Fix references.
[dragonfly.git] / crypto / openssh-4 / umac.c
blobc2fdcf4485ce807f5daa71e21216d2902fd4ed4d
1 /* $OpenBSD: umac.c,v 1.1 2007/06/07 19:37:34 pvalchev Exp $ */
2 /* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
12 * Copyright (c) 1999-2006 Ted Krovetz
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
23 * ---------------------------------------------------------------------- */
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
27 * 1) This version does not work properly on messages larger than 16MB
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
30 * aligned
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
35 * zeroed.
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44 * the third.
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
49 /////////////////////////////////////////////////////////////////////// */
51 /* ---------------------------------------------------------------------- */
52 /* --- User Switches ---------------------------------------------------- */
53 /* ---------------------------------------------------------------------- */
55 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
56 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
57 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
58 /* #define SSE2 0 Is SSE2 is available? */
59 /* #define RUN_TESTS 0 Run basic correctness/speed tests */
60 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
62 /* ---------------------------------------------------------------------- */
63 /* -- Global Includes --------------------------------------------------- */
64 /* ---------------------------------------------------------------------- */
66 #include "includes.h"
67 #include <sys/types.h>
69 #include "umac.h"
70 #include <string.h>
71 #include <stdlib.h>
72 #include <stddef.h>
74 /* ---------------------------------------------------------------------- */
75 /* --- Primitive Data Types --- */
76 /* ---------------------------------------------------------------------- */
78 /* The following assumptions may need change on your system */
79 typedef u_int8_t UINT8; /* 1 byte */
80 typedef u_int16_t UINT16; /* 2 byte */
81 typedef u_int32_t UINT32; /* 4 byte */
82 typedef u_int64_t UINT64; /* 8 bytes */
83 typedef unsigned int UWORD; /* Register */
85 /* ---------------------------------------------------------------------- */
86 /* --- Constants -------------------------------------------------------- */
87 /* ---------------------------------------------------------------------- */
89 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
91 /* Message "words" are read from memory in an endian-specific manner. */
92 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
93 /* be set true if the host computer is little-endian. */
95 #if BYTE_ORDER == LITTLE_ENDIAN
96 #define __LITTLE_ENDIAN__ 1
97 #else
98 #define __LITTLE_ENDIAN__ 0
99 #endif
101 /* ---------------------------------------------------------------------- */
102 /* ---------------------------------------------------------------------- */
103 /* ----- Architecture Specific ------------------------------------------ */
104 /* ---------------------------------------------------------------------- */
105 /* ---------------------------------------------------------------------- */
108 /* ---------------------------------------------------------------------- */
109 /* ---------------------------------------------------------------------- */
110 /* ----- Primitive Routines --------------------------------------------- */
111 /* ---------------------------------------------------------------------- */
112 /* ---------------------------------------------------------------------- */
115 /* ---------------------------------------------------------------------- */
116 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
117 /* ---------------------------------------------------------------------- */
119 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
121 /* ---------------------------------------------------------------------- */
122 /* --- Endian Conversion --- Forcing assembly on some platforms */
123 /* ---------------------------------------------------------------------- */
125 #if HAVE_SWAP32
126 #define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p)))
127 #define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v))
128 #else /* HAVE_SWAP32 */
130 static UINT32 LOAD_UINT32_REVERSED(void *ptr)
132 UINT32 temp = *(UINT32 *)ptr;
133 temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
134 | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
135 return (UINT32)temp;
138 static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
140 UINT32 i = (UINT32)x;
141 *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
142 | ((i & 0x0000FF00) << 8 ) | (i << 24);
144 #endif /* HAVE_SWAP32 */
146 /* The following definitions use the above reversal-primitives to do the right
147 * thing on endian specific load and stores.
150 #if (__LITTLE_ENDIAN__)
151 #define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr))
152 #define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x)
153 #else
154 #define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr)
155 #define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x))
156 #endif
158 /* ---------------------------------------------------------------------- */
159 /* ---------------------------------------------------------------------- */
160 /* ----- Begin KDF & PDF Section ---------------------------------------- */
161 /* ---------------------------------------------------------------------- */
162 /* ---------------------------------------------------------------------- */
164 /* UMAC uses AES with 16 byte block and key lengths */
165 #define AES_BLOCK_LEN 16
167 /* OpenSSL's AES */
168 #include "openbsd-compat/openssl-compat.h"
169 #ifndef USE_BUILTIN_RIJNDAEL
170 # include <openssl/aes.h>
171 #endif
172 typedef AES_KEY aes_int_key[1];
173 #define aes_encryption(in,out,int_key) \
174 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
175 #define aes_key_setup(key,int_key) \
176 AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
178 /* The user-supplied UMAC key is stretched using AES in a counter
179 * mode to supply all random bits needed by UMAC. The kdf function takes
180 * an AES internal key representation 'key' and writes a stream of
181 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
182 * 'ndx' causes a distinct byte stream.
184 static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
186 UINT8 in_buf[AES_BLOCK_LEN] = {0};
187 UINT8 out_buf[AES_BLOCK_LEN];
188 UINT8 *dst_buf = (UINT8 *)buffer_ptr;
189 int i;
191 /* Setup the initial value */
192 in_buf[AES_BLOCK_LEN-9] = ndx;
193 in_buf[AES_BLOCK_LEN-1] = i = 1;
195 while (nbytes >= AES_BLOCK_LEN) {
196 aes_encryption(in_buf, out_buf, key);
197 memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
198 in_buf[AES_BLOCK_LEN-1] = ++i;
199 nbytes -= AES_BLOCK_LEN;
200 dst_buf += AES_BLOCK_LEN;
202 if (nbytes) {
203 aes_encryption(in_buf, out_buf, key);
204 memcpy(dst_buf,out_buf,nbytes);
208 /* The final UHASH result is XOR'd with the output of a pseudorandom
209 * function. Here, we use AES to generate random output and
210 * xor the appropriate bytes depending on the last bits of nonce.
211 * This scheme is optimized for sequential, increasing big-endian nonces.
214 typedef struct {
215 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
216 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
217 aes_int_key prf_key; /* Expanded AES key for PDF */
218 } pdf_ctx;
220 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
222 UINT8 buf[UMAC_KEY_LEN];
224 kdf(buf, prf_key, 0, UMAC_KEY_LEN);
225 aes_key_setup(buf, pc->prf_key);
227 /* Initialize pdf and cache */
228 memset(pc->nonce, 0, sizeof(pc->nonce));
229 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
232 static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
234 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
235 * of the AES output. If last time around we returned the ndx-1st
236 * element, then we may have the result in the cache already.
239 #if (UMAC_OUTPUT_LEN == 4)
240 #define LOW_BIT_MASK 3
241 #elif (UMAC_OUTPUT_LEN == 8)
242 #define LOW_BIT_MASK 1
243 #elif (UMAC_OUTPUT_LEN > 8)
244 #define LOW_BIT_MASK 0
245 #endif
247 UINT8 tmp_nonce_lo[4];
248 #if LOW_BIT_MASK != 0
249 int ndx = nonce[7] & LOW_BIT_MASK;
250 #endif
251 *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
252 tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
254 if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
255 (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
257 ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
258 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
259 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
262 #if (UMAC_OUTPUT_LEN == 4)
263 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
264 #elif (UMAC_OUTPUT_LEN == 8)
265 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
266 #elif (UMAC_OUTPUT_LEN == 12)
267 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
268 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
269 #elif (UMAC_OUTPUT_LEN == 16)
270 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
271 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
272 #endif
275 /* ---------------------------------------------------------------------- */
276 /* ---------------------------------------------------------------------- */
277 /* ----- Begin NH Hash Section ------------------------------------------ */
278 /* ---------------------------------------------------------------------- */
279 /* ---------------------------------------------------------------------- */
281 /* The NH-based hash functions used in UMAC are described in the UMAC paper
282 * and specification, both of which can be found at the UMAC website.
283 * The interface to this implementation has two
284 * versions, one expects the entire message being hashed to be passed
285 * in a single buffer and returns the hash result immediately. The second
286 * allows the message to be passed in a sequence of buffers. In the
287 * muliple-buffer interface, the client calls the routine nh_update() as
288 * many times as necessary. When there is no more data to be fed to the
289 * hash, the client calls nh_final() which calculates the hash output.
290 * Before beginning another hash calculation the nh_reset() routine
291 * must be called. The single-buffer routine, nh(), is equivalent to
292 * the sequence of calls nh_update() and nh_final(); however it is
293 * optimized and should be prefered whenever the multiple-buffer interface
294 * is not necessary. When using either interface, it is the client's
295 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
297 * The routine nh_init() initializes the nh_ctx data structure and
298 * must be called once, before any other PDF routine.
301 /* The "nh_aux" routines do the actual NH hashing work. They
302 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
303 * produce output for all STREAMS NH iterations in one call,
304 * allowing the parallel implementation of the streams.
307 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
308 #define L1_KEY_LEN 1024 /* Internal key bytes */
309 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
310 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
311 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
312 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
314 typedef struct {
315 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
316 UINT8 data [HASH_BUF_BYTES]; /* Incomming data buffer */
317 int next_data_empty; /* Bookeeping variable for data buffer. */
318 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */
319 UINT64 state[STREAMS]; /* on-line state */
320 } nh_ctx;
323 #if (UMAC_OUTPUT_LEN == 4)
325 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
326 /* NH hashing primitive. Previous (partial) hash result is loaded and
327 * then stored via hp pointer. The length of the data pointed at by "dp",
328 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
329 * is expected to be endian compensated in memory at key setup.
332 UINT64 h;
333 UWORD c = dlen / 32;
334 UINT32 *k = (UINT32 *)kp;
335 UINT32 *d = (UINT32 *)dp;
336 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
337 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
339 h = *((UINT64 *)hp);
340 do {
341 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
342 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
343 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
344 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
345 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
346 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
347 h += MUL64((k0 + d0), (k4 + d4));
348 h += MUL64((k1 + d1), (k5 + d5));
349 h += MUL64((k2 + d2), (k6 + d6));
350 h += MUL64((k3 + d3), (k7 + d7));
352 d += 8;
353 k += 8;
354 } while (--c);
355 *((UINT64 *)hp) = h;
358 #elif (UMAC_OUTPUT_LEN == 8)
360 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
361 /* Same as previous nh_aux, but two streams are handled in one pass,
362 * reading and writing 16 bytes of hash-state per call.
365 UINT64 h1,h2;
366 UWORD c = dlen / 32;
367 UINT32 *k = (UINT32 *)kp;
368 UINT32 *d = (UINT32 *)dp;
369 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
370 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
371 k8,k9,k10,k11;
373 h1 = *((UINT64 *)hp);
374 h2 = *((UINT64 *)hp + 1);
375 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
376 do {
377 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
378 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
379 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
380 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
381 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
382 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
384 h1 += MUL64((k0 + d0), (k4 + d4));
385 h2 += MUL64((k4 + d0), (k8 + d4));
387 h1 += MUL64((k1 + d1), (k5 + d5));
388 h2 += MUL64((k5 + d1), (k9 + d5));
390 h1 += MUL64((k2 + d2), (k6 + d6));
391 h2 += MUL64((k6 + d2), (k10 + d6));
393 h1 += MUL64((k3 + d3), (k7 + d7));
394 h2 += MUL64((k7 + d3), (k11 + d7));
396 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
398 d += 8;
399 k += 8;
400 } while (--c);
401 ((UINT64 *)hp)[0] = h1;
402 ((UINT64 *)hp)[1] = h2;
405 #elif (UMAC_OUTPUT_LEN == 12)
407 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
408 /* Same as previous nh_aux, but two streams are handled in one pass,
409 * reading and writing 24 bytes of hash-state per call.
412 UINT64 h1,h2,h3;
413 UWORD c = dlen / 32;
414 UINT32 *k = (UINT32 *)kp;
415 UINT32 *d = (UINT32 *)dp;
416 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
417 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
418 k8,k9,k10,k11,k12,k13,k14,k15;
420 h1 = *((UINT64 *)hp);
421 h2 = *((UINT64 *)hp + 1);
422 h3 = *((UINT64 *)hp + 2);
423 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
424 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
425 do {
426 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
427 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
428 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
429 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
430 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
431 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
433 h1 += MUL64((k0 + d0), (k4 + d4));
434 h2 += MUL64((k4 + d0), (k8 + d4));
435 h3 += MUL64((k8 + d0), (k12 + d4));
437 h1 += MUL64((k1 + d1), (k5 + d5));
438 h2 += MUL64((k5 + d1), (k9 + d5));
439 h3 += MUL64((k9 + d1), (k13 + d5));
441 h1 += MUL64((k2 + d2), (k6 + d6));
442 h2 += MUL64((k6 + d2), (k10 + d6));
443 h3 += MUL64((k10 + d2), (k14 + d6));
445 h1 += MUL64((k3 + d3), (k7 + d7));
446 h2 += MUL64((k7 + d3), (k11 + d7));
447 h3 += MUL64((k11 + d3), (k15 + d7));
449 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
450 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
452 d += 8;
453 k += 8;
454 } while (--c);
455 ((UINT64 *)hp)[0] = h1;
456 ((UINT64 *)hp)[1] = h2;
457 ((UINT64 *)hp)[2] = h3;
460 #elif (UMAC_OUTPUT_LEN == 16)
462 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
463 /* Same as previous nh_aux, but two streams are handled in one pass,
464 * reading and writing 24 bytes of hash-state per call.
467 UINT64 h1,h2,h3,h4;
468 UWORD c = dlen / 32;
469 UINT32 *k = (UINT32 *)kp;
470 UINT32 *d = (UINT32 *)dp;
471 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
472 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
473 k8,k9,k10,k11,k12,k13,k14,k15,
474 k16,k17,k18,k19;
476 h1 = *((UINT64 *)hp);
477 h2 = *((UINT64 *)hp + 1);
478 h3 = *((UINT64 *)hp + 2);
479 h4 = *((UINT64 *)hp + 3);
480 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
481 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
482 do {
483 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
484 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
485 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
486 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
487 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
488 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
489 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
491 h1 += MUL64((k0 + d0), (k4 + d4));
492 h2 += MUL64((k4 + d0), (k8 + d4));
493 h3 += MUL64((k8 + d0), (k12 + d4));
494 h4 += MUL64((k12 + d0), (k16 + d4));
496 h1 += MUL64((k1 + d1), (k5 + d5));
497 h2 += MUL64((k5 + d1), (k9 + d5));
498 h3 += MUL64((k9 + d1), (k13 + d5));
499 h4 += MUL64((k13 + d1), (k17 + d5));
501 h1 += MUL64((k2 + d2), (k6 + d6));
502 h2 += MUL64((k6 + d2), (k10 + d6));
503 h3 += MUL64((k10 + d2), (k14 + d6));
504 h4 += MUL64((k14 + d2), (k18 + d6));
506 h1 += MUL64((k3 + d3), (k7 + d7));
507 h2 += MUL64((k7 + d3), (k11 + d7));
508 h3 += MUL64((k11 + d3), (k15 + d7));
509 h4 += MUL64((k15 + d3), (k19 + d7));
511 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
512 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
513 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
515 d += 8;
516 k += 8;
517 } while (--c);
518 ((UINT64 *)hp)[0] = h1;
519 ((UINT64 *)hp)[1] = h2;
520 ((UINT64 *)hp)[2] = h3;
521 ((UINT64 *)hp)[3] = h4;
524 /* ---------------------------------------------------------------------- */
525 #endif /* UMAC_OUTPUT_LENGTH */
526 /* ---------------------------------------------------------------------- */
529 /* ---------------------------------------------------------------------- */
531 static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
532 /* This function is a wrapper for the primitive NH hash functions. It takes
533 * as argument "hc" the current hash context and a buffer which must be a
534 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
535 * appropriately according to how much message has been hashed already.
538 UINT8 *key;
540 key = hc->nh_key + hc->bytes_hashed;
541 nh_aux(key, buf, hc->state, nbytes);
544 /* ---------------------------------------------------------------------- */
546 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
547 /* We endian convert the keys on little-endian computers to */
548 /* compensate for the lack of big-endian memory reads during hashing. */
550 UWORD iters = num_bytes / bpw;
551 if (bpw == 4) {
552 UINT32 *p = (UINT32 *)buf;
553 do {
554 *p = LOAD_UINT32_REVERSED(p);
555 p++;
556 } while (--iters);
557 } else if (bpw == 8) {
558 UINT32 *p = (UINT32 *)buf;
559 UINT32 t;
560 do {
561 t = LOAD_UINT32_REVERSED(p+1);
562 p[1] = LOAD_UINT32_REVERSED(p);
563 p[0] = t;
564 p += 2;
565 } while (--iters);
568 #if (__LITTLE_ENDIAN__)
569 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
570 #else
571 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
572 #endif
574 /* ---------------------------------------------------------------------- */
576 static void nh_reset(nh_ctx *hc)
577 /* Reset nh_ctx to ready for hashing of new data */
579 hc->bytes_hashed = 0;
580 hc->next_data_empty = 0;
581 hc->state[0] = 0;
582 #if (UMAC_OUTPUT_LEN >= 8)
583 hc->state[1] = 0;
584 #endif
585 #if (UMAC_OUTPUT_LEN >= 12)
586 hc->state[2] = 0;
587 #endif
588 #if (UMAC_OUTPUT_LEN == 16)
589 hc->state[3] = 0;
590 #endif
594 /* ---------------------------------------------------------------------- */
596 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
597 /* Generate nh_key, endian convert and reset to be ready for hashing. */
599 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
600 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
601 nh_reset(hc);
604 /* ---------------------------------------------------------------------- */
606 static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
607 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
608 /* even multiple of HASH_BUF_BYTES. */
610 UINT32 i,j;
612 j = hc->next_data_empty;
613 if ((j + nbytes) >= HASH_BUF_BYTES) {
614 if (j) {
615 i = HASH_BUF_BYTES - j;
616 memcpy(hc->data+j, buf, i);
617 nh_transform(hc,hc->data,HASH_BUF_BYTES);
618 nbytes -= i;
619 buf += i;
620 hc->bytes_hashed += HASH_BUF_BYTES;
622 if (nbytes >= HASH_BUF_BYTES) {
623 i = nbytes & ~(HASH_BUF_BYTES - 1);
624 nh_transform(hc, buf, i);
625 nbytes -= i;
626 buf += i;
627 hc->bytes_hashed += i;
629 j = 0;
631 memcpy(hc->data + j, buf, nbytes);
632 hc->next_data_empty = j + nbytes;
635 /* ---------------------------------------------------------------------- */
637 static void zero_pad(UINT8 *p, int nbytes)
639 /* Write "nbytes" of zeroes, beginning at "p" */
640 if (nbytes >= (int)sizeof(UWORD)) {
641 while ((ptrdiff_t)p % sizeof(UWORD)) {
642 *p = 0;
643 nbytes--;
644 p++;
646 while (nbytes >= (int)sizeof(UWORD)) {
647 *(UWORD *)p = 0;
648 nbytes -= sizeof(UWORD);
649 p += sizeof(UWORD);
652 while (nbytes) {
653 *p = 0;
654 nbytes--;
655 p++;
659 /* ---------------------------------------------------------------------- */
661 static void nh_final(nh_ctx *hc, UINT8 *result)
662 /* After passing some number of data buffers to nh_update() for integration
663 * into an NH context, nh_final is called to produce a hash result. If any
664 * bytes are in the buffer hc->data, incorporate them into the
665 * NH context. Finally, add into the NH accumulation "state" the total number
666 * of bits hashed. The resulting numbers are written to the buffer "result".
667 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
670 int nh_len, nbits;
672 if (hc->next_data_empty != 0) {
673 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
674 ~(L1_PAD_BOUNDARY - 1));
675 zero_pad(hc->data + hc->next_data_empty,
676 nh_len - hc->next_data_empty);
677 nh_transform(hc, hc->data, nh_len);
678 hc->bytes_hashed += hc->next_data_empty;
679 } else if (hc->bytes_hashed == 0) {
680 nh_len = L1_PAD_BOUNDARY;
681 zero_pad(hc->data, L1_PAD_BOUNDARY);
682 nh_transform(hc, hc->data, nh_len);
685 nbits = (hc->bytes_hashed << 3);
686 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
687 #if (UMAC_OUTPUT_LEN >= 8)
688 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
689 #endif
690 #if (UMAC_OUTPUT_LEN >= 12)
691 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
692 #endif
693 #if (UMAC_OUTPUT_LEN == 16)
694 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
695 #endif
696 nh_reset(hc);
699 /* ---------------------------------------------------------------------- */
701 static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
702 UINT32 unpadded_len, UINT8 *result)
703 /* All-in-one nh_update() and nh_final() equivalent.
704 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
705 * well aligned
708 UINT32 nbits;
710 /* Initialize the hash state */
711 nbits = (unpadded_len << 3);
713 ((UINT64 *)result)[0] = nbits;
714 #if (UMAC_OUTPUT_LEN >= 8)
715 ((UINT64 *)result)[1] = nbits;
716 #endif
717 #if (UMAC_OUTPUT_LEN >= 12)
718 ((UINT64 *)result)[2] = nbits;
719 #endif
720 #if (UMAC_OUTPUT_LEN == 16)
721 ((UINT64 *)result)[3] = nbits;
722 #endif
724 nh_aux(hc->nh_key, buf, result, padded_len);
727 /* ---------------------------------------------------------------------- */
728 /* ---------------------------------------------------------------------- */
729 /* ----- Begin UHASH Section -------------------------------------------- */
730 /* ---------------------------------------------------------------------- */
731 /* ---------------------------------------------------------------------- */
733 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
734 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
735 * unless the initial data to be hashed is short. After the polynomial-
736 * layer, an inner-product hash is used to produce the final UHASH output.
738 * UHASH provides two interfaces, one all-at-once and another where data
739 * buffers are presented sequentially. In the sequential interface, the
740 * UHASH client calls the routine uhash_update() as many times as necessary.
741 * When there is no more data to be fed to UHASH, the client calls
742 * uhash_final() which
743 * calculates the UHASH output. Before beginning another UHASH calculation
744 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
745 * uhash(), is equivalent to the sequence of calls uhash_update() and
746 * uhash_final(); however it is optimized and should be
747 * used whenever the sequential interface is not necessary.
749 * The routine uhash_init() initializes the uhash_ctx data structure and
750 * must be called once, before any other UHASH routine.
753 /* ---------------------------------------------------------------------- */
754 /* ----- Constants and uhash_ctx ---------------------------------------- */
755 /* ---------------------------------------------------------------------- */
757 /* ---------------------------------------------------------------------- */
758 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
759 /* ---------------------------------------------------------------------- */
761 /* Primes and masks */
762 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
763 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
764 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
767 /* ---------------------------------------------------------------------- */
769 typedef struct uhash_ctx {
770 nh_ctx hash; /* Hash context for L1 NH hash */
771 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
772 UINT64 poly_accum[STREAMS]; /* poly hash result */
773 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
774 UINT32 ip_trans[STREAMS]; /* Inner-product translation */
775 UINT32 msg_len; /* Total length of data passed */
776 /* to uhash */
777 } uhash_ctx;
778 typedef struct uhash_ctx *uhash_ctx_t;
780 /* ---------------------------------------------------------------------- */
783 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
784 * word at a time. As described in the specification, poly32 and poly64
785 * require keys from special domains. The following implementations exploit
786 * the special domains to avoid overflow. The results are not guaranteed to
787 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
788 * patches any errant values.
791 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
793 UINT32 key_hi = (UINT32)(key >> 32),
794 key_lo = (UINT32)key,
795 cur_hi = (UINT32)(cur >> 32),
796 cur_lo = (UINT32)cur,
797 x_lo,
798 x_hi;
799 UINT64 X,T,res;
801 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
802 x_lo = (UINT32)X;
803 x_hi = (UINT32)(X >> 32);
805 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
807 T = ((UINT64)x_lo << 32);
808 res += T;
809 if (res < T)
810 res += 59;
812 res += data;
813 if (res < data)
814 res += 59;
816 return res;
820 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
821 * implementation does not handle all ramp levels. Because we don't handle
822 * the ramp up to p128 modulus in this implementation, we are limited to
823 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
824 * bytes input to UMAC per tag, ie. 16MB).
826 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
828 int i;
829 UINT64 *data=(UINT64*)data_in;
831 for (i = 0; i < STREAMS; i++) {
832 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
833 hc->poly_accum[i] = poly64(hc->poly_accum[i],
834 hc->poly_key_8[i], p64 - 1);
835 hc->poly_accum[i] = poly64(hc->poly_accum[i],
836 hc->poly_key_8[i], (data[i] - 59));
837 } else {
838 hc->poly_accum[i] = poly64(hc->poly_accum[i],
839 hc->poly_key_8[i], data[i]);
845 /* ---------------------------------------------------------------------- */
848 /* The final step in UHASH is an inner-product hash. The poly hash
849 * produces a result not neccesarily WORD_LEN bytes long. The inner-
850 * product hash breaks the polyhash output into 16-bit chunks and
851 * multiplies each with a 36 bit key.
854 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
856 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
857 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
858 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
859 t = t + ipkp[3] * (UINT64)(UINT16)(data);
861 return t;
864 static UINT32 ip_reduce_p36(UINT64 t)
866 /* Divisionless modular reduction */
867 UINT64 ret;
869 ret = (t & m36) + 5 * (t >> 36);
870 if (ret >= p36)
871 ret -= p36;
873 /* return least significant 32 bits */
874 return (UINT32)(ret);
878 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
879 * the polyhash stage is skipped and ip_short is applied directly to the
880 * NH output.
882 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
884 UINT64 t;
885 UINT64 *nhp = (UINT64 *)nh_res;
887 t = ip_aux(0,ahc->ip_keys, nhp[0]);
888 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
889 #if (UMAC_OUTPUT_LEN >= 8)
890 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
891 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
892 #endif
893 #if (UMAC_OUTPUT_LEN >= 12)
894 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
895 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
896 #endif
897 #if (UMAC_OUTPUT_LEN == 16)
898 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
899 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
900 #endif
903 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
904 * the polyhash stage is not skipped and ip_long is applied to the
905 * polyhash output.
907 static void ip_long(uhash_ctx_t ahc, u_char *res)
909 int i;
910 UINT64 t;
912 for (i = 0; i < STREAMS; i++) {
913 /* fix polyhash output not in Z_p64 */
914 if (ahc->poly_accum[i] >= p64)
915 ahc->poly_accum[i] -= p64;
916 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
917 STORE_UINT32_BIG((UINT32 *)res+i,
918 ip_reduce_p36(t) ^ ahc->ip_trans[i]);
923 /* ---------------------------------------------------------------------- */
925 /* ---------------------------------------------------------------------- */
927 /* Reset uhash context for next hash session */
928 static int uhash_reset(uhash_ctx_t pc)
930 nh_reset(&pc->hash);
931 pc->msg_len = 0;
932 pc->poly_accum[0] = 1;
933 #if (UMAC_OUTPUT_LEN >= 8)
934 pc->poly_accum[1] = 1;
935 #endif
936 #if (UMAC_OUTPUT_LEN >= 12)
937 pc->poly_accum[2] = 1;
938 #endif
939 #if (UMAC_OUTPUT_LEN == 16)
940 pc->poly_accum[3] = 1;
941 #endif
942 return 1;
945 /* ---------------------------------------------------------------------- */
947 /* Given a pointer to the internal key needed by kdf() and a uhash context,
948 * initialize the NH context and generate keys needed for poly and inner-
949 * product hashing. All keys are endian adjusted in memory so that native
950 * loads cause correct keys to be in registers during calculation.
952 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
954 int i;
955 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
957 /* Zero the entire uhash context */
958 memset(ahc, 0, sizeof(uhash_ctx));
960 /* Initialize the L1 hash */
961 nh_init(&ahc->hash, prf_key);
963 /* Setup L2 hash variables */
964 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
965 for (i = 0; i < STREAMS; i++) {
966 /* Fill keys from the buffer, skipping bytes in the buffer not
967 * used by this implementation. Endian reverse the keys if on a
968 * little-endian computer.
970 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
971 endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
972 /* Mask the 64-bit keys to their special domain */
973 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
974 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
977 /* Setup L3-1 hash variables */
978 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
979 for (i = 0; i < STREAMS; i++)
980 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
981 4*sizeof(UINT64));
982 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
983 sizeof(ahc->ip_keys));
984 for (i = 0; i < STREAMS*4; i++)
985 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
987 /* Setup L3-2 hash variables */
988 /* Fill buffer with index 4 key */
989 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
990 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
991 STREAMS * sizeof(UINT32));
994 /* ---------------------------------------------------------------------- */
996 #if 0
997 static uhash_ctx_t uhash_alloc(u_char key[])
999 /* Allocate memory and force to a 16-byte boundary. */
1000 uhash_ctx_t ctx;
1001 u_char bytes_to_add;
1002 aes_int_key prf_key;
1004 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1005 if (ctx) {
1006 if (ALLOC_BOUNDARY) {
1007 bytes_to_add = ALLOC_BOUNDARY -
1008 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1009 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1010 *((u_char *)ctx - 1) = bytes_to_add;
1012 aes_key_setup(key,prf_key);
1013 uhash_init(ctx, prf_key);
1015 return (ctx);
1017 #endif
1019 /* ---------------------------------------------------------------------- */
1021 #if 0
1022 static int uhash_free(uhash_ctx_t ctx)
1024 /* Free memory allocated by uhash_alloc */
1025 u_char bytes_to_sub;
1027 if (ctx) {
1028 if (ALLOC_BOUNDARY) {
1029 bytes_to_sub = *((u_char *)ctx - 1);
1030 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1032 free(ctx);
1034 return (1);
1036 #endif
1037 /* ---------------------------------------------------------------------- */
1039 static int uhash_update(uhash_ctx_t ctx, u_char *input, long len)
1040 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1041 * hash each one with NH, calling the polyhash on each NH output.
1044 UWORD bytes_hashed, bytes_remaining;
1045 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1047 if (ctx->msg_len + len <= L1_KEY_LEN) {
1048 nh_update(&ctx->hash, (UINT8 *)input, len);
1049 ctx->msg_len += len;
1050 } else {
1052 bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1053 if (ctx->msg_len == L1_KEY_LEN)
1054 bytes_hashed = L1_KEY_LEN;
1056 if (bytes_hashed + len >= L1_KEY_LEN) {
1058 /* If some bytes have been passed to the hash function */
1059 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1060 /* bytes to complete the current nh_block. */
1061 if (bytes_hashed) {
1062 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1063 nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
1064 nh_final(&ctx->hash, nh_result);
1065 ctx->msg_len += bytes_remaining;
1066 poly_hash(ctx,(UINT32 *)nh_result);
1067 len -= bytes_remaining;
1068 input += bytes_remaining;
1071 /* Hash directly from input stream if enough bytes */
1072 while (len >= L1_KEY_LEN) {
1073 nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
1074 L1_KEY_LEN, nh_result);
1075 ctx->msg_len += L1_KEY_LEN;
1076 len -= L1_KEY_LEN;
1077 input += L1_KEY_LEN;
1078 poly_hash(ctx,(UINT32 *)nh_result);
1082 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1083 if (len) {
1084 nh_update(&ctx->hash, (UINT8 *)input, len);
1085 ctx->msg_len += len;
1089 return (1);
1092 /* ---------------------------------------------------------------------- */
1094 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1095 /* Incorporate any pending data, pad, and generate tag */
1097 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1099 if (ctx->msg_len > L1_KEY_LEN) {
1100 if (ctx->msg_len % L1_KEY_LEN) {
1101 nh_final(&ctx->hash, nh_result);
1102 poly_hash(ctx,(UINT32 *)nh_result);
1104 ip_long(ctx, res);
1105 } else {
1106 nh_final(&ctx->hash, nh_result);
1107 ip_short(ctx,nh_result, res);
1109 uhash_reset(ctx);
1110 return (1);
1113 /* ---------------------------------------------------------------------- */
1115 #if 0
1116 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1117 /* assumes that msg is in a writable buffer of length divisible by */
1118 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1120 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1121 UINT32 nh_len;
1122 int extra_zeroes_needed;
1124 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1125 * the polyhash.
1127 if (len <= L1_KEY_LEN) {
1128 if (len == 0) /* If zero length messages will not */
1129 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
1130 else
1131 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1132 extra_zeroes_needed = nh_len - len;
1133 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1134 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1135 ip_short(ahc,nh_result, res);
1136 } else {
1137 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1138 * output to poly_hash().
1140 do {
1141 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1142 poly_hash(ahc,(UINT32 *)nh_result);
1143 len -= L1_KEY_LEN;
1144 msg += L1_KEY_LEN;
1145 } while (len >= L1_KEY_LEN);
1146 if (len) {
1147 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1148 extra_zeroes_needed = nh_len - len;
1149 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1150 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1151 poly_hash(ahc,(UINT32 *)nh_result);
1154 ip_long(ahc, res);
1157 uhash_reset(ahc);
1158 return 1;
1160 #endif
1162 /* ---------------------------------------------------------------------- */
1163 /* ---------------------------------------------------------------------- */
1164 /* ----- Begin UMAC Section --------------------------------------------- */
1165 /* ---------------------------------------------------------------------- */
1166 /* ---------------------------------------------------------------------- */
1168 /* The UMAC interface has two interfaces, an all-at-once interface where
1169 * the entire message to be authenticated is passed to UMAC in one buffer,
1170 * and a sequential interface where the message is presented a little at a
1171 * time. The all-at-once is more optimaized than the sequential version and
1172 * should be preferred when the sequential interface is not required.
1174 struct umac_ctx {
1175 uhash_ctx hash; /* Hash function for message compression */
1176 pdf_ctx pdf; /* PDF for hashed output */
1177 void *free_ptr; /* Address to free this struct via */
1178 } umac_ctx;
1180 /* ---------------------------------------------------------------------- */
1182 #if 0
1183 int umac_reset(struct umac_ctx *ctx)
1184 /* Reset the hash function to begin a new authentication. */
1186 uhash_reset(&ctx->hash);
1187 return (1);
1189 #endif
1191 /* ---------------------------------------------------------------------- */
1193 int umac_delete(struct umac_ctx *ctx)
1194 /* Deallocate the ctx structure */
1196 if (ctx) {
1197 if (ALLOC_BOUNDARY)
1198 ctx = (struct umac_ctx *)ctx->free_ptr;
1199 free(ctx);
1201 return (1);
1204 /* ---------------------------------------------------------------------- */
1206 struct umac_ctx *umac_new(u_char key[])
1207 /* Dynamically allocate a umac_ctx struct, initialize variables,
1208 * generate subkeys from key. Align to 16-byte boundary.
1211 struct umac_ctx *ctx, *octx;
1212 size_t bytes_to_add;
1213 aes_int_key prf_key;
1215 octx = ctx = malloc(sizeof(*ctx) + ALLOC_BOUNDARY);
1216 if (ctx) {
1217 if (ALLOC_BOUNDARY) {
1218 bytes_to_add = ALLOC_BOUNDARY -
1219 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1220 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1222 ctx->free_ptr = octx;
1223 aes_key_setup(key,prf_key);
1224 pdf_init(&ctx->pdf, prf_key);
1225 uhash_init(&ctx->hash, prf_key);
1228 return (ctx);
1231 /* ---------------------------------------------------------------------- */
1233 int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8])
1234 /* Incorporate any pending data, pad, and generate tag */
1236 uhash_final(&ctx->hash, (u_char *)tag);
1237 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1239 return (1);
1242 /* ---------------------------------------------------------------------- */
1244 int umac_update(struct umac_ctx *ctx, u_char *input, long len)
1245 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1246 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1247 /* output buffer is full. */
1249 uhash_update(&ctx->hash, input, len);
1250 return (1);
1253 /* ---------------------------------------------------------------------- */
1255 #if 0
1256 int umac(struct umac_ctx *ctx, u_char *input,
1257 long len, u_char tag[],
1258 u_char nonce[8])
1259 /* All-in-one version simply calls umac_update() and umac_final(). */
1261 uhash(&ctx->hash, input, len, (u_char *)tag);
1262 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1264 return (1);
1266 #endif
1268 /* ---------------------------------------------------------------------- */
1269 /* ---------------------------------------------------------------------- */
1270 /* ----- End UMAC Section ----------------------------------------------- */
1271 /* ---------------------------------------------------------------------- */
1272 /* ---------------------------------------------------------------------- */