wpa_supplicant: Adjust master for the 2.9 upgrade.
[dragonfly.git] / contrib / mpfr / src / digamma.c
blob9eb971cae70a747a3ab791241a0c58a6b6a5409d
1 /* mpfr_digamma -- digamma function of a floating-point number
3 Copyright 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4 Contributed by the AriC and Caramel projects, INRIA.
6 This file is part of the GNU MPFR Library.
8 The GNU MPFR Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or (at your
11 option) any later version.
13 The GNU MPFR Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 License for more details.
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
20 http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
21 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
23 #include "mpfr-impl.h"
25 /* Put in s an approximation of digamma(x).
26 Assumes x >= 2.
27 Assumes s does not overlap with x.
28 Returns an integer e such that the error is bounded by 2^e ulps
29 of the result s.
31 static mpfr_exp_t
32 mpfr_digamma_approx (mpfr_ptr s, mpfr_srcptr x)
34 mpfr_prec_t p = MPFR_PREC (s);
35 mpfr_t t, u, invxx;
36 mpfr_exp_t e, exps, f, expu;
37 mpz_t *INITIALIZED(B); /* variable B declared as initialized */
38 unsigned long n0, n; /* number of allocated B[] */
40 MPFR_ASSERTN(MPFR_IS_POS(x) && (MPFR_EXP(x) >= 2));
42 mpfr_init2 (t, p);
43 mpfr_init2 (u, p);
44 mpfr_init2 (invxx, p);
46 mpfr_log (s, x, MPFR_RNDN); /* error <= 1/2 ulp */
47 mpfr_ui_div (t, 1, x, MPFR_RNDN); /* error <= 1/2 ulp */
48 mpfr_div_2exp (t, t, 1, MPFR_RNDN); /* exact */
49 mpfr_sub (s, s, t, MPFR_RNDN);
50 /* error <= 1/2 + 1/2*2^(EXP(olds)-EXP(s)) + 1/2*2^(EXP(t)-EXP(s)).
51 For x >= 2, log(x) >= 2*(1/(2x)), thus olds >= 2t, and olds - t >= olds/2,
52 thus 0 <= EXP(olds)-EXP(s) <= 1, and EXP(t)-EXP(s) <= 0, thus
53 error <= 1/2 + 1/2*2 + 1/2 <= 2 ulps. */
54 e = 2; /* initial error */
55 mpfr_mul (invxx, x, x, MPFR_RNDZ); /* invxx = x^2 * (1 + theta)
56 for |theta| <= 2^(-p) */
57 mpfr_ui_div (invxx, 1, invxx, MPFR_RNDU); /* invxx = 1/x^2 * (1 + theta)^2 */
59 /* in the following we note err=xxx when the ratio between the approximation
60 and the exact result can be written (1 + theta)^xxx for |theta| <= 2^(-p),
61 following Higham's method */
62 B = mpfr_bernoulli_internal ((mpz_t *) 0, 0);
63 mpfr_set_ui (t, 1, MPFR_RNDN); /* err = 0 */
64 for (n = 1;; n++)
66 /* compute next Bernoulli number */
67 B = mpfr_bernoulli_internal (B, n);
68 /* The main term is Bernoulli[2n]/(2n)/x^(2n) = B[n]/(2n+1)!(2n)/x^(2n)
69 = B[n]*t[n]/(2n) where t[n]/t[n-1] = 1/(2n)/(2n+1)/x^2. */
70 mpfr_mul (t, t, invxx, MPFR_RNDU); /* err = err + 3 */
71 mpfr_div_ui (t, t, 2 * n, MPFR_RNDU); /* err = err + 1 */
72 mpfr_div_ui (t, t, 2 * n + 1, MPFR_RNDU); /* err = err + 1 */
73 /* we thus have err = 5n here */
74 mpfr_div_ui (u, t, 2 * n, MPFR_RNDU); /* err = 5n+1 */
75 mpfr_mul_z (u, u, B[n], MPFR_RNDU); /* err = 5n+2, and the
76 absolute error is bounded
77 by 10n+4 ulp(u) [Rule 11] */
78 /* if the terms 'u' are decreasing by a factor two at least,
79 then the error coming from those is bounded by
80 sum((10n+4)/2^n, n=1..infinity) = 24 */
81 exps = mpfr_get_exp (s);
82 expu = mpfr_get_exp (u);
83 if (expu < exps - (mpfr_exp_t) p)
84 break;
85 mpfr_sub (s, s, u, MPFR_RNDN); /* error <= 24 + n/2 */
86 if (mpfr_get_exp (s) < exps)
87 e <<= exps - mpfr_get_exp (s);
88 e ++; /* error in mpfr_sub */
89 f = 10 * n + 4;
90 while (expu < exps)
92 f = (1 + f) / 2;
93 expu ++;
95 e += f; /* total rouding error coming from 'u' term */
98 n0 = ++n;
99 while (n--)
100 mpz_clear (B[n]);
101 (*__gmp_free_func) (B, n0 * sizeof (mpz_t));
103 mpfr_clear (t);
104 mpfr_clear (u);
105 mpfr_clear (invxx);
107 f = 0;
108 while (e > 1)
110 f++;
111 e = (e + 1) / 2;
112 /* Invariant: 2^f * e does not decrease */
114 return f;
117 /* Use the reflection formula Digamma(1-x) = Digamma(x) + Pi * cot(Pi*x),
118 i.e., Digamma(x) = Digamma(1-x) - Pi * cot(Pi*x).
119 Assume x < 1/2. */
120 static int
121 mpfr_digamma_reflection (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
123 mpfr_prec_t p = MPFR_PREC(y) + 10, q;
124 mpfr_t t, u, v;
125 mpfr_exp_t e1, expv;
126 int inex;
127 MPFR_ZIV_DECL (loop);
129 /* we want that 1-x is exact with precision q: if 0 < x < 1/2, then
130 q = PREC(x)-EXP(x) is ok, otherwise if -1 <= x < 0, q = PREC(x)-EXP(x)
131 is ok, otherwise for x < -1, PREC(x) is ok if EXP(x) <= PREC(x),
132 otherwise we need EXP(x) */
133 if (MPFR_EXP(x) < 0)
134 q = MPFR_PREC(x) + 1 - MPFR_EXP(x);
135 else if (MPFR_EXP(x) <= MPFR_PREC(x))
136 q = MPFR_PREC(x) + 1;
137 else
138 q = MPFR_EXP(x);
139 mpfr_init2 (u, q);
140 MPFR_ASSERTN(mpfr_ui_sub (u, 1, x, MPFR_RNDN) == 0);
142 /* if x is half an integer, cot(Pi*x) = 0, thus Digamma(x) = Digamma(1-x) */
143 mpfr_mul_2exp (u, u, 1, MPFR_RNDN);
144 inex = mpfr_integer_p (u);
145 mpfr_div_2exp (u, u, 1, MPFR_RNDN);
146 if (inex)
148 inex = mpfr_digamma (y, u, rnd_mode);
149 goto end;
152 mpfr_init2 (t, p);
153 mpfr_init2 (v, p);
155 MPFR_ZIV_INIT (loop, p);
156 for (;;)
158 mpfr_const_pi (v, MPFR_RNDN); /* v = Pi*(1+theta) for |theta|<=2^(-p) */
159 mpfr_mul (t, v, x, MPFR_RNDN); /* (1+theta)^2 */
160 e1 = MPFR_EXP(t) - (mpfr_exp_t) p + 1; /* bound for t: err(t) <= 2^e1 */
161 mpfr_cot (t, t, MPFR_RNDN);
162 /* cot(t * (1+h)) = cot(t) - theta * (1 + cot(t)^2) with |theta|<=t*h */
163 if (MPFR_EXP(t) > 0)
164 e1 = e1 + 2 * MPFR_EXP(t) + 1;
165 else
166 e1 = e1 + 1;
167 /* now theta * (1 + cot(t)^2) <= 2^e1 */
168 e1 += (mpfr_exp_t) p - MPFR_EXP(t); /* error is now 2^e1 ulps */
169 mpfr_mul (t, t, v, MPFR_RNDN);
170 e1 ++;
171 mpfr_digamma (v, u, MPFR_RNDN); /* error <= 1/2 ulp */
172 expv = MPFR_EXP(v);
173 mpfr_sub (v, v, t, MPFR_RNDN);
174 if (MPFR_EXP(v) < MPFR_EXP(t))
175 e1 += MPFR_EXP(t) - MPFR_EXP(v); /* scale error for t wrt new v */
176 /* now take into account the 1/2 ulp error for v */
177 if (expv - MPFR_EXP(v) - 1 > e1)
178 e1 = expv - MPFR_EXP(v) - 1;
179 else
180 e1 ++;
181 e1 ++; /* rounding error for mpfr_sub */
182 if (MPFR_CAN_ROUND (v, p - e1, MPFR_PREC(y), rnd_mode))
183 break;
184 MPFR_ZIV_NEXT (loop, p);
185 mpfr_set_prec (t, p);
186 mpfr_set_prec (v, p);
188 MPFR_ZIV_FREE (loop);
190 inex = mpfr_set (y, v, rnd_mode);
192 mpfr_clear (t);
193 mpfr_clear (v);
194 end:
195 mpfr_clear (u);
197 return inex;
200 /* we have x >= 1/2 here */
201 static int
202 mpfr_digamma_positive (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
204 mpfr_prec_t p = MPFR_PREC(y) + 10, q;
205 mpfr_t t, u, x_plus_j;
206 int inex;
207 mpfr_exp_t errt, erru, expt;
208 unsigned long j = 0, min;
209 MPFR_ZIV_DECL (loop);
211 /* compute a precision q such that x+1 is exact */
212 if (MPFR_PREC(x) < MPFR_EXP(x))
213 q = MPFR_EXP(x);
214 else
215 q = MPFR_PREC(x) + 1;
216 mpfr_init2 (x_plus_j, q);
218 mpfr_init2 (t, p);
219 mpfr_init2 (u, p);
220 MPFR_ZIV_INIT (loop, p);
221 for(;;)
223 /* Lower bound for x+j in mpfr_digamma_approx call: since the smallest
224 term of the divergent series for Digamma(x) is about exp(-2*Pi*x), and
225 we want it to be less than 2^(-p), this gives x > p*log(2)/(2*Pi)
226 i.e., x >= 0.1103 p.
227 To be safe, we ensure x >= 0.25 * p.
229 min = (p + 3) / 4;
230 if (min < 2)
231 min = 2;
233 mpfr_set (x_plus_j, x, MPFR_RNDN);
234 mpfr_set_ui (u, 0, MPFR_RNDN);
235 j = 0;
236 while (mpfr_cmp_ui (x_plus_j, min) < 0)
238 j ++;
239 mpfr_ui_div (t, 1, x_plus_j, MPFR_RNDN); /* err <= 1/2 ulp */
240 mpfr_add (u, u, t, MPFR_RNDN);
241 inex = mpfr_add_ui (x_plus_j, x_plus_j, 1, MPFR_RNDZ);
242 if (inex != 0) /* we lost one bit */
244 q ++;
245 mpfr_prec_round (x_plus_j, q, MPFR_RNDZ);
246 mpfr_nextabove (x_plus_j);
248 /* since all terms are positive, the error is bounded by j ulps */
250 for (erru = 0; j > 1; erru++, j = (j + 1) / 2);
251 errt = mpfr_digamma_approx (t, x_plus_j);
252 expt = MPFR_EXP(t);
253 mpfr_sub (t, t, u, MPFR_RNDN);
254 if (MPFR_EXP(t) < expt)
255 errt += expt - MPFR_EXP(t);
256 if (MPFR_EXP(t) < MPFR_EXP(u))
257 erru += MPFR_EXP(u) - MPFR_EXP(t);
258 if (errt > erru)
259 errt = errt + 1;
260 else if (errt == erru)
261 errt = errt + 2;
262 else
263 errt = erru + 1;
264 if (MPFR_CAN_ROUND (t, p - errt, MPFR_PREC(y), rnd_mode))
265 break;
266 MPFR_ZIV_NEXT (loop, p);
267 mpfr_set_prec (t, p);
268 mpfr_set_prec (u, p);
270 MPFR_ZIV_FREE (loop);
271 inex = mpfr_set (y, t, rnd_mode);
272 mpfr_clear (t);
273 mpfr_clear (u);
274 mpfr_clear (x_plus_j);
275 return inex;
279 mpfr_digamma (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
281 int inex;
282 MPFR_SAVE_EXPO_DECL (expo);
284 MPFR_LOG_FUNC
285 (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
286 ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(y), mpfr_log_prec, y, inex));
289 if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
291 if (MPFR_IS_NAN(x))
293 MPFR_SET_NAN(y);
294 MPFR_RET_NAN;
296 else if (MPFR_IS_INF(x))
298 if (MPFR_IS_POS(x)) /* Digamma(+Inf) = +Inf */
300 MPFR_SET_SAME_SIGN(y, x);
301 MPFR_SET_INF(y);
302 MPFR_RET(0);
304 else /* Digamma(-Inf) = NaN */
306 MPFR_SET_NAN(y);
307 MPFR_RET_NAN;
310 else /* Zero case */
312 /* the following works also in case of overlap */
313 MPFR_SET_INF(y);
314 MPFR_SET_OPPOSITE_SIGN(y, x);
315 mpfr_set_divby0 ();
316 MPFR_RET(0);
320 /* Digamma is undefined for negative integers */
321 if (MPFR_IS_NEG(x) && mpfr_integer_p (x))
323 MPFR_SET_NAN(y);
324 MPFR_RET_NAN;
327 /* now x is a normal number */
329 MPFR_SAVE_EXPO_MARK (expo);
330 /* for x very small, we have Digamma(x) = -1/x - gamma + O(x), more precisely
331 -1 < Digamma(x) + 1/x < 0 for -0.2 < x < 0.2, thus:
332 (i) either x is a power of two, then 1/x is exactly representable, and
333 as long as 1/2*ulp(1/x) > 1, we can conclude;
334 (ii) otherwise assume x has <= n bits, and y has <= n+1 bits, then
335 |y + 1/x| >= 2^(-2n) ufp(y), where ufp means unit in first place.
336 Since |Digamma(x) + 1/x| <= 1, if 2^(-2n) ufp(y) >= 2, then
337 |y - Digamma(x)| >= 2^(-2n-1)ufp(y), and rounding -1/x gives the correct result.
338 If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1).
339 A sufficient condition is thus EXP(x) <= -2 MAX(PREC(x),PREC(Y)). */
340 if (MPFR_EXP(x) < -2)
342 if (MPFR_EXP(x) <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(y)))
344 int signx = MPFR_SIGN(x);
345 inex = mpfr_si_div (y, -1, x, rnd_mode);
346 if (inex == 0) /* x is a power of two */
347 { /* result always -1/x, except when rounding down */
348 if (rnd_mode == MPFR_RNDA)
349 rnd_mode = (signx > 0) ? MPFR_RNDD : MPFR_RNDU;
350 if (rnd_mode == MPFR_RNDZ)
351 rnd_mode = (signx > 0) ? MPFR_RNDU : MPFR_RNDD;
352 if (rnd_mode == MPFR_RNDU)
353 inex = 1;
354 else if (rnd_mode == MPFR_RNDD)
356 mpfr_nextbelow (y);
357 inex = -1;
359 else /* nearest */
360 inex = 1;
362 MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
363 goto end;
367 if (MPFR_IS_NEG(x))
368 inex = mpfr_digamma_reflection (y, x, rnd_mode);
369 /* if x < 1/2 we use the reflection formula */
370 else if (MPFR_EXP(x) < 0)
371 inex = mpfr_digamma_reflection (y, x, rnd_mode);
372 else
373 inex = mpfr_digamma_positive (y, x, rnd_mode);
375 end:
376 MPFR_SAVE_EXPO_FREE (expo);
377 return mpfr_check_range (y, inex, rnd_mode);