udp/usrreq: Add brackets properly
[dragonfly.git] / sbin / routed / radix.c
blob1a4f4e669886d0d503a93f837a5f9c78c963d23b
1 /*
2 * Copyright (c) 1988, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgment:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)radix.c 8.4 (Berkeley) 11/2/94
35 * $FreeBSD: src/sbin/routed/radix.c,v 1.5 1999/09/05 17:49:11 peter Exp $
39 * Routines to build and maintain radix trees for routing lookups.
42 #include "defs.h"
44 #if !defined(sgi) && !defined(__NetBSD__)
45 static char sccsid[] __attribute__((unused)) = "@(#)rdisc.c 8.1 (Berkeley) x/y/95";
46 #elif defined(__NetBSD__)
47 __RCSID("$NetBSD$");
48 #endif
50 #define log(x, msg) syslog(x, msg)
51 #define panic(s) {log(LOG_ERR,s); exit(1);}
52 #define min(a,b) (((a)<(b))?(a):(b))
54 int max_keylen;
55 struct radix_mask *rn_mkfreelist;
56 struct radix_node_head *mask_rnhead;
57 static char *addmask_key;
58 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
59 static char *rn_zeros, *rn_ones;
61 #define rn_masktop (mask_rnhead->rnh_treetop)
62 #undef Bcmp
63 #define Bcmp(a, b, l) (l == 0 ? 0 \
64 : memcmp((caddr_t)(a), (caddr_t)(b), (size_t)l))
66 static int rn_satisfies_leaf(char *, struct radix_node *, int);
69 * The data structure for the keys is a radix tree with one way
70 * branching removed. The index rn_b at an internal node n represents a bit
71 * position to be tested. The tree is arranged so that all descendants
72 * of a node n have keys whose bits all agree up to position rn_b - 1.
73 * (We say the index of n is rn_b.)
75 * There is at least one descendant which has a one bit at position rn_b,
76 * and at least one with a zero there.
78 * A route is determined by a pair of key and mask. We require that the
79 * bit-wise logical and of the key and mask to be the key.
80 * We define the index of a route to associated with the mask to be
81 * the first bit number in the mask where 0 occurs (with bit number 0
82 * representing the highest order bit).
84 * We say a mask is normal if every bit is 0, past the index of the mask.
85 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
86 * and m is a normal mask, then the route applies to every descendant of n.
87 * If the index(m) < rn_b, this implies the trailing last few bits of k
88 * before bit b are all 0, (and hence consequently true of every descendant
89 * of n), so the route applies to all descendants of the node as well.
91 * Similar logic shows that a non-normal mask m such that
92 * index(m) <= index(n) could potentially apply to many children of n.
93 * Thus, for each non-host route, we attach its mask to a list at an internal
94 * node as high in the tree as we can go.
96 * The present version of the code makes use of normal routes in short-
97 * circuiting an explict mask and compare operation when testing whether
98 * a key satisfies a normal route, and also in remembering the unique leaf
99 * that governs a subtree.
102 struct radix_node *
103 rn_search(void *v_arg,
104 struct radix_node *head)
106 struct radix_node *x;
107 caddr_t v;
109 for (x = head, v = v_arg; x->rn_b >= 0;) {
110 if (x->rn_bmask & v[x->rn_off])
111 x = x->rn_r;
112 else
113 x = x->rn_l;
115 return (x);
118 struct radix_node *
119 rn_search_m(void *v_arg,
120 struct radix_node *head,
121 void *m_arg)
123 struct radix_node *x;
124 caddr_t v = v_arg, m = m_arg;
126 for (x = head; x->rn_b >= 0;) {
127 if ((x->rn_bmask & m[x->rn_off]) &&
128 (x->rn_bmask & v[x->rn_off]))
129 x = x->rn_r;
130 else
131 x = x->rn_l;
133 return x;
137 rn_refines(void* m_arg, void *n_arg)
139 caddr_t m = m_arg, n = n_arg;
140 caddr_t lim, lim2 = lim = n + *(u_char *)n;
141 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
142 int masks_are_equal = 1;
144 if (longer > 0)
145 lim -= longer;
146 while (n < lim) {
147 if (*n & ~(*m))
148 return 0;
149 if (*n++ != *m++)
150 masks_are_equal = 0;
152 while (n < lim2)
153 if (*n++)
154 return 0;
155 if (masks_are_equal && (longer < 0))
156 for (lim2 = m - longer; m < lim2; )
157 if (*m++)
158 return 1;
159 return (!masks_are_equal);
162 struct radix_node *
163 rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
165 struct radix_node *x;
166 caddr_t netmask = 0;
168 if (m_arg) {
169 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == NULL)
170 return (0);
171 netmask = x->rn_key;
173 x = rn_match(v_arg, head);
174 if (x && netmask) {
175 while (x && x->rn_mask != netmask)
176 x = x->rn_dupedkey;
178 return x;
181 static int
182 rn_satisfies_leaf(char *trial,
183 struct radix_node *leaf,
184 int skip)
186 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
187 char *cplim;
188 int length = min(*(u_char *)cp, *(u_char *)cp2);
190 if (cp3 == NULL)
191 cp3 = rn_ones;
192 else
193 length = min(length, *(u_char *)cp3);
194 cplim = cp + length; cp3 += skip; cp2 += skip;
195 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
196 if ((*cp ^ *cp2) & *cp3)
197 return 0;
198 return 1;
201 struct radix_node *
202 rn_match(void *v_arg,
203 struct radix_node_head *head)
205 caddr_t v = v_arg;
206 struct radix_node *t = head->rnh_treetop, *x;
207 caddr_t cp = v, cp2;
208 caddr_t cplim;
209 struct radix_node *saved_t, *top = t;
210 int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
211 int test, b, rn_b;
214 * Open code rn_search(v, top) to avoid overhead of extra
215 * subroutine call.
217 for (; t->rn_b >= 0; ) {
218 if (t->rn_bmask & cp[t->rn_off])
219 t = t->rn_r;
220 else
221 t = t->rn_l;
224 * See if we match exactly as a host destination
225 * or at least learn how many bits match, for normal mask finesse.
227 * It doesn't hurt us to limit how many bytes to check
228 * to the length of the mask, since if it matches we had a genuine
229 * match and the leaf we have is the most specific one anyway;
230 * if it didn't match with a shorter length it would fail
231 * with a long one. This wins big for class B&C netmasks which
232 * are probably the most common case...
234 if (t->rn_mask)
235 vlen = *(u_char *)t->rn_mask;
236 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
237 for (; cp < cplim; cp++, cp2++)
238 if (*cp != *cp2)
239 goto on1;
241 * This extra grot is in case we are explicitly asked
242 * to look up the default. Ugh!
243 * Or 255.255.255.255
245 * In this case, we have a complete match of the key. Unless
246 * the node is one of the roots, we are finished.
247 * If it is the zeros root, then take what we have, prefering
248 * any real data.
249 * If it is the ones root, then pretend the target key was followed
250 * by a byte of zeros.
252 if (!(t->rn_flags & RNF_ROOT))
253 return t; /* not a root */
254 if (t->rn_dupedkey) {
255 t = t->rn_dupedkey;
256 return t; /* have some real data */
258 if (*(cp-1) == 0)
259 return t; /* not the ones root */
260 b = 0; /* fake a zero after 255.255.255.255 */
261 goto on2;
262 on1:
263 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
264 for (b = 7; (test >>= 1) > 0;)
265 b--;
266 on2:
267 matched_off = cp - v;
268 b += matched_off << 3;
269 rn_b = -1 - b;
271 * If there is a host route in a duped-key chain, it will be first.
273 if ((saved_t = t)->rn_mask == 0)
274 t = t->rn_dupedkey;
275 for (; t; t = t->rn_dupedkey) {
277 * Even if we don't match exactly as a host,
278 * we may match if the leaf we wound up at is
279 * a route to a net.
281 if (t->rn_flags & RNF_NORMAL) {
282 if (rn_b <= t->rn_b)
283 return t;
284 } else if (rn_satisfies_leaf(v, t, matched_off)) {
285 return t;
288 t = saved_t;
289 /* start searching up the tree */
290 do {
291 struct radix_mask *m;
292 t = t->rn_p;
293 if ((m = t->rn_mklist)) {
295 * If non-contiguous masks ever become important
296 * we can restore the masking and open coding of
297 * the search and satisfaction test and put the
298 * calculation of "off" back before the "do".
300 do {
301 if (m->rm_flags & RNF_NORMAL) {
302 if (rn_b <= m->rm_b)
303 return (m->rm_leaf);
304 } else {
305 off = min(t->rn_off, matched_off);
306 x = rn_search_m(v, t, m->rm_mask);
307 while (x && x->rn_mask != m->rm_mask)
308 x = x->rn_dupedkey;
309 if (x && rn_satisfies_leaf(v, x, off))
310 return x;
312 } while ((m = m->rm_mklist));
314 } while (t != top);
315 return 0;
318 #ifdef RN_DEBUG
319 int rn_nodenum;
320 struct radix_node *rn_clist;
321 int rn_saveinfo;
322 int rn_debug = 1;
323 #endif
325 struct radix_node *
326 rn_newpair(void *v, int b, struct radix_node nodes[2])
328 struct radix_node *tt = nodes, *t = tt + 1;
329 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
330 t->rn_l = tt; t->rn_off = b >> 3;
331 tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
332 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
333 #ifdef RN_DEBUG
334 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
335 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
336 #endif
337 return t;
340 struct radix_node *
341 rn_insert(void* v_arg,
342 struct radix_node_head *head,
343 int *dupentry,
344 struct radix_node nodes[2])
346 caddr_t v = v_arg;
347 struct radix_node *top = head->rnh_treetop;
348 int head_off = top->rn_off, vlen = (int)*((u_char *)v);
349 struct radix_node *t = rn_search(v_arg, top);
350 caddr_t cp = v + head_off;
351 int b;
352 struct radix_node *tt;
355 * Find first bit at which v and t->rn_key differ
358 caddr_t cp2 = t->rn_key + head_off;
359 int cmp_res;
360 caddr_t cplim = v + vlen;
362 while (cp < cplim)
363 if (*cp2++ != *cp++)
364 goto on1;
365 /* handle adding 255.255.255.255 */
366 if (!(t->rn_flags & RNF_ROOT) || *(cp2-1) == 0) {
367 *dupentry = 1;
368 return t;
370 on1:
371 *dupentry = 0;
372 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
373 for (b = (cp - v) << 3; cmp_res; b--)
374 cmp_res >>= 1;
377 struct radix_node *p, *x = top;
378 cp = v;
379 do {
380 p = x;
381 if (cp[x->rn_off] & x->rn_bmask)
382 x = x->rn_r;
383 else x = x->rn_l;
384 } while ((unsigned)b > (unsigned)x->rn_b);
385 #ifdef RN_DEBUG
386 if (rn_debug)
387 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
388 #endif
389 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
390 if ((cp[p->rn_off] & p->rn_bmask) == 0)
391 p->rn_l = t;
392 else
393 p->rn_r = t;
394 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
395 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
396 t->rn_r = x;
397 } else {
398 t->rn_r = tt; t->rn_l = x;
400 #ifdef RN_DEBUG
401 if (rn_debug)
402 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
403 #endif
405 return (tt);
408 struct radix_node *
409 rn_addmask(void *n_arg, int search, int skip)
411 caddr_t netmask = (caddr_t)n_arg;
412 struct radix_node *x;
413 caddr_t cp, cplim;
414 int b = 0, mlen, j;
415 int maskduplicated, m0, isnormal;
416 struct radix_node *saved_x;
417 static int last_zeroed = 0;
419 if ((mlen = *(u_char *)netmask) > max_keylen)
420 mlen = max_keylen;
421 if (skip == 0)
422 skip = 1;
423 if (mlen <= skip)
424 return (mask_rnhead->rnh_nodes);
425 if (skip > 1)
426 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
427 if ((m0 = mlen) > skip)
428 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
430 * Trim trailing zeroes.
432 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
433 cp--;
434 mlen = cp - addmask_key;
435 if (mlen <= skip) {
436 if (m0 >= last_zeroed)
437 last_zeroed = mlen;
438 return (mask_rnhead->rnh_nodes);
440 if (m0 < last_zeroed)
441 Bzero(addmask_key + m0, last_zeroed - m0);
442 *addmask_key = last_zeroed = mlen;
443 x = rn_search(addmask_key, rn_masktop);
444 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
445 x = NULL;
446 if (x || search)
447 return (x);
448 x = (struct radix_node *)rtmalloc(max_keylen + 2*sizeof(*x),
449 "rn_addmask");
450 saved_x = x;
451 Bzero(x, max_keylen + 2 * sizeof (*x));
452 netmask = cp = (caddr_t)(x + 2);
453 Bcopy(addmask_key, cp, mlen);
454 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
455 if (maskduplicated) {
456 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
457 Free(saved_x);
458 return (x);
461 * Calculate index of mask, and check for normalcy.
463 cplim = netmask + mlen; isnormal = 1;
464 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
465 cp++;
466 if (cp != cplim) {
467 for (j = 0x80; (j & *cp) != 0; j >>= 1)
468 b++;
469 if (*cp != normal_chars[b] || cp != (cplim - 1))
470 isnormal = 0;
472 b += (cp - netmask) << 3;
473 x->rn_b = -1 - b;
474 if (isnormal)
475 x->rn_flags |= RNF_NORMAL;
476 return (x);
479 static int /* XXX: arbitrary ordering for non-contiguous masks */
480 rn_lexobetter(void *m_arg, void *n_arg)
482 u_char *mp = m_arg, *np = n_arg, *lim;
484 if (*mp > *np)
485 return 1; /* not really, but need to check longer one first */
486 if (*mp == *np)
487 for (lim = mp + *mp; mp < lim;)
488 if (*mp++ > *np++)
489 return 1;
490 return 0;
493 static struct radix_mask *
494 rn_new_radix_mask(struct radix_node *tt,
495 struct radix_mask *next)
497 struct radix_mask *m;
499 MKGet(m);
500 if (m == NULL) {
501 log(LOG_ERR, "Mask for route not entered\n");
502 return (0);
504 Bzero(m, sizeof *m);
505 m->rm_b = tt->rn_b;
506 m->rm_flags = tt->rn_flags;
507 if (tt->rn_flags & RNF_NORMAL)
508 m->rm_leaf = tt;
509 else
510 m->rm_mask = tt->rn_mask;
511 m->rm_mklist = next;
512 tt->rn_mklist = m;
513 return m;
516 struct radix_node *
517 rn_addroute(void *v_arg,
518 void *n_arg,
519 struct radix_node_head *head,
520 struct radix_node treenodes[2])
522 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
523 struct radix_node *t, *x = NULL, *tt;
524 struct radix_node *saved_tt, *top = head->rnh_treetop;
525 short b = 0, b_leaf = 0;
526 int keyduplicated;
527 caddr_t mmask;
528 struct radix_mask *m, **mp;
531 * In dealing with non-contiguous masks, there may be
532 * many different routes which have the same mask.
533 * We will find it useful to have a unique pointer to
534 * the mask to speed avoiding duplicate references at
535 * nodes and possibly save time in calculating indices.
537 if (netmask) {
538 if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
539 return (0);
540 b_leaf = x->rn_b;
541 b = -1 - x->rn_b;
542 netmask = x->rn_key;
545 * Deal with duplicated keys: attach node to previous instance
547 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
548 if (keyduplicated) {
549 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
550 if (tt->rn_mask == netmask)
551 return (0);
552 if (netmask == 0 ||
553 (tt->rn_mask &&
554 ((b_leaf < tt->rn_b) || /* index(netmask) > node */
555 rn_refines(netmask, tt->rn_mask) ||
556 rn_lexobetter(netmask, tt->rn_mask))))
557 break;
560 * If the mask is not duplicated, we wouldn't
561 * find it among possible duplicate key entries
562 * anyway, so the above test doesn't hurt.
564 * We sort the masks for a duplicated key the same way as
565 * in a masklist -- most specific to least specific.
566 * This may require the unfortunate nuisance of relocating
567 * the head of the list.
569 if (tt == saved_tt) {
570 struct radix_node *xx = x;
571 /* link in at head of list */
572 (tt = treenodes)->rn_dupedkey = t;
573 tt->rn_flags = t->rn_flags;
574 tt->rn_p = x = t->rn_p;
575 if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
576 saved_tt = tt; x = xx;
577 } else {
578 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
579 t->rn_dupedkey = tt;
581 #ifdef RN_DEBUG
582 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
583 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
584 #endif
585 tt->rn_key = (caddr_t) v;
586 tt->rn_b = -1;
587 tt->rn_flags = RNF_ACTIVE;
590 * Put mask in tree.
592 if (netmask) {
593 tt->rn_mask = netmask;
594 tt->rn_b = x->rn_b;
595 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
597 t = saved_tt->rn_p;
598 if (keyduplicated)
599 goto on2;
600 b_leaf = -1 - t->rn_b;
601 if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
602 /* Promote general routes from below */
603 if (x->rn_b < 0) {
604 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
605 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
606 if ((*mp = m = rn_new_radix_mask(x, 0)))
607 mp = &m->rm_mklist;
609 } else if (x->rn_mklist) {
611 * Skip over masks whose index is > that of new node
613 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
614 if (m->rm_b >= b_leaf)
615 break;
616 t->rn_mklist = m; *mp = NULL;
618 on2:
619 /* Add new route to highest possible ancestor's list */
620 if ((netmask == 0) || (b > t->rn_b ))
621 return tt; /* can't lift at all */
622 b_leaf = tt->rn_b;
623 do {
624 x = t;
625 t = t->rn_p;
626 } while (b <= t->rn_b && x != top);
628 * Search through routes associated with node to
629 * insert new route according to index.
630 * Need same criteria as when sorting dupedkeys to avoid
631 * double loop on deletion.
633 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
634 if (m->rm_b < b_leaf)
635 continue;
636 if (m->rm_b > b_leaf)
637 break;
638 if (m->rm_flags & RNF_NORMAL) {
639 mmask = m->rm_leaf->rn_mask;
640 if (tt->rn_flags & RNF_NORMAL) {
641 log(LOG_ERR,
642 "Non-unique normal route, mask not entered");
643 return tt;
645 } else
646 mmask = m->rm_mask;
647 if (mmask == netmask) {
648 m->rm_refs++;
649 tt->rn_mklist = m;
650 return tt;
652 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
653 break;
655 *mp = rn_new_radix_mask(tt, *mp);
656 return tt;
659 struct radix_node *
660 rn_delete(void *v_arg,
661 void *netmask_arg,
662 struct radix_node_head *head)
664 struct radix_node *t, *p, *x, *tt;
665 struct radix_mask *m, *saved_m, **mp;
666 struct radix_node *dupedkey, *saved_tt, *top;
667 caddr_t v, netmask;
668 int b, head_off, vlen;
670 v = v_arg;
671 netmask = netmask_arg;
672 x = head->rnh_treetop;
673 tt = rn_search(v, x);
674 head_off = x->rn_off;
675 vlen = *(u_char *)v;
676 saved_tt = tt;
677 top = x;
678 if (tt == NULL ||
679 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
680 return (0);
682 * Delete our route from mask lists.
684 if (netmask) {
685 if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
686 return (0);
687 netmask = x->rn_key;
688 while (tt->rn_mask != netmask)
689 if ((tt = tt->rn_dupedkey) == NULL)
690 return (0);
692 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL)
693 goto on1;
694 if (tt->rn_flags & RNF_NORMAL) {
695 if (m->rm_leaf != tt || m->rm_refs > 0) {
696 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
697 return 0; /* dangling ref could cause disaster */
699 } else {
700 if (m->rm_mask != tt->rn_mask) {
701 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
702 goto on1;
704 if (--m->rm_refs >= 0)
705 goto on1;
707 b = -1 - tt->rn_b;
708 t = saved_tt->rn_p;
709 if (b > t->rn_b)
710 goto on1; /* Wasn't lifted at all */
711 do {
712 x = t;
713 t = t->rn_p;
714 } while (b <= t->rn_b && x != top);
715 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
716 if (m == saved_m) {
717 *mp = m->rm_mklist;
718 MKFree(m);
719 break;
721 if (m == NULL) {
722 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
723 if (tt->rn_flags & RNF_NORMAL)
724 return (0); /* Dangling ref to us */
726 on1:
728 * Eliminate us from tree
730 if (tt->rn_flags & RNF_ROOT)
731 return (0);
732 #ifdef RN_DEBUG
733 /* Get us out of the creation list */
734 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
735 if (t) t->rn_ybro = tt->rn_ybro;
736 #endif
737 t = tt->rn_p;
738 if ((dupedkey = saved_tt->rn_dupedkey)) {
739 if (tt == saved_tt) {
740 x = dupedkey; x->rn_p = t;
741 if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
742 } else {
743 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
744 p = p->rn_dupedkey;
745 if (p) p->rn_dupedkey = tt->rn_dupedkey;
746 else log(LOG_ERR, "rn_delete: couldn't find us\n");
748 t = tt + 1;
749 if (t->rn_flags & RNF_ACTIVE) {
750 #ifndef RN_DEBUG
751 *++x = *t; p = t->rn_p;
752 #else
753 b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
754 #endif
755 if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
756 x->rn_l->rn_p = x; x->rn_r->rn_p = x;
758 goto out;
760 if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
761 p = t->rn_p;
762 if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
763 x->rn_p = p;
765 * Demote routes attached to us.
767 if (t->rn_mklist) {
768 if (x->rn_b >= 0) {
769 for (mp = &x->rn_mklist; (m = *mp);)
770 mp = &m->rm_mklist;
771 *mp = t->rn_mklist;
772 } else {
773 /* If there are any key,mask pairs in a sibling
774 duped-key chain, some subset will appear sorted
775 in the same order attached to our mklist */
776 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
777 if (m == x->rn_mklist) {
778 struct radix_mask *mm = m->rm_mklist;
779 x->rn_mklist = 0;
780 if (--(m->rm_refs) < 0)
781 MKFree(m);
782 m = mm;
784 if (m)
785 syslog(LOG_ERR, "%s 0x%lx at 0x%lx\n",
786 "rn_delete: Orphaned Mask",
787 (unsigned long)m,
788 (unsigned long)x);
792 * We may be holding an active internal node in the tree.
794 x = tt + 1;
795 if (t != x) {
796 #ifndef RN_DEBUG
797 *t = *x;
798 #else
799 b = t->rn_info; *t = *x; t->rn_info = b;
800 #endif
801 t->rn_l->rn_p = t; t->rn_r->rn_p = t;
802 p = x->rn_p;
803 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
805 out:
806 tt->rn_flags &= ~RNF_ACTIVE;
807 tt[1].rn_flags &= ~RNF_ACTIVE;
808 return (tt);
812 rn_walktree(struct radix_node_head *h,
813 int (*f)(struct radix_node *, struct walkarg *),
814 struct walkarg *w)
816 int error;
817 struct radix_node *base, *next;
818 struct radix_node *rn = h->rnh_treetop;
820 * This gets complicated because we may delete the node
821 * while applying the function f to it, so we need to calculate
822 * the successor node in advance.
824 /* First time through node, go left */
825 while (rn->rn_b >= 0)
826 rn = rn->rn_l;
827 for (;;) {
828 base = rn;
829 /* If at right child go back up, otherwise, go right */
830 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
831 rn = rn->rn_p;
832 /* Find the next *leaf* since next node might vanish, too */
833 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
834 rn = rn->rn_l;
835 next = rn;
836 /* Process leaves */
837 while ((rn = base)) {
838 base = rn->rn_dupedkey;
839 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
840 return (error);
842 rn = next;
843 if (rn->rn_flags & RNF_ROOT)
844 return (0);
846 /* NOTREACHED */
850 rn_inithead(struct radix_node_head **head, int off)
852 struct radix_node_head *rnh;
853 struct radix_node *t, *tt, *ttt;
854 if (*head)
855 return (1);
856 rnh = (struct radix_node_head *)rtmalloc(sizeof(*rnh), "rn_inithead");
857 Bzero(rnh, sizeof (*rnh));
858 *head = rnh;
859 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
860 ttt = rnh->rnh_nodes + 2;
861 t->rn_r = ttt;
862 t->rn_p = t;
863 tt = t->rn_l;
864 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
865 tt->rn_b = -1 - off;
866 *ttt = *tt;
867 ttt->rn_key = rn_ones;
868 rnh->rnh_addaddr = rn_addroute;
869 rnh->rnh_deladdr = rn_delete;
870 rnh->rnh_matchaddr = rn_match;
871 rnh->rnh_lookup = rn_lookup;
872 rnh->rnh_walktree = rn_walktree;
873 rnh->rnh_treetop = t;
874 return (1);
877 void
878 rn_init(void)
880 char *cp, *cplim;
881 if (max_keylen == 0) {
882 printf("rn_init: radix functions require max_keylen be set\n");
883 return;
885 rn_zeros = (char *)rtmalloc(3 * max_keylen, "rn_init");
886 Bzero(rn_zeros, 3 * max_keylen);
887 rn_ones = cp = rn_zeros + max_keylen;
888 addmask_key = cplim = rn_ones + max_keylen;
889 while (cp < cplim)
890 *cp++ = -1;
891 if (rn_inithead(&mask_rnhead, 0) == 0)
892 panic("rn_init 2");