2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * All advertising materials mentioning features or use of this software
36 * must display the following acknowledgement:
37 * This product includes software developed by Jeffrey M. Hsu.
39 * Copyright (c) 2001 Networks Associates Technologies, Inc.
40 * All rights reserved.
42 * This software was developed for the FreeBSD Project by Jonathan Lemon
43 * and NAI Labs, the Security Research Division of Network Associates, Inc.
44 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45 * DARPA CHATS research program.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. The name of the author may not be used to endorse or promote
56 * products derived from this software without specific prior written
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72 * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.35 2008/11/22 11:03:35 sephe Exp $
76 #include "opt_inet6.h"
77 #include "opt_ipsec.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/malloc.h>
86 #include <sys/proc.h> /* for proc0 declaration */
87 #include <sys/random.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/in_cksum.h>
92 #include <sys/msgport2.h>
93 #include <net/netmsg2.h>
96 #include <net/route.h>
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/in_var.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
120 #include <netinet6/ipsec.h>
122 #include <netinet6/ipsec6.h>
124 #include <netproto/key/key.h>
128 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/ipsec6.h>
132 #include <netproto/ipsec/key.h>
134 #endif /*FAST_IPSEC*/
136 static int tcp_syncookies
= 1;
137 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, syncookies
, CTLFLAG_RW
,
139 "Use TCP SYN cookies if the syncache overflows");
141 static void syncache_drop(struct syncache
*, struct syncache_head
*);
142 static void syncache_free(struct syncache
*);
143 static void syncache_insert(struct syncache
*, struct syncache_head
*);
144 struct syncache
*syncache_lookup(struct in_conninfo
*, struct syncache_head
**);
145 static int syncache_respond(struct syncache
*, struct mbuf
*);
146 static struct socket
*syncache_socket(struct syncache
*, struct socket
*,
148 static void syncache_timer(void *);
149 static u_int32_t
syncookie_generate(struct syncache
*);
150 static struct syncache
*syncookie_lookup(struct in_conninfo
*,
151 struct tcphdr
*, struct socket
*);
154 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
155 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
156 * the odds are that the user has given up attempting to connect by then.
158 #define SYNCACHE_MAXREXMTS 3
160 /* Arbitrary values */
161 #define TCP_SYNCACHE_HASHSIZE 512
162 #define TCP_SYNCACHE_BUCKETLIMIT 30
164 struct netmsg_sc_timer
{
165 struct netmsg_base base
;
166 struct msgrec
*nm_mrec
; /* back pointer to containing msgrec */
170 struct netmsg_sc_timer msg
;
171 lwkt_port_t port
; /* constant after init */
172 int slot
; /* constant after init */
175 static void syncache_timer_handler(netmsg_t
);
177 struct tcp_syncache
{
185 static struct tcp_syncache tcp_syncache
;
187 TAILQ_HEAD(syncache_list
, syncache
);
189 struct tcp_syncache_percpu
{
190 struct syncache_head
*hashbase
;
192 struct syncache_list timerq
[SYNCACHE_MAXREXMTS
+ 1];
193 struct callout tt_timerq
[SYNCACHE_MAXREXMTS
+ 1];
194 struct msgrec mrec
[SYNCACHE_MAXREXMTS
+ 1];
196 static struct tcp_syncache_percpu tcp_syncache_percpu
[MAXCPU
];
198 static struct lwkt_port syncache_null_rport
;
200 SYSCTL_NODE(_net_inet_tcp
, OID_AUTO
, syncache
, CTLFLAG_RW
, 0, "TCP SYN cache");
202 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, bucketlimit
, CTLFLAG_RD
,
203 &tcp_syncache
.bucket_limit
, 0, "Per-bucket hash limit for syncache");
205 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, cachelimit
, CTLFLAG_RD
,
206 &tcp_syncache
.cache_limit
, 0, "Overall entry limit for syncache");
210 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, count
, CTLFLAG_RD
,
211 &tcp_syncache
.cache_count
, 0, "Current number of entries in syncache");
214 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, hashsize
, CTLFLAG_RD
,
215 &tcp_syncache
.hashsize
, 0, "Size of TCP syncache hashtable");
217 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, rexmtlimit
, CTLFLAG_RW
,
218 &tcp_syncache
.rexmt_limit
, 0, "Limit on SYN/ACK retransmissions");
220 static MALLOC_DEFINE(M_SYNCACHE
, "syncache", "TCP syncache");
222 #define SYNCACHE_HASH(inc, mask) \
223 ((tcp_syncache.hash_secret ^ \
224 (inc)->inc_faddr.s_addr ^ \
225 ((inc)->inc_faddr.s_addr >> 16) ^ \
226 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
228 #define SYNCACHE_HASH6(inc, mask) \
229 ((tcp_syncache.hash_secret ^ \
230 (inc)->inc6_faddr.s6_addr32[0] ^ \
231 (inc)->inc6_faddr.s6_addr32[3] ^ \
232 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
234 #define ENDPTS_EQ(a, b) ( \
235 (a)->ie_fport == (b)->ie_fport && \
236 (a)->ie_lport == (b)->ie_lport && \
237 (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \
238 (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \
241 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
244 syncache_timeout(struct tcp_syncache_percpu
*syncache_percpu
,
245 struct syncache
*sc
, int slot
)
247 sc
->sc_rxtslot
= slot
;
248 sc
->sc_rxttime
= ticks
+ TCPTV_RTOBASE
* tcp_backoff
[slot
];
249 TAILQ_INSERT_TAIL(&syncache_percpu
->timerq
[slot
], sc
, sc_timerq
);
250 if (!callout_active(&syncache_percpu
->tt_timerq
[slot
])) {
251 callout_reset(&syncache_percpu
->tt_timerq
[slot
],
252 TCPTV_RTOBASE
* tcp_backoff
[slot
],
254 &syncache_percpu
->mrec
[slot
]);
259 syncache_free(struct syncache
*sc
)
263 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
265 const boolean_t isipv6
= FALSE
;
269 m_free(sc
->sc_ipopts
);
271 rt
= isipv6
? sc
->sc_route6
.ro_rt
: sc
->sc_route
.ro_rt
;
274 * If this is the only reference to a protocol-cloned
275 * route, remove it immediately.
277 if ((rt
->rt_flags
& RTF_WASCLONED
) && rt
->rt_refcnt
== 1)
278 rtrequest(RTM_DELETE
, rt_key(rt
), rt
->rt_gateway
,
279 rt_mask(rt
), rt
->rt_flags
, NULL
);
282 kfree(sc
, M_SYNCACHE
);
290 tcp_syncache
.hashsize
= TCP_SYNCACHE_HASHSIZE
;
291 tcp_syncache
.bucket_limit
= TCP_SYNCACHE_BUCKETLIMIT
;
292 tcp_syncache
.cache_limit
=
293 tcp_syncache
.hashsize
* tcp_syncache
.bucket_limit
;
294 tcp_syncache
.rexmt_limit
= SYNCACHE_MAXREXMTS
;
295 tcp_syncache
.hash_secret
= karc4random();
297 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
298 &tcp_syncache
.hashsize
);
299 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
300 &tcp_syncache
.cache_limit
);
301 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
302 &tcp_syncache
.bucket_limit
);
303 if (!powerof2(tcp_syncache
.hashsize
)) {
304 kprintf("WARNING: syncache hash size is not a power of 2.\n");
305 tcp_syncache
.hashsize
= 512; /* safe default */
307 tcp_syncache
.hashmask
= tcp_syncache
.hashsize
- 1;
309 lwkt_initport_replyonly_null(&syncache_null_rport
);
311 for (cpu
= 0; cpu
< ncpus2
; cpu
++) {
312 struct tcp_syncache_percpu
*syncache_percpu
;
314 syncache_percpu
= &tcp_syncache_percpu
[cpu
];
315 /* Allocate the hash table. */
316 MALLOC(syncache_percpu
->hashbase
, struct syncache_head
*,
317 tcp_syncache
.hashsize
* sizeof(struct syncache_head
),
318 M_SYNCACHE
, M_WAITOK
);
320 /* Initialize the hash buckets. */
321 for (i
= 0; i
< tcp_syncache
.hashsize
; i
++) {
322 struct syncache_head
*bucket
;
324 bucket
= &syncache_percpu
->hashbase
[i
];
325 TAILQ_INIT(&bucket
->sch_bucket
);
326 bucket
->sch_length
= 0;
329 for (i
= 0; i
<= SYNCACHE_MAXREXMTS
; i
++) {
330 /* Initialize the timer queues. */
331 TAILQ_INIT(&syncache_percpu
->timerq
[i
]);
332 callout_init_mp(&syncache_percpu
->tt_timerq
[i
]);
334 syncache_percpu
->mrec
[i
].slot
= i
;
335 syncache_percpu
->mrec
[i
].port
= cpu_portfn(cpu
);
336 syncache_percpu
->mrec
[i
].msg
.nm_mrec
=
337 &syncache_percpu
->mrec
[i
];
338 netmsg_init(&syncache_percpu
->mrec
[i
].msg
.base
,
339 NULL
, &syncache_null_rport
,
340 0, syncache_timer_handler
);
346 syncache_insert(struct syncache
*sc
, struct syncache_head
*sch
)
348 struct tcp_syncache_percpu
*syncache_percpu
;
349 struct syncache
*sc2
;
352 syncache_percpu
= &tcp_syncache_percpu
[mycpu
->gd_cpuid
];
355 * Make sure that we don't overflow the per-bucket
356 * limit or the total cache size limit.
358 if (sch
->sch_length
>= tcp_syncache
.bucket_limit
) {
360 * The bucket is full, toss the oldest element.
362 sc2
= TAILQ_FIRST(&sch
->sch_bucket
);
363 sc2
->sc_tp
->ts_recent
= ticks
;
364 syncache_drop(sc2
, sch
);
365 tcpstat
.tcps_sc_bucketoverflow
++;
366 } else if (syncache_percpu
->cache_count
>= tcp_syncache
.cache_limit
) {
368 * The cache is full. Toss the oldest entry in the
369 * entire cache. This is the front entry in the
370 * first non-empty timer queue with the largest
373 for (i
= SYNCACHE_MAXREXMTS
; i
>= 0; i
--) {
374 sc2
= TAILQ_FIRST(&syncache_percpu
->timerq
[i
]);
375 while (sc2
&& (sc2
->sc_flags
& SCF_MARKER
))
376 sc2
= TAILQ_NEXT(sc2
, sc_timerq
);
380 sc2
->sc_tp
->ts_recent
= ticks
;
381 syncache_drop(sc2
, NULL
);
382 tcpstat
.tcps_sc_cacheoverflow
++;
385 /* Initialize the entry's timer. */
386 syncache_timeout(syncache_percpu
, sc
, 0);
388 /* Put it into the bucket. */
389 TAILQ_INSERT_TAIL(&sch
->sch_bucket
, sc
, sc_hash
);
391 syncache_percpu
->cache_count
++;
392 tcpstat
.tcps_sc_added
++;
396 syncache_destroy(struct tcpcb
*tp
)
398 struct tcp_syncache_percpu
*syncache_percpu
;
399 struct syncache_head
*bucket
;
403 syncache_percpu
= &tcp_syncache_percpu
[mycpu
->gd_cpuid
];
406 for (i
= 0; i
< tcp_syncache
.hashsize
; i
++) {
407 bucket
= &syncache_percpu
->hashbase
[i
];
408 TAILQ_FOREACH(sc
, &bucket
->sch_bucket
, sc_hash
) {
416 syncache_drop(struct syncache
*sc
, struct syncache_head
*sch
)
418 struct tcp_syncache_percpu
*syncache_percpu
;
420 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
422 const boolean_t isipv6
= FALSE
;
425 syncache_percpu
= &tcp_syncache_percpu
[mycpu
->gd_cpuid
];
429 sch
= &syncache_percpu
->hashbase
[
430 SYNCACHE_HASH6(&sc
->sc_inc
, tcp_syncache
.hashmask
)];
432 sch
= &syncache_percpu
->hashbase
[
433 SYNCACHE_HASH(&sc
->sc_inc
, tcp_syncache
.hashmask
)];
437 TAILQ_REMOVE(&sch
->sch_bucket
, sc
, sc_hash
);
439 syncache_percpu
->cache_count
--;
448 * Remove the entry from the syncache timer/timeout queue. Note
449 * that we do not try to stop any running timer since we do not know
450 * whether the timer's message is in-transit or not. Since timeouts
451 * are fairly long, taking an unneeded callout does not detrimentally
452 * effect performance.
454 TAILQ_REMOVE(&syncache_percpu
->timerq
[sc
->sc_rxtslot
], sc
, sc_timerq
);
460 * Place a timeout message on the TCP thread's message queue.
461 * This routine runs in soft interrupt context.
463 * An invariant is for this routine to be called, the callout must
464 * have been active. Note that the callout is not deactivated until
465 * after the message has been processed in syncache_timer_handler() below.
468 syncache_timer(void *p
)
470 struct netmsg_sc_timer
*msg
= p
;
472 lwkt_sendmsg(msg
->nm_mrec
->port
, &msg
->base
.lmsg
);
476 * Service a timer message queued by timer expiration.
477 * This routine runs in the TCP protocol thread.
479 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
480 * If we have retransmitted an entry the maximum number of times, expire it.
482 * When we finish processing timed-out entries, we restart the timer if there
483 * are any entries still on the queue and deactivate it otherwise. Only after
484 * a timer has been deactivated here can it be restarted by syncache_timeout().
487 syncache_timer_handler(netmsg_t msg
)
489 struct tcp_syncache_percpu
*syncache_percpu
;
491 struct syncache marker
;
492 struct syncache_list
*list
;
496 slot
= ((struct netmsg_sc_timer
*)msg
)->nm_mrec
->slot
;
497 syncache_percpu
= &tcp_syncache_percpu
[mycpu
->gd_cpuid
];
499 list
= &syncache_percpu
->timerq
[slot
];
502 * Use a marker to keep our place in the scan. syncache_drop()
503 * can block and cause any next pointer we cache to become stale.
505 marker
.sc_flags
= SCF_MARKER
;
506 TAILQ_INSERT_HEAD(list
, &marker
, sc_timerq
);
508 while ((sc
= TAILQ_NEXT(&marker
, sc_timerq
)) != NULL
) {
512 TAILQ_REMOVE(list
, &marker
, sc_timerq
);
513 TAILQ_INSERT_AFTER(list
, sc
, &marker
, sc_timerq
);
515 if (sc
->sc_flags
& SCF_MARKER
)
518 if (ticks
< sc
->sc_rxttime
)
519 break; /* finished because timerq sorted by time */
520 if (sc
->sc_tp
== NULL
) {
521 syncache_drop(sc
, NULL
);
522 tcpstat
.tcps_sc_stale
++;
525 inp
= sc
->sc_tp
->t_inpcb
;
526 if (slot
== SYNCACHE_MAXREXMTS
||
527 slot
>= tcp_syncache
.rexmt_limit
||
529 inp
->inp_gencnt
!= sc
->sc_inp_gencnt
) {
530 syncache_drop(sc
, NULL
);
531 tcpstat
.tcps_sc_stale
++;
535 * syncache_respond() may call back into the syncache to
536 * to modify another entry, so do not obtain the next
537 * entry on the timer chain until it has completed.
539 syncache_respond(sc
, NULL
);
540 tcpstat
.tcps_sc_retransmitted
++;
541 TAILQ_REMOVE(list
, sc
, sc_timerq
);
542 syncache_timeout(syncache_percpu
, sc
, slot
+ 1);
544 TAILQ_REMOVE(list
, &marker
, sc_timerq
);
547 callout_reset(&syncache_percpu
->tt_timerq
[slot
],
548 sc
->sc_rxttime
- ticks
, syncache_timer
,
549 &syncache_percpu
->mrec
[slot
]);
551 callout_deactivate(&syncache_percpu
->tt_timerq
[slot
]);
553 lwkt_replymsg(&msg
->base
.lmsg
, 0);
557 * Find an entry in the syncache.
560 syncache_lookup(struct in_conninfo
*inc
, struct syncache_head
**schp
)
562 struct tcp_syncache_percpu
*syncache_percpu
;
564 struct syncache_head
*sch
;
566 syncache_percpu
= &tcp_syncache_percpu
[mycpu
->gd_cpuid
];
568 if (inc
->inc_isipv6
) {
569 sch
= &syncache_percpu
->hashbase
[
570 SYNCACHE_HASH6(inc
, tcp_syncache
.hashmask
)];
572 TAILQ_FOREACH(sc
, &sch
->sch_bucket
, sc_hash
)
573 if (ENDPTS6_EQ(&inc
->inc_ie
, &sc
->sc_inc
.inc_ie
))
578 sch
= &syncache_percpu
->hashbase
[
579 SYNCACHE_HASH(inc
, tcp_syncache
.hashmask
)];
581 TAILQ_FOREACH(sc
, &sch
->sch_bucket
, sc_hash
) {
583 if (sc
->sc_inc
.inc_isipv6
)
586 if (ENDPTS_EQ(&inc
->inc_ie
, &sc
->sc_inc
.inc_ie
))
594 * This function is called when we get a RST for a
595 * non-existent connection, so that we can see if the
596 * connection is in the syn cache. If it is, zap it.
599 syncache_chkrst(struct in_conninfo
*inc
, struct tcphdr
*th
)
602 struct syncache_head
*sch
;
604 sc
= syncache_lookup(inc
, &sch
);
609 * If the RST bit is set, check the sequence number to see
610 * if this is a valid reset segment.
612 * In all states except SYN-SENT, all reset (RST) segments
613 * are validated by checking their SEQ-fields. A reset is
614 * valid if its sequence number is in the window.
616 * The sequence number in the reset segment is normally an
617 * echo of our outgoing acknowlegement numbers, but some hosts
618 * send a reset with the sequence number at the rightmost edge
619 * of our receive window, and we have to handle this case.
621 if (SEQ_GEQ(th
->th_seq
, sc
->sc_irs
) &&
622 SEQ_LEQ(th
->th_seq
, sc
->sc_irs
+ sc
->sc_wnd
)) {
623 syncache_drop(sc
, sch
);
624 tcpstat
.tcps_sc_reset
++;
629 syncache_badack(struct in_conninfo
*inc
)
632 struct syncache_head
*sch
;
634 sc
= syncache_lookup(inc
, &sch
);
636 syncache_drop(sc
, sch
);
637 tcpstat
.tcps_sc_badack
++;
642 syncache_unreach(struct in_conninfo
*inc
, struct tcphdr
*th
)
645 struct syncache_head
*sch
;
647 /* we are called at splnet() here */
648 sc
= syncache_lookup(inc
, &sch
);
652 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
653 if (ntohl(th
->th_seq
) != sc
->sc_iss
)
657 * If we've rertransmitted 3 times and this is our second error,
658 * we remove the entry. Otherwise, we allow it to continue on.
659 * This prevents us from incorrectly nuking an entry during a
660 * spurious network outage.
664 if ((sc
->sc_flags
& SCF_UNREACH
) == 0 || sc
->sc_rxtslot
< 3) {
665 sc
->sc_flags
|= SCF_UNREACH
;
668 syncache_drop(sc
, sch
);
669 tcpstat
.tcps_sc_unreach
++;
673 * Build a new TCP socket structure from a syncache entry.
675 * This is called from the context of the SYN+ACK
677 static struct socket
*
678 syncache_socket(struct syncache
*sc
, struct socket
*lso
, struct mbuf
*m
)
680 struct inpcb
*inp
= NULL
, *linp
;
682 struct tcpcb
*tp
, *ltp
;
685 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
687 const boolean_t isipv6
= FALSE
;
689 struct sockaddr_in sin_faddr
;
690 struct sockaddr
*faddr
;
693 /* XXX Not ready yet */
696 /* XXX duplicate later on code */
697 faddr
= (struct sockaddr
*)&sin_faddr
;
698 sin_faddr
.sin_family
= AF_INET
;
699 sin_faddr
.sin_len
= sizeof(sin_faddr
);
700 sin_faddr
.sin_addr
= sc
->sc_inc
.inc_faddr
;
701 sin_faddr
.sin_port
= sc
->sc_inc
.inc_fport
;
702 bzero(sin_faddr
.sin_zero
, sizeof(sin_faddr
.sin_zero
));
706 * Ok, create the full blown connection, and set things up
707 * as they would have been set up if we had created the
708 * connection when the SYN arrived. If we can't create
709 * the connection, abort it.
711 * Set the protocol processing port for the socket to the current
712 * port (that the connection came in on).
714 so
= sonewconn_faddr(lso
, SS_ISCONNECTED
, faddr
);
717 * Drop the connection; we will send a RST if the peer
718 * retransmits the ACK,
720 tcpstat
.tcps_listendrop
++;
725 * Insert new socket into hash list.
728 inp
->inp_inc
.inc_isipv6
= sc
->sc_inc
.inc_isipv6
;
730 inp
->in6p_laddr
= sc
->sc_inc
.inc6_laddr
;
733 inp
->inp_vflag
&= ~INP_IPV6
;
734 inp
->inp_vflag
|= INP_IPV4
;
735 inp
->inp_flags
&= ~IN6P_IPV6_V6ONLY
;
737 inp
->inp_laddr
= sc
->sc_inc
.inc_laddr
;
739 inp
->inp_lport
= sc
->sc_inc
.inc_lport
;
740 if (in_pcbinsporthash(inp
) != 0) {
742 * Undo the assignments above if we failed to
743 * put the PCB on the hash lists.
746 inp
->in6p_laddr
= kin6addr_any
;
748 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
754 /* copy old policy into new socket's */
755 if (ipsec_copy_policy(linp
->inp_sp
, inp
->inp_sp
))
756 kprintf("syncache_expand: could not copy policy\n");
759 struct in6_addr laddr6
;
760 struct sockaddr_in6 sin6
;
762 * Inherit socket options from the listening socket.
763 * Note that in6p_inputopts are not (and should not be)
764 * copied, since it stores previously received options and is
765 * used to detect if each new option is different than the
766 * previous one and hence should be passed to a user.
767 * If we copied in6p_inputopts, a user would not be able to
768 * receive options just after calling the accept system call.
770 inp
->inp_flags
|= linp
->inp_flags
& INP_CONTROLOPTS
;
771 if (linp
->in6p_outputopts
)
772 inp
->in6p_outputopts
=
773 ip6_copypktopts(linp
->in6p_outputopts
, M_INTWAIT
);
774 inp
->in6p_route
= sc
->sc_route6
;
775 sc
->sc_route6
.ro_rt
= NULL
;
777 sin6
.sin6_family
= AF_INET6
;
778 sin6
.sin6_len
= sizeof sin6
;
779 sin6
.sin6_addr
= sc
->sc_inc
.inc6_faddr
;
780 sin6
.sin6_port
= sc
->sc_inc
.inc_fport
;
781 sin6
.sin6_flowinfo
= sin6
.sin6_scope_id
= 0;
782 laddr6
= inp
->in6p_laddr
;
783 if (IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
))
784 inp
->in6p_laddr
= sc
->sc_inc
.inc6_laddr
;
785 if (in6_pcbconnect(inp
, (struct sockaddr
*)&sin6
, &thread0
)) {
786 inp
->in6p_laddr
= laddr6
;
790 struct in_addr laddr
;
792 inp
->inp_options
= ip_srcroute(m
);
793 if (inp
->inp_options
== NULL
) {
794 inp
->inp_options
= sc
->sc_ipopts
;
795 sc
->sc_ipopts
= NULL
;
797 inp
->inp_route
= sc
->sc_route
;
798 sc
->sc_route
.ro_rt
= NULL
;
800 laddr
= inp
->inp_laddr
;
801 if (inp
->inp_laddr
.s_addr
== INADDR_ANY
)
802 inp
->inp_laddr
= sc
->sc_inc
.inc_laddr
;
803 if (in_pcbconnect(inp
, faddr
, &thread0
)) {
804 inp
->inp_laddr
= laddr
;
810 * The current port should be in the context of the SYN+ACK and
811 * so should match the tcp address port.
813 * XXX we may be running on the netisr thread instead of a tcp
814 * thread, in which case port will not match
815 * curthread->td_msgport.
818 port
= tcp6_addrport();
820 port
= tcp_addrport(inp
->inp_faddr
.s_addr
, inp
->inp_fport
,
821 inp
->inp_laddr
.s_addr
, inp
->inp_lport
);
823 if (port
!= &curthread
->td_msgport
) {
825 kprintf("TCP PORT MISMATCH %p vs %p\n",
826 port
, &curthread
->td_msgport
);
828 /*KKASSERT(port == &curthread->td_msgport);*/
831 tp
->t_state
= TCPS_SYN_RECEIVED
;
832 tp
->iss
= sc
->sc_iss
;
833 tp
->irs
= sc
->sc_irs
;
836 tp
->snd_wl1
= sc
->sc_irs
;
837 tp
->rcv_up
= sc
->sc_irs
+ 1;
838 tp
->rcv_wnd
= sc
->sc_wnd
;
839 tp
->rcv_adv
+= tp
->rcv_wnd
;
841 tp
->t_flags
= sototcpcb(lso
)->t_flags
& (TF_NOPUSH
| TF_NODELAY
);
842 if (sc
->sc_flags
& SCF_NOOPT
)
843 tp
->t_flags
|= TF_NOOPT
;
844 if (sc
->sc_flags
& SCF_WINSCALE
) {
845 tp
->t_flags
|= TF_REQ_SCALE
| TF_RCVD_SCALE
;
846 tp
->requested_s_scale
= sc
->sc_requested_s_scale
;
847 tp
->request_r_scale
= sc
->sc_request_r_scale
;
849 if (sc
->sc_flags
& SCF_TIMESTAMP
) {
850 tp
->t_flags
|= TF_REQ_TSTMP
| TF_RCVD_TSTMP
;
851 tp
->ts_recent
= sc
->sc_tsrecent
;
852 tp
->ts_recent_age
= ticks
;
854 if (sc
->sc_flags
& SCF_SACK_PERMITTED
)
855 tp
->t_flags
|= TF_SACK_PERMITTED
;
858 if (sc
->sc_flags
& SCF_SIGNATURE
)
859 tp
->t_flags
|= TF_SIGNATURE
;
860 #endif /* TCP_SIGNATURE */
863 tcp_mss(tp
, sc
->sc_peer_mss
);
866 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
868 if (sc
->sc_rxtslot
!= 0)
869 tp
->snd_cwnd
= tp
->t_maxseg
;
872 * Inherit some properties from the listen socket
874 ltp
= intotcpcb(linp
);
875 tp
->t_keepinit
= ltp
->t_keepinit
;
876 tp
->t_keepidle
= ltp
->t_keepidle
;
877 tp
->t_keepintvl
= ltp
->t_keepintvl
;
878 tp
->t_keepcnt
= ltp
->t_keepcnt
;
879 tp
->t_maxidle
= ltp
->t_maxidle
;
881 tcp_create_timermsg(tp
, port
);
882 tcp_callout_reset(tp
, tp
->tt_keep
, tp
->t_keepinit
, tcp_timer_keep
);
884 tcpstat
.tcps_accepts
++;
894 * This function gets called when we receive an ACK for a
895 * socket in the LISTEN state. We look up the connection
896 * in the syncache, and if its there, we pull it out of
897 * the cache and turn it into a full-blown connection in
898 * the SYN-RECEIVED state.
901 syncache_expand(struct in_conninfo
*inc
, struct tcphdr
*th
, struct socket
**sop
,
905 struct syncache_head
*sch
;
908 sc
= syncache_lookup(inc
, &sch
);
911 * There is no syncache entry, so see if this ACK is
912 * a returning syncookie. To do this, first:
913 * A. See if this socket has had a syncache entry dropped in
914 * the past. We don't want to accept a bogus syncookie
915 * if we've never received a SYN.
916 * B. check that the syncookie is valid. If it is, then
917 * cobble up a fake syncache entry, and return.
921 sc
= syncookie_lookup(inc
, th
, *sop
);
925 tcpstat
.tcps_sc_recvcookie
++;
929 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
931 if (th
->th_ack
!= sc
->sc_iss
+ 1)
934 so
= syncache_socket(sc
, *sop
, m
);
938 /* XXXjlemon check this - is this correct? */
939 tcp_respond(NULL
, m
, m
, th
,
940 th
->th_seq
+ tlen
, (tcp_seq
)0, TH_RST
| TH_ACK
);
942 m_freem(m
); /* XXX only needed for above */
943 tcpstat
.tcps_sc_aborted
++;
945 tcpstat
.tcps_sc_completed
++;
950 syncache_drop(sc
, sch
);
956 * Given a LISTEN socket and an inbound SYN request, add
957 * this to the syn cache, and send back a segment:
958 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
961 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
962 * Doing so would require that we hold onto the data and deliver it
963 * to the application. However, if we are the target of a SYN-flood
964 * DoS attack, an attacker could send data which would eventually
965 * consume all available buffer space if it were ACKed. By not ACKing
966 * the data, we avoid this DoS scenario.
969 syncache_add(struct in_conninfo
*inc
, struct tcpopt
*to
, struct tcphdr
*th
,
970 struct socket
**sop
, struct mbuf
*m
)
972 struct tcp_syncache_percpu
*syncache_percpu
;
975 struct syncache
*sc
= NULL
;
976 struct syncache_head
*sch
;
977 struct mbuf
*ipopts
= NULL
;
980 syncache_percpu
= &tcp_syncache_percpu
[mycpu
->gd_cpuid
];
985 * Remember the IP options, if any.
988 if (!inc
->inc_isipv6
)
990 ipopts
= ip_srcroute(m
);
993 * See if we already have an entry for this connection.
994 * If we do, resend the SYN,ACK, and reset the retransmit timer.
997 * The syncache should be re-initialized with the contents
998 * of the new SYN which may have different options.
1000 sc
= syncache_lookup(inc
, &sch
);
1002 tcpstat
.tcps_sc_dupsyn
++;
1005 * If we were remembering a previous source route,
1006 * forget it and use the new one we've been given.
1009 m_free(sc
->sc_ipopts
);
1010 sc
->sc_ipopts
= ipopts
;
1013 * Update timestamp if present.
1015 if (sc
->sc_flags
& SCF_TIMESTAMP
)
1016 sc
->sc_tsrecent
= to
->to_tsval
;
1018 /* Just update the TOF_SACK_PERMITTED for now. */
1019 if (tcp_do_sack
&& (to
->to_flags
& TOF_SACK_PERMITTED
))
1020 sc
->sc_flags
|= SCF_SACK_PERMITTED
;
1022 sc
->sc_flags
&= ~SCF_SACK_PERMITTED
;
1025 * PCB may have changed, pick up new values.
1028 sc
->sc_inp_gencnt
= tp
->t_inpcb
->inp_gencnt
;
1029 if (syncache_respond(sc
, m
) == 0) {
1030 TAILQ_REMOVE(&syncache_percpu
->timerq
[sc
->sc_rxtslot
],
1032 syncache_timeout(syncache_percpu
, sc
, sc
->sc_rxtslot
);
1033 tcpstat
.tcps_sndacks
++;
1034 tcpstat
.tcps_sndtotal
++;
1041 * Fill in the syncache values.
1043 sc
= kmalloc(sizeof(struct syncache
), M_SYNCACHE
, M_WAITOK
|M_ZERO
);
1044 sc
->sc_inp_gencnt
= tp
->t_inpcb
->inp_gencnt
;
1045 sc
->sc_ipopts
= ipopts
;
1046 sc
->sc_inc
.inc_fport
= inc
->inc_fport
;
1047 sc
->sc_inc
.inc_lport
= inc
->inc_lport
;
1050 sc
->sc_inc
.inc_isipv6
= inc
->inc_isipv6
;
1051 if (inc
->inc_isipv6
) {
1052 sc
->sc_inc
.inc6_faddr
= inc
->inc6_faddr
;
1053 sc
->sc_inc
.inc6_laddr
= inc
->inc6_laddr
;
1054 sc
->sc_route6
.ro_rt
= NULL
;
1058 sc
->sc_inc
.inc_faddr
= inc
->inc_faddr
;
1059 sc
->sc_inc
.inc_laddr
= inc
->inc_laddr
;
1060 sc
->sc_route
.ro_rt
= NULL
;
1062 sc
->sc_irs
= th
->th_seq
;
1064 sc
->sc_peer_mss
= to
->to_flags
& TOF_MSS
? to
->to_mss
: 0;
1066 sc
->sc_iss
= syncookie_generate(sc
);
1068 sc
->sc_iss
= karc4random();
1070 /* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1071 win
= ssb_space(&so
->so_rcv
);
1073 win
= imin(win
, TCP_MAXWIN
);
1076 if (tcp_do_rfc1323
) {
1078 * A timestamp received in a SYN makes
1079 * it ok to send timestamp requests and replies.
1081 if (to
->to_flags
& TOF_TS
) {
1082 sc
->sc_tsrecent
= to
->to_tsval
;
1083 sc
->sc_flags
|= SCF_TIMESTAMP
;
1085 if (to
->to_flags
& TOF_SCALE
) {
1086 int wscale
= TCP_MIN_WINSHIFT
;
1088 /* Compute proper scaling value from buffer space */
1089 while (wscale
< TCP_MAX_WINSHIFT
&&
1090 (TCP_MAXWIN
<< wscale
) < so
->so_rcv
.ssb_hiwat
) {
1093 sc
->sc_request_r_scale
= wscale
;
1094 sc
->sc_requested_s_scale
= to
->to_requested_s_scale
;
1095 sc
->sc_flags
|= SCF_WINSCALE
;
1098 if (tcp_do_sack
&& (to
->to_flags
& TOF_SACK_PERMITTED
))
1099 sc
->sc_flags
|= SCF_SACK_PERMITTED
;
1100 if (tp
->t_flags
& TF_NOOPT
)
1101 sc
->sc_flags
= SCF_NOOPT
;
1102 #ifdef TCP_SIGNATURE
1104 * If listening socket requested TCP digests, and received SYN
1105 * contains the option, flag this in the syncache so that
1106 * syncache_respond() will do the right thing with the SYN+ACK.
1107 * XXX Currently we always record the option by default and will
1108 * attempt to use it in syncache_respond().
1110 if (to
->to_flags
& TOF_SIGNATURE
)
1111 sc
->sc_flags
= SCF_SIGNATURE
;
1112 #endif /* TCP_SIGNATURE */
1114 if (syncache_respond(sc
, m
) == 0) {
1115 syncache_insert(sc
, sch
);
1116 tcpstat
.tcps_sndacks
++;
1117 tcpstat
.tcps_sndtotal
++;
1120 tcpstat
.tcps_sc_dropped
++;
1127 syncache_respond(struct syncache
*sc
, struct mbuf
*m
)
1131 u_int16_t tlen
, hlen
, mssopt
;
1132 struct ip
*ip
= NULL
;
1135 struct ip6_hdr
*ip6
= NULL
;
1137 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
1139 const boolean_t isipv6
= FALSE
;
1143 rt
= tcp_rtlookup6(&sc
->sc_inc
);
1145 mssopt
= rt
->rt_ifp
->if_mtu
-
1146 (sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
));
1148 mssopt
= tcp_v6mssdflt
;
1149 hlen
= sizeof(struct ip6_hdr
);
1151 rt
= tcp_rtlookup(&sc
->sc_inc
);
1153 mssopt
= rt
->rt_ifp
->if_mtu
-
1154 (sizeof(struct ip
) + sizeof(struct tcphdr
));
1156 mssopt
= tcp_mssdflt
;
1157 hlen
= sizeof(struct ip
);
1160 /* Compute the size of the TCP options. */
1161 if (sc
->sc_flags
& SCF_NOOPT
) {
1164 optlen
= TCPOLEN_MAXSEG
+
1165 ((sc
->sc_flags
& SCF_WINSCALE
) ? 4 : 0) +
1166 ((sc
->sc_flags
& SCF_TIMESTAMP
) ? TCPOLEN_TSTAMP_APPA
: 0) +
1167 ((sc
->sc_flags
& SCF_SACK_PERMITTED
) ?
1168 TCPOLEN_SACK_PERMITTED_ALIGNED
: 0);
1169 #ifdef TCP_SIGNATURE
1170 optlen
+= ((sc
->sc_flags
& SCF_SIGNATURE
) ?
1171 (TCPOLEN_SIGNATURE
+ 2) : 0);
1172 #endif /* TCP_SIGNATURE */
1174 tlen
= hlen
+ sizeof(struct tcphdr
) + optlen
;
1178 * assume that the entire packet will fit in a header mbuf
1180 KASSERT(max_linkhdr
+ tlen
<= MHLEN
, ("syncache: mbuf too small"));
1183 * XXX shouldn't this reuse the mbuf if possible ?
1184 * Create the IP+TCP header from scratch.
1189 m
= m_gethdr(MB_DONTWAIT
, MT_HEADER
);
1192 m
->m_data
+= max_linkhdr
;
1194 m
->m_pkthdr
.len
= tlen
;
1195 m
->m_pkthdr
.rcvif
= NULL
;
1198 ip6
= mtod(m
, struct ip6_hdr
*);
1199 ip6
->ip6_vfc
= IPV6_VERSION
;
1200 ip6
->ip6_nxt
= IPPROTO_TCP
;
1201 ip6
->ip6_src
= sc
->sc_inc
.inc6_laddr
;
1202 ip6
->ip6_dst
= sc
->sc_inc
.inc6_faddr
;
1203 ip6
->ip6_plen
= htons(tlen
- hlen
);
1204 /* ip6_hlim is set after checksum */
1205 /* ip6_flow = ??? */
1207 th
= (struct tcphdr
*)(ip6
+ 1);
1209 ip
= mtod(m
, struct ip
*);
1210 ip
->ip_v
= IPVERSION
;
1211 ip
->ip_hl
= sizeof(struct ip
) >> 2;
1216 ip
->ip_p
= IPPROTO_TCP
;
1217 ip
->ip_src
= sc
->sc_inc
.inc_laddr
;
1218 ip
->ip_dst
= sc
->sc_inc
.inc_faddr
;
1219 ip
->ip_ttl
= sc
->sc_tp
->t_inpcb
->inp_ip_ttl
; /* XXX */
1220 ip
->ip_tos
= sc
->sc_tp
->t_inpcb
->inp_ip_tos
; /* XXX */
1223 * See if we should do MTU discovery. Route lookups are
1224 * expensive, so we will only unset the DF bit if:
1226 * 1) path_mtu_discovery is disabled
1227 * 2) the SCF_UNREACH flag has been set
1229 if (path_mtu_discovery
1230 && ((sc
->sc_flags
& SCF_UNREACH
) == 0)) {
1231 ip
->ip_off
|= IP_DF
;
1234 th
= (struct tcphdr
*)(ip
+ 1);
1236 th
->th_sport
= sc
->sc_inc
.inc_lport
;
1237 th
->th_dport
= sc
->sc_inc
.inc_fport
;
1239 th
->th_seq
= htonl(sc
->sc_iss
);
1240 th
->th_ack
= htonl(sc
->sc_irs
+ 1);
1241 th
->th_off
= (sizeof(struct tcphdr
) + optlen
) >> 2;
1243 th
->th_flags
= TH_SYN
| TH_ACK
;
1244 th
->th_win
= htons(sc
->sc_wnd
);
1247 /* Tack on the TCP options. */
1250 optp
= (u_int8_t
*)(th
+ 1);
1251 *optp
++ = TCPOPT_MAXSEG
;
1252 *optp
++ = TCPOLEN_MAXSEG
;
1253 *optp
++ = (mssopt
>> 8) & 0xff;
1254 *optp
++ = mssopt
& 0xff;
1256 if (sc
->sc_flags
& SCF_WINSCALE
) {
1257 *((u_int32_t
*)optp
) = htonl(TCPOPT_NOP
<< 24 |
1258 TCPOPT_WINDOW
<< 16 | TCPOLEN_WINDOW
<< 8 |
1259 sc
->sc_request_r_scale
);
1263 if (sc
->sc_flags
& SCF_TIMESTAMP
) {
1264 u_int32_t
*lp
= (u_int32_t
*)(optp
);
1266 /* Form timestamp option as shown in appendix A of RFC 1323. */
1267 *lp
++ = htonl(TCPOPT_TSTAMP_HDR
);
1268 *lp
++ = htonl(ticks
);
1269 *lp
= htonl(sc
->sc_tsrecent
);
1270 optp
+= TCPOLEN_TSTAMP_APPA
;
1273 #ifdef TCP_SIGNATURE
1275 * Handle TCP-MD5 passive opener response.
1277 if (sc
->sc_flags
& SCF_SIGNATURE
) {
1278 u_int8_t
*bp
= optp
;
1281 *bp
++ = TCPOPT_SIGNATURE
;
1282 *bp
++ = TCPOLEN_SIGNATURE
;
1283 for (i
= 0; i
< TCP_SIGLEN
; i
++)
1285 tcpsignature_compute(m
, 0, optlen
,
1286 optp
+ 2, IPSEC_DIR_OUTBOUND
);
1289 optp
+= TCPOLEN_SIGNATURE
+ 2;
1291 #endif /* TCP_SIGNATURE */
1293 if (sc
->sc_flags
& SCF_SACK_PERMITTED
) {
1294 *((u_int32_t
*)optp
) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED
);
1295 optp
+= TCPOLEN_SACK_PERMITTED_ALIGNED
;
1300 struct route_in6
*ro6
= &sc
->sc_route6
;
1303 th
->th_sum
= in6_cksum(m
, IPPROTO_TCP
, hlen
, tlen
- hlen
);
1304 ip6
->ip6_hlim
= in6_selecthlim(NULL
,
1305 ro6
->ro_rt
? ro6
->ro_rt
->rt_ifp
: NULL
);
1306 error
= ip6_output(m
, NULL
, ro6
, 0, NULL
, NULL
,
1307 sc
->sc_tp
->t_inpcb
);
1309 th
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
1310 htons(tlen
- hlen
+ IPPROTO_TCP
));
1311 m
->m_pkthdr
.csum_flags
= CSUM_TCP
;
1312 m
->m_pkthdr
.csum_data
= offsetof(struct tcphdr
, th_sum
);
1313 error
= ip_output(m
, sc
->sc_ipopts
, &sc
->sc_route
,
1314 IP_DEBUGROUTE
, NULL
, sc
->sc_tp
->t_inpcb
);
1322 * |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1324 * | MD5(laddr,faddr,secret,lport,fport) |. . . . . . .|
1326 * (A): peer mss index
1330 * The values below are chosen to minimize the size of the tcp_secret
1331 * table, as well as providing roughly a 16 second lifetime for the cookie.
1334 #define SYNCOOKIE_WNDBITS 5 /* exposed bits for window indexing */
1335 #define SYNCOOKIE_TIMESHIFT 1 /* scale ticks to window time units */
1337 #define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1)
1338 #define SYNCOOKIE_NSECRETS (1 << SYNCOOKIE_WNDBITS)
1339 #define SYNCOOKIE_TIMEOUT \
1340 (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1341 #define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1344 u_int32_t ts_secbits
[4];
1346 } tcp_secret
[SYNCOOKIE_NSECRETS
];
1348 static int tcp_msstab
[] = { 0, 536, 1460, 8960 };
1350 static MD5_CTX syn_ctx
;
1352 #define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1355 u_int32_t laddr
, faddr
;
1356 u_int32_t secbits
[4];
1357 u_int16_t lport
, fport
;
1361 CTASSERT(sizeof(struct md5_add
) == 28);
1365 * Consider the problem of a recreated (and retransmitted) cookie. If the
1366 * original SYN was accepted, the connection is established. The second
1367 * SYN is inflight, and if it arrives with an ISN that falls within the
1368 * receive window, the connection is killed.
1370 * However, since cookies have other problems, this may not be worth
1375 syncookie_generate(struct syncache
*sc
)
1377 u_int32_t md5_buffer
[4];
1382 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
1384 const boolean_t isipv6
= FALSE
;
1387 idx
= ((ticks
<< SYNCOOKIE_TIMESHIFT
) / hz
) & SYNCOOKIE_WNDMASK
;
1388 if (tcp_secret
[idx
].ts_expire
< ticks
) {
1389 for (i
= 0; i
< 4; i
++)
1390 tcp_secret
[idx
].ts_secbits
[i
] = karc4random();
1391 tcp_secret
[idx
].ts_expire
= ticks
+ SYNCOOKIE_TIMEOUT
;
1393 for (data
= sizeof(tcp_msstab
) / sizeof(int) - 1; data
> 0; data
--)
1394 if (tcp_msstab
[data
] <= sc
->sc_peer_mss
)
1396 data
= (data
<< SYNCOOKIE_WNDBITS
) | idx
;
1397 data
^= sc
->sc_irs
; /* peer's iss */
1400 MD5Add(sc
->sc_inc
.inc6_laddr
);
1401 MD5Add(sc
->sc_inc
.inc6_faddr
);
1405 add
.laddr
= sc
->sc_inc
.inc_laddr
.s_addr
;
1406 add
.faddr
= sc
->sc_inc
.inc_faddr
.s_addr
;
1408 add
.lport
= sc
->sc_inc
.inc_lport
;
1409 add
.fport
= sc
->sc_inc
.inc_fport
;
1410 add
.secbits
[0] = tcp_secret
[idx
].ts_secbits
[0];
1411 add
.secbits
[1] = tcp_secret
[idx
].ts_secbits
[1];
1412 add
.secbits
[2] = tcp_secret
[idx
].ts_secbits
[2];
1413 add
.secbits
[3] = tcp_secret
[idx
].ts_secbits
[3];
1415 MD5Final((u_char
*)&md5_buffer
, &syn_ctx
);
1416 data
^= (md5_buffer
[0] & ~SYNCOOKIE_WNDMASK
);
1420 static struct syncache
*
1421 syncookie_lookup(struct in_conninfo
*inc
, struct tcphdr
*th
, struct socket
*so
)
1423 u_int32_t md5_buffer
[4];
1424 struct syncache
*sc
;
1429 data
= (th
->th_ack
- 1) ^ (th
->th_seq
- 1); /* remove ISS */
1430 idx
= data
& SYNCOOKIE_WNDMASK
;
1431 if (tcp_secret
[idx
].ts_expire
< ticks
||
1432 sototcpcb(so
)->ts_recent
+ SYNCOOKIE_TIMEOUT
< ticks
)
1436 if (inc
->inc_isipv6
) {
1437 MD5Add(inc
->inc6_laddr
);
1438 MD5Add(inc
->inc6_faddr
);
1444 add
.laddr
= inc
->inc_laddr
.s_addr
;
1445 add
.faddr
= inc
->inc_faddr
.s_addr
;
1447 add
.lport
= inc
->inc_lport
;
1448 add
.fport
= inc
->inc_fport
;
1449 add
.secbits
[0] = tcp_secret
[idx
].ts_secbits
[0];
1450 add
.secbits
[1] = tcp_secret
[idx
].ts_secbits
[1];
1451 add
.secbits
[2] = tcp_secret
[idx
].ts_secbits
[2];
1452 add
.secbits
[3] = tcp_secret
[idx
].ts_secbits
[3];
1454 MD5Final((u_char
*)&md5_buffer
, &syn_ctx
);
1455 data
^= md5_buffer
[0];
1456 if (data
& ~SYNCOOKIE_DATAMASK
)
1458 data
= data
>> SYNCOOKIE_WNDBITS
;
1461 * Fill in the syncache values.
1462 * XXX duplicate code from syncache_add
1464 sc
= kmalloc(sizeof(struct syncache
), M_SYNCACHE
, M_WAITOK
|M_ZERO
);
1465 sc
->sc_ipopts
= NULL
;
1466 sc
->sc_inc
.inc_fport
= inc
->inc_fport
;
1467 sc
->sc_inc
.inc_lport
= inc
->inc_lport
;
1469 sc
->sc_inc
.inc_isipv6
= inc
->inc_isipv6
;
1470 if (inc
->inc_isipv6
) {
1471 sc
->sc_inc
.inc6_faddr
= inc
->inc6_faddr
;
1472 sc
->sc_inc
.inc6_laddr
= inc
->inc6_laddr
;
1473 sc
->sc_route6
.ro_rt
= NULL
;
1477 sc
->sc_inc
.inc_faddr
= inc
->inc_faddr
;
1478 sc
->sc_inc
.inc_laddr
= inc
->inc_laddr
;
1479 sc
->sc_route
.ro_rt
= NULL
;
1481 sc
->sc_irs
= th
->th_seq
- 1;
1482 sc
->sc_iss
= th
->th_ack
- 1;
1483 wnd
= ssb_space(&so
->so_rcv
);
1485 wnd
= imin(wnd
, TCP_MAXWIN
);
1489 sc
->sc_peer_mss
= tcp_msstab
[data
];