wpa_supplicant: Adjust master for the 2.9 upgrade.
[dragonfly.git] / contrib / mpfr / src / tanh.c
blobb1e9b7d8a4997a3b6ea84bbe9aeac9e70ab60098
1 /* mpfr_tanh -- hyperbolic tangent
3 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4 Contributed by the AriC and Caramel projects, INRIA.
6 This file is part of the GNU MPFR Library.
8 The GNU MPFR Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or (at your
11 option) any later version.
13 The GNU MPFR Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 License for more details.
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
20 http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
21 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
23 #define MPFR_NEED_LONGLONG_H
24 #include "mpfr-impl.h"
26 int
27 mpfr_tanh (mpfr_ptr y, mpfr_srcptr xt , mpfr_rnd_t rnd_mode)
29 /****** Declaration ******/
30 mpfr_t x;
31 int inexact;
32 MPFR_SAVE_EXPO_DECL (expo);
34 MPFR_LOG_FUNC
35 (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode),
36 ("y[%Pu]=%.*Rg inexact=%d",
37 mpfr_get_prec (y), mpfr_log_prec, y, inexact));
39 /* Special value checking */
40 if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
42 if (MPFR_IS_NAN (xt))
44 MPFR_SET_NAN (y);
45 MPFR_RET_NAN;
47 else if (MPFR_IS_INF (xt))
49 /* tanh(inf) = 1 && tanh(-inf) = -1 */
50 return mpfr_set_si (y, MPFR_INT_SIGN (xt), rnd_mode);
52 else /* tanh (0) = 0 and xt is zero */
54 MPFR_ASSERTD (MPFR_IS_ZERO(xt));
55 MPFR_SET_ZERO (y);
56 MPFR_SET_SAME_SIGN (y, xt);
57 MPFR_RET (0);
61 /* tanh(x) = x - x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */
62 MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP (xt), 1, 0,
63 rnd_mode, {});
65 MPFR_TMP_INIT_ABS (x, xt);
67 MPFR_SAVE_EXPO_MARK (expo);
69 /* General case */
71 /* Declaration of the intermediary variable */
72 mpfr_t t, te;
73 mpfr_exp_t d;
75 /* Declaration of the size variable */
76 mpfr_prec_t Ny = MPFR_PREC(y); /* target precision */
77 mpfr_prec_t Nt; /* working precision */
78 long int err; /* error */
79 int sign = MPFR_SIGN (xt);
80 MPFR_ZIV_DECL (loop);
81 MPFR_GROUP_DECL (group);
83 /* First check for BIG overflow of exp(2*x):
84 For x > 0, exp(2*x) > 2^(2*x)
85 If 2 ^(2*x) > 2^emax or x>emax/2, there is an overflow */
86 if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax/2) >= 0)) {
87 /* initialise of intermediary variables
88 since 'set_one' label assumes the variables have been
89 initialize */
90 MPFR_GROUP_INIT_2 (group, MPFR_PREC_MIN, t, te);
91 goto set_one;
94 /* Compute the precision of intermediary variable */
95 /* The optimal number of bits: see algorithms.tex */
96 Nt = Ny + MPFR_INT_CEIL_LOG2 (Ny) + 4;
97 /* if x is small, there will be a cancellation in exp(2x)-1 */
98 if (MPFR_GET_EXP (x) < 0)
99 Nt += -MPFR_GET_EXP (x);
101 /* initialise of intermediary variable */
102 MPFR_GROUP_INIT_2 (group, Nt, t, te);
104 MPFR_ZIV_INIT (loop, Nt);
105 for (;;) {
106 /* tanh = (exp(2x)-1)/(exp(2x)+1) */
107 mpfr_mul_2ui (te, x, 1, MPFR_RNDN); /* 2x */
108 /* since x > 0, we can only have an overflow */
109 mpfr_exp (te, te, MPFR_RNDN); /* exp(2x) */
110 if (MPFR_UNLIKELY (MPFR_IS_INF (te))) {
111 set_one:
112 inexact = MPFR_FROM_SIGN_TO_INT (sign);
113 mpfr_set4 (y, __gmpfr_one, MPFR_RNDN, sign);
114 if (MPFR_IS_LIKE_RNDZ (rnd_mode, MPFR_IS_NEG_SIGN (sign)))
116 inexact = -inexact;
117 mpfr_nexttozero (y);
119 break;
121 d = MPFR_GET_EXP (te); /* For Error calculation */
122 mpfr_add_ui (t, te, 1, MPFR_RNDD); /* exp(2x) + 1*/
123 mpfr_sub_ui (te, te, 1, MPFR_RNDU); /* exp(2x) - 1*/
124 d = d - MPFR_GET_EXP (te);
125 mpfr_div (t, te, t, MPFR_RNDN); /* (exp(2x)-1)/(exp(2x)+1)*/
127 /* Calculation of the error */
128 d = MAX(3, d + 1);
129 err = Nt - (d + 1);
131 if (MPFR_LIKELY ((d <= Nt / 2) && MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
133 inexact = mpfr_set4 (y, t, rnd_mode, sign);
134 break;
137 /* if t=1, we still can round since |sinh(x)| < 1 */
138 if (MPFR_GET_EXP (t) == 1)
139 goto set_one;
141 /* Actualisation of the precision */
142 MPFR_ZIV_NEXT (loop, Nt);
143 MPFR_GROUP_REPREC_2 (group, Nt, t, te);
145 MPFR_ZIV_FREE (loop);
146 MPFR_GROUP_CLEAR (group);
148 MPFR_SAVE_EXPO_FREE (expo);
149 inexact = mpfr_check_range (y, inexact, rnd_mode);
151 return inexact;