get mxge to build, stage 29/many
[dragonfly.git] / sys / kern / kern_time.c
blob3c39c05ebd3e95c8ab82f644428bddb166c84570
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
34 * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35 * $DragonFly: src/sys/kern/kern_time.c,v 1.40 2008/04/02 14:16:16 sephe Exp $
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/sysunion.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/time.h>
51 #include <sys/vnode.h>
52 #include <sys/sysctl.h>
53 #include <sys/kern_syscall.h>
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <sys/msgport2.h>
57 #include <sys/thread2.h>
59 struct timezone tz;
62 * Time of day and interval timer support.
64 * These routines provide the kernel entry points to get and set
65 * the time-of-day and per-process interval timers. Subroutines
66 * here provide support for adding and subtracting timeval structures
67 * and decrementing interval timers, optionally reloading the interval
68 * timers when they expire.
71 static int nanosleep1(struct timespec *rqt, struct timespec *rmt);
72 static int settime(struct timeval *);
73 static void timevalfix(struct timeval *);
75 static int sleep_hard_us = 100;
76 SYSCTL_INT(_kern, OID_AUTO, sleep_hard_us, CTLFLAG_RW, &sleep_hard_us, 0, "")
78 static int
79 settime(struct timeval *tv)
81 struct timeval delta, tv1, tv2;
82 static struct timeval maxtime, laststep;
83 struct timespec ts;
84 int origcpu;
86 if ((origcpu = mycpu->gd_cpuid) != 0)
87 lwkt_setcpu_self(globaldata_find(0));
89 crit_enter();
90 microtime(&tv1);
91 delta = *tv;
92 timevalsub(&delta, &tv1);
95 * If the system is secure, we do not allow the time to be
96 * set to a value earlier than 1 second less than the highest
97 * time we have yet seen. The worst a miscreant can do in
98 * this circumstance is "freeze" time. He couldn't go
99 * back to the past.
101 * We similarly do not allow the clock to be stepped more
102 * than one second, nor more than once per second. This allows
103 * a miscreant to make the clock march double-time, but no worse.
105 if (securelevel > 1) {
106 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
108 * Update maxtime to latest time we've seen.
110 if (tv1.tv_sec > maxtime.tv_sec)
111 maxtime = tv1;
112 tv2 = *tv;
113 timevalsub(&tv2, &maxtime);
114 if (tv2.tv_sec < -1) {
115 tv->tv_sec = maxtime.tv_sec - 1;
116 kprintf("Time adjustment clamped to -1 second\n");
118 } else {
119 if (tv1.tv_sec == laststep.tv_sec) {
120 crit_exit();
121 return (EPERM);
123 if (delta.tv_sec > 1) {
124 tv->tv_sec = tv1.tv_sec + 1;
125 kprintf("Time adjustment clamped to +1 second\n");
127 laststep = *tv;
131 ts.tv_sec = tv->tv_sec;
132 ts.tv_nsec = tv->tv_usec * 1000;
133 set_timeofday(&ts);
134 crit_exit();
136 if (origcpu != 0)
137 lwkt_setcpu_self(globaldata_find(origcpu));
139 resettodr();
140 return (0);
144 kern_clock_gettime(clockid_t clock_id, struct timespec *ats)
146 int error = 0;
148 switch(clock_id) {
149 case CLOCK_REALTIME:
150 nanotime(ats);
151 break;
152 case CLOCK_MONOTONIC:
153 nanouptime(ats);
154 break;
155 default:
156 error = EINVAL;
157 break;
159 return (error);
162 /* ARGSUSED */
164 sys_clock_gettime(struct clock_gettime_args *uap)
166 struct timespec ats;
167 int error;
169 error = kern_clock_gettime(uap->clock_id, &ats);
170 if (error == 0)
171 error = copyout(&ats, uap->tp, sizeof(ats));
173 return (error);
177 kern_clock_settime(clockid_t clock_id, struct timespec *ats)
179 struct thread *td = curthread;
180 struct timeval atv;
181 int error;
183 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
184 return (error);
185 if (clock_id != CLOCK_REALTIME)
186 return (EINVAL);
187 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
188 return (EINVAL);
190 TIMESPEC_TO_TIMEVAL(&atv, ats);
191 error = settime(&atv);
192 return (error);
195 /* ARGSUSED */
197 sys_clock_settime(struct clock_settime_args *uap)
199 struct timespec ats;
200 int error;
202 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
203 return (error);
205 return (kern_clock_settime(uap->clock_id, &ats));
209 kern_clock_getres(clockid_t clock_id, struct timespec *ts)
211 int error;
213 switch(clock_id) {
214 case CLOCK_REALTIME:
215 case CLOCK_MONOTONIC:
217 * Round up the result of the division cheaply
218 * by adding 1. Rounding up is especially important
219 * if rounding down would give 0. Perfect rounding
220 * is unimportant.
222 ts->tv_sec = 0;
223 ts->tv_nsec = 1000000000 / sys_cputimer->freq + 1;
224 error = 0;
225 break;
226 default:
227 error = EINVAL;
228 break;
231 return(error);
235 sys_clock_getres(struct clock_getres_args *uap)
237 int error;
238 struct timespec ts;
240 error = kern_clock_getres(uap->clock_id, &ts);
241 if (error == 0)
242 error = copyout(&ts, uap->tp, sizeof(ts));
244 return (error);
248 * nanosleep1()
250 * This is a general helper function for nanosleep() (aka sleep() aka
251 * usleep()).
253 * If there is less then one tick's worth of time left and
254 * we haven't done a yield, or the remaining microseconds is
255 * ridiculously low, do a yield. This avoids having
256 * to deal with systimer overheads when the system is under
257 * heavy loads. If we have done a yield already then use
258 * a systimer and an uninterruptable thread wait.
260 * If there is more then a tick's worth of time left,
261 * calculate the baseline ticks and use an interruptable
262 * tsleep, then handle the fine-grained delay on the next
263 * loop. This usually results in two sleeps occuring, a long one
264 * and a short one.
266 static void
267 ns1_systimer(systimer_t info)
269 lwkt_schedule(info->data);
272 static int
273 nanosleep1(struct timespec *rqt, struct timespec *rmt)
275 static int nanowait;
276 struct timespec ts, ts2, ts3;
277 struct timeval tv;
278 int error;
279 int tried_yield;
281 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
282 return (EINVAL);
283 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
284 return (0);
285 nanouptime(&ts);
286 timespecadd(&ts, rqt); /* ts = target timestamp compare */
287 TIMESPEC_TO_TIMEVAL(&tv, rqt); /* tv = sleep interval */
288 tried_yield = 0;
290 for (;;) {
291 int ticks;
292 struct systimer info;
294 ticks = tv.tv_usec / tick; /* approximate */
296 if (tv.tv_sec == 0 && ticks == 0) {
297 thread_t td = curthread;
298 if (tried_yield || tv.tv_usec < sleep_hard_us) {
299 tried_yield = 0;
300 uio_yield();
301 } else {
302 crit_enter_quick(td);
303 systimer_init_oneshot(&info, ns1_systimer,
304 td, tv.tv_usec);
305 lwkt_deschedule_self(td);
306 crit_exit_quick(td);
307 lwkt_switch();
308 systimer_del(&info); /* make sure it's gone */
310 error = iscaught(td->td_lwp);
311 } else if (tv.tv_sec == 0) {
312 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
313 } else {
314 ticks = tvtohz_low(&tv); /* also handles overflow */
315 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
317 nanouptime(&ts2);
318 if (error && error != EWOULDBLOCK) {
319 if (error == ERESTART)
320 error = EINTR;
321 if (rmt != NULL) {
322 timespecsub(&ts, &ts2);
323 if (ts.tv_sec < 0)
324 timespecclear(&ts);
325 *rmt = ts;
327 return (error);
329 if (timespeccmp(&ts2, &ts, >=))
330 return (0);
331 ts3 = ts;
332 timespecsub(&ts3, &ts2);
333 TIMESPEC_TO_TIMEVAL(&tv, &ts3);
337 /* ARGSUSED */
339 sys_nanosleep(struct nanosleep_args *uap)
341 int error;
342 struct timespec rqt;
343 struct timespec rmt;
345 error = copyin(uap->rqtp, &rqt, sizeof(rqt));
346 if (error)
347 return (error);
349 error = nanosleep1(&rqt, &rmt);
352 * copyout the residual if nanosleep was interrupted.
354 if (error && uap->rmtp) {
355 int error2;
357 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
358 if (error2)
359 error = error2;
361 return (error);
364 /* ARGSUSED */
366 sys_gettimeofday(struct gettimeofday_args *uap)
368 struct timeval atv;
369 int error = 0;
371 if (uap->tp) {
372 microtime(&atv);
373 if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
374 sizeof (atv))))
375 return (error);
377 if (uap->tzp)
378 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
379 sizeof (tz));
380 return (error);
383 /* ARGSUSED */
385 sys_settimeofday(struct settimeofday_args *uap)
387 struct thread *td = curthread;
388 struct timeval atv;
389 struct timezone atz;
390 int error;
392 if ((error = priv_check(td, PRIV_SETTIMEOFDAY)))
393 return (error);
394 /* Verify all parameters before changing time. */
395 if (uap->tv) {
396 if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
397 sizeof(atv))))
398 return (error);
399 if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
400 return (EINVAL);
402 if (uap->tzp &&
403 (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
404 return (error);
405 if (uap->tv && (error = settime(&atv)))
406 return (error);
407 if (uap->tzp)
408 tz = atz;
409 return (0);
412 static void
413 kern_adjtime_common(void)
415 if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
416 (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
417 ntp_tick_delta = ntp_delta;
418 else if (ntp_delta > ntp_big_delta)
419 ntp_tick_delta = 10 * ntp_default_tick_delta;
420 else if (ntp_delta < -ntp_big_delta)
421 ntp_tick_delta = -10 * ntp_default_tick_delta;
422 else if (ntp_delta > 0)
423 ntp_tick_delta = ntp_default_tick_delta;
424 else
425 ntp_tick_delta = -ntp_default_tick_delta;
428 void
429 kern_adjtime(int64_t delta, int64_t *odelta)
431 int origcpu;
433 if ((origcpu = mycpu->gd_cpuid) != 0)
434 lwkt_setcpu_self(globaldata_find(0));
436 crit_enter();
437 *odelta = ntp_delta;
438 ntp_delta = delta;
439 kern_adjtime_common();
440 crit_exit();
442 if (origcpu != 0)
443 lwkt_setcpu_self(globaldata_find(origcpu));
446 static void
447 kern_get_ntp_delta(int64_t *delta)
449 int origcpu;
451 if ((origcpu = mycpu->gd_cpuid) != 0)
452 lwkt_setcpu_self(globaldata_find(0));
454 crit_enter();
455 *delta = ntp_delta;
456 crit_exit();
458 if (origcpu != 0)
459 lwkt_setcpu_self(globaldata_find(origcpu));
462 void
463 kern_reladjtime(int64_t delta)
465 int origcpu;
467 if ((origcpu = mycpu->gd_cpuid) != 0)
468 lwkt_setcpu_self(globaldata_find(0));
470 crit_enter();
471 ntp_delta += delta;
472 kern_adjtime_common();
473 crit_exit();
475 if (origcpu != 0)
476 lwkt_setcpu_self(globaldata_find(origcpu));
479 static void
480 kern_adjfreq(int64_t rate)
482 int origcpu;
484 if ((origcpu = mycpu->gd_cpuid) != 0)
485 lwkt_setcpu_self(globaldata_find(0));
487 crit_enter();
488 ntp_tick_permanent = rate;
489 crit_exit();
491 if (origcpu != 0)
492 lwkt_setcpu_self(globaldata_find(origcpu));
495 /* ARGSUSED */
497 sys_adjtime(struct adjtime_args *uap)
499 struct thread *td = curthread;
500 struct timeval atv;
501 int64_t ndelta, odelta;
502 int error;
504 if ((error = priv_check(td, PRIV_ADJTIME)))
505 return (error);
506 if ((error =
507 copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
508 return (error);
511 * Compute the total correction and the rate at which to apply it.
512 * Round the adjustment down to a whole multiple of the per-tick
513 * delta, so that after some number of incremental changes in
514 * hardclock(), tickdelta will become zero, lest the correction
515 * overshoot and start taking us away from the desired final time.
517 ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
518 kern_adjtime(ndelta, &odelta);
520 if (uap->olddelta) {
521 atv.tv_sec = odelta / 1000000000;
522 atv.tv_usec = odelta % 1000000000 / 1000;
523 (void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
524 sizeof(struct timeval));
526 return (0);
529 static int
530 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
532 int64_t delta;
533 int error;
535 if (req->newptr != NULL) {
536 if (priv_check(curthread, PRIV_ROOT))
537 return (EPERM);
538 error = SYSCTL_IN(req, &delta, sizeof(delta));
539 if (error)
540 return (error);
541 kern_reladjtime(delta);
544 if (req->oldptr)
545 kern_get_ntp_delta(&delta);
546 error = SYSCTL_OUT(req, &delta, sizeof(delta));
547 return (error);
551 * delta is in nanoseconds.
553 static int
554 sysctl_delta(SYSCTL_HANDLER_ARGS)
556 int64_t delta, old_delta;
557 int error;
559 if (req->newptr != NULL) {
560 if (priv_check(curthread, PRIV_ROOT))
561 return (EPERM);
562 error = SYSCTL_IN(req, &delta, sizeof(delta));
563 if (error)
564 return (error);
565 kern_adjtime(delta, &old_delta);
568 if (req->oldptr != NULL)
569 kern_get_ntp_delta(&old_delta);
570 error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
571 return (error);
575 * frequency is in nanoseconds per second shifted left 32.
576 * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
578 static int
579 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
581 int64_t freqdelta;
582 int error;
584 if (req->newptr != NULL) {
585 if (priv_check(curthread, PRIV_ROOT))
586 return (EPERM);
587 error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
588 if (error)
589 return (error);
591 freqdelta /= hz;
592 kern_adjfreq(freqdelta);
595 if (req->oldptr != NULL)
596 freqdelta = ntp_tick_permanent * hz;
597 error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
598 if (error)
599 return (error);
601 return (0);
604 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
605 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
606 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
607 sysctl_adjfreq, "Q", "permanent correction per second");
608 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
609 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
610 sysctl_delta, "Q", "one-time delta");
611 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
612 &ntp_big_delta, sizeof(ntp_big_delta), "Q",
613 "threshold for fast adjustment");
614 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
615 &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
616 "per-tick adjustment");
617 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
618 &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
619 "default per-tick adjustment");
620 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
621 &ntp_leap_second, sizeof(ntp_leap_second), "LU",
622 "next leap second");
623 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
624 &ntp_leap_insert, 0, "insert or remove leap second");
625 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
626 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
627 sysctl_adjtime, "Q", "relative adjust for delta");
630 * Get value of an interval timer. The process virtual and
631 * profiling virtual time timers are kept in the p_stats area, since
632 * they can be swapped out. These are kept internally in the
633 * way they are specified externally: in time until they expire.
635 * The real time interval timer is kept in the process table slot
636 * for the process, and its value (it_value) is kept as an
637 * absolute time rather than as a delta, so that it is easy to keep
638 * periodic real-time signals from drifting.
640 * Virtual time timers are processed in the hardclock() routine of
641 * kern_clock.c. The real time timer is processed by a timeout
642 * routine, called from the softclock() routine. Since a callout
643 * may be delayed in real time due to interrupt processing in the system,
644 * it is possible for the real time timeout routine (realitexpire, given below),
645 * to be delayed in real time past when it is supposed to occur. It
646 * does not suffice, therefore, to reload the real timer .it_value from the
647 * real time timers .it_interval. Rather, we compute the next time in
648 * absolute time the timer should go off.
650 /* ARGSUSED */
652 sys_getitimer(struct getitimer_args *uap)
654 struct proc *p = curproc;
655 struct timeval ctv;
656 struct itimerval aitv;
658 if (uap->which > ITIMER_PROF)
659 return (EINVAL);
660 crit_enter();
661 if (uap->which == ITIMER_REAL) {
663 * Convert from absolute to relative time in .it_value
664 * part of real time timer. If time for real time timer
665 * has passed return 0, else return difference between
666 * current time and time for the timer to go off.
668 aitv = p->p_realtimer;
669 if (timevalisset(&aitv.it_value)) {
670 getmicrouptime(&ctv);
671 if (timevalcmp(&aitv.it_value, &ctv, <))
672 timevalclear(&aitv.it_value);
673 else
674 timevalsub(&aitv.it_value, &ctv);
676 } else {
677 aitv = p->p_timer[uap->which];
679 crit_exit();
680 return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
681 sizeof (struct itimerval)));
684 /* ARGSUSED */
686 sys_setitimer(struct setitimer_args *uap)
688 struct itimerval aitv;
689 struct timeval ctv;
690 struct itimerval *itvp;
691 struct proc *p = curproc;
692 int error;
694 if (uap->which > ITIMER_PROF)
695 return (EINVAL);
696 itvp = uap->itv;
697 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
698 sizeof(struct itimerval))))
699 return (error);
700 if ((uap->itv = uap->oitv) &&
701 (error = sys_getitimer((struct getitimer_args *)uap)))
702 return (error);
703 if (itvp == 0)
704 return (0);
705 if (itimerfix(&aitv.it_value))
706 return (EINVAL);
707 if (!timevalisset(&aitv.it_value))
708 timevalclear(&aitv.it_interval);
709 else if (itimerfix(&aitv.it_interval))
710 return (EINVAL);
711 crit_enter();
712 if (uap->which == ITIMER_REAL) {
713 if (timevalisset(&p->p_realtimer.it_value))
714 callout_stop(&p->p_ithandle);
715 if (timevalisset(&aitv.it_value))
716 callout_reset(&p->p_ithandle,
717 tvtohz_high(&aitv.it_value), realitexpire, p);
718 getmicrouptime(&ctv);
719 timevaladd(&aitv.it_value, &ctv);
720 p->p_realtimer = aitv;
721 } else {
722 p->p_timer[uap->which] = aitv;
724 crit_exit();
725 return (0);
729 * Real interval timer expired:
730 * send process whose timer expired an alarm signal.
731 * If time is not set up to reload, then just return.
732 * Else compute next time timer should go off which is > current time.
733 * This is where delay in processing this timeout causes multiple
734 * SIGALRM calls to be compressed into one.
735 * tvtohz_high() always adds 1 to allow for the time until the next clock
736 * interrupt being strictly less than 1 clock tick, but we don't want
737 * that here since we want to appear to be in sync with the clock
738 * interrupt even when we're delayed.
740 void
741 realitexpire(void *arg)
743 struct proc *p;
744 struct timeval ctv, ntv;
746 p = (struct proc *)arg;
747 ksignal(p, SIGALRM);
748 if (!timevalisset(&p->p_realtimer.it_interval)) {
749 timevalclear(&p->p_realtimer.it_value);
750 return;
752 for (;;) {
753 crit_enter();
754 timevaladd(&p->p_realtimer.it_value,
755 &p->p_realtimer.it_interval);
756 getmicrouptime(&ctv);
757 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
758 ntv = p->p_realtimer.it_value;
759 timevalsub(&ntv, &ctv);
760 callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
761 realitexpire, p);
762 crit_exit();
763 return;
765 crit_exit();
770 * Check that a proposed value to load into the .it_value or
771 * .it_interval part of an interval timer is acceptable, and
772 * fix it to have at least minimal value (i.e. if it is less
773 * than the resolution of the clock, round it up.)
776 itimerfix(struct timeval *tv)
779 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
780 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
781 return (EINVAL);
782 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
783 tv->tv_usec = tick;
784 return (0);
788 * Decrement an interval timer by a specified number
789 * of microseconds, which must be less than a second,
790 * i.e. < 1000000. If the timer expires, then reload
791 * it. In this case, carry over (usec - old value) to
792 * reduce the value reloaded into the timer so that
793 * the timer does not drift. This routine assumes
794 * that it is called in a context where the timers
795 * on which it is operating cannot change in value.
798 itimerdecr(struct itimerval *itp, int usec)
801 if (itp->it_value.tv_usec < usec) {
802 if (itp->it_value.tv_sec == 0) {
803 /* expired, and already in next interval */
804 usec -= itp->it_value.tv_usec;
805 goto expire;
807 itp->it_value.tv_usec += 1000000;
808 itp->it_value.tv_sec--;
810 itp->it_value.tv_usec -= usec;
811 usec = 0;
812 if (timevalisset(&itp->it_value))
813 return (1);
814 /* expired, exactly at end of interval */
815 expire:
816 if (timevalisset(&itp->it_interval)) {
817 itp->it_value = itp->it_interval;
818 itp->it_value.tv_usec -= usec;
819 if (itp->it_value.tv_usec < 0) {
820 itp->it_value.tv_usec += 1000000;
821 itp->it_value.tv_sec--;
823 } else
824 itp->it_value.tv_usec = 0; /* sec is already 0 */
825 return (0);
829 * Add and subtract routines for timevals.
830 * N.B.: subtract routine doesn't deal with
831 * results which are before the beginning,
832 * it just gets very confused in this case.
833 * Caveat emptor.
835 void
836 timevaladd(struct timeval *t1, const struct timeval *t2)
839 t1->tv_sec += t2->tv_sec;
840 t1->tv_usec += t2->tv_usec;
841 timevalfix(t1);
844 void
845 timevalsub(struct timeval *t1, const struct timeval *t2)
848 t1->tv_sec -= t2->tv_sec;
849 t1->tv_usec -= t2->tv_usec;
850 timevalfix(t1);
853 static void
854 timevalfix(struct timeval *t1)
857 if (t1->tv_usec < 0) {
858 t1->tv_sec--;
859 t1->tv_usec += 1000000;
861 if (t1->tv_usec >= 1000000) {
862 t1->tv_sec++;
863 t1->tv_usec -= 1000000;
868 * ratecheck(): simple time-based rate-limit checking.
871 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
873 struct timeval tv, delta;
874 int rv = 0;
876 getmicrouptime(&tv); /* NB: 10ms precision */
877 delta = tv;
878 timevalsub(&delta, lasttime);
881 * check for 0,0 is so that the message will be seen at least once,
882 * even if interval is huge.
884 if (timevalcmp(&delta, mininterval, >=) ||
885 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
886 *lasttime = tv;
887 rv = 1;
890 return (rv);
894 * ppsratecheck(): packets (or events) per second limitation.
896 * Return 0 if the limit is to be enforced (e.g. the caller
897 * should drop a packet because of the rate limitation).
899 * maxpps of 0 always causes zero to be returned. maxpps of -1
900 * always causes 1 to be returned; this effectively defeats rate
901 * limiting.
903 * Note that we maintain the struct timeval for compatibility
904 * with other bsd systems. We reuse the storage and just monitor
905 * clock ticks for minimal overhead.
908 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
910 int now;
913 * Reset the last time and counter if this is the first call
914 * or more than a second has passed since the last update of
915 * lasttime.
917 now = ticks;
918 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
919 lasttime->tv_sec = now;
920 *curpps = 1;
921 return (maxpps != 0);
922 } else {
923 (*curpps)++; /* NB: ignore potential overflow */
924 return (maxpps < 0 || *curpps < maxpps);