(sc);
669 if (sc->mpi350) {
670 error = an_init_mpi350_desc(sc);
671 if (error)
672 return(error);
675 /* Load factory config */
676 if (an_cmd(sc, AN_CMD_READCFG, 0)) {
677 device_printf(dev, "failed to load config data\n");
678 return(EIO);
681 /* Read the current configuration */
682 sc->an_config.an_type = AN_RID_GENCONFIG;
683 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
684 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
685 device_printf(dev, "read record failed\n");
686 return(EIO);
689 /* Read the card capabilities */
690 sc->an_caps.an_type = AN_RID_CAPABILITIES;
691 sc->an_caps.an_len = sizeof(struct an_ltv_caps);
692 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
693 device_printf(dev, "read record failed\n");
694 return(EIO);
697 /* Read ssid list */
698 sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
699 sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
700 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
701 device_printf(dev, "read record failed\n");
702 return(EIO);
705 /* Read AP list */
706 sc->an_aplist.an_type = AN_RID_APLIST;
707 sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
708 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
709 device_printf(dev, "read record failed\n");
710 return(EIO);
713 #ifdef ANCACHE
714 /* Read the RSSI <-> dBm map */
715 sc->an_have_rssimap = 0;
716 if (sc->an_caps.an_softcaps & 8) {
717 sc->an_rssimap.an_type = AN_RID_RSSI_MAP;
718 sc->an_rssimap.an_len = sizeof(struct an_ltv_rssi_map);
719 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_rssimap)) {
720 device_printf(dev, "unable to get RSSI <-> dBM map\n");
721 } else {
722 device_printf(dev, "got RSSI <-> dBM map\n");
723 sc->an_have_rssimap = 1;
725 } else {
726 device_printf(dev, "no RSSI <-> dBM map\n");
728 #endif
730 ifp->if_mtu = ETHERMTU;
731 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
732 ifp->if_ioctl = an_ioctl;
733 ifp->if_start = an_start;
734 ifp->if_watchdog = an_watchdog;
735 ifp->if_init = an_init;
736 ifp->if_baudrate = 10000000;
737 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
738 ifq_set_ready(&ifp->if_snd);
740 bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
741 bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
742 sizeof(AN_DEFAULT_NODENAME) - 1);
744 bzero(sc->an_ssidlist.an_entry[0].an_ssid,
745 sizeof(sc->an_ssidlist.an_entry[0].an_ssid));
746 bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_entry[0].an_ssid,
747 sizeof(AN_DEFAULT_NETNAME) - 1);
748 sc->an_ssidlist.an_entry[0].an_len = strlen(AN_DEFAULT_NETNAME);
750 sc->an_config.an_opmode =
751 AN_OPMODE_INFRASTRUCTURE_STATION;
753 sc->an_tx_rate = 0;
754 bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
756 ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status);
757 #define ADD(m, c) ifmedia_add(&sc->an_ifmedia, (m), (c), NULL)
758 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
759 IFM_IEEE80211_ADHOC, 0), 0);
760 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
761 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
762 IFM_IEEE80211_ADHOC, 0), 0);
763 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
764 if (sc->an_caps.an_rates[2] == AN_RATE_5_5MBPS) {
765 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
766 IFM_IEEE80211_ADHOC, 0), 0);
767 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
769 if (sc->an_caps.an_rates[3] == AN_RATE_11MBPS) {
770 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
771 IFM_IEEE80211_ADHOC, 0), 0);
772 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
774 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
775 IFM_IEEE80211_ADHOC, 0), 0);
776 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
777 #undef ADD
778 ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
779 0, 0));
782 * Call MI attach routine.
784 ether_ifattach(ifp, sc->an_caps.an_oemaddr, NULL);
786 return(0);
790 an_detach(device_t dev)
792 struct an_softc *sc = device_get_softc(dev);
793 struct ifnet *ifp = &sc->arpcom.ac_if;
795 lwkt_serialize_enter(ifp->if_serializer);
796 an_stop(sc);
797 bus_teardown_intr(dev, sc->irq_res, sc->irq_handle);
798 lwkt_serialize_exit(ifp->if_serializer);
800 ifmedia_removeall(&sc->an_ifmedia);
801 ether_ifdetach(ifp);
802 an_release_resources(dev);
803 return 0;
806 static void
807 an_rxeof(struct an_softc *sc)
809 struct ifnet *ifp;
810 struct ether_header *eh;
811 struct ieee80211_frame *ih;
812 struct an_rxframe rx_frame;
813 struct an_rxframe_802_3 rx_frame_802_3;
814 struct mbuf *m;
815 int len, id, error = 0, i, count = 0;
816 int ieee80211_header_len;
817 u_char *bpf_buf;
818 u_short fc1;
819 struct an_card_rx_desc an_rx_desc;
820 u_int8_t *buf;
822 ifp = &sc->arpcom.ac_if;
824 if (!sc->mpi350) {
825 id = CSR_READ_2(sc, AN_RX_FID);
827 if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
828 /* read raw 802.11 packet */
829 bpf_buf = sc->buf_802_11;
831 /* read header */
832 if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame,
833 sizeof(rx_frame))) {
834 ifp->if_ierrors++;
835 return;
839 * skip beacon by default since this increases the
840 * system load a lot
843 if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) &&
844 (rx_frame.an_frame_ctl &
845 IEEE80211_FC0_SUBTYPE_BEACON)) {
846 return;
849 if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
850 len = rx_frame.an_rx_payload_len
851 + sizeof(rx_frame);
852 /* Check for insane frame length */
853 if (len > sizeof(sc->buf_802_11)) {
854 if_printf(ifp,
855 "oversized packet received "
856 "(%d, %d)\n", len, MCLBYTES);
857 ifp->if_ierrors++;
858 return;
861 bcopy((char *)&rx_frame,
862 bpf_buf, sizeof(rx_frame));
864 error = an_read_data(sc, id, sizeof(rx_frame),
865 (caddr_t)bpf_buf+sizeof(rx_frame),
866 rx_frame.an_rx_payload_len);
867 } else {
868 fc1=rx_frame.an_frame_ctl >> 8;
869 ieee80211_header_len =
870 sizeof(struct ieee80211_frame);
871 if ((fc1 & IEEE80211_FC1_DIR_TODS) &&
872 (fc1 & IEEE80211_FC1_DIR_FROMDS)) {
873 ieee80211_header_len += ETHER_ADDR_LEN;
876 len = rx_frame.an_rx_payload_len
877 + ieee80211_header_len;
878 /* Check for insane frame length */
879 if (len > sizeof(sc->buf_802_11)) {
880 if_printf(ifp,
881 "oversized packet received "
882 "(%d, %d)\n", len, MCLBYTES);
883 ifp->if_ierrors++;
884 return;
887 ih = (struct ieee80211_frame *)bpf_buf;
889 bcopy((char *)&rx_frame.an_frame_ctl,
890 (char *)ih, ieee80211_header_len);
892 error = an_read_data(sc, id, sizeof(rx_frame) +
893 rx_frame.an_gaplen,
894 (caddr_t)ih +ieee80211_header_len,
895 rx_frame.an_rx_payload_len);
897 BPF_TAP(ifp, bpf_buf, len);
898 } else {
899 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
900 if (m == NULL) {
901 ifp->if_ierrors++;
902 return;
904 m->m_pkthdr.rcvif = ifp;
905 /* Read Ethernet encapsulated packet */
907 #ifdef ANCACHE
908 /* Read NIC frame header */
909 if (an_read_data(sc, id, 0, (caddr_t)&rx_frame,
910 sizeof(rx_frame))) {
911 ifp->if_ierrors++;
912 return;
914 #endif
915 /* Read in the 802_3 frame header */
916 if (an_read_data(sc, id, 0x34,
917 (caddr_t)&rx_frame_802_3,
918 sizeof(rx_frame_802_3))) {
919 ifp->if_ierrors++;
920 return;
922 if (rx_frame_802_3.an_rx_802_3_status != 0) {
923 ifp->if_ierrors++;
924 return;
926 /* Check for insane frame length */
927 len = rx_frame_802_3.an_rx_802_3_payload_len;
928 if (len > sizeof(sc->buf_802_11)) {
929 if_printf(ifp,
930 "oversized packet received (%d, %d)\n",
931 len, MCLBYTES);
932 ifp->if_ierrors++;
933 return;
935 m->m_pkthdr.len = m->m_len =
936 rx_frame_802_3.an_rx_802_3_payload_len + 12;
938 eh = mtod(m, struct ether_header *);
940 bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
941 (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
942 bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
943 (char *)&eh->ether_shost, ETHER_ADDR_LEN);
945 /* in mbuf header type is just before payload */
946 error = an_read_data(sc, id, 0x44,
947 (caddr_t)&(eh->ether_type),
948 rx_frame_802_3.an_rx_802_3_payload_len);
950 if (error) {
951 m_freem(m);
952 ifp->if_ierrors++;
953 return;
955 ifp->if_ipackets++;
957 #ifdef ANCACHE
958 an_cache_store(sc, m,
959 rx_frame.an_rx_signal_strength,
960 rx_frame.an_rsvd0);
961 #endif
962 ifp->if_input(ifp, m);
965 } else { /* MPI-350 */
966 for (count = 0; count < AN_MAX_RX_DESC; count++){
967 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
968 ((u_int32_t*)&an_rx_desc)[i]
969 = CSR_MEM_AUX_READ_4(sc,
970 AN_RX_DESC_OFFSET
971 + (count * sizeof(an_rx_desc))
972 + (i * 4));
974 if (an_rx_desc.an_done && !an_rx_desc.an_valid) {
975 buf = sc->an_rx_buffer[count].an_dma_vaddr;
977 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
978 if (m == NULL) {
979 ifp->if_ierrors++;
980 return;
982 m->m_pkthdr.rcvif = ifp;
983 /* Read Ethernet encapsulated packet */
986 * No ANCACHE support since we just get back
987 * an Ethernet packet no 802.11 info
989 #if 0
990 #ifdef ANCACHE
991 /* Read NIC frame header */
992 bcopy(buf, (caddr_t)&rx_frame,
993 sizeof(rx_frame));
994 #endif
995 #endif
996 /* Check for insane frame length */
997 len = an_rx_desc.an_len + 12;
998 if (len > MCLBYTES) {
999 if_printf(ifp,
1000 "oversized packet received "
1001 "(%d, %d)\n", len, MCLBYTES);
1002 ifp->if_ierrors++;
1003 return;
1006 m->m_pkthdr.len = m->m_len =
1007 an_rx_desc.an_len + 12;
1009 eh = mtod(m, struct ether_header *);
1011 bcopy(buf, (char *)eh,
1012 m->m_pkthdr.len);
1014 ifp->if_ipackets++;
1016 #if 0
1017 #ifdef ANCACHE
1018 an_cache_store(sc, m,
1019 rx_frame.an_rx_signal_strength,
1020 rx_frame.an_rsvd0);
1021 #endif
1022 #endif
1023 ifp->if_input(ifp, m);
1025 an_rx_desc.an_valid = 1;
1026 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
1027 an_rx_desc.an_done = 0;
1028 an_rx_desc.an_phys =
1029 sc->an_rx_buffer[count].an_dma_paddr;
1031 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
1032 CSR_MEM_AUX_WRITE_4(sc,
1033 AN_RX_DESC_OFFSET
1034 + (count * sizeof(an_rx_desc))
1035 + (i * 4),
1036 ((u_int32_t*)&an_rx_desc)[i]);
1038 } else {
1039 if_printf(ifp, "Didn't get valid RX packet "
1040 "%x %x %d\n",
1041 an_rx_desc.an_done,
1042 an_rx_desc.an_valid,
1043 an_rx_desc.an_len);
1049 static void
1050 an_txeof(struct an_softc *sc, int status)
1052 struct ifnet *ifp;
1053 int id, i;
1055 ifp = &sc->arpcom.ac_if;
1057 ifp->if_timer = 0;
1058 ifp->if_flags &= ~IFF_OACTIVE;
1060 if (!sc->mpi350) {
1061 id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
1063 if (status & AN_EV_TX_EXC) {
1064 ifp->if_oerrors++;
1065 } else
1066 ifp->if_opackets++;
1068 for (i = 0; i < AN_TX_RING_CNT; i++) {
1069 if (id == sc->an_rdata.an_tx_ring[i]) {
1070 sc->an_rdata.an_tx_ring[i] = 0;
1071 break;
1075 AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
1076 } else { /* MPI 350 */
1077 id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
1078 if (!sc->an_rdata.an_tx_empty){
1079 if (status & AN_EV_TX_EXC) {
1080 ifp->if_oerrors++;
1081 } else
1082 ifp->if_opackets++;
1083 AN_INC(sc->an_rdata.an_tx_cons, AN_MAX_TX_DESC);
1084 if (sc->an_rdata.an_tx_prod ==
1085 sc->an_rdata.an_tx_cons)
1086 sc->an_rdata.an_tx_empty = 1;
1092 * We abuse the stats updater to check the current NIC status. This
1093 * is important because we don't want to allow transmissions until
1094 * the NIC has synchronized to the current cell (either as the master
1095 * in an ad-hoc group, or as a station connected to an access point).
1097 static void
1098 an_stats_update(void *xsc)
1100 struct an_softc *sc;
1101 struct ifnet *ifp;
1103 sc = xsc;
1104 ifp = &sc->arpcom.ac_if;
1106 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1108 sc->an_status.an_type = AN_RID_STATUS;
1109 sc->an_status.an_len = sizeof(struct an_ltv_status);
1110 an_read_record(sc, (struct an_ltv_gen *)&sc->an_status);
1112 if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
1113 sc->an_associated = 1;
1114 else
1115 sc->an_associated = 0;
1117 /* Don't do this while we're not transmitting */
1118 if ((ifp->if_flags & IFF_OACTIVE) == 0) {
1119 sc->an_stats.an_len = sizeof(struct an_ltv_stats);
1120 sc->an_stats.an_type = AN_RID_32BITS_CUM;
1121 an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len);
1124 callout_reset(&sc->an_stat_timer, hz, an_stats_update, sc);
1126 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1129 void
1130 an_intr(void *xsc)
1132 struct an_softc *sc;
1133 struct ifnet *ifp;
1134 u_int16_t status;
1136 sc = (struct an_softc*)xsc;
1138 ifp = &sc->arpcom.ac_if;
1140 /* Disable interrupts. */
1141 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
1143 status = CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350));
1144 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), ~AN_INTRS(sc->mpi350));
1146 if (status & AN_EV_MIC)
1147 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_MIC);
1149 if (status & AN_EV_LINKSTAT) {
1150 if (CSR_READ_2(sc, AN_LINKSTAT(sc->mpi350))
1151 == AN_LINKSTAT_ASSOCIATED)
1152 sc->an_associated = 1;
1153 else
1154 sc->an_associated = 0;
1155 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_LINKSTAT);
1158 if (status & AN_EV_RX) {
1159 an_rxeof(sc);
1160 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_RX);
1163 if (sc->mpi350 && status & AN_EV_TX_CPY) {
1164 an_txeof(sc, status);
1165 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_CPY);
1168 if (status & AN_EV_TX) {
1169 an_txeof(sc, status);
1170 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX);
1173 if (status & AN_EV_TX_EXC) {
1174 an_txeof(sc, status);
1175 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_EXC);
1178 if (status & AN_EV_ALLOC)
1179 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1181 /* Re-enable interrupts. */
1182 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
1184 if ((ifp->if_flags & IFF_UP) && !ifq_is_empty(&ifp->if_snd))
1185 if_devstart(ifp);
1188 static int
1189 an_cmd_struct(struct an_softc *sc, struct an_command *cmd,
1190 struct an_reply *reply)
1192 int i;
1194 for (i = 0; i != AN_TIMEOUT; i++) {
1195 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
1196 DELAY(1000);
1197 } else
1198 break;
1200 if( i == AN_TIMEOUT) {
1201 kprintf("BUSY\n");
1202 return(ETIMEDOUT);
1205 CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), cmd->an_parm0);
1206 CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), cmd->an_parm1);
1207 CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), cmd->an_parm2);
1208 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd->an_cmd);
1210 for (i = 0; i < AN_TIMEOUT; i++) {
1211 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1212 break;
1213 DELAY(1000);
1216 reply->an_resp0 = CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1217 reply->an_resp1 = CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1218 reply->an_resp2 = CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1219 reply->an_status = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1221 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1222 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1224 /* Ack the command */
1225 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1227 if (i == AN_TIMEOUT)
1228 return(ETIMEDOUT);
1230 return(0);
1233 static int
1234 an_cmd(struct an_softc *sc, int cmd, int val)
1236 int i, s = 0;
1238 CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), val);
1239 CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), 0);
1240 CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), 0);
1241 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1243 for (i = 0; i < AN_TIMEOUT; i++) {
1244 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1245 break;
1246 else {
1247 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) == cmd)
1248 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1252 for (i = 0; i < AN_TIMEOUT; i++) {
1253 CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1254 CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1255 CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1256 s = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1257 if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
1258 break;
1261 /* Ack the command */
1262 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1264 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1265 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1267 if (i == AN_TIMEOUT)
1268 return(ETIMEDOUT);
1270 return(0);
1274 * This reset sequence may look a little strange, but this is the
1275 * most reliable method I've found to really kick the NIC in the
1276 * head and force it to reboot correctly.
1278 static void
1279 an_reset(struct an_softc *sc)
1281 an_cmd(sc, AN_CMD_ENABLE, 0);
1282 an_cmd(sc, AN_CMD_FW_RESTART, 0);
1283 an_cmd(sc, AN_CMD_NOOP2, 0);
1285 if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
1286 if_printf(&sc->arpcom.ac_if, "reset failed\n");
1288 an_cmd(sc, AN_CMD_DISABLE, 0);
1290 return;
1294 * Read an LTV record from the NIC.
1296 static int
1297 an_read_record(struct an_softc *sc, struct an_ltv_gen *ltv)
1299 struct an_ltv_gen *an_ltv;
1300 struct an_card_rid_desc an_rid_desc;
1301 struct an_command cmd;
1302 struct an_reply reply;
1303 u_int16_t *ptr;
1304 u_int8_t *ptr2;
1305 int i, len;
1307 if (ltv->an_len < 4 || ltv->an_type == 0)
1308 return(EINVAL);
1310 if (!sc->mpi350){
1311 /* Tell the NIC to enter record read mode. */
1312 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
1313 if_printf(&sc->arpcom.ac_if, "RID access failed\n");
1314 return(EIO);
1317 /* Seek to the record. */
1318 if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
1319 if_printf(&sc->arpcom.ac_if, "seek to record failed\n");
1320 return(EIO);
1324 * Read the length and record type and make sure they
1325 * match what we expect (this verifies that we have enough
1326 * room to hold all of the returned data).
1327 * Length includes type but not length.
1329 len = CSR_READ_2(sc, AN_DATA1);
1330 if (len > (ltv->an_len - 2)) {
1331 if_printf(&sc->arpcom.ac_if,
1332 "record length mismatch -- expected %d, "
1333 "got %d for Rid %x\n",
1334 ltv->an_len - 2, len, ltv->an_type);
1335 len = ltv->an_len - 2;
1336 } else {
1337 ltv->an_len = len + 2;
1340 /* Now read the data. */
1341 len -= 2; /* skip the type */
1342 ptr = &ltv->an_val;
1343 for (i = len; i > 1; i -= 2)
1344 *ptr++ = CSR_READ_2(sc, AN_DATA1);
1345 if (i) {
1346 ptr2 = (u_int8_t *)ptr;
1347 *ptr2 = CSR_READ_1(sc, AN_DATA1);
1349 } else { /* MPI-350 */
1350 if (sc->an_rid_buffer.an_dma_vaddr == NULL)
1351 return(EIO);
1352 an_rid_desc.an_valid = 1;
1353 an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
1354 an_rid_desc.an_rid = 0;
1355 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1356 bzero(sc->an_rid_buffer.an_dma_vaddr, AN_RID_BUFFER_SIZE);
1358 bzero(&cmd, sizeof(cmd));
1359 bzero(&reply, sizeof(reply));
1360 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_READ;
1361 cmd.an_parm0 = ltv->an_type;
1363 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1364 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1365 ((u_int32_t*)&an_rid_desc)[i]);
1367 if (an_cmd_struct(sc, &cmd, &reply)
1368 || reply.an_status & AN_CMD_QUAL_MASK) {
1369 if_printf(&sc->arpcom.ac_if,
1370 "failed to read RID %x %x %x %x %x, %d\n",
1371 ltv->an_type,
1372 reply.an_status,
1373 reply.an_resp0,
1374 reply.an_resp1,
1375 reply.an_resp2,
1377 return(EIO);
1380 an_ltv = (struct an_ltv_gen *)sc->an_rid_buffer.an_dma_vaddr;
1381 if (an_ltv->an_len + 2 < an_rid_desc.an_len) {
1382 an_rid_desc.an_len = an_ltv->an_len;
1385 len = an_rid_desc.an_len;
1386 if (len > (ltv->an_len - 2)) {
1387 if_printf(&sc->arpcom.ac_if,
1388 "record length mismatch -- expected %d, "
1389 "got %d for Rid %x\n",
1390 ltv->an_len - 2, len, ltv->an_type);
1391 len = ltv->an_len - 2;
1392 } else {
1393 ltv->an_len = len + 2;
1395 bcopy(&an_ltv->an_type, &ltv->an_val, len);
1398 if (an_dump)
1399 an_dump_record(sc, ltv, "Read");
1401 return(0);
1405 * Same as read, except we inject data instead of reading it.
1407 static int
1408 an_write_record(struct an_softc *sc, struct an_ltv_gen *ltv)
1410 struct an_card_rid_desc an_rid_desc;
1411 struct an_command cmd;
1412 struct an_reply reply;
1413 u_int16_t *ptr;
1414 u_int8_t *ptr2;
1415 int i, len;
1417 if (an_dump)
1418 an_dump_record(sc, ltv, "Write");
1420 if (!sc->mpi350){
1421 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
1422 return(EIO);
1424 if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
1425 return(EIO);
1428 * Length includes type but not length.
1430 len = ltv->an_len - 2;
1431 CSR_WRITE_2(sc, AN_DATA1, len);
1433 len -= 2; /* skip the type */
1434 ptr = &ltv->an_val;
1435 for (i = len; i > 1; i -= 2)
1436 CSR_WRITE_2(sc, AN_DATA1, *ptr++);
1437 if (i) {
1438 ptr2 = (u_int8_t *)ptr;
1439 CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1442 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
1443 return(EIO);
1444 } else {
1445 /* MPI-350 */
1447 for (i = 0; i != AN_TIMEOUT; i++) {
1448 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350))
1449 & AN_CMD_BUSY) {
1450 DELAY(10);
1451 } else
1452 break;
1454 if (i == AN_TIMEOUT) {
1455 kprintf("BUSY\n");
1458 an_rid_desc.an_valid = 1;
1459 an_rid_desc.an_len = ltv->an_len - 2;
1460 an_rid_desc.an_rid = ltv->an_type;
1461 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1463 bcopy(&ltv->an_type, sc->an_rid_buffer.an_dma_vaddr,
1464 an_rid_desc.an_len);
1466 bzero(&cmd,sizeof(cmd));
1467 bzero(&reply,sizeof(reply));
1468 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_WRITE;
1469 cmd.an_parm0 = ltv->an_type;
1471 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1472 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1473 ((u_int32_t*)&an_rid_desc)[i]);
1475 if ((i = an_cmd_struct(sc, &cmd, &reply))) {
1476 if_printf(&sc->arpcom.ac_if,
1477 "failed to write RID 1 %x %x %x %x %x, %d\n",
1478 ltv->an_type,
1479 reply.an_status,
1480 reply.an_resp0,
1481 reply.an_resp1,
1482 reply.an_resp2,
1484 return(EIO);
1487 if (reply.an_status & AN_CMD_QUAL_MASK) {
1488 if_printf(&sc->arpcom.ac_if,
1489 "failed to write RID 2 %x %x %x %x %x, %d\n",
1490 ltv->an_type,
1491 reply.an_status,
1492 reply.an_resp0,
1493 reply.an_resp1,
1494 reply.an_resp2,
1496 return(EIO);
1500 return(0);
1503 static void
1504 an_dump_record(struct an_softc *sc, struct an_ltv_gen *ltv, char *string)
1506 u_int8_t *ptr2;
1507 int len;
1508 int i;
1509 int count = 0;
1510 char buf[17], temp;
1512 len = ltv->an_len - 4;
1513 if_printf(&sc->arpcom.ac_if, "RID %4x, Length %4d, Mode %s\n",
1514 ltv->an_type, ltv->an_len - 4, string);
1516 if (an_dump == 1 || (an_dump == ltv->an_type)) {
1517 if_printf(&sc->arpcom.ac_if, "\t");
1518 bzero(buf,sizeof(buf));
1520 ptr2 = (u_int8_t *)&ltv->an_val;
1521 for (i = len; i > 0; i--) {
1522 kprintf("%02x ", *ptr2);
1524 temp = *ptr2++;
1525 if (temp >= ' ' && temp <= '~')
1526 buf[count] = temp;
1527 else if (temp >= 'A' && temp <= 'Z')
1528 buf[count] = temp;
1529 else
1530 buf[count] = '.';
1531 if (++count == 16) {
1532 count = 0;
1533 kprintf("%s\n",buf);
1534 if_printf(&sc->arpcom.ac_if, "\t");
1535 bzero(buf,sizeof(buf));
1538 for (; count != 16; count++) {
1539 kprintf(" ");
1541 kprintf(" %s\n",buf);
1545 static int
1546 an_seek(struct an_softc *sc, int id, int off, int chan)
1548 int i;
1549 int selreg, offreg;
1551 switch (chan) {
1552 case AN_BAP0:
1553 selreg = AN_SEL0;
1554 offreg = AN_OFF0;
1555 break;
1556 case AN_BAP1:
1557 selreg = AN_SEL1;
1558 offreg = AN_OFF1;
1559 break;
1560 default:
1561 if_printf(&sc->arpcom.ac_if, "invalid data path: %x\n", chan);
1562 return(EIO);
1565 CSR_WRITE_2(sc, selreg, id);
1566 CSR_WRITE_2(sc, offreg, off);
1568 for (i = 0; i < AN_TIMEOUT; i++) {
1569 if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
1570 break;
1573 if (i == AN_TIMEOUT)
1574 return(ETIMEDOUT);
1576 return(0);
1579 static int
1580 an_read_data(struct an_softc *sc, int id, int off, caddr_t buf, int len)
1582 int i;
1583 u_int16_t *ptr;
1584 u_int8_t *ptr2;
1586 if (off != -1) {
1587 if (an_seek(sc, id, off, AN_BAP1))
1588 return(EIO);
1591 ptr = (u_int16_t *)buf;
1592 for (i = len; i > 1; i -= 2)
1593 *ptr++ = CSR_READ_2(sc, AN_DATA1);
1594 if (i) {
1595 ptr2 = (u_int8_t *)ptr;
1596 *ptr2 = CSR_READ_1(sc, AN_DATA1);
1599 return(0);
1602 static int
1603 an_write_data(struct an_softc *sc, int id, int off, caddr_t buf, int len)
1605 int i;
1606 u_int16_t *ptr;
1607 u_int8_t *ptr2;
1609 if (off != -1) {
1610 if (an_seek(sc, id, off, AN_BAP0))
1611 return(EIO);
1614 ptr = (u_int16_t *)buf;
1615 for (i = len; i > 1; i -= 2)
1616 CSR_WRITE_2(sc, AN_DATA0, *ptr++);
1617 if (i) {
1618 ptr2 = (u_int8_t *)ptr;
1619 CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1622 return(0);
1626 * Allocate a region of memory inside the NIC and zero
1627 * it out.
1629 static int
1630 an_alloc_nicmem(struct an_softc *sc, int len, int *id)
1632 int i;
1634 if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
1635 if_printf(&sc->arpcom.ac_if,
1636 "failed to allocate %d bytes on NIC\n", len);
1637 return(ENOMEM);
1640 for (i = 0; i < AN_TIMEOUT; i++) {
1641 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_ALLOC)
1642 break;
1645 if (i == AN_TIMEOUT)
1646 return(ETIMEDOUT);
1648 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1649 *id = CSR_READ_2(sc, AN_ALLOC_FID);
1651 if (an_seek(sc, *id, 0, AN_BAP0))
1652 return(EIO);
1654 for (i = 0; i < len / 2; i++)
1655 CSR_WRITE_2(sc, AN_DATA0, 0);
1657 return(0);
1660 static void
1661 an_setdef(struct an_softc *sc, struct an_req *areq)
1663 struct ifnet *ifp;
1664 struct an_ltv_genconfig *cfg;
1665 struct an_ltv_ssidlist_new *ssid;
1666 struct an_ltv_aplist *ap;
1667 struct an_ltv_gen *sp;
1669 ifp = &sc->arpcom.ac_if;
1671 switch (areq->an_type) {
1672 case AN_RID_GENCONFIG:
1673 cfg = (struct an_ltv_genconfig *)areq;
1675 bcopy((char *)&cfg->an_macaddr, (char *)&sc->arpcom.ac_enaddr,
1676 ETHER_ADDR_LEN);
1677 bcopy((char *)&cfg->an_macaddr, IF_LLADDR(ifp), ETHER_ADDR_LEN);
1679 bcopy((char *)cfg, (char *)&sc->an_config,
1680 sizeof(struct an_ltv_genconfig));
1681 break;
1682 case AN_RID_SSIDLIST:
1683 ssid = (struct an_ltv_ssidlist_new *)areq;
1684 bcopy((char *)ssid, (char *)&sc->an_ssidlist,
1685 sizeof(struct an_ltv_ssidlist_new));
1686 break;
1687 case AN_RID_APLIST:
1688 ap = (struct an_ltv_aplist *)areq;
1689 bcopy((char *)ap, (char *)&sc->an_aplist,
1690 sizeof(struct an_ltv_aplist));
1691 break;
1692 case AN_RID_TX_SPEED:
1693 sp = (struct an_ltv_gen *)areq;
1694 sc->an_tx_rate = sp->an_val;
1696 /* Read the current configuration */
1697 sc->an_config.an_type = AN_RID_GENCONFIG;
1698 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1699 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
1700 cfg = &sc->an_config;
1702 /* clear other rates and set the only one we want */
1703 bzero(cfg->an_rates, sizeof(cfg->an_rates));
1704 cfg->an_rates[0] = sc->an_tx_rate;
1706 /* Save the new rate */
1707 sc->an_config.an_type = AN_RID_GENCONFIG;
1708 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1709 break;
1710 case AN_RID_WEP_TEMP:
1711 /* Cache the temp keys */
1712 bcopy(areq,
1713 &sc->an_temp_keys[((struct an_ltv_key *)areq)->kindex],
1714 sizeof(struct an_ltv_key));
1715 case AN_RID_WEP_PERM:
1716 case AN_RID_LEAPUSERNAME:
1717 case AN_RID_LEAPPASSWORD:
1718 an_init(sc);
1720 /* Disable the MAC. */
1721 an_cmd(sc, AN_CMD_DISABLE, 0);
1723 /* Write the key */
1724 an_write_record(sc, (struct an_ltv_gen *)areq);
1726 /* Turn the MAC back on. */
1727 an_cmd(sc, AN_CMD_ENABLE, 0);
1729 break;
1730 case AN_RID_MONITOR_MODE:
1731 cfg = (struct an_ltv_genconfig *)areq;
1732 bpfdetach(ifp);
1733 if (ng_ether_detach_p != NULL)
1734 (*ng_ether_detach_p) (ifp);
1735 sc->an_monitor = cfg->an_len;
1737 if (sc->an_monitor & AN_MONITOR) {
1738 if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
1739 bpfattach(ifp, DLT_AIRONET_HEADER,
1740 sizeof(struct ether_header));
1741 } else {
1742 bpfattach(ifp, DLT_IEEE802_11,
1743 sizeof(struct ether_header));
1745 } else {
1746 bpfattach(ifp, DLT_EN10MB,
1747 sizeof(struct ether_header));
1748 if (ng_ether_attach_p != NULL)
1749 (*ng_ether_attach_p) (ifp);
1751 break;
1752 default:
1753 if_printf(ifp, "unknown RID: %x\n", areq->an_type);
1754 return;
1758 /* Reinitialize the card. */
1759 if (ifp->if_flags)
1760 an_init(sc);
1762 return;
1766 * Derived from Linux driver to enable promiscious mode.
1769 static void
1770 an_promisc(struct an_softc *sc, int promisc)
1772 if (sc->an_was_monitor)
1773 an_reset(sc);
1774 if (sc->mpi350)
1775 an_init_mpi350_desc(sc);
1776 if (sc->an_monitor || sc->an_was_monitor)
1777 an_init(sc);
1779 sc->an_was_monitor = sc->an_monitor;
1780 an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0);
1782 return;
1785 static int
1786 an_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1788 int error = 0;
1789 int len;
1790 int i, max;
1791 struct an_softc *sc;
1792 struct ifreq *ifr;
1793 struct ieee80211req *ireq;
1794 u_int8_t tmpstr[IEEE80211_NWID_LEN*2];
1795 u_int8_t *tmpptr;
1796 struct an_ltv_genconfig *config;
1797 struct an_ltv_key *key;
1798 struct an_ltv_status *status;
1799 struct an_ltv_ssidlist_new *ssids;
1800 int mode;
1801 struct aironet_ioctl l_ioctl;
1803 sc = ifp->if_softc;
1804 ifr = (struct ifreq *)data;
1805 ireq = (struct ieee80211req *)data;
1807 config = (struct an_ltv_genconfig *)&sc->areq;
1808 key = (struct an_ltv_key *)&sc->areq;
1809 status = (struct an_ltv_status *)&sc->areq;
1810 ssids = (struct an_ltv_ssidlist_new *)&sc->areq;
1812 switch (command) {
1813 case SIOCSIFFLAGS:
1814 if (ifp->if_flags & IFF_UP) {
1815 if (ifp->if_flags & IFF_RUNNING &&
1816 ifp->if_flags & IFF_PROMISC &&
1817 !(sc->an_if_flags & IFF_PROMISC)) {
1818 an_promisc(sc, 1);
1819 } else if (ifp->if_flags & IFF_RUNNING &&
1820 !(ifp->if_flags & IFF_PROMISC) &&
1821 sc->an_if_flags & IFF_PROMISC) {
1822 an_promisc(sc, 0);
1823 } else
1824 an_init(sc);
1825 } else {
1826 if (ifp->if_flags & IFF_RUNNING)
1827 an_stop(sc);
1829 sc->an_if_flags = ifp->if_flags;
1830 error = 0;
1831 break;
1832 case SIOCSIFMEDIA:
1833 case SIOCGIFMEDIA:
1834 error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command);
1835 break;
1836 case SIOCADDMULTI:
1837 case SIOCDELMULTI:
1838 /* The Aironet has no multicast filter. */
1839 error = 0;
1840 break;
1841 case SIOCGAIRONET:
1842 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1843 if (error != 0)
1844 break;
1845 #ifdef ANCACHE
1846 if (sc->areq.an_type == AN_RID_ZERO_CACHE) {
1847 error = priv_check_cred(cr, PRIV_ROOT, NULL_CRED_OKAY);
1848 if (error)
1849 break;
1850 sc->an_sigitems = sc->an_nextitem = 0;
1851 break;
1852 } else if (sc->areq.an_type == AN_RID_READ_CACHE) {
1853 char *pt = (char *)&sc->areq.an_val;
1854 bcopy((char *)&sc->an_sigitems, (char *)pt,
1855 sizeof(int));
1856 pt += sizeof(int);
1857 sc->areq.an_len = sizeof(int) / 2;
1858 bcopy((char *)&sc->an_sigcache, (char *)pt,
1859 sizeof(struct an_sigcache) * sc->an_sigitems);
1860 sc->areq.an_len += ((sizeof(struct an_sigcache) *
1861 sc->an_sigitems) / 2) + 1;
1862 } else
1863 #endif
1864 if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) {
1865 error = EINVAL;
1866 break;
1868 error = copyout(&sc->areq, ifr->ifr_data, sizeof(sc->areq));
1869 break;
1870 case SIOCSAIRONET:
1871 if ((error = priv_check_cred(cr, PRIV_ROOT, NULL_CRED_OKAY)))
1872 break;
1873 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1874 if (error != 0)
1875 break;
1876 an_setdef(sc, &sc->areq);
1877 break;
1878 case SIOCGPRIVATE_0: /* used by Cisco client utility */
1879 if ((error = priv_check_cred(cr, PRIV_ROOT, NULL_CRED_OKAY)))
1880 break;
1881 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1882 mode = l_ioctl.command;
1884 if (mode >= AIROGCAP && mode <= AIROGSTATSD32) {
1885 error = readrids(ifp, &l_ioctl);
1886 } else if (mode >= AIROPCAP && mode <= AIROPLEAPUSR) {
1887 error = writerids(ifp, &l_ioctl);
1888 } else if (mode >= AIROFLSHRST && mode <= AIRORESTART) {
1889 error = flashcard(ifp, &l_ioctl);
1890 } else {
1891 error =-1;
1894 /* copy out the updated command info */
1895 copyout(&l_ioctl, ifr->ifr_data, sizeof(l_ioctl));
1897 break;
1898 case SIOCGPRIVATE_1: /* used by Cisco client utility */
1899 if ((error = priv_check_cred(cr, PRIV_ROOT, NULL_CRED_OKAY)))
1900 break;
1901 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1902 l_ioctl.command = 0;
1903 error = AIROMAGIC;
1904 copyout(&error, l_ioctl.data, sizeof(error));
1905 error = 0;
1906 break;
1907 case SIOCG80211:
1908 sc->areq.an_len = sizeof(sc->areq);
1909 /* was that a good idea DJA we are doing a short-cut */
1910 switch (ireq->i_type) {
1911 case IEEE80211_IOC_SSID:
1912 if (ireq->i_val == -1) {
1913 sc->areq.an_type = AN_RID_STATUS;
1914 if (an_read_record(sc,
1915 (struct an_ltv_gen *)&sc->areq)) {
1916 error = EINVAL;
1917 break;
1919 len = status->an_ssidlen;
1920 tmpptr = status->an_ssid;
1921 } else if (ireq->i_val >= 0) {
1922 sc->areq.an_type = AN_RID_SSIDLIST;
1923 if (an_read_record(sc,
1924 (struct an_ltv_gen *)&sc->areq)) {
1925 error = EINVAL;
1926 break;
1928 max = (sc->areq.an_len - 4)
1929 / sizeof(struct an_ltv_ssid_entry);
1930 if ( max > MAX_SSIDS ) {
1931 kprintf("To many SSIDs only using "
1932 "%d of %d\n",
1933 MAX_SSIDS, max);
1934 max = MAX_SSIDS;
1936 if (ireq->i_val > max) {
1937 error = EINVAL;
1938 break;
1939 } else {
1940 len = ssids->an_entry[ireq->i_val].an_len;
1941 tmpptr = ssids->an_entry[ireq->i_val].an_ssid;
1943 } else {
1944 error = EINVAL;
1945 break;
1947 if (len > IEEE80211_NWID_LEN) {
1948 error = EINVAL;
1949 break;
1951 ireq->i_len = len;
1952 bzero(tmpstr, IEEE80211_NWID_LEN);
1953 bcopy(tmpptr, tmpstr, len);
1954 error = copyout(tmpstr, ireq->i_data,
1955 IEEE80211_NWID_LEN);
1956 break;
1957 case IEEE80211_IOC_NUMSSIDS:
1958 sc->areq.an_len = sizeof(sc->areq);
1959 sc->areq.an_type = AN_RID_SSIDLIST;
1960 if (an_read_record(sc,
1961 (struct an_ltv_gen *)&sc->areq)) {
1962 error = EINVAL;
1963 break;
1965 max = (sc->areq.an_len - 4)
1966 / sizeof(struct an_ltv_ssid_entry);
1967 if (max > MAX_SSIDS) {
1968 kprintf("To many SSIDs only using "
1969 "%d of %d\n",
1970 MAX_SSIDS, max);
1971 max = MAX_SSIDS;
1973 ireq->i_val = max;
1974 break;
1975 case IEEE80211_IOC_WEP:
1976 sc->areq.an_type = AN_RID_ACTUALCFG;
1977 if (an_read_record(sc,
1978 (struct an_ltv_gen *)&sc->areq)) {
1979 error = EINVAL;
1980 break;
1982 if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) {
1983 if (config->an_authtype &
1984 AN_AUTHTYPE_ALLOW_UNENCRYPTED)
1985 ireq->i_val = IEEE80211_WEP_MIXED;
1986 else
1987 ireq->i_val = IEEE80211_WEP_ON;
1988 } else {
1989 ireq->i_val = IEEE80211_WEP_OFF;
1991 break;
1992 case IEEE80211_IOC_WEPKEY:
1994 * XXX: I'm not entierly convinced this is
1995 * correct, but it's what is implemented in
1996 * ancontrol so it will have to do until we get
1997 * access to actual Cisco code.
1999 if (ireq->i_val < 0 || ireq->i_val > 8) {
2000 error = EINVAL;
2001 break;
2003 len = 0;
2004 if (ireq->i_val < 5) {
2005 sc->areq.an_type = AN_RID_WEP_TEMP;
2006 for (i = 0; i < 5; i++) {
2007 if (an_read_record(sc,
2008 (struct an_ltv_gen *)&sc->areq)) {
2009 error = EINVAL;
2010 break;
2012 if (key->kindex == 0xffff)
2013 break;
2014 if (key->kindex == ireq->i_val)
2015 len = key->klen;
2016 /* Required to get next entry */
2017 sc->areq.an_type = AN_RID_WEP_PERM;
2019 if (error != 0)
2020 break;
2022 /* We aren't allowed to read the value of the
2023 * key from the card so we just output zeros
2024 * like we would if we could read the card, but
2025 * denied the user access.
2027 bzero(tmpstr, len);
2028 ireq->i_len = len;
2029 error = copyout(tmpstr, ireq->i_data, len);
2030 break;
2031 case IEEE80211_IOC_NUMWEPKEYS:
2032 ireq->i_val = 9; /* include home key */
2033 break;
2034 case IEEE80211_IOC_WEPTXKEY:
2036 * For some strange reason, you have to read all
2037 * keys before you can read the txkey.
2039 sc->areq.an_type = AN_RID_WEP_TEMP;
2040 for (i = 0; i < 5; i++) {
2041 if (an_read_record(sc,
2042 (struct an_ltv_gen *) &sc->areq)) {
2043 error = EINVAL;
2044 break;
2046 if (key->kindex == 0xffff)
2047 break;
2048 /* Required to get next entry */
2049 sc->areq.an_type = AN_RID_WEP_PERM;
2051 if (error != 0)
2052 break;
2054 sc->areq.an_type = AN_RID_WEP_PERM;
2055 key->kindex = 0xffff;
2056 if (an_read_record(sc,
2057 (struct an_ltv_gen *)&sc->areq)) {
2058 error = EINVAL;
2059 break;
2061 ireq->i_val = key->mac[0];
2063 * Check for home mode. Map home mode into
2064 * 5th key since that is how it is stored on
2065 * the card
2067 sc->areq.an_len = sizeof(struct an_ltv_genconfig);
2068 sc->areq.an_type = AN_RID_GENCONFIG;
2069 if (an_read_record(sc,
2070 (struct an_ltv_gen *)&sc->areq)) {
2071 error = EINVAL;
2072 break;
2074 if (config->an_home_product & AN_HOME_NETWORK)
2075 ireq->i_val = 4;
2076 break;
2077 case IEEE80211_IOC_AUTHMODE:
2078 sc->areq.an_type = AN_RID_ACTUALCFG;
2079 if (an_read_record(sc,
2080 (struct an_ltv_gen *)&sc->areq)) {
2081 error = EINVAL;
2082 break;
2084 if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2085 AN_AUTHTYPE_NONE) {
2086 ireq->i_val = IEEE80211_AUTH_NONE;
2087 } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2088 AN_AUTHTYPE_OPEN) {
2089 ireq->i_val = IEEE80211_AUTH_OPEN;
2090 } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2091 AN_AUTHTYPE_SHAREDKEY) {
2092 ireq->i_val = IEEE80211_AUTH_SHARED;
2093 } else
2094 error = EINVAL;
2095 break;
2096 case IEEE80211_IOC_STATIONNAME:
2097 sc->areq.an_type = AN_RID_ACTUALCFG;
2098 if (an_read_record(sc,
2099 (struct an_ltv_gen *)&sc->areq)) {
2100 error = EINVAL;
2101 break;
2103 ireq->i_len = sizeof(config->an_nodename);
2104 tmpptr = config->an_nodename;
2105 bzero(tmpstr, IEEE80211_NWID_LEN);
2106 bcopy(tmpptr, tmpstr, ireq->i_len);
2107 error = copyout(tmpstr, ireq->i_data,
2108 IEEE80211_NWID_LEN);
2109 break;
2110 case IEEE80211_IOC_CHANNEL:
2111 sc->areq.an_type = AN_RID_STATUS;
2112 if (an_read_record(sc,
2113 (struct an_ltv_gen *)&sc->areq)) {
2114 error = EINVAL;
2115 break;
2117 ireq->i_val = status->an_cur_channel;
2118 break;
2119 case IEEE80211_IOC_POWERSAVE:
2120 sc->areq.an_type = AN_RID_ACTUALCFG;
2121 if (an_read_record(sc,
2122 (struct an_ltv_gen *)&sc->areq)) {
2123 error = EINVAL;
2124 break;
2126 if (config->an_psave_mode == AN_PSAVE_NONE) {
2127 ireq->i_val = IEEE80211_POWERSAVE_OFF;
2128 } else if (config->an_psave_mode == AN_PSAVE_CAM) {
2129 ireq->i_val = IEEE80211_POWERSAVE_CAM;
2130 } else if (config->an_psave_mode == AN_PSAVE_PSP) {
2131 ireq->i_val = IEEE80211_POWERSAVE_PSP;
2132 } else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) {
2133 ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM;
2134 } else
2135 error = EINVAL;
2136 break;
2137 case IEEE80211_IOC_POWERSAVESLEEP:
2138 sc->areq.an_type = AN_RID_ACTUALCFG;
2139 if (an_read_record(sc,
2140 (struct an_ltv_gen *)&sc->areq)) {
2141 error = EINVAL;
2142 break;
2144 ireq->i_val = config->an_listen_interval;
2145 break;
2147 break;
2148 case SIOCS80211:
2149 if ((error = priv_check_cred(cr, PRIV_ROOT, NULL_CRED_OKAY)))
2150 break;
2151 sc->areq.an_len = sizeof(sc->areq);
2153 * We need a config structure for everything but the WEP
2154 * key management and SSIDs so we get it now so avoid
2155 * duplicating this code every time.
2157 if (ireq->i_type != IEEE80211_IOC_SSID &&
2158 ireq->i_type != IEEE80211_IOC_WEPKEY &&
2159 ireq->i_type != IEEE80211_IOC_WEPTXKEY) {
2160 sc->areq.an_type = AN_RID_GENCONFIG;
2161 if (an_read_record(sc,
2162 (struct an_ltv_gen *)&sc->areq)) {
2163 error = EINVAL;
2164 break;
2167 switch (ireq->i_type) {
2168 case IEEE80211_IOC_SSID:
2169 sc->areq.an_len = sizeof(sc->areq);
2170 sc->areq.an_type = AN_RID_SSIDLIST;
2171 if (an_read_record(sc,
2172 (struct an_ltv_gen *)&sc->areq)) {
2173 error = EINVAL;
2174 break;
2176 if (ireq->i_len > IEEE80211_NWID_LEN) {
2177 error = EINVAL;
2178 break;
2180 max = (sc->areq.an_len - 4)
2181 / sizeof(struct an_ltv_ssid_entry);
2182 if (max > MAX_SSIDS) {
2183 kprintf("To many SSIDs only using "
2184 "%d of %d\n",
2185 MAX_SSIDS, max);
2186 max = MAX_SSIDS;
2188 if (ireq->i_val > max) {
2189 error = EINVAL;
2190 break;
2191 } else {
2192 error = copyin(ireq->i_data,
2193 ssids->an_entry[ireq->i_val].an_ssid,
2194 ireq->i_len);
2195 ssids->an_entry[ireq->i_val].an_len
2196 = ireq->i_len;
2197 break;
2199 break;
2200 case IEEE80211_IOC_WEP:
2201 switch (ireq->i_val) {
2202 case IEEE80211_WEP_OFF:
2203 config->an_authtype &=
2204 ~(AN_AUTHTYPE_PRIVACY_IN_USE |
2205 AN_AUTHTYPE_ALLOW_UNENCRYPTED);
2206 break;
2207 case IEEE80211_WEP_ON:
2208 config->an_authtype |=
2209 AN_AUTHTYPE_PRIVACY_IN_USE;
2210 config->an_authtype &=
2211 ~AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2212 break;
2213 case IEEE80211_WEP_MIXED:
2214 config->an_authtype |=
2215 AN_AUTHTYPE_PRIVACY_IN_USE |
2216 AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2217 break;
2218 default:
2219 error = EINVAL;
2220 break;
2222 break;
2223 case IEEE80211_IOC_WEPKEY:
2224 if (ireq->i_val < 0 || ireq->i_val > 8 ||
2225 ireq->i_len > 13) {
2226 error = EINVAL;
2227 break;
2229 error = copyin(ireq->i_data, tmpstr, 13);
2230 if (error != 0)
2231 break;
2233 * Map the 9th key into the home mode
2234 * since that is how it is stored on
2235 * the card
2237 bzero(&sc->areq, sizeof(struct an_ltv_key));
2238 sc->areq.an_len = sizeof(struct an_ltv_key);
2239 key->mac[0] = 1; /* The others are 0. */
2240 if (ireq->i_val < 4) {
2241 sc->areq.an_type = AN_RID_WEP_TEMP;
2242 key->kindex = ireq->i_val;
2243 } else {
2244 sc->areq.an_type = AN_RID_WEP_PERM;
2245 key->kindex = ireq->i_val - 4;
2247 key->klen = ireq->i_len;
2248 bcopy(tmpstr, key->key, key->klen);
2249 break;
2250 case IEEE80211_IOC_WEPTXKEY:
2251 if (ireq->i_val < 0 || ireq->i_val > 4) {
2252 error = EINVAL;
2253 break;
2257 * Map the 5th key into the home mode
2258 * since that is how it is stored on
2259 * the card
2261 sc->areq.an_len = sizeof(struct an_ltv_genconfig);
2262 sc->areq.an_type = AN_RID_ACTUALCFG;
2263 if (an_read_record(sc,
2264 (struct an_ltv_gen *)&sc->areq)) {
2265 error = EINVAL;
2266 break;
2268 if (ireq->i_val == 4) {
2269 config->an_home_product |= AN_HOME_NETWORK;
2270 ireq->i_val = 0;
2271 } else {
2272 config->an_home_product &= ~AN_HOME_NETWORK;
2275 sc->an_config.an_home_product
2276 = config->an_home_product;
2278 /* update configuration */
2279 an_init(sc);
2281 bzero(&sc->areq, sizeof(struct an_ltv_key));
2282 sc->areq.an_len = sizeof(struct an_ltv_key);
2283 sc->areq.an_type = AN_RID_WEP_PERM;
2284 key->kindex = 0xffff;
2285 key->mac[0] = ireq->i_val;
2286 break;
2287 case IEEE80211_IOC_AUTHMODE:
2288 switch (ireq->i_val) {
2289 case IEEE80211_AUTH_NONE:
2290 config->an_authtype = AN_AUTHTYPE_NONE |
2291 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2292 break;
2293 case IEEE80211_AUTH_OPEN:
2294 config->an_authtype = AN_AUTHTYPE_OPEN |
2295 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2296 break;
2297 case IEEE80211_AUTH_SHARED:
2298 config->an_authtype = AN_AUTHTYPE_SHAREDKEY |
2299 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2300 break;
2301 default:
2302 error = EINVAL;
2304 break;
2305 case IEEE80211_IOC_STATIONNAME:
2306 if (ireq->i_len > 16) {
2307 error = EINVAL;
2308 break;
2310 bzero(config->an_nodename, 16);
2311 error = copyin(ireq->i_data,
2312 config->an_nodename, ireq->i_len);
2313 break;
2314 case IEEE80211_IOC_CHANNEL:
2316 * The actual range is 1-14, but if you set it
2317 * to 0 you get the default so we let that work
2318 * too.
2320 if (ireq->i_val < 0 || ireq->i_val >14) {
2321 error = EINVAL;
2322 break;
2324 config->an_ds_channel = ireq->i_val;
2325 break;
2326 case IEEE80211_IOC_POWERSAVE:
2327 switch (ireq->i_val) {
2328 case IEEE80211_POWERSAVE_OFF:
2329 config->an_psave_mode = AN_PSAVE_NONE;
2330 break;
2331 case IEEE80211_POWERSAVE_CAM:
2332 config->an_psave_mode = AN_PSAVE_CAM;
2333 break;
2334 case IEEE80211_POWERSAVE_PSP:
2335 config->an_psave_mode = AN_PSAVE_PSP;
2336 break;
2337 case IEEE80211_POWERSAVE_PSP_CAM:
2338 config->an_psave_mode = AN_PSAVE_PSP_CAM;
2339 break;
2340 default:
2341 error = EINVAL;
2342 break;
2344 break;
2345 case IEEE80211_IOC_POWERSAVESLEEP:
2346 config->an_listen_interval = ireq->i_val;
2347 break;
2350 if (!error)
2351 an_setdef(sc, &sc->areq);
2352 break;
2353 default:
2354 error = ether_ioctl(ifp, command, data);
2355 break;
2358 return(error != 0);
2361 static int
2362 an_init_tx_ring(struct an_softc *sc)
2364 int i;
2365 int id;
2367 if (!sc->mpi350) {
2368 for (i = 0; i < AN_TX_RING_CNT; i++) {
2369 if (an_alloc_nicmem(sc, 1518 +
2370 0x44, &id))
2371 return(ENOMEM);
2372 sc->an_rdata.an_tx_fids[i] = id;
2373 sc->an_rdata.an_tx_ring[i] = 0;
2377 sc->an_rdata.an_tx_prod = 0;
2378 sc->an_rdata.an_tx_cons = 0;
2379 sc->an_rdata.an_tx_empty = 1;
2381 return(0);
2384 static void
2385 an_init(void *xsc)
2387 struct an_softc *sc = xsc;
2388 struct ifnet *ifp = &sc->arpcom.ac_if;
2390 if (ifp->if_flags & IFF_RUNNING)
2391 an_stop(sc);
2393 sc->an_associated = 0;
2395 /* Allocate the TX buffers */
2396 if (an_init_tx_ring(sc)) {
2397 an_reset(sc);
2398 if (sc->mpi350)
2399 an_init_mpi350_desc(sc);
2400 if (an_init_tx_ring(sc)) {
2401 if_printf(ifp, "tx buffer allocation failed\n");
2402 return;
2406 /* Set our MAC address. */
2407 bcopy((char *)&sc->arpcom.ac_enaddr,
2408 (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
2410 if (ifp->if_flags & IFF_BROADCAST)
2411 sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
2412 else
2413 sc->an_config.an_rxmode = AN_RXMODE_ADDR;
2415 if (ifp->if_flags & IFF_MULTICAST)
2416 sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
2418 if (ifp->if_flags & IFF_PROMISC) {
2419 if (sc->an_monitor & AN_MONITOR) {
2420 if (sc->an_monitor & AN_MONITOR_ANY_BSS) {
2421 sc->an_config.an_rxmode |=
2422 AN_RXMODE_80211_MONITOR_ANYBSS |
2423 AN_RXMODE_NO_8023_HEADER;
2424 } else {
2425 sc->an_config.an_rxmode |=
2426 AN_RXMODE_80211_MONITOR_CURBSS |
2427 AN_RXMODE_NO_8023_HEADER;
2432 if (sc->an_have_rssimap)
2433 sc->an_config.an_rxmode |= AN_RXMODE_NORMALIZED_RSSI;
2435 /* Set the ssid list */
2436 sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
2437 sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
2438 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
2439 if_printf(ifp, "failed to set ssid list\n");
2440 return;
2443 /* Set the AP list */
2444 sc->an_aplist.an_type = AN_RID_APLIST;
2445 sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
2446 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
2447 if_printf(ifp, "failed to set AP list\n");
2448 return;
2451 /* Set the configuration in the NIC */
2452 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
2453 sc->an_config.an_type = AN_RID_GENCONFIG;
2454 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
2455 if_printf(ifp, "failed to set configuration\n");
2456 return;
2459 /* Enable the MAC */
2460 if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
2461 if_printf(ifp, "failed to enable MAC\n");
2462 return;
2465 if (ifp->if_flags & IFF_PROMISC)
2466 an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
2468 /* enable interrupts */
2469 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
2471 ifp->if_flags |= IFF_RUNNING;
2472 ifp->if_flags &= ~IFF_OACTIVE;
2474 callout_reset(&sc->an_stat_timer, hz, an_stats_update, sc);
2477 static void
2478 an_start(struct ifnet *ifp)
2480 struct an_softc *sc;
2481 struct mbuf *m0 = NULL;
2482 struct an_txframe_802_3 tx_frame_802_3;
2483 struct ether_header *eh;
2484 int id, idx, i, ready;
2485 unsigned char txcontrol;
2486 struct an_card_tx_desc an_tx_desc;
2487 u_int8_t *buf;
2489 sc = ifp->if_softc;
2491 if (ifp->if_flags & IFF_OACTIVE)
2492 return;
2494 if (!sc->an_associated) {
2495 ifq_purge(&ifp->if_snd);
2496 return;
2499 /* We can't send in monitor mode so toss any attempts. */
2500 if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
2501 ifq_purge(&ifp->if_snd);
2502 return;
2505 ready = 0;
2506 idx = sc->an_rdata.an_tx_prod;
2508 if (!sc->mpi350) {
2509 bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
2511 while (sc->an_rdata.an_tx_ring[idx] == 0) {
2512 ready = 1;
2513 m0 = ifq_dequeue(&ifp->if_snd, NULL);
2514 if (m0 == NULL)
2515 break;
2517 id = sc->an_rdata.an_tx_fids[idx];
2518 eh = mtod(m0, struct ether_header *);
2520 bcopy((char *)&eh->ether_dhost,
2521 (char *)&tx_frame_802_3.an_tx_dst_addr,
2522 ETHER_ADDR_LEN);
2523 bcopy((char *)&eh->ether_shost,
2524 (char *)&tx_frame_802_3.an_tx_src_addr,
2525 ETHER_ADDR_LEN);
2527 /* minus src/dest mac & type */
2528 tx_frame_802_3.an_tx_802_3_payload_len =
2529 m0->m_pkthdr.len - 12;
2531 m_copydata(m0, sizeof(struct ether_header) - 2 ,
2532 tx_frame_802_3.an_tx_802_3_payload_len,
2533 (caddr_t)&sc->an_txbuf);
2535 txcontrol = AN_TXCTL_8023 | AN_TXCTL_HW(sc->mpi350);
2536 /* write the txcontrol only */
2537 an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
2538 sizeof(txcontrol));
2540 /* 802_3 header */
2541 an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
2542 sizeof(struct an_txframe_802_3));
2544 /* in mbuf header type is just before payload */
2545 an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
2546 tx_frame_802_3.an_tx_802_3_payload_len);
2548 BPF_MTAP(ifp, m0);
2550 m_freem(m0);
2551 m0 = NULL;
2553 sc->an_rdata.an_tx_ring[idx] = id;
2554 if (an_cmd(sc, AN_CMD_TX, id))
2555 if_printf(ifp, "xmit failed\n");
2557 AN_INC(idx, AN_TX_RING_CNT);
2560 * Set a timeout in case the chip goes out to lunch.
2562 ifp->if_timer = 5;
2564 } else { /* MPI-350 */
2565 /* Disable interrupts. */
2566 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2568 while (sc->an_rdata.an_tx_empty ||
2569 idx != sc->an_rdata.an_tx_cons) {
2570 ready = 1;
2571 m0 = ifq_dequeue(&ifp->if_snd, NULL);
2572 if (m0 == NULL)
2573 break;
2575 buf = sc->an_tx_buffer[idx].an_dma_vaddr;
2577 eh = mtod(m0, struct ether_header *);
2579 /* DJA optimize this to limit bcopy */
2580 bcopy((char *)&eh->ether_dhost,
2581 (char *)&tx_frame_802_3.an_tx_dst_addr,
2582 ETHER_ADDR_LEN);
2583 bcopy((char *)&eh->ether_shost,
2584 (char *)&tx_frame_802_3.an_tx_src_addr,
2585 ETHER_ADDR_LEN);
2587 /* minus src/dest mac & type */
2588 tx_frame_802_3.an_tx_802_3_payload_len =
2589 m0->m_pkthdr.len - 12;
2591 m_copydata(m0, sizeof(struct ether_header) - 2 ,
2592 tx_frame_802_3.an_tx_802_3_payload_len,
2593 (caddr_t)&sc->an_txbuf);
2595 txcontrol = AN_TXCTL_8023 | AN_TXCTL_HW(sc->mpi350);
2596 /* write the txcontrol only */
2597 bcopy((caddr_t)&txcontrol, &buf[0x08],
2598 sizeof(txcontrol));
2600 /* 802_3 header */
2601 bcopy((caddr_t)&tx_frame_802_3, &buf[0x34],
2602 sizeof(struct an_txframe_802_3));
2604 /* in mbuf header type is just before payload */
2605 bcopy((caddr_t)&sc->an_txbuf, &buf[0x44],
2606 tx_frame_802_3.an_tx_802_3_payload_len);
2609 bzero(&an_tx_desc, sizeof(an_tx_desc));
2610 an_tx_desc.an_offset = 0;
2611 an_tx_desc.an_eoc = 1;
2612 an_tx_desc.an_valid = 1;
2613 an_tx_desc.an_len = 0x44 +
2614 tx_frame_802_3.an_tx_802_3_payload_len;
2615 an_tx_desc.an_phys = sc->an_tx_buffer[idx].an_dma_paddr;
2616 for (i = sizeof(an_tx_desc) / 4 - 1; i >= 0 ; --i) {
2617 CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
2618 /* zero for now */
2619 + (0 * sizeof(an_tx_desc))
2620 + (i * 4),
2621 ((u_int32_t*)&an_tx_desc)[i]);
2624 BPF_MTAP(ifp, m0);
2626 m_freem(m0);
2627 m0 = NULL;
2629 AN_INC(idx, AN_MAX_TX_DESC);
2630 sc->an_rdata.an_tx_empty = 0;
2632 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
2635 * Set a timeout in case the chip goes out to lunch.
2637 ifp->if_timer = 5;
2640 /* Re-enable interrupts. */
2641 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
2644 if (!ready)
2645 ifp->if_flags |= IFF_OACTIVE;
2647 sc->an_rdata.an_tx_prod = idx;
2650 void
2651 an_stop(struct an_softc *sc)
2653 struct ifnet *ifp;
2654 int i;
2656 ifp = &sc->arpcom.ac_if;
2658 an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
2659 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2660 an_cmd(sc, AN_CMD_DISABLE, 0);
2662 for (i = 0; i < AN_TX_RING_CNT; i++)
2663 an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
2665 callout_stop(&sc->an_stat_timer);
2667 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2669 if (sc->an_flash_buffer) {
2670 kfree(sc->an_flash_buffer, M_DEVBUF);
2671 sc->an_flash_buffer = NULL;
2675 static void
2676 an_watchdog(struct ifnet *ifp)
2678 struct an_softc *sc;
2680 sc = ifp->if_softc;
2682 an_reset(sc);
2683 if (sc->mpi350)
2684 an_init_mpi350_desc(sc);
2685 an_init(sc);
2687 ifp->if_oerrors++;
2689 if_printf(ifp, "device timeout\n");
2692 void
2693 an_shutdown(device_t dev)
2695 struct an_softc *sc;
2697 sc = device_get_softc(dev);
2698 an_stop(sc);
2700 return;
2703 void
2704 an_resume(device_t dev)
2706 struct an_softc *sc = device_get_softc(dev);
2707 struct ifnet *ifp = &sc->arpcom.ac_if;
2708 int i;
2710 lwkt_serialize_enter(ifp->if_serializer);
2712 an_reset(sc);
2713 if (sc->mpi350)
2714 an_init_mpi350_desc(sc);
2715 an_init(sc);
2717 /* Recovery temporary keys */
2718 for (i = 0; i < 4; i++) {
2719 sc->areq.an_type = AN_RID_WEP_TEMP;
2720 sc->areq.an_len = sizeof(struct an_ltv_key);
2721 bcopy(&sc->an_temp_keys[i],
2722 &sc->areq, sizeof(struct an_ltv_key));
2723 an_setdef(sc, &sc->areq);
2726 if (ifp->if_flags & IFF_UP)
2727 if_devstart(ifp);
2729 lwkt_serialize_exit(ifp->if_serializer);
2732 #ifdef ANCACHE
2733 /* Aironet signal strength cache code.
2734 * store signal/noise/quality on per MAC src basis in
2735 * a small fixed cache. The cache wraps if > MAX slots
2736 * used. The cache may be zeroed out to start over.
2737 * Two simple filters exist to reduce computation:
2738 * 1. ip only (literally 0x800, ETHERTYPE_IP) which may be used
2739 * to ignore some packets. It defaults to ip only.
2740 * it could be used to focus on broadcast, non-IP 802.11 beacons.
2741 * 2. multicast/broadcast only. This may be used to
2742 * ignore unicast packets and only cache signal strength
2743 * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2744 * beacons and not unicast traffic.
2746 * The cache stores (MAC src(index), IP src (major clue), signal,
2747 * quality, noise)
2749 * No apologies for storing IP src here. It's easy and saves much
2750 * trouble elsewhere. The cache is assumed to be INET dependent,
2751 * although it need not be.
2753 * Note: the Aironet only has a single byte of signal strength value
2754 * in the rx frame header, and it's not scaled to anything sensible.
2755 * This is kind of lame, but it's all we've got.
2758 #ifdef documentation
2760 int an_sigitems; /* number of cached entries */
2761 struct an_sigcache an_sigcache[MAXANCACHE]; /* array of cache entries */
2762 int an_nextitem; /* index/# of entries */
2765 #endif
2767 /* control variables for cache filtering. Basic idea is
2768 * to reduce cost (e.g., to only Mobile-IP agent beacons
2769 * which are broadcast or multicast). Still you might
2770 * want to measure signal strength anth unicast ping packets
2771 * on a pt. to pt. ant. setup.
2773 /* set true if you want to limit cache items to broadcast/mcast
2774 * only packets (not unicast). Useful for mobile-ip beacons which
2775 * are broadcast/multicast at network layer. Default is all packets
2776 * so ping/unicast anll work say anth pt. to pt. antennae setup.
2778 static int an_cache_mcastonly = 0;
2779 SYSCTL_INT(_hw_an, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
2780 &an_cache_mcastonly, 0, "");
2782 /* set true if you want to limit cache items to IP packets only
2784 static int an_cache_iponly = 1;
2785 SYSCTL_INT(_hw_an, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
2786 &an_cache_iponly, 0, "");
2789 * an_cache_store, per rx packet store signal
2790 * strength in MAC (src) indexed cache.
2792 static void
2793 an_cache_store (struct an_softc *sc, struct mbuf *m, u_int8_t rx_rssi,
2794 u_int8_t rx_quality)
2796 struct ether_header *eh = mtod(m, struct ether_header *);
2797 struct ip *ip = NULL;
2798 int i;
2799 static int cache_slot = 0; /* use this cache entry */
2800 static int wrapindex = 0; /* next "free" cache entry */
2802 /* filters:
2803 * 1. ip only
2804 * 2. configurable filter to throw out unicast packets,
2805 * keep multicast only.
2808 if ((ntohs(eh->ether_type) == ETHERTYPE_IP))
2809 ip = (struct ip *)(mtod(m, uint8_t *) + ETHER_HDR_LEN);
2810 else if (an_cache_iponly)
2811 return;
2813 /* filter for broadcast/multicast only
2815 if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2816 return;
2819 #ifdef SIGDEBUG
2820 if_printf(&sc->arpcom.ac_if, "q value %x (MSB=0x%x, LSB=0x%x)\n",
2821 rx_rssi & 0xffff, rx_rssi >> 8, rx_rssi & 0xff);
2822 #endif
2824 /* do a linear search for a matching MAC address
2825 * in the cache table
2826 * . MAC address is 6 bytes,
2827 * . var w_nextitem holds total number of entries already cached
2829 for (i = 0; i < sc->an_nextitem; i++) {
2830 if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc, 6 )) {
2831 /* Match!,
2832 * so we already have this entry,
2833 * update the data
2835 break;
2839 /* did we find a matching mac address?
2840 * if yes, then overwrite a previously existing cache entry
2842 if (i < sc->an_nextitem ) {
2843 cache_slot = i;
2845 /* else, have a new address entry,so
2846 * add this new entry,
2847 * if table full, then we need to replace LRU entry
2849 else {
2851 /* check for space in cache table
2852 * note: an_nextitem also holds number of entries
2853 * added in the cache table
2855 if ( sc->an_nextitem < MAXANCACHE ) {
2856 cache_slot = sc->an_nextitem;
2857 sc->an_nextitem++;
2858 sc->an_sigitems = sc->an_nextitem;
2860 /* no space found, so simply wrap anth wrap index
2861 * and "zap" the next entry
2863 else {
2864 if (wrapindex == MAXANCACHE) {
2865 wrapindex = 0;
2867 cache_slot = wrapindex++;
2871 /* invariant: cache_slot now points at some slot
2872 * in cache.
2874 if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
2875 log(LOG_ERR, "an_cache_store, bad index: %d of "
2876 "[0..%d], gross cache error\n",
2877 cache_slot, MAXANCACHE);
2878 return;
2881 /* store items in cache
2882 * .ip source address
2883 * .mac src
2884 * .signal, etc.
2886 if (ip != NULL) {
2887 sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
2889 bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc, 6);
2892 switch (an_cache_mode) {
2893 case DBM:
2894 if (sc->an_have_rssimap) {
2895 sc->an_sigcache[cache_slot].signal =
2896 - sc->an_rssimap.an_entries[rx_rssi].an_rss_dbm;
2897 sc->an_sigcache[cache_slot].quality =
2898 - sc->an_rssimap.an_entries[rx_quality].an_rss_dbm;
2899 } else {
2900 sc->an_sigcache[cache_slot].signal = rx_rssi - 100;
2901 sc->an_sigcache[cache_slot].quality = rx_quality - 100;
2903 break;
2904 case PERCENT:
2905 if (sc->an_have_rssimap) {
2906 sc->an_sigcache[cache_slot].signal =
2907 sc->an_rssimap.an_entries[rx_rssi].an_rss_pct;
2908 sc->an_sigcache[cache_slot].quality =
2909 sc->an_rssimap.an_entries[rx_quality].an_rss_pct;
2910 } else {
2911 if (rx_rssi > 100)
2912 rx_rssi = 100;
2913 if (rx_quality > 100)
2914 rx_quality = 100;
2915 sc->an_sigcache[cache_slot].signal = rx_rssi;
2916 sc->an_sigcache[cache_slot].quality = rx_quality;
2918 break;
2919 case RAW:
2920 sc->an_sigcache[cache_slot].signal = rx_rssi;
2921 sc->an_sigcache[cache_slot].quality = rx_quality;
2922 break;
2925 sc->an_sigcache[cache_slot].noise = 0;
2927 return;
2929 #endif
2931 static int
2932 an_media_change(struct ifnet *ifp)
2934 struct an_softc *sc = ifp->if_softc;
2935 struct an_ltv_genconfig *cfg;
2936 int otype = sc->an_config.an_opmode;
2937 int orate = sc->an_tx_rate;
2939 switch (IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media)) {
2940 case IFM_IEEE80211_DS1:
2941 sc->an_tx_rate = AN_RATE_1MBPS;
2942 break;
2943 case IFM_IEEE80211_DS2:
2944 sc->an_tx_rate = AN_RATE_2MBPS;
2945 break;
2946 case IFM_IEEE80211_DS5:
2947 sc->an_tx_rate = AN_RATE_5_5MBPS;
2948 break;
2949 case IFM_IEEE80211_DS11:
2950 sc->an_tx_rate = AN_RATE_11MBPS;
2951 break;
2952 case IFM_AUTO:
2953 sc->an_tx_rate = 0;
2954 break;
2957 if (orate != sc->an_tx_rate) {
2958 /* Read the current configuration */
2959 sc->an_config.an_type = AN_RID_GENCONFIG;
2960 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
2961 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
2962 cfg = &sc->an_config;
2964 /* clear other rates and set the only one we want */
2965 bzero(cfg->an_rates, sizeof(cfg->an_rates));
2966 cfg->an_rates[0] = sc->an_tx_rate;
2968 /* Save the new rate */
2969 sc->an_config.an_type = AN_RID_GENCONFIG;
2970 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
2973 if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2974 sc->an_config.an_opmode &= ~AN_OPMODE_INFRASTRUCTURE_STATION;
2975 else
2976 sc->an_config.an_opmode |= AN_OPMODE_INFRASTRUCTURE_STATION;
2978 if (otype != sc->an_config.an_opmode ||
2979 orate != sc->an_tx_rate)
2980 an_init(sc);
2982 return(0);
2985 static void
2986 an_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2988 struct an_ltv_status status;
2989 struct an_softc *sc = ifp->if_softc;
2991 status.an_len = sizeof(status);
2992 status.an_type = AN_RID_STATUS;
2993 if (an_read_record(sc, (struct an_ltv_gen *)&status)) {
2994 /* If the status read fails, just lie. */
2995 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
2996 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2999 if (sc->an_tx_rate == 0) {
3000 imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
3001 if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
3002 imr->ifm_active |= IFM_IEEE80211_ADHOC;
3003 switch (status.an_current_tx_rate) {
3004 case AN_RATE_1MBPS:
3005 imr->ifm_active |= IFM_IEEE80211_DS1;
3006 break;
3007 case AN_RATE_2MBPS:
3008 imr->ifm_active |= IFM_IEEE80211_DS2;
3009 break;
3010 case AN_RATE_5_5MBPS:
3011 imr->ifm_active |= IFM_IEEE80211_DS5;
3012 break;
3013 case AN_RATE_11MBPS:
3014 imr->ifm_active |= IFM_IEEE80211_DS11;
3015 break;
3017 } else {
3018 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3021 imr->ifm_status = IFM_AVALID;
3022 if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED)
3023 imr->ifm_status |= IFM_ACTIVE;
3026 /********************** Cisco utility support routines *************/
3029 * ReadRids & WriteRids derived from Cisco driver additions to Ben Reed's
3030 * Linux driver
3033 static int
3034 readrids(struct ifnet *ifp, struct aironet_ioctl *l_ioctl)
3036 unsigned short rid;
3037 struct an_softc *sc;
3039 switch (l_ioctl->command) {
3040 case AIROGCAP:
3041 rid = AN_RID_CAPABILITIES;
3042 break;
3043 case AIROGCFG:
3044 rid = AN_RID_GENCONFIG;
3045 break;
3046 case AIROGSLIST:
3047 rid = AN_RID_SSIDLIST;
3048 break;
3049 case AIROGVLIST:
3050 rid = AN_RID_APLIST;
3051 break;
3052 case AIROGDRVNAM:
3053 rid = AN_RID_DRVNAME;
3054 break;
3055 case AIROGEHTENC:
3056 rid = AN_RID_ENCAPPROTO;
3057 break;
3058 case AIROGWEPKTMP:
3059 rid = AN_RID_WEP_TEMP;
3060 break;
3061 case AIROGWEPKNV:
3062 rid = AN_RID_WEP_PERM;
3063 break;
3064 case AIROGSTAT:
3065 rid = AN_RID_STATUS;
3066 break;
3067 case AIROGSTATSD32:
3068 rid = AN_RID_32BITS_DELTA;
3069 break;
3070 case AIROGSTATSC32:
3071 rid = AN_RID_32BITS_CUM;
3072 break;
3073 default:
3074 rid = 999;
3075 break;
3078 if (rid == 999) /* Is bad command */
3079 return -EINVAL;
3081 sc = ifp->if_softc;
3082 sc->areq.an_len = AN_MAX_DATALEN;
3083 sc->areq.an_type = rid;
3085 an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3087 l_ioctl->len = sc->areq.an_len - 4; /* just data */
3089 /* the data contains the length at first */
3090 if (copyout(&(sc->areq.an_len), l_ioctl->data,
3091 sizeof(sc->areq.an_len))) {
3092 return -EFAULT;
3094 /* Just copy the data back */
3095 if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3096 l_ioctl->len)) {
3097 return -EFAULT;
3099 return 0;
3102 static int
3103 writerids(struct ifnet *ifp, struct aironet_ioctl *l_ioctl)
3105 struct an_softc *sc;
3106 int rid, command;
3108 sc = ifp->if_softc;
3109 rid = 0;
3110 command = l_ioctl->command;
3112 switch (command) {
3113 case AIROPSIDS:
3114 rid = AN_RID_SSIDLIST;
3115 break;
3116 case AIROPCAP:
3117 rid = AN_RID_CAPABILITIES;
3118 break;
3119 case AIROPAPLIST:
3120 rid = AN_RID_APLIST;
3121 break;
3122 case AIROPCFG:
3123 rid = AN_RID_GENCONFIG;
3124 break;
3125 case AIROPMACON:
3126 an_cmd(sc, AN_CMD_ENABLE, 0);
3127 return 0;
3128 break;
3129 case AIROPMACOFF:
3130 an_cmd(sc, AN_CMD_DISABLE, 0);
3131 return 0;
3132 break;
3133 case AIROPSTCLR:
3135 * This command merely clears the counts does not actually
3136 * store any data only reads rid. But as it changes the cards
3137 * state, I put it in the writerid routines.
3140 rid = AN_RID_32BITS_DELTACLR;
3141 sc = ifp->if_softc;
3142 sc->areq.an_len = AN_MAX_DATALEN;
3143 sc->areq.an_type = rid;
3145 an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3146 l_ioctl->len = sc->areq.an_len - 4; /* just data */
3148 /* the data contains the length at first */
3149 if (copyout(&(sc->areq.an_len), l_ioctl->data,
3150 sizeof(sc->areq.an_len))) {
3151 return -EFAULT;
3153 /* Just copy the data */
3154 if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3155 l_ioctl->len)) {
3156 return -EFAULT;
3158 return 0;
3159 break;
3160 case AIROPWEPKEY:
3161 rid = AN_RID_WEP_TEMP;
3162 break;
3163 case AIROPWEPKEYNV:
3164 rid = AN_RID_WEP_PERM;
3165 break;
3166 case AIROPLEAPUSR:
3167 rid = AN_RID_LEAPUSERNAME;
3168 break;
3169 case AIROPLEAPPWD:
3170 rid = AN_RID_LEAPPASSWORD;
3171 break;
3172 default:
3173 return -EOPNOTSUPP;
3176 if (rid) {
3177 if (l_ioctl->len > sizeof(sc->areq.an_val) + 4)
3178 return -EINVAL;
3179 sc->areq.an_len = l_ioctl->len + 4; /* add type & length */
3180 sc->areq.an_type = rid;
3182 /* Just copy the data back */
3183 copyin((l_ioctl->data) + 2, &sc->areq.an_val,
3184 l_ioctl->len);
3186 an_cmd(sc, AN_CMD_DISABLE, 0);
3187 an_write_record(sc, (struct an_ltv_gen *)&sc->areq);
3188 an_cmd(sc, AN_CMD_ENABLE, 0);
3189 return 0;
3191 return -EOPNOTSUPP;
3195 * General Flash utilities derived from Cisco driver additions to Ben Reed's
3196 * Linux driver
3199 #define FLASH_DELAY(x) tsleep(ifp, 0, "flash", ((x) / hz) + 1);
3200 #define FLASH_COMMAND 0x7e7e
3201 #define FLASH_SIZE 32 * 1024
3203 static int
3204 unstickbusy(struct ifnet *ifp)
3206 struct an_softc *sc = ifp->if_softc;
3208 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
3209 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350),
3210 AN_EV_CLR_STUCK_BUSY);
3211 return 1;
3213 return 0;
3217 * Wait for busy completion from card wait for delay uSec's Return true for
3218 * success meaning command reg is clear
3221 static int
3222 WaitBusy(struct ifnet *ifp, int uSec)
3224 int statword = 0xffff;
3225 int delay = 0;
3226 struct an_softc *sc = ifp->if_softc;
3228 while ((statword & AN_CMD_BUSY) && delay <= (1000 * 100)) {
3229 FLASH_DELAY(10);
3230 delay += 10;
3231 statword = CSR_READ_2(sc, AN_COMMAND(sc->mpi350));
3233 if ((AN_CMD_BUSY & statword) && (delay % 200)) {
3234 unstickbusy(ifp);
3238 return 0 == (AN_CMD_BUSY & statword);
3242 * STEP 1) Disable MAC and do soft reset on card.
3245 static int
3246 cmdreset(struct ifnet *ifp)
3248 int status;
3249 struct an_softc *sc = ifp->if_softc;
3251 an_stop(sc);
3253 an_cmd(sc, AN_CMD_DISABLE, 0);
3255 if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3256 if_printf(ifp, "Waitbusy hang b4 RESET =%d\n", status);
3257 return -EBUSY;
3259 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), AN_CMD_FW_RESTART);
3261 FLASH_DELAY(1000); /* WAS 600 12/7/00 */
3264 if (!(status = WaitBusy(ifp, 100))) {
3265 if_printf(ifp, "Waitbusy hang AFTER RESET =%d\n", status);
3266 return -EBUSY;
3268 return 0;
3272 * STEP 2) Put the card in legendary flash mode
3275 static int
3276 setflashmode(struct ifnet *ifp)
3278 int status;
3279 struct an_softc *sc = ifp->if_softc;
3281 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3282 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), FLASH_COMMAND);
3283 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3284 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), FLASH_COMMAND);
3287 * mdelay(500); // 500ms delay
3290 FLASH_DELAY(500);
3292 if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3293 kprintf("Waitbusy hang after setflash mode\n");
3294 return -EIO;
3296 return 0;
3300 * Get a character from the card matching matchbyte Step 3)
3303 static int
3304 flashgchar(struct ifnet *ifp, int matchbyte, int dwelltime)
3306 int rchar;
3307 unsigned char rbyte = 0;
3308 int success = -1;
3309 struct an_softc *sc = ifp->if_softc;
3312 do {
3313 rchar = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3315 if (dwelltime && !(0x8000 & rchar)) {
3316 dwelltime -= 10;
3317 FLASH_DELAY(10);
3318 continue;
3320 rbyte = 0xff & rchar;
3322 if ((rbyte == matchbyte) && (0x8000 & rchar)) {
3323 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3324 success = 1;
3325 break;
3327 if (rbyte == 0x81 || rbyte == 0x82 || rbyte == 0x83 || rbyte == 0x1a || 0xffff == rchar)
3328 break;
3329 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3331 } while (dwelltime > 0);
3332 return success;
3336 * Put character to SWS0 wait for dwelltime x 50us for echo .
3339 static int
3340 flashpchar(struct ifnet *ifp, int byte, int dwelltime)
3342 int echo;
3343 int pollbusy, waittime;
3344 struct an_softc *sc = ifp->if_softc;
3346 byte |= 0x8000;
3348 if (dwelltime == 0)
3349 dwelltime = 200;
3351 waittime = dwelltime;
3354 * Wait for busy bit d15 to go false indicating buffer empty
3356 do {
3357 pollbusy = CSR_READ_2(sc, AN_SW0(sc->mpi350));
3359 if (pollbusy & 0x8000) {
3360 FLASH_DELAY(50);
3361 waittime -= 50;
3362 continue;
3363 } else
3364 break;
3366 while (waittime >= 0);
3368 /* timeout for busy clear wait */
3370 if (waittime <= 0) {
3371 if_printf(ifp, "flash putchar busywait timeout!\n");
3372 return -1;
3375 * Port is clear now write byte and wait for it to echo back
3377 do {
3378 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), byte);
3379 FLASH_DELAY(50);
3380 dwelltime -= 50;
3381 echo = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3382 } while (dwelltime >= 0 && echo != byte);
3385 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3387 return echo == byte;
3391 * Transfer 32k of firmware data from user buffer to our buffer and send to
3392 * the card
3395 static int
3396 flashputbuf(struct ifnet *ifp)
3398 unsigned short *bufp;
3399 int nwords;
3400 struct an_softc *sc = ifp->if_softc;
3402 /* Write stuff */
3404 bufp = sc->an_flash_buffer;
3406 if (!sc->mpi350) {
3407 CSR_WRITE_2(sc, AN_AUX_PAGE, 0x100);
3408 CSR_WRITE_2(sc, AN_AUX_OFFSET, 0);
3410 for (nwords = 0; nwords != FLASH_SIZE / 2; nwords++) {
3411 CSR_WRITE_2(sc, AN_AUX_DATA, bufp[nwords] & 0xffff);
3413 } else {
3414 for (nwords = 0; nwords != FLASH_SIZE / 4; nwords++) {
3415 CSR_MEM_AUX_WRITE_4(sc, 0x8000,
3416 ((u_int32_t *)bufp)[nwords] & 0xffff);
3420 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), 0x8000);
3422 return 0;
3426 * After flashing restart the card.
3429 static int
3430 flashrestart(struct ifnet *ifp)
3432 int status = 0;
3433 struct an_softc *sc = ifp->if_softc;
3435 FLASH_DELAY(1024); /* Added 12/7/00 */
3437 an_init(sc);
3439 FLASH_DELAY(1024); /* Added 12/7/00 */
3440 return status;
3444 * Entry point for flash ioclt.
3447 static int
3448 flashcard(struct ifnet *ifp, struct aironet_ioctl *l_ioctl)
3450 int z = 0, status;
3451 struct an_softc *sc;
3453 sc = ifp->if_softc;
3454 if (sc->mpi350) {
3455 if_printf(ifp, "flashing not supported on MPI 350 yet\n");
3456 return(-1);
3458 status = l_ioctl->command;
3460 switch (l_ioctl->command) {
3461 case AIROFLSHRST:
3462 return cmdreset(ifp);
3463 break;
3464 case AIROFLSHSTFL:
3465 if (sc->an_flash_buffer) {
3466 kfree(sc->an_flash_buffer, M_DEVBUF);
3467 sc->an_flash_buffer = NULL;
3469 sc->an_flash_buffer = kmalloc(FLASH_SIZE, M_DEVBUF, 0);
3470 if (sc->an_flash_buffer)
3471 return setflashmode(ifp);
3472 else
3473 return ENOBUFS;
3474 break;
3475 case AIROFLSHGCHR: /* Get char from aux */
3476 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3477 z = *(int *)&sc->areq;
3478 if ((status = flashgchar(ifp, z, 8000)) == 1)
3479 return 0;
3480 else
3481 return -1;
3482 break;
3483 case AIROFLSHPCHR: /* Send char to card. */
3484 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3485 z = *(int *)&sc->areq;
3486 if ((status = flashpchar(ifp, z, 8000)) == -1)
3487 return -EIO;
3488 else
3489 return 0;
3490 break;
3491 case AIROFLPUTBUF: /* Send 32k to card */
3492 if (l_ioctl->len > FLASH_SIZE) {
3493 if_printf(ifp, "Buffer to big, %x %x\n",
3494 l_ioctl->len, FLASH_SIZE);
3495 return -EINVAL;
3497 copyin(l_ioctl->data, sc->an_flash_buffer, l_ioctl->len);
3499 if ((status = flashputbuf(ifp)) != 0)
3500 return -EIO;
3501 else
3502 return 0;
3503 break;
3504 case AIRORESTART:
3505 if ((status = flashrestart(ifp)) != 0) {
3506 if_printf(ifp, "FLASHRESTART returned %d\n", status);
3507 return -EIO;
3508 } else
3509 return 0;
3511 break;
3512 default:
3513 return -EINVAL;
3516 return -EINVAL;