sys: Some whitespace cleanup.
[dragonfly.git] / sys / kern / vfs_sync.c
blobccea075618aa0b0bc2b112f3dc9ff2d921177e5e
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
35 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
39 * External virtual filesystem routines
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/dirent.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/fcntl.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/mount.h>
55 #include <sys/proc.h>
56 #include <sys/namei.h>
57 #include <sys/reboot.h>
58 #include <sys/socket.h>
59 #include <sys/stat.h>
60 #include <sys/sysctl.h>
61 #include <sys/syslog.h>
62 #include <sys/vmmeter.h>
63 #include <sys/vnode.h>
65 #include <machine/limits.h>
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_kern.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vnode_pager.h>
77 #include <sys/buf2.h>
78 #include <sys/thread2.h>
81 * The workitem queue.
83 #define SYNCER_MAXDELAY 32
84 static int sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS);
85 time_t syncdelay = 30; /* max time to delay syncing data */
86 SYSCTL_PROC(_kern, OID_AUTO, syncdelay, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
87 sysctl_kern_syncdelay, "I", "VFS data synchronization delay");
88 time_t filedelay = 30; /* time to delay syncing files */
89 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
90 &filedelay, 0, "File synchronization delay");
91 time_t dirdelay = 29; /* time to delay syncing directories */
92 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
93 &dirdelay, 0, "Directory synchronization delay");
94 time_t metadelay = 28; /* time to delay syncing metadata */
95 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
96 &metadelay, 0, "VFS metadata synchronization delay");
97 static int rushjob; /* number of slots to run ASAP */
98 static int stat_rush_requests; /* number of times I/O speeded up */
99 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
100 &stat_rush_requests, 0, "");
102 LIST_HEAD(synclist, vnode);
104 #define SC_FLAG_EXIT (0x1) /* request syncer exit */
105 #define SC_FLAG_DONE (0x2) /* syncer confirm exit */
107 struct syncer_ctx {
108 struct mount *sc_mp;
109 struct lwkt_token sc_token;
110 struct thread *sc_thread;
111 int sc_flags;
112 struct synclist *syncer_workitem_pending;
113 long syncer_mask;
114 int syncer_delayno;
115 int syncer_forced;
116 int syncer_rushjob;
119 static void syncer_thread(void *);
121 static int
122 sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS)
124 int error;
125 int v = syncdelay;
127 error = sysctl_handle_int(oidp, &v, 0, req);
128 if (error || !req->newptr)
129 return (error);
130 if (v < 1)
131 v = 1;
132 if (v > SYNCER_MAXDELAY)
133 v = SYNCER_MAXDELAY;
134 syncdelay = v;
136 return(0);
140 * The workitem queue.
142 * It is useful to delay writes of file data and filesystem metadata
143 * for tens of seconds so that quickly created and deleted files need
144 * not waste disk bandwidth being created and removed. To realize this,
145 * we append vnodes to a "workitem" queue. When running with a soft
146 * updates implementation, most pending metadata dependencies should
147 * not wait for more than a few seconds. Thus, mounted on block devices
148 * are delayed only about a half the time that file data is delayed.
149 * Similarly, directory updates are more critical, so are only delayed
150 * about a third the time that file data is delayed. Thus, there are
151 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
152 * one each second (driven off the filesystem syncer process). The
153 * syncer_delayno variable indicates the next queue that is to be processed.
154 * Items that need to be processed soon are placed in this queue:
156 * syncer_workitem_pending[syncer_delayno]
158 * A delay of fifteen seconds is done by placing the request fifteen
159 * entries later in the queue:
161 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
166 * Add an item to the syncer work queue.
168 * WARNING: Cannot get vp->v_token here if not already held, we must
169 * depend on the syncer_token (which might already be held by
170 * the caller) to protect v_synclist and VONWORKLST.
172 * MPSAFE
174 void
175 vn_syncer_add(struct vnode *vp, int delay)
177 struct syncer_ctx *ctx;
178 int slot;
180 ctx = vp->v_mount->mnt_syncer_ctx;
181 lwkt_gettoken(&ctx->sc_token);
183 if (vp->v_flag & VONWORKLST)
184 LIST_REMOVE(vp, v_synclist);
185 if (delay <= 0) {
186 slot = -delay & ctx->syncer_mask;
187 } else {
188 if (delay > SYNCER_MAXDELAY - 2)
189 delay = SYNCER_MAXDELAY - 2;
190 slot = (ctx->syncer_delayno + delay) & ctx->syncer_mask;
193 LIST_INSERT_HEAD(&ctx->syncer_workitem_pending[slot], vp, v_synclist);
194 vsetflags(vp, VONWORKLST);
196 lwkt_reltoken(&ctx->sc_token);
200 * Removes the vnode from the syncer list. Since we might block while
201 * acquiring the syncer_token we have to [re]check conditions to determine
202 * that it is ok to remove the vnode.
204 * Force removal if force != 0. This can only occur during a forced unmount.
206 * vp->v_token held on call
208 void
209 vn_syncer_remove(struct vnode *vp, int force)
211 struct syncer_ctx *ctx;
213 ctx = vp->v_mount->mnt_syncer_ctx;
214 lwkt_gettoken(&ctx->sc_token);
216 if ((vp->v_flag & (VISDIRTY | VONWORKLST | VOBJDIRTY)) == VONWORKLST &&
217 RB_EMPTY(&vp->v_rbdirty_tree)) {
218 vclrflags(vp, VONWORKLST);
219 LIST_REMOVE(vp, v_synclist);
220 } else if (force && (vp->v_flag & VONWORKLST)) {
221 vclrflags(vp, VONWORKLST);
222 LIST_REMOVE(vp, v_synclist);
225 lwkt_reltoken(&ctx->sc_token);
229 * vnode must be locked
231 void
232 vclrisdirty(struct vnode *vp)
234 vclrflags(vp, VISDIRTY);
235 if (vp->v_flag & VONWORKLST)
236 vn_syncer_remove(vp, 0);
239 void
240 vclrobjdirty(struct vnode *vp)
242 vclrflags(vp, VOBJDIRTY);
243 if (vp->v_flag & VONWORKLST)
244 vn_syncer_remove(vp, 0);
248 * vnode must be stable
250 void
251 vsetisdirty(struct vnode *vp)
253 struct syncer_ctx *ctx;
255 if ((vp->v_flag & VISDIRTY) == 0) {
256 ctx = vp->v_mount->mnt_syncer_ctx;
257 vsetflags(vp, VISDIRTY);
258 lwkt_gettoken(&ctx->sc_token);
259 if ((vp->v_flag & VONWORKLST) == 0)
260 vn_syncer_add(vp, syncdelay);
261 lwkt_reltoken(&ctx->sc_token);
265 void
266 vsetobjdirty(struct vnode *vp)
268 struct syncer_ctx *ctx;
270 if ((vp->v_flag & VOBJDIRTY) == 0) {
271 ctx = vp->v_mount->mnt_syncer_ctx;
272 vsetflags(vp, VOBJDIRTY);
273 lwkt_gettoken(&ctx->sc_token);
274 if ((vp->v_flag & VONWORKLST) == 0)
275 vn_syncer_add(vp, syncdelay);
276 lwkt_reltoken(&ctx->sc_token);
281 * Create per-filesystem syncer process
283 void
284 vn_syncer_thr_create(struct mount *mp)
286 struct syncer_ctx *ctx;
287 static int syncalloc = 0;
289 ctx = kmalloc(sizeof(struct syncer_ctx), M_TEMP, M_WAITOK | M_ZERO);
290 ctx->sc_mp = mp;
291 ctx->sc_flags = 0;
292 ctx->syncer_workitem_pending = hashinit(SYNCER_MAXDELAY, M_DEVBUF,
293 &ctx->syncer_mask);
294 ctx->syncer_delayno = 0;
295 lwkt_token_init(&ctx->sc_token, "syncer");
296 mp->mnt_syncer_ctx = ctx;
297 kthread_create(syncer_thread, ctx, &ctx->sc_thread,
298 "syncer%d", ++syncalloc & 0x7FFFFFFF);
302 * Stop per-filesystem syncer process
304 void
305 vn_syncer_thr_stop(struct mount *mp)
307 struct syncer_ctx *ctx;
309 ctx = mp->mnt_syncer_ctx;
310 if (ctx == NULL)
311 return;
313 lwkt_gettoken(&ctx->sc_token);
315 /* Signal the syncer process to exit */
316 ctx->sc_flags |= SC_FLAG_EXIT;
317 wakeup(ctx);
319 /* Wait till syncer process exits */
320 while ((ctx->sc_flags & SC_FLAG_DONE) == 0)
321 tsleep(&ctx->sc_flags, 0, "syncexit", hz);
323 mp->mnt_syncer_ctx = NULL;
324 lwkt_reltoken(&ctx->sc_token);
326 hashdestroy(ctx->syncer_workitem_pending, M_DEVBUF, ctx->syncer_mask);
327 kfree(ctx, M_TEMP);
330 struct thread *updatethread;
333 * System filesystem synchronizer daemon.
335 static void
336 syncer_thread(void *_ctx)
338 struct syncer_ctx *ctx = _ctx;
339 struct synclist *slp;
340 struct vnode *vp;
341 long starttime;
342 int *sc_flagsp;
343 int sc_flags;
344 int vnodes_synced = 0;
345 int delta;
346 int dummy = 0;
348 for (;;) {
349 kproc_suspend_loop();
351 starttime = time_uptime;
352 lwkt_gettoken(&ctx->sc_token);
355 * Push files whose dirty time has expired. Be careful
356 * of interrupt race on slp queue.
358 slp = &ctx->syncer_workitem_pending[ctx->syncer_delayno];
359 ctx->syncer_delayno = (ctx->syncer_delayno + 1) &
360 ctx->syncer_mask;
362 while ((vp = LIST_FIRST(slp)) != NULL) {
363 if (ctx->syncer_forced) {
364 if (vget(vp, LK_EXCLUSIVE) == 0) {
365 VOP_FSYNC(vp, MNT_NOWAIT, 0);
366 vput(vp);
367 vnodes_synced++;
369 } else {
370 if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
371 VOP_FSYNC(vp, MNT_LAZY, 0);
372 vput(vp);
373 vnodes_synced++;
378 * vp is stale but can still be used if we can
379 * verify that it remains at the head of the list.
380 * Be careful not to try to get vp->v_token as
381 * vp can become stale if this blocks.
383 * If the vp is still at the head of the list were
384 * unable to completely flush it and move it to
385 * a later slot to give other vnodes a fair shot.
387 * Note that v_tag VT_VFS vnodes can remain on the
388 * worklist with no dirty blocks, but sync_fsync()
389 * moves it to a later slot so we will never see it
390 * here.
392 * It is possible to race a vnode with no dirty
393 * buffers being removed from the list. If this
394 * occurs we will move the vnode in the synclist
395 * and then the other thread will remove it. Do
396 * not try to remove it here.
398 if (LIST_FIRST(slp) == vp)
399 vn_syncer_add(vp, syncdelay);
402 sc_flags = ctx->sc_flags;
404 /* Exit on unmount */
405 if (sc_flags & SC_FLAG_EXIT)
406 break;
408 lwkt_reltoken(&ctx->sc_token);
411 * Do sync processing for each mount.
413 if (ctx->sc_mp)
414 bio_ops_sync(ctx->sc_mp);
417 * The variable rushjob allows the kernel to speed up the
418 * processing of the filesystem syncer process. A rushjob
419 * value of N tells the filesystem syncer to process the next
420 * N seconds worth of work on its queue ASAP. Currently rushjob
421 * is used by the soft update code to speed up the filesystem
422 * syncer process when the incore state is getting so far
423 * ahead of the disk that the kernel memory pool is being
424 * threatened with exhaustion.
426 delta = rushjob - ctx->syncer_rushjob;
427 if ((u_int)delta > syncdelay / 2) {
428 ctx->syncer_rushjob = rushjob - syncdelay / 2;
429 tsleep(&dummy, 0, "rush", 1);
430 continue;
432 if (delta) {
433 ++ctx->syncer_rushjob;
434 tsleep(&dummy, 0, "rush", 1);
435 continue;
439 * If it has taken us less than a second to process the
440 * current work, then wait. Otherwise start right over
441 * again. We can still lose time if any single round
442 * takes more than two seconds, but it does not really
443 * matter as we are just trying to generally pace the
444 * filesystem activity.
446 if (time_uptime == starttime)
447 tsleep(ctx, 0, "syncer", hz);
451 * Unmount/exit path for per-filesystem syncers; sc_token held
453 ctx->sc_flags |= SC_FLAG_DONE;
454 sc_flagsp = &ctx->sc_flags;
455 lwkt_reltoken(&ctx->sc_token);
456 wakeup(sc_flagsp);
458 kthread_exit();
462 * Request that the syncer daemon for a specific mount speed up its work.
463 * If mp is NULL the caller generally wants to speed up all syncers.
465 void
466 speedup_syncer(struct mount *mp)
469 * Don't bother protecting the test. unsleep_and_wakeup_thread()
470 * will only do something real if the thread is in the right state.
472 atomic_add_int(&rushjob, 1);
473 ++stat_rush_requests;
474 if (mp)
475 wakeup(mp->mnt_syncer_ctx);
479 * Routine to create and manage a filesystem syncer vnode.
481 static int sync_close(struct vop_close_args *);
482 static int sync_fsync(struct vop_fsync_args *);
483 static int sync_inactive(struct vop_inactive_args *);
484 static int sync_reclaim (struct vop_reclaim_args *);
485 static int sync_print(struct vop_print_args *);
487 static struct vop_ops sync_vnode_vops = {
488 .vop_default = vop_eopnotsupp,
489 .vop_close = sync_close,
490 .vop_fsync = sync_fsync,
491 .vop_inactive = sync_inactive,
492 .vop_reclaim = sync_reclaim,
493 .vop_print = sync_print,
496 static struct vop_ops *sync_vnode_vops_p = &sync_vnode_vops;
498 VNODEOP_SET(sync_vnode_vops);
501 * Create a new filesystem syncer vnode for the specified mount point.
502 * This vnode is placed on the worklist and is responsible for sync'ing
503 * the filesystem.
505 * NOTE: read-only mounts are also placed on the worklist. The filesystem
506 * sync code is also responsible for cleaning up vnodes.
509 vfs_allocate_syncvnode(struct mount *mp)
511 struct vnode *vp;
512 static long start, incr, next;
513 int error;
515 /* Allocate a new vnode */
516 error = getspecialvnode(VT_VFS, mp, &sync_vnode_vops_p, &vp, 0, 0);
517 if (error) {
518 mp->mnt_syncer = NULL;
519 return (error);
521 vp->v_type = VNON;
523 * Place the vnode onto the syncer worklist. We attempt to
524 * scatter them about on the list so that they will go off
525 * at evenly distributed times even if all the filesystems
526 * are mounted at once.
528 next += incr;
529 if (next == 0 || next > SYNCER_MAXDELAY) {
530 start /= 2;
531 incr /= 2;
532 if (start == 0) {
533 start = SYNCER_MAXDELAY / 2;
534 incr = SYNCER_MAXDELAY;
536 next = start;
540 * Only put the syncer vnode onto the syncer list if we have a
541 * syncer thread. Some VFS's (aka NULLFS) don't need a syncer
542 * thread.
544 if (mp->mnt_syncer_ctx)
545 vn_syncer_add(vp, syncdelay > 0 ? next % syncdelay : 0);
548 * The mnt_syncer field inherits the vnode reference, which is
549 * held until later decomissioning.
551 mp->mnt_syncer = vp;
552 vx_unlock(vp);
553 return (0);
556 static int
557 sync_close(struct vop_close_args *ap)
559 return (0);
563 * Do a lazy sync of the filesystem.
565 * sync_fsync { struct vnode *a_vp, int a_waitfor }
567 static int
568 sync_fsync(struct vop_fsync_args *ap)
570 struct vnode *syncvp = ap->a_vp;
571 struct mount *mp = syncvp->v_mount;
572 int asyncflag;
575 * We only need to do something if this is a lazy evaluation.
577 if ((ap->a_waitfor & MNT_LAZY) == 0)
578 return (0);
581 * Move ourselves to the back of the sync list.
583 vn_syncer_add(syncvp, syncdelay);
586 * Walk the list of vnodes pushing all that are dirty and
587 * not already on the sync list, and freeing vnodes which have
588 * no refs and whos VM objects are empty. vfs_msync() handles
589 * the VM issues and must be called whether the mount is readonly
590 * or not.
592 if (vfs_busy(mp, LK_NOWAIT) != 0)
593 return (0);
594 if (mp->mnt_flag & MNT_RDONLY) {
595 vfs_msync(mp, MNT_NOWAIT);
596 } else {
597 asyncflag = mp->mnt_flag & MNT_ASYNC;
598 mp->mnt_flag &= ~MNT_ASYNC; /* ZZZ hack */
599 vfs_msync(mp, MNT_NOWAIT);
600 VFS_SYNC(mp, MNT_NOWAIT | MNT_LAZY);
601 if (asyncflag)
602 mp->mnt_flag |= MNT_ASYNC;
604 vfs_unbusy(mp);
605 return (0);
609 * The syncer vnode is no longer referenced.
611 * sync_inactive { struct vnode *a_vp, struct proc *a_p }
613 static int
614 sync_inactive(struct vop_inactive_args *ap)
616 vgone_vxlocked(ap->a_vp);
617 return (0);
621 * The syncer vnode is no longer needed and is being decommissioned.
622 * This can only occur when the last reference has been released on
623 * mp->mnt_syncer, so mp->mnt_syncer had better be NULL.
625 * Modifications to the worklist must be protected with a critical
626 * section.
628 * sync_reclaim { struct vnode *a_vp }
630 static int
631 sync_reclaim(struct vop_reclaim_args *ap)
633 struct vnode *vp = ap->a_vp;
634 struct syncer_ctx *ctx;
636 ctx = vp->v_mount->mnt_syncer_ctx;
637 if (ctx) {
638 lwkt_gettoken(&ctx->sc_token);
639 KKASSERT(vp->v_mount->mnt_syncer != vp);
640 if (vp->v_flag & VONWORKLST) {
641 LIST_REMOVE(vp, v_synclist);
642 vclrflags(vp, VONWORKLST);
644 lwkt_reltoken(&ctx->sc_token);
645 } else {
646 KKASSERT((vp->v_flag & VONWORKLST) == 0);
649 return (0);
653 * This is very similar to vmntvnodescan() but it only scans the
654 * vnodes on the syncer list. VFS's which support faster VFS_SYNC
655 * operations use the VISDIRTY flag on the vnode to ensure that vnodes
656 * with dirty inodes are added to the syncer in addition to vnodes
657 * with dirty buffers, and can use this function instead of nmntvnodescan().
659 * This is important when a system has millions of vnodes.
662 vsyncscan(
663 struct mount *mp,
664 int vmsc_flags,
665 int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
666 void *data
668 struct syncer_ctx *ctx;
669 struct synclist *slp;
670 struct vnode *vp;
671 int i;
672 int count;
673 int lkflags;
675 if (vmsc_flags & VMSC_NOWAIT)
676 lkflags = LK_NOWAIT;
677 else
678 lkflags = 0;
681 * Syncer list context. This API requires a dedicated syncer thread.
682 * (MNTK_THR_SYNC).
684 KKASSERT(mp->mnt_kern_flag & MNTK_THR_SYNC);
685 ctx = mp->mnt_syncer_ctx;
686 lwkt_gettoken(&ctx->sc_token);
689 * Setup for loop. Allow races against the syncer thread but
690 * require that the syncer thread no be lazy if we were told
691 * not to be lazy.
693 i = ctx->syncer_delayno & ctx->syncer_mask;
694 if ((vmsc_flags & VMSC_NOWAIT) == 0)
695 ++ctx->syncer_forced;
696 for (count = 0; count <= ctx->syncer_mask; ++count) {
697 slp = &ctx->syncer_workitem_pending[i];
699 while ((vp = LIST_FIRST(slp)) != NULL) {
700 KKASSERT(vp->v_mount == mp);
701 if (vmsc_flags & VMSC_GETVP) {
702 if (vget(vp, LK_EXCLUSIVE | lkflags) == 0) {
703 slowfunc(mp, vp, data);
704 vput(vp);
706 } else if (vmsc_flags & VMSC_GETVX) {
707 vx_get(vp);
708 slowfunc(mp, vp, data);
709 vx_put(vp);
710 } else {
711 vhold(vp);
712 slowfunc(mp, vp, data);
713 vdrop(vp);
717 * vp could be invalid. However, if vp is still at
718 * the head of the list it is clearly valid and we
719 * can safely move it.
721 if (LIST_FIRST(slp) == vp)
722 vn_syncer_add(vp, -(i + syncdelay));
724 i = (i + 1) & ctx->syncer_mask;
727 if ((vmsc_flags & VMSC_NOWAIT) == 0)
728 --ctx->syncer_forced;
729 lwkt_reltoken(&ctx->sc_token);
730 return(0);
734 * Print out a syncer vnode.
736 * sync_print { struct vnode *a_vp }
738 static int
739 sync_print(struct vop_print_args *ap)
741 struct vnode *vp = ap->a_vp;
743 kprintf("syncer vnode");
744 lockmgr_printinfo(&vp->v_lock);
745 kprintf("\n");
746 return (0);