HAMMER 40B/Many: Inode/link-count sequencer cleanup pass.
[dragonfly.git] / sys / kern / vfs_bio.c
blob969418aab14e15eceed2ee8e0aeef63981aa7cc3
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.100 2008/04/30 04:11:44 dillon Exp $
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
28 * see man buf(9) for more info.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
68 * Buffer queues.
70 enum bufq_type {
71 BQUEUE_NONE, /* not on any queue */
72 BQUEUE_LOCKED, /* locked buffers */
73 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
74 BQUEUE_DIRTY, /* B_DELWRI buffers */
75 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
76 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */
77 BQUEUE_EMPTY, /* empty buffer headers */
79 BUFFER_QUEUES /* number of buffer queues */
82 typedef enum bufq_type bufq_type_t;
84 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
86 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
88 struct buf *buf; /* buffer header pool */
90 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
91 vm_offset_t to);
92 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
93 vm_offset_t to);
94 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
95 int pageno, vm_page_t m);
96 static void vfs_clean_pages(struct buf *bp);
97 static void vfs_setdirty(struct buf *bp);
98 static void vfs_vmio_release(struct buf *bp);
99 static int flushbufqueues(bufq_type_t q);
101 static void buf_daemon(void);
102 static void buf_daemon_hw(void);
104 * bogus page -- for I/O to/from partially complete buffers
105 * this is a temporary solution to the problem, but it is not
106 * really that bad. it would be better to split the buffer
107 * for input in the case of buffers partially already in memory,
108 * but the code is intricate enough already.
110 vm_page_t bogus_page;
111 int runningbufspace;
114 * These are all static, but make the ones we export globals so we do
115 * not need to use compiler magic.
117 int bufspace, maxbufspace,
118 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
119 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
120 static int lorunningspace, hirunningspace, runningbufreq;
121 int numdirtybuffers, numdirtybuffershw, lodirtybuffers, hidirtybuffers;
122 static int numfreebuffers, lofreebuffers, hifreebuffers;
123 static int getnewbufcalls;
124 static int getnewbufrestarts;
126 static int needsbuffer; /* locked by needsbuffer_spin */
127 static int bd_request; /* locked by needsbuffer_spin */
128 static int bd_request_hw; /* locked by needsbuffer_spin */
129 static struct spinlock needsbuffer_spin;
132 * Sysctls for operational control of the buffer cache.
134 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
135 "Number of dirty buffers to flush before bufdaemon becomes inactive");
136 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
137 "High watermark used to trigger explicit flushing of dirty buffers");
138 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
139 "Low watermark for special reserve in low-memory situations");
140 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
141 "High watermark for special reserve in low-memory situations");
142 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
143 "Minimum amount of buffer space required for active I/O");
144 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
145 "Maximum amount of buffer space to usable for active I/O");
147 * Sysctls determining current state of the buffer cache.
149 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
150 "Pending number of dirty buffers (all)");
151 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffershw, CTLFLAG_RD, &numdirtybuffershw, 0,
152 "Pending number of dirty buffers (heavy weight)");
153 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
154 "Number of free buffers on the buffer cache free list");
155 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
156 "I/O bytes currently in progress due to asynchronous writes");
157 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
158 "Hard limit on maximum amount of memory usable for buffer space");
159 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
160 "Soft limit on maximum amount of memory usable for buffer space");
161 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
162 "Minimum amount of memory to reserve for system buffer space");
163 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
164 "Amount of memory available for buffers");
165 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
166 0, "Maximum amount of memory reserved for buffers using malloc");
167 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
168 "Amount of memory left for buffers using malloc-scheme");
169 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
170 "New buffer header acquisition requests");
171 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
172 0, "New buffer header acquisition restarts");
173 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
174 "Buffer acquisition restarts due to fragmented buffer map");
175 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
176 "Amount of time KVA space was deallocated in an arbitrary buffer");
177 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
178 "Amount of time buffer re-use operations were successful");
179 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
180 "sizeof(struct buf)");
182 char *buf_wmesg = BUF_WMESG;
184 extern int vm_swap_size;
186 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
187 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */
188 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */
189 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
192 * numdirtywakeup:
194 * If someone is blocked due to there being too many dirty buffers,
195 * and numdirtybuffers is now reasonable, wake them up.
197 static __inline void
198 numdirtywakeup(void)
200 if (numdirtybuffers <= (lodirtybuffers + hidirtybuffers) / 2) {
201 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
202 spin_lock_wr(&needsbuffer_spin);
203 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
204 spin_unlock_wr(&needsbuffer_spin);
205 wakeup(&needsbuffer);
211 * bufspacewakeup:
213 * Called when buffer space is potentially available for recovery.
214 * getnewbuf() will block on this flag when it is unable to free
215 * sufficient buffer space. Buffer space becomes recoverable when
216 * bp's get placed back in the queues.
219 static __inline void
220 bufspacewakeup(void)
223 * If someone is waiting for BUF space, wake them up. Even
224 * though we haven't freed the kva space yet, the waiting
225 * process will be able to now.
227 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
228 spin_lock_wr(&needsbuffer_spin);
229 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
230 spin_unlock_wr(&needsbuffer_spin);
231 wakeup(&needsbuffer);
236 * runningbufwakeup:
238 * Accounting for I/O in progress.
241 static __inline void
242 runningbufwakeup(struct buf *bp)
244 if (bp->b_runningbufspace) {
245 runningbufspace -= bp->b_runningbufspace;
246 bp->b_runningbufspace = 0;
247 if (runningbufreq && runningbufspace <= lorunningspace) {
248 runningbufreq = 0;
249 wakeup(&runningbufreq);
255 * bufcountwakeup:
257 * Called when a buffer has been added to one of the free queues to
258 * account for the buffer and to wakeup anyone waiting for free buffers.
259 * This typically occurs when large amounts of metadata are being handled
260 * by the buffer cache ( else buffer space runs out first, usually ).
263 static __inline void
264 bufcountwakeup(void)
266 ++numfreebuffers;
267 if (needsbuffer) {
268 spin_lock_wr(&needsbuffer_spin);
269 needsbuffer &= ~VFS_BIO_NEED_ANY;
270 if (numfreebuffers >= hifreebuffers)
271 needsbuffer &= ~VFS_BIO_NEED_FREE;
272 spin_unlock_wr(&needsbuffer_spin);
273 wakeup(&needsbuffer);
278 * waitrunningbufspace()
280 * runningbufspace is a measure of the amount of I/O currently
281 * running. This routine is used in async-write situations to
282 * prevent creating huge backups of pending writes to a device.
283 * Only asynchronous writes are governed by this function.
285 * Reads will adjust runningbufspace, but will not block based on it.
286 * The read load has a side effect of reducing the allowed write load.
288 * This does NOT turn an async write into a sync write. It waits
289 * for earlier writes to complete and generally returns before the
290 * caller's write has reached the device.
292 static __inline void
293 waitrunningbufspace(void)
295 if (runningbufspace > hirunningspace) {
296 crit_enter();
297 while (runningbufspace > hirunningspace) {
298 ++runningbufreq;
299 tsleep(&runningbufreq, 0, "wdrain", 0);
301 crit_exit();
306 * vfs_buf_test_cache:
308 * Called when a buffer is extended. This function clears the B_CACHE
309 * bit if the newly extended portion of the buffer does not contain
310 * valid data.
312 static __inline__
313 void
314 vfs_buf_test_cache(struct buf *bp,
315 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
316 vm_page_t m)
318 if (bp->b_flags & B_CACHE) {
319 int base = (foff + off) & PAGE_MASK;
320 if (vm_page_is_valid(m, base, size) == 0)
321 bp->b_flags &= ~B_CACHE;
326 * bd_wakeup:
328 * Wake up the buffer daemon if the number of outstanding dirty buffers
329 * is above specified threshold 'dirtybuflevel'.
331 * The buffer daemons are explicitly woken up when (a) the pending number
332 * of dirty buffers exceeds the recovery and stall mid-point value,
333 * (b) during bwillwrite() or (c) buf freelist was exhausted.
335 * The buffer daemons will generally not stop flushing until the dirty
336 * buffer count goes below lodirtybuffers.
338 static __inline__
339 void
340 bd_wakeup(int dirtybuflevel)
342 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
343 spin_lock_wr(&needsbuffer_spin);
344 bd_request = 1;
345 spin_unlock_wr(&needsbuffer_spin);
346 wakeup(&bd_request);
348 if (bd_request_hw == 0 && numdirtybuffershw >= dirtybuflevel) {
349 spin_lock_wr(&needsbuffer_spin);
350 bd_request_hw = 1;
351 spin_unlock_wr(&needsbuffer_spin);
352 wakeup(&bd_request_hw);
357 * bd_speedup:
359 * Speed up the buffer cache flushing process.
362 static __inline__
363 void
364 bd_speedup(void)
366 bd_wakeup(1);
370 * bufinit:
372 * Load time initialisation of the buffer cache, called from machine
373 * dependant initialization code.
375 void
376 bufinit(void)
378 struct buf *bp;
379 vm_offset_t bogus_offset;
380 int i;
382 spin_init(&needsbuffer_spin);
384 /* next, make a null set of free lists */
385 for (i = 0; i < BUFFER_QUEUES; i++)
386 TAILQ_INIT(&bufqueues[i]);
388 /* finally, initialize each buffer header and stick on empty q */
389 for (i = 0; i < nbuf; i++) {
390 bp = &buf[i];
391 bzero(bp, sizeof *bp);
392 bp->b_flags = B_INVAL; /* we're just an empty header */
393 bp->b_cmd = BUF_CMD_DONE;
394 bp->b_qindex = BQUEUE_EMPTY;
395 initbufbio(bp);
396 xio_init(&bp->b_xio);
397 buf_dep_init(bp);
398 BUF_LOCKINIT(bp);
399 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
403 * maxbufspace is the absolute maximum amount of buffer space we are
404 * allowed to reserve in KVM and in real terms. The absolute maximum
405 * is nominally used by buf_daemon. hibufspace is the nominal maximum
406 * used by most other processes. The differential is required to
407 * ensure that buf_daemon is able to run when other processes might
408 * be blocked waiting for buffer space.
410 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
411 * this may result in KVM fragmentation which is not handled optimally
412 * by the system.
414 maxbufspace = nbuf * BKVASIZE;
415 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
416 lobufspace = hibufspace - MAXBSIZE;
418 lorunningspace = 512 * 1024;
419 hirunningspace = 1024 * 1024;
422 * Limit the amount of malloc memory since it is wired permanently into
423 * the kernel space. Even though this is accounted for in the buffer
424 * allocation, we don't want the malloced region to grow uncontrolled.
425 * The malloc scheme improves memory utilization significantly on average
426 * (small) directories.
428 maxbufmallocspace = hibufspace / 20;
431 * Reduce the chance of a deadlock occuring by limiting the number
432 * of delayed-write dirty buffers we allow to stack up.
434 hidirtybuffers = nbuf / 4 + 20;
435 numdirtybuffers = 0;
436 numdirtybuffershw = 0;
438 * To support extreme low-memory systems, make sure hidirtybuffers cannot
439 * eat up all available buffer space. This occurs when our minimum cannot
440 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming
441 * BKVASIZE'd (8K) buffers.
443 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
444 hidirtybuffers >>= 1;
446 lodirtybuffers = hidirtybuffers / 2;
449 * Try to keep the number of free buffers in the specified range,
450 * and give special processes (e.g. like buf_daemon) access to an
451 * emergency reserve.
453 lofreebuffers = nbuf / 18 + 5;
454 hifreebuffers = 2 * lofreebuffers;
455 numfreebuffers = nbuf;
458 * Maximum number of async ops initiated per buf_daemon loop. This is
459 * somewhat of a hack at the moment, we really need to limit ourselves
460 * based on the number of bytes of I/O in-transit that were initiated
461 * from buf_daemon.
464 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
465 bogus_page = vm_page_alloc(&kernel_object,
466 (bogus_offset >> PAGE_SHIFT),
467 VM_ALLOC_NORMAL);
468 vmstats.v_wire_count++;
473 * Initialize the embedded bio structures
475 void
476 initbufbio(struct buf *bp)
478 bp->b_bio1.bio_buf = bp;
479 bp->b_bio1.bio_prev = NULL;
480 bp->b_bio1.bio_offset = NOOFFSET;
481 bp->b_bio1.bio_next = &bp->b_bio2;
482 bp->b_bio1.bio_done = NULL;
484 bp->b_bio2.bio_buf = bp;
485 bp->b_bio2.bio_prev = &bp->b_bio1;
486 bp->b_bio2.bio_offset = NOOFFSET;
487 bp->b_bio2.bio_next = NULL;
488 bp->b_bio2.bio_done = NULL;
492 * Reinitialize the embedded bio structures as well as any additional
493 * translation cache layers.
495 void
496 reinitbufbio(struct buf *bp)
498 struct bio *bio;
500 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
501 bio->bio_done = NULL;
502 bio->bio_offset = NOOFFSET;
507 * Push another BIO layer onto an existing BIO and return it. The new
508 * BIO layer may already exist, holding cached translation data.
510 struct bio *
511 push_bio(struct bio *bio)
513 struct bio *nbio;
515 if ((nbio = bio->bio_next) == NULL) {
516 int index = bio - &bio->bio_buf->b_bio_array[0];
517 if (index >= NBUF_BIO - 1) {
518 panic("push_bio: too many layers bp %p\n",
519 bio->bio_buf);
521 nbio = &bio->bio_buf->b_bio_array[index + 1];
522 bio->bio_next = nbio;
523 nbio->bio_prev = bio;
524 nbio->bio_buf = bio->bio_buf;
525 nbio->bio_offset = NOOFFSET;
526 nbio->bio_done = NULL;
527 nbio->bio_next = NULL;
529 KKASSERT(nbio->bio_done == NULL);
530 return(nbio);
533 void
534 pop_bio(struct bio *bio)
536 /* NOP */
539 void
540 clearbiocache(struct bio *bio)
542 while (bio) {
543 bio->bio_offset = NOOFFSET;
544 bio = bio->bio_next;
549 * bfreekva:
551 * Free the KVA allocation for buffer 'bp'.
553 * Must be called from a critical section as this is the only locking for
554 * buffer_map.
556 * Since this call frees up buffer space, we call bufspacewakeup().
558 static void
559 bfreekva(struct buf *bp)
561 int count;
563 if (bp->b_kvasize) {
564 ++buffreekvacnt;
565 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
566 vm_map_lock(&buffer_map);
567 bufspace -= bp->b_kvasize;
568 vm_map_delete(&buffer_map,
569 (vm_offset_t) bp->b_kvabase,
570 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
571 &count
573 vm_map_unlock(&buffer_map);
574 vm_map_entry_release(count);
575 bp->b_kvasize = 0;
576 bufspacewakeup();
581 * bremfree:
583 * Remove the buffer from the appropriate free list.
585 void
586 bremfree(struct buf *bp)
588 int old_qindex;
590 crit_enter();
591 old_qindex = bp->b_qindex;
593 if (bp->b_qindex != BQUEUE_NONE) {
594 KASSERT(BUF_REFCNTNB(bp) == 1,
595 ("bremfree: bp %p not locked",bp));
596 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
597 bp->b_qindex = BQUEUE_NONE;
598 } else {
599 if (BUF_REFCNTNB(bp) <= 1)
600 panic("bremfree: removing a buffer not on a queue");
604 * Fixup numfreebuffers count. If the buffer is invalid or not
605 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
606 * the buffer was free and we must decrement numfreebuffers.
608 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
609 switch(old_qindex) {
610 case BQUEUE_DIRTY:
611 case BQUEUE_DIRTY_HW:
612 case BQUEUE_CLEAN:
613 case BQUEUE_EMPTY:
614 case BQUEUE_EMPTYKVA:
615 --numfreebuffers;
616 break;
617 default:
618 break;
621 crit_exit();
626 * bread:
628 * Get a buffer with the specified data. Look in the cache first. We
629 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
630 * is set, the buffer is valid and we do not have to do anything ( see
631 * getblk() ).
634 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
636 struct buf *bp;
638 bp = getblk(vp, loffset, size, 0, 0);
639 *bpp = bp;
641 /* if not found in cache, do some I/O */
642 if ((bp->b_flags & B_CACHE) == 0) {
643 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
644 bp->b_flags &= ~(B_ERROR | B_INVAL);
645 bp->b_cmd = BUF_CMD_READ;
646 vfs_busy_pages(vp, bp);
647 vn_strategy(vp, &bp->b_bio1);
648 return (biowait(bp));
650 return (0);
654 * breadn:
656 * Operates like bread, but also starts asynchronous I/O on
657 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
658 * to initiating I/O . If B_CACHE is set, the buffer is valid
659 * and we do not have to do anything.
662 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
663 int *rabsize, int cnt, struct buf **bpp)
665 struct buf *bp, *rabp;
666 int i;
667 int rv = 0, readwait = 0;
669 *bpp = bp = getblk(vp, loffset, size, 0, 0);
671 /* if not found in cache, do some I/O */
672 if ((bp->b_flags & B_CACHE) == 0) {
673 bp->b_flags &= ~(B_ERROR | B_INVAL);
674 bp->b_cmd = BUF_CMD_READ;
675 vfs_busy_pages(vp, bp);
676 vn_strategy(vp, &bp->b_bio1);
677 ++readwait;
680 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
681 if (inmem(vp, *raoffset))
682 continue;
683 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
685 if ((rabp->b_flags & B_CACHE) == 0) {
686 rabp->b_flags |= B_ASYNC;
687 rabp->b_flags &= ~(B_ERROR | B_INVAL);
688 rabp->b_cmd = BUF_CMD_READ;
689 vfs_busy_pages(vp, rabp);
690 BUF_KERNPROC(rabp);
691 vn_strategy(vp, &rabp->b_bio1);
692 } else {
693 brelse(rabp);
697 if (readwait) {
698 rv = biowait(bp);
700 return (rv);
704 * bwrite:
706 * Write, release buffer on completion. (Done by iodone
707 * if async). Do not bother writing anything if the buffer
708 * is invalid.
710 * Note that we set B_CACHE here, indicating that buffer is
711 * fully valid and thus cacheable. This is true even of NFS
712 * now so we set it generally. This could be set either here
713 * or in biodone() since the I/O is synchronous. We put it
714 * here.
717 bwrite(struct buf *bp)
719 int oldflags;
721 if (bp->b_flags & B_INVAL) {
722 brelse(bp);
723 return (0);
726 oldflags = bp->b_flags;
728 if (BUF_REFCNTNB(bp) == 0)
729 panic("bwrite: buffer is not busy???");
730 crit_enter();
732 /* Mark the buffer clean */
733 bundirty(bp);
735 bp->b_flags &= ~B_ERROR;
736 bp->b_flags |= B_CACHE;
737 bp->b_cmd = BUF_CMD_WRITE;
738 vfs_busy_pages(bp->b_vp, bp);
741 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
742 * valid for vnode-backed buffers.
744 bp->b_runningbufspace = bp->b_bufsize;
745 runningbufspace += bp->b_runningbufspace;
747 crit_exit();
748 if (oldflags & B_ASYNC)
749 BUF_KERNPROC(bp);
750 vn_strategy(bp->b_vp, &bp->b_bio1);
752 if ((oldflags & B_ASYNC) == 0) {
753 int rtval = biowait(bp);
754 brelse(bp);
755 return (rtval);
757 return (0);
761 * bdwrite:
763 * Delayed write. (Buffer is marked dirty). Do not bother writing
764 * anything if the buffer is marked invalid.
766 * Note that since the buffer must be completely valid, we can safely
767 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
768 * biodone() in order to prevent getblk from writing the buffer
769 * out synchronously.
771 void
772 bdwrite(struct buf *bp)
774 if (BUF_REFCNTNB(bp) == 0)
775 panic("bdwrite: buffer is not busy");
777 if (bp->b_flags & B_INVAL) {
778 brelse(bp);
779 return;
781 bdirty(bp);
784 * Set B_CACHE, indicating that the buffer is fully valid. This is
785 * true even of NFS now.
787 bp->b_flags |= B_CACHE;
790 * This bmap keeps the system from needing to do the bmap later,
791 * perhaps when the system is attempting to do a sync. Since it
792 * is likely that the indirect block -- or whatever other datastructure
793 * that the filesystem needs is still in memory now, it is a good
794 * thing to do this. Note also, that if the pageout daemon is
795 * requesting a sync -- there might not be enough memory to do
796 * the bmap then... So, this is important to do.
798 if (bp->b_bio2.bio_offset == NOOFFSET) {
799 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
800 NULL, NULL);
804 * Set the *dirty* buffer range based upon the VM system dirty pages.
806 vfs_setdirty(bp);
809 * We need to do this here to satisfy the vnode_pager and the
810 * pageout daemon, so that it thinks that the pages have been
811 * "cleaned". Note that since the pages are in a delayed write
812 * buffer -- the VFS layer "will" see that the pages get written
813 * out on the next sync, or perhaps the cluster will be completed.
815 vfs_clean_pages(bp);
816 bqrelse(bp);
819 * Wakeup the buffer flushing daemon if we have a lot of dirty
820 * buffers (midpoint between our recovery point and our stall
821 * point).
823 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
826 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
827 * due to the softdep code.
832 * bdirty:
834 * Turn buffer into delayed write request by marking it B_DELWRI.
835 * B_RELBUF and B_NOCACHE must be cleared.
837 * We reassign the buffer to itself to properly update it in the
838 * dirty/clean lists.
840 * Since the buffer is not on a queue, we do not update the
841 * numfreebuffers count.
843 * Must be called from a critical section.
844 * The buffer must be on BQUEUE_NONE.
846 void
847 bdirty(struct buf *bp)
849 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
850 if (bp->b_flags & B_NOCACHE) {
851 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
852 bp->b_flags &= ~B_NOCACHE;
854 if (bp->b_flags & B_INVAL) {
855 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
857 bp->b_flags &= ~B_RELBUF;
859 if ((bp->b_flags & B_DELWRI) == 0) {
860 bp->b_flags |= B_DELWRI;
861 reassignbuf(bp);
862 ++numdirtybuffers;
863 if (bp->b_flags & B_HEAVY)
864 ++numdirtybuffershw;
865 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
870 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
871 * needs to be flushed with a different buf_daemon thread to avoid
872 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
874 void
875 bheavy(struct buf *bp)
877 if ((bp->b_flags & B_HEAVY) == 0) {
878 bp->b_flags |= B_HEAVY;
879 if (bp->b_flags & B_DELWRI)
880 ++numdirtybuffershw;
885 * bundirty:
887 * Clear B_DELWRI for buffer.
889 * Since the buffer is not on a queue, we do not update the numfreebuffers
890 * count.
892 * Must be called from a critical section.
894 * The buffer is typically on BQUEUE_NONE but there is one case in
895 * brelse() that calls this function after placing the buffer on
896 * a different queue.
899 void
900 bundirty(struct buf *bp)
902 if (bp->b_flags & B_DELWRI) {
903 bp->b_flags &= ~B_DELWRI;
904 reassignbuf(bp);
905 --numdirtybuffers;
906 if (bp->b_flags & B_HEAVY)
907 --numdirtybuffershw;
908 numdirtywakeup();
911 * Since it is now being written, we can clear its deferred write flag.
913 bp->b_flags &= ~B_DEFERRED;
917 * bawrite:
919 * Asynchronous write. Start output on a buffer, but do not wait for
920 * it to complete. The buffer is released when the output completes.
922 * bwrite() ( or the VOP routine anyway ) is responsible for handling
923 * B_INVAL buffers. Not us.
925 void
926 bawrite(struct buf *bp)
928 bp->b_flags |= B_ASYNC;
929 bwrite(bp);
933 * bowrite:
935 * Ordered write. Start output on a buffer, and flag it so that the
936 * device will write it in the order it was queued. The buffer is
937 * released when the output completes. bwrite() ( or the VOP routine
938 * anyway ) is responsible for handling B_INVAL buffers.
941 bowrite(struct buf *bp)
943 bp->b_flags |= B_ORDERED | B_ASYNC;
944 return (bwrite(bp));
948 * bwillwrite:
950 * Called prior to the locking of any vnodes when we are expecting to
951 * write. We do not want to starve the buffer cache with too many
952 * dirty buffers so we block here. By blocking prior to the locking
953 * of any vnodes we attempt to avoid the situation where a locked vnode
954 * prevents the various system daemons from flushing related buffers.
956 void
957 bwillwrite(void)
959 if (numdirtybuffers >= hidirtybuffers / 2) {
960 bd_wakeup(1);
961 while (numdirtybuffers >= hidirtybuffers) {
962 bd_wakeup(1);
963 spin_lock_wr(&needsbuffer_spin);
964 if (numdirtybuffers >= hidirtybuffers) {
965 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
966 msleep(&needsbuffer, &needsbuffer_spin, 0,
967 "flswai", 0);
969 spin_unlock_wr(&needsbuffer_spin);
972 #if 0
973 /* FUTURE - maybe */
974 else if (numdirtybuffershw > hidirtybuffers / 2) {
975 bd_wakeup(1);
977 while (numdirtybuffershw > hidirtybuffers) {
978 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
979 tsleep(&needsbuffer, slpflags, "newbuf",
980 slptimeo);
983 #endif
987 * buf_dirty_count_severe:
989 * Return true if we have too many dirty buffers.
992 buf_dirty_count_severe(void)
994 return(numdirtybuffers >= hidirtybuffers);
998 * brelse:
1000 * Release a busy buffer and, if requested, free its resources. The
1001 * buffer will be stashed in the appropriate bufqueue[] allowing it
1002 * to be accessed later as a cache entity or reused for other purposes.
1004 void
1005 brelse(struct buf *bp)
1007 #ifdef INVARIANTS
1008 int saved_flags = bp->b_flags;
1009 #endif
1011 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1013 crit_enter();
1016 * If B_NOCACHE is set we are being asked to destroy the buffer and
1017 * its backing store. Clear B_DELWRI.
1019 * B_NOCACHE is set in two cases: (1) when the caller really wants
1020 * to destroy the buffer and backing store and (2) when the caller
1021 * wants to destroy the buffer and backing store after a write
1022 * completes.
1024 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1025 bundirty(bp);
1028 if (bp->b_flags & B_LOCKED)
1029 bp->b_flags &= ~B_ERROR;
1032 * If a write error occurs and the caller does not want to throw
1033 * away the buffer, redirty the buffer. This will also clear
1034 * B_NOCACHE.
1036 if (bp->b_cmd == BUF_CMD_WRITE &&
1037 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
1039 * Failed write, redirty. Must clear B_ERROR to prevent
1040 * pages from being scrapped. If B_INVAL is set then
1041 * this case is not run and the next case is run to
1042 * destroy the buffer. B_INVAL can occur if the buffer
1043 * is outside the range supported by the underlying device.
1045 bp->b_flags &= ~B_ERROR;
1046 bdirty(bp);
1047 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1048 (bp->b_bufsize <= 0) || bp->b_cmd == BUF_CMD_FREEBLKS) {
1050 * Either a failed I/O or we were asked to free or not
1051 * cache the buffer.
1053 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1054 * buffer cannot be immediately freed.
1056 bp->b_flags |= B_INVAL;
1057 if (LIST_FIRST(&bp->b_dep) != NULL)
1058 buf_deallocate(bp);
1059 if (bp->b_flags & B_DELWRI) {
1060 --numdirtybuffers;
1061 if (bp->b_flags & B_HEAVY)
1062 --numdirtybuffershw;
1063 numdirtywakeup();
1065 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1069 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1070 * If vfs_vmio_release() is called with either bit set, the
1071 * underlying pages may wind up getting freed causing a previous
1072 * write (bdwrite()) to get 'lost' because pages associated with
1073 * a B_DELWRI bp are marked clean. Pages associated with a
1074 * B_LOCKED buffer may be mapped by the filesystem.
1076 * If we want to release the buffer ourselves (rather then the
1077 * originator asking us to release it), give the originator a
1078 * chance to countermand the release by setting B_LOCKED.
1080 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1081 * if B_DELWRI is set.
1083 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1084 * on pages to return pages to the VM page queues.
1086 if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1087 bp->b_flags &= ~B_RELBUF;
1088 } else if (vm_page_count_severe()) {
1089 if (LIST_FIRST(&bp->b_dep) != NULL)
1090 buf_deallocate(bp);
1091 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1092 bp->b_flags &= ~B_RELBUF;
1093 else
1094 bp->b_flags |= B_RELBUF;
1098 * At this point destroying the buffer is governed by the B_INVAL
1099 * or B_RELBUF flags.
1101 bp->b_cmd = BUF_CMD_DONE;
1104 * VMIO buffer rundown. Make sure the VM page array is restored
1105 * after an I/O may have replaces some of the pages with bogus pages
1106 * in order to not destroy dirty pages in a fill-in read.
1108 * Note that due to the code above, if a buffer is marked B_DELWRI
1109 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1110 * B_INVAL may still be set, however.
1112 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1113 * but not the backing store. B_NOCACHE will destroy the backing
1114 * store.
1116 * Note that dirty NFS buffers contain byte-granular write ranges
1117 * and should not be destroyed w/ B_INVAL even if the backing store
1118 * is left intact.
1120 if (bp->b_flags & B_VMIO) {
1122 * Rundown for VMIO buffers which are not dirty NFS buffers.
1124 int i, j, resid;
1125 vm_page_t m;
1126 off_t foff;
1127 vm_pindex_t poff;
1128 vm_object_t obj;
1129 struct vnode *vp;
1131 vp = bp->b_vp;
1134 * Get the base offset and length of the buffer. Note that
1135 * in the VMIO case if the buffer block size is not
1136 * page-aligned then b_data pointer may not be page-aligned.
1137 * But our b_xio.xio_pages array *IS* page aligned.
1139 * block sizes less then DEV_BSIZE (usually 512) are not
1140 * supported due to the page granularity bits (m->valid,
1141 * m->dirty, etc...).
1143 * See man buf(9) for more information
1146 resid = bp->b_bufsize;
1147 foff = bp->b_loffset;
1149 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1150 m = bp->b_xio.xio_pages[i];
1151 vm_page_flag_clear(m, PG_ZERO);
1153 * If we hit a bogus page, fixup *all* of them
1154 * now. Note that we left these pages wired
1155 * when we removed them so they had better exist,
1156 * and they cannot be ripped out from under us so
1157 * no critical section protection is necessary.
1159 if (m == bogus_page) {
1160 obj = vp->v_object;
1161 poff = OFF_TO_IDX(bp->b_loffset);
1163 for (j = i; j < bp->b_xio.xio_npages; j++) {
1164 vm_page_t mtmp;
1166 mtmp = bp->b_xio.xio_pages[j];
1167 if (mtmp == bogus_page) {
1168 mtmp = vm_page_lookup(obj, poff + j);
1169 if (!mtmp) {
1170 panic("brelse: page missing");
1172 bp->b_xio.xio_pages[j] = mtmp;
1176 if ((bp->b_flags & B_INVAL) == 0) {
1177 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1178 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1180 m = bp->b_xio.xio_pages[i];
1184 * Invalidate the backing store if B_NOCACHE is set
1185 * (e.g. used with vinvalbuf()). If this is NFS
1186 * we impose a requirement that the block size be
1187 * a multiple of PAGE_SIZE and create a temporary
1188 * hack to basically invalidate the whole page. The
1189 * problem is that NFS uses really odd buffer sizes
1190 * especially when tracking piecemeal writes and
1191 * it also vinvalbuf()'s a lot, which would result
1192 * in only partial page validation and invalidation
1193 * here. If the file page is mmap()'d, however,
1194 * all the valid bits get set so after we invalidate
1195 * here we would end up with weird m->valid values
1196 * like 0xfc. nfs_getpages() can't handle this so
1197 * we clear all the valid bits for the NFS case
1198 * instead of just some of them.
1200 * The real bug is the VM system having to set m->valid
1201 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1202 * itself is an artifact of the whole 512-byte
1203 * granular mess that exists to support odd block
1204 * sizes and UFS meta-data block sizes (e.g. 6144).
1205 * A complete rewrite is required.
1207 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1208 int poffset = foff & PAGE_MASK;
1209 int presid;
1211 presid = PAGE_SIZE - poffset;
1212 if (bp->b_vp->v_tag == VT_NFS &&
1213 bp->b_vp->v_type == VREG) {
1214 ; /* entire page */
1215 } else if (presid > resid) {
1216 presid = resid;
1218 KASSERT(presid >= 0, ("brelse: extra page"));
1219 vm_page_set_invalid(m, poffset, presid);
1221 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1222 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1224 if (bp->b_flags & (B_INVAL | B_RELBUF))
1225 vfs_vmio_release(bp);
1226 } else {
1228 * Rundown for non-VMIO buffers.
1230 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1231 #if 0
1232 if (bp->b_vp)
1233 kprintf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1234 #endif
1235 if (bp->b_bufsize)
1236 allocbuf(bp, 0);
1237 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1238 if (bp->b_vp)
1239 brelvp(bp);
1243 if (bp->b_qindex != BQUEUE_NONE)
1244 panic("brelse: free buffer onto another queue???");
1245 if (BUF_REFCNTNB(bp) > 1) {
1246 /* Temporary panic to verify exclusive locking */
1247 /* This panic goes away when we allow shared refs */
1248 panic("brelse: multiple refs");
1249 /* do not release to free list */
1250 BUF_UNLOCK(bp);
1251 crit_exit();
1252 return;
1256 * Figure out the correct queue to place the cleaned up buffer on.
1257 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1258 * disassociated from their vnode.
1260 if (bp->b_flags & B_LOCKED) {
1262 * Buffers that are locked are placed in the locked queue
1263 * immediately, regardless of their state.
1265 bp->b_qindex = BQUEUE_LOCKED;
1266 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1267 } else if (bp->b_bufsize == 0) {
1269 * Buffers with no memory. Due to conditionals near the top
1270 * of brelse() such buffers should probably already be
1271 * marked B_INVAL and disassociated from their vnode.
1273 bp->b_flags |= B_INVAL;
1274 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1275 KKASSERT((bp->b_flags & B_HASHED) == 0);
1276 if (bp->b_kvasize) {
1277 bp->b_qindex = BQUEUE_EMPTYKVA;
1278 } else {
1279 bp->b_qindex = BQUEUE_EMPTY;
1281 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1282 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1284 * Buffers with junk contents. Again these buffers had better
1285 * already be disassociated from their vnode.
1287 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1288 KKASSERT((bp->b_flags & B_HASHED) == 0);
1289 bp->b_flags |= B_INVAL;
1290 bp->b_qindex = BQUEUE_CLEAN;
1291 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1292 } else {
1294 * Remaining buffers. These buffers are still associated with
1295 * their vnode.
1297 switch(bp->b_flags & (B_DELWRI|B_HEAVY|B_AGE)) {
1298 case B_DELWRI | B_AGE:
1299 bp->b_qindex = BQUEUE_DIRTY;
1300 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1301 break;
1302 case B_DELWRI:
1303 bp->b_qindex = BQUEUE_DIRTY;
1304 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1305 break;
1306 case B_DELWRI | B_HEAVY | B_AGE:
1307 bp->b_qindex = BQUEUE_DIRTY_HW;
1308 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY_HW], bp,
1309 b_freelist);
1310 break;
1311 case B_DELWRI | B_HEAVY:
1312 bp->b_qindex = BQUEUE_DIRTY_HW;
1313 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1314 b_freelist);
1315 break;
1316 case B_HEAVY | B_AGE:
1317 case B_AGE:
1318 bp->b_qindex = BQUEUE_CLEAN;
1319 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1320 break;
1321 default:
1322 bp->b_qindex = BQUEUE_CLEAN;
1323 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1324 break;
1329 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1330 * on the correct queue.
1332 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1333 bundirty(bp);
1336 * Fixup numfreebuffers count. The bp is on an appropriate queue
1337 * unless locked. We then bump numfreebuffers if it is not B_DELWRI.
1338 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1339 * if B_INVAL is set ).
1341 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1342 bufcountwakeup();
1345 * Something we can maybe free or reuse
1347 if (bp->b_bufsize || bp->b_kvasize)
1348 bufspacewakeup();
1351 * Clean up temporary flags and unlock the buffer.
1353 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1354 B_DIRECT);
1355 BUF_UNLOCK(bp);
1356 crit_exit();
1360 * bqrelse:
1362 * Release a buffer back to the appropriate queue but do not try to free
1363 * it. The buffer is expected to be used again soon.
1365 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1366 * biodone() to requeue an async I/O on completion. It is also used when
1367 * known good buffers need to be requeued but we think we may need the data
1368 * again soon.
1370 * XXX we should be able to leave the B_RELBUF hint set on completion.
1372 void
1373 bqrelse(struct buf *bp)
1375 crit_enter();
1377 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1379 if (bp->b_qindex != BQUEUE_NONE)
1380 panic("bqrelse: free buffer onto another queue???");
1381 if (BUF_REFCNTNB(bp) > 1) {
1382 /* do not release to free list */
1383 panic("bqrelse: multiple refs");
1384 BUF_UNLOCK(bp);
1385 crit_exit();
1386 return;
1388 if (bp->b_flags & B_LOCKED) {
1390 * Locked buffers are released to the locked queue. However,
1391 * if the buffer is dirty it will first go into the dirty
1392 * queue and later on after the I/O completes successfully it
1393 * will be released to the locked queue.
1395 bp->b_flags &= ~B_ERROR;
1396 bp->b_qindex = BQUEUE_LOCKED;
1397 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1398 } else if (bp->b_flags & B_DELWRI) {
1399 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1400 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1401 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1402 } else if (vm_page_count_severe()) {
1404 * We are too low on memory, we have to try to free the
1405 * buffer (most importantly: the wired pages making up its
1406 * backing store) *now*.
1408 crit_exit();
1409 brelse(bp);
1410 return;
1411 } else {
1412 bp->b_qindex = BQUEUE_CLEAN;
1413 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1416 if ((bp->b_flags & B_LOCKED) == 0 &&
1417 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1418 bufcountwakeup();
1422 * Something we can maybe free or reuse.
1424 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1425 bufspacewakeup();
1428 * Final cleanup and unlock. Clear bits that are only used while a
1429 * buffer is actively locked.
1431 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1432 BUF_UNLOCK(bp);
1433 crit_exit();
1437 * vfs_vmio_release:
1439 * Return backing pages held by the buffer 'bp' back to the VM system
1440 * if possible. The pages are freed if they are no longer valid or
1441 * attempt to free if it was used for direct I/O otherwise they are
1442 * sent to the page cache.
1444 * Pages that were marked busy are left alone and skipped.
1446 * The KVA mapping (b_data) for the underlying pages is removed by
1447 * this function.
1449 static void
1450 vfs_vmio_release(struct buf *bp)
1452 int i;
1453 vm_page_t m;
1455 crit_enter();
1456 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1457 m = bp->b_xio.xio_pages[i];
1458 bp->b_xio.xio_pages[i] = NULL;
1460 * In order to keep page LRU ordering consistent, put
1461 * everything on the inactive queue.
1463 vm_page_unwire(m, 0);
1465 * We don't mess with busy pages, it is
1466 * the responsibility of the process that
1467 * busied the pages to deal with them.
1469 if ((m->flags & PG_BUSY) || (m->busy != 0))
1470 continue;
1472 if (m->wire_count == 0) {
1473 vm_page_flag_clear(m, PG_ZERO);
1475 * Might as well free the page if we can and it has
1476 * no valid data. We also free the page if the
1477 * buffer was used for direct I/O.
1479 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1480 m->hold_count == 0) {
1481 vm_page_busy(m);
1482 vm_page_protect(m, VM_PROT_NONE);
1483 vm_page_free(m);
1484 } else if (bp->b_flags & B_DIRECT) {
1485 vm_page_try_to_free(m);
1486 } else if (vm_page_count_severe()) {
1487 vm_page_try_to_cache(m);
1491 crit_exit();
1492 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1493 if (bp->b_bufsize) {
1494 bufspacewakeup();
1495 bp->b_bufsize = 0;
1497 bp->b_xio.xio_npages = 0;
1498 bp->b_flags &= ~B_VMIO;
1499 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1500 if (bp->b_vp)
1501 brelvp(bp);
1505 * vfs_bio_awrite:
1507 * Implement clustered async writes for clearing out B_DELWRI buffers.
1508 * This is much better then the old way of writing only one buffer at
1509 * a time. Note that we may not be presented with the buffers in the
1510 * correct order, so we search for the cluster in both directions.
1512 * The buffer is locked on call.
1515 vfs_bio_awrite(struct buf *bp)
1517 int i;
1518 int j;
1519 off_t loffset = bp->b_loffset;
1520 struct vnode *vp = bp->b_vp;
1521 int nbytes;
1522 struct buf *bpa;
1523 int nwritten;
1524 int size;
1526 crit_enter();
1528 * right now we support clustered writing only to regular files. If
1529 * we find a clusterable block we could be in the middle of a cluster
1530 * rather then at the beginning.
1532 * NOTE: b_bio1 contains the logical loffset and is aliased
1533 * to b_loffset. b_bio2 contains the translated block number.
1535 if ((vp->v_type == VREG) &&
1536 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1537 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1539 size = vp->v_mount->mnt_stat.f_iosize;
1541 for (i = size; i < MAXPHYS; i += size) {
1542 if ((bpa = findblk(vp, loffset + i)) &&
1543 BUF_REFCNT(bpa) == 0 &&
1544 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1545 (B_DELWRI | B_CLUSTEROK)) &&
1546 (bpa->b_bufsize == size)) {
1547 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1548 (bpa->b_bio2.bio_offset !=
1549 bp->b_bio2.bio_offset + i))
1550 break;
1551 } else {
1552 break;
1555 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1556 if ((bpa = findblk(vp, loffset - j)) &&
1557 BUF_REFCNT(bpa) == 0 &&
1558 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1559 (B_DELWRI | B_CLUSTEROK)) &&
1560 (bpa->b_bufsize == size)) {
1561 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1562 (bpa->b_bio2.bio_offset !=
1563 bp->b_bio2.bio_offset - j))
1564 break;
1565 } else {
1566 break;
1569 j -= size;
1570 nbytes = (i + j);
1572 * this is a possible cluster write
1574 if (nbytes != size) {
1575 BUF_UNLOCK(bp);
1576 nwritten = cluster_wbuild(vp, size,
1577 loffset - j, nbytes);
1578 crit_exit();
1579 return nwritten;
1583 bremfree(bp);
1584 bp->b_flags |= B_ASYNC;
1586 crit_exit();
1588 * default (old) behavior, writing out only one block
1590 * XXX returns b_bufsize instead of b_bcount for nwritten?
1592 nwritten = bp->b_bufsize;
1593 bwrite(bp);
1595 return nwritten;
1599 * getnewbuf:
1601 * Find and initialize a new buffer header, freeing up existing buffers
1602 * in the bufqueues as necessary. The new buffer is returned locked.
1604 * Important: B_INVAL is not set. If the caller wishes to throw the
1605 * buffer away, the caller must set B_INVAL prior to calling brelse().
1607 * We block if:
1608 * We have insufficient buffer headers
1609 * We have insufficient buffer space
1610 * buffer_map is too fragmented ( space reservation fails )
1611 * If we have to flush dirty buffers ( but we try to avoid this )
1613 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1614 * Instead we ask the buf daemon to do it for us. We attempt to
1615 * avoid piecemeal wakeups of the pageout daemon.
1618 static struct buf *
1619 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1621 struct buf *bp;
1622 struct buf *nbp;
1623 int defrag = 0;
1624 int nqindex;
1625 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1626 static int flushingbufs;
1629 * We can't afford to block since we might be holding a vnode lock,
1630 * which may prevent system daemons from running. We deal with
1631 * low-memory situations by proactively returning memory and running
1632 * async I/O rather then sync I/O.
1635 ++getnewbufcalls;
1636 --getnewbufrestarts;
1637 restart:
1638 ++getnewbufrestarts;
1641 * Setup for scan. If we do not have enough free buffers,
1642 * we setup a degenerate case that immediately fails. Note
1643 * that if we are specially marked process, we are allowed to
1644 * dip into our reserves.
1646 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1648 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1649 * However, there are a number of cases (defragging, reusing, ...)
1650 * where we cannot backup.
1652 nqindex = BQUEUE_EMPTYKVA;
1653 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1655 if (nbp == NULL) {
1657 * If no EMPTYKVA buffers and we are either
1658 * defragging or reusing, locate a CLEAN buffer
1659 * to free or reuse. If bufspace useage is low
1660 * skip this step so we can allocate a new buffer.
1662 if (defrag || bufspace >= lobufspace) {
1663 nqindex = BQUEUE_CLEAN;
1664 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1668 * If we could not find or were not allowed to reuse a
1669 * CLEAN buffer, check to see if it is ok to use an EMPTY
1670 * buffer. We can only use an EMPTY buffer if allocating
1671 * its KVA would not otherwise run us out of buffer space.
1673 if (nbp == NULL && defrag == 0 &&
1674 bufspace + maxsize < hibufspace) {
1675 nqindex = BQUEUE_EMPTY;
1676 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1681 * Run scan, possibly freeing data and/or kva mappings on the fly
1682 * depending.
1685 while ((bp = nbp) != NULL) {
1686 int qindex = nqindex;
1689 * Calculate next bp ( we can only use it if we do not block
1690 * or do other fancy things ).
1692 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1693 switch(qindex) {
1694 case BQUEUE_EMPTY:
1695 nqindex = BQUEUE_EMPTYKVA;
1696 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1697 break;
1698 /* fall through */
1699 case BQUEUE_EMPTYKVA:
1700 nqindex = BQUEUE_CLEAN;
1701 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1702 break;
1703 /* fall through */
1704 case BQUEUE_CLEAN:
1706 * nbp is NULL.
1708 break;
1713 * Sanity Checks
1715 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1718 * Note: we no longer distinguish between VMIO and non-VMIO
1719 * buffers.
1722 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1725 * If we are defragging then we need a buffer with
1726 * b_kvasize != 0. XXX this situation should no longer
1727 * occur, if defrag is non-zero the buffer's b_kvasize
1728 * should also be non-zero at this point. XXX
1730 if (defrag && bp->b_kvasize == 0) {
1731 kprintf("Warning: defrag empty buffer %p\n", bp);
1732 continue;
1736 * Start freeing the bp. This is somewhat involved. nbp
1737 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
1738 * on the clean list must be disassociated from their
1739 * current vnode. Buffers on the empty[kva] lists have
1740 * already been disassociated.
1743 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1744 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1745 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1746 goto restart;
1748 if (bp->b_qindex != qindex) {
1749 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1750 BUF_UNLOCK(bp);
1751 goto restart;
1753 bremfree(bp);
1756 * Dependancies must be handled before we disassociate the
1757 * vnode.
1759 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1760 * be immediately disassociated. HAMMER then becomes
1761 * responsible for releasing the buffer.
1763 if (LIST_FIRST(&bp->b_dep) != NULL) {
1764 buf_deallocate(bp);
1765 if (bp->b_flags & B_LOCKED) {
1766 bqrelse(bp);
1767 goto restart;
1769 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1772 if (qindex == BQUEUE_CLEAN) {
1773 if (bp->b_flags & B_VMIO) {
1774 bp->b_flags &= ~B_ASYNC;
1775 vfs_vmio_release(bp);
1777 if (bp->b_vp)
1778 brelvp(bp);
1782 * NOTE: nbp is now entirely invalid. We can only restart
1783 * the scan from this point on.
1785 * Get the rest of the buffer freed up. b_kva* is still
1786 * valid after this operation.
1789 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1790 KKASSERT((bp->b_flags & B_HASHED) == 0);
1793 * critical section protection is not required when
1794 * scrapping a buffer's contents because it is already
1795 * wired.
1797 if (bp->b_bufsize)
1798 allocbuf(bp, 0);
1800 bp->b_flags = B_BNOCLIP;
1801 bp->b_cmd = BUF_CMD_DONE;
1802 bp->b_vp = NULL;
1803 bp->b_error = 0;
1804 bp->b_resid = 0;
1805 bp->b_bcount = 0;
1806 bp->b_xio.xio_npages = 0;
1807 bp->b_dirtyoff = bp->b_dirtyend = 0;
1808 reinitbufbio(bp);
1809 buf_dep_init(bp);
1810 if (blkflags & GETBLK_BHEAVY)
1811 bp->b_flags |= B_HEAVY;
1814 * If we are defragging then free the buffer.
1816 if (defrag) {
1817 bp->b_flags |= B_INVAL;
1818 bfreekva(bp);
1819 brelse(bp);
1820 defrag = 0;
1821 goto restart;
1825 * If we are overcomitted then recover the buffer and its
1826 * KVM space. This occurs in rare situations when multiple
1827 * processes are blocked in getnewbuf() or allocbuf().
1829 if (bufspace >= hibufspace)
1830 flushingbufs = 1;
1831 if (flushingbufs && bp->b_kvasize != 0) {
1832 bp->b_flags |= B_INVAL;
1833 bfreekva(bp);
1834 brelse(bp);
1835 goto restart;
1837 if (bufspace < lobufspace)
1838 flushingbufs = 0;
1839 break;
1843 * If we exhausted our list, sleep as appropriate. We may have to
1844 * wakeup various daemons and write out some dirty buffers.
1846 * Generally we are sleeping due to insufficient buffer space.
1849 if (bp == NULL) {
1850 int flags;
1851 char *waitmsg;
1853 if (defrag) {
1854 flags = VFS_BIO_NEED_BUFSPACE;
1855 waitmsg = "nbufkv";
1856 } else if (bufspace >= hibufspace) {
1857 waitmsg = "nbufbs";
1858 flags = VFS_BIO_NEED_BUFSPACE;
1859 } else {
1860 waitmsg = "newbuf";
1861 flags = VFS_BIO_NEED_ANY;
1864 needsbuffer |= flags;
1865 bd_speedup(); /* heeeelp */
1866 while (needsbuffer & flags) {
1867 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
1868 return (NULL);
1870 } else {
1872 * We finally have a valid bp. We aren't quite out of the
1873 * woods, we still have to reserve kva space. In order
1874 * to keep fragmentation sane we only allocate kva in
1875 * BKVASIZE chunks.
1877 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1879 if (maxsize != bp->b_kvasize) {
1880 vm_offset_t addr = 0;
1881 int count;
1883 bfreekva(bp);
1885 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1886 vm_map_lock(&buffer_map);
1888 if (vm_map_findspace(&buffer_map,
1889 vm_map_min(&buffer_map), maxsize,
1890 maxsize, &addr)) {
1892 * Uh oh. Buffer map is too fragmented. We
1893 * must defragment the map.
1895 vm_map_unlock(&buffer_map);
1896 vm_map_entry_release(count);
1897 ++bufdefragcnt;
1898 defrag = 1;
1899 bp->b_flags |= B_INVAL;
1900 brelse(bp);
1901 goto restart;
1903 if (addr) {
1904 vm_map_insert(&buffer_map, &count,
1905 NULL, 0,
1906 addr, addr + maxsize,
1907 VM_MAPTYPE_NORMAL,
1908 VM_PROT_ALL, VM_PROT_ALL,
1909 MAP_NOFAULT);
1911 bp->b_kvabase = (caddr_t) addr;
1912 bp->b_kvasize = maxsize;
1913 bufspace += bp->b_kvasize;
1914 ++bufreusecnt;
1916 vm_map_unlock(&buffer_map);
1917 vm_map_entry_release(count);
1919 bp->b_data = bp->b_kvabase;
1921 return(bp);
1925 * buf_daemon:
1927 * Buffer flushing daemon. Buffers are normally flushed by the
1928 * update daemon but if it cannot keep up this process starts to
1929 * take the load in an attempt to prevent getnewbuf() from blocking.
1931 * Once a flush is initiated it does not stop until the number
1932 * of buffers falls below lodirtybuffers, but we will wake up anyone
1933 * waiting at the mid-point.
1936 static struct thread *bufdaemon_td;
1937 static struct thread *bufdaemonhw_td;
1939 static struct kproc_desc buf_kp = {
1940 "bufdaemon",
1941 buf_daemon,
1942 &bufdaemon_td
1944 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
1945 kproc_start, &buf_kp)
1947 static struct kproc_desc bufhw_kp = {
1948 "bufdaemon_hw",
1949 buf_daemon_hw,
1950 &bufdaemonhw_td
1952 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
1953 kproc_start, &bufhw_kp)
1955 static void
1956 buf_daemon(void)
1959 * This process needs to be suspended prior to shutdown sync.
1961 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1962 bufdaemon_td, SHUTDOWN_PRI_LAST);
1965 * This process is allowed to take the buffer cache to the limit
1967 crit_enter();
1969 for (;;) {
1970 kproc_suspend_loop();
1973 * Do the flush. Limit the amount of in-transit I/O we
1974 * allow to build up, otherwise we would completely saturate
1975 * the I/O system. Wakeup any waiting processes before we
1976 * normally would so they can run in parallel with our drain.
1978 while (numdirtybuffers > lodirtybuffers) {
1979 if (flushbufqueues(BQUEUE_DIRTY) == 0)
1980 break;
1981 waitrunningbufspace();
1982 numdirtywakeup();
1984 numdirtywakeup();
1987 * Only clear bd_request if we have reached our low water
1988 * mark. The buf_daemon normally waits 5 seconds and
1989 * then incrementally flushes any dirty buffers that have
1990 * built up, within reason.
1992 * If we were unable to hit our low water mark and couldn't
1993 * find any flushable buffers, we sleep half a second.
1994 * Otherwise we loop immediately.
1996 if (numdirtybuffers <= lodirtybuffers) {
1998 * We reached our low water mark, reset the
1999 * request and sleep until we are needed again.
2000 * The sleep is just so the suspend code works.
2002 spin_lock_wr(&needsbuffer_spin);
2003 bd_request = 0;
2004 msleep(&bd_request, &needsbuffer_spin, 0,
2005 "psleep", hz);
2006 spin_unlock_wr(&needsbuffer_spin);
2007 } else {
2009 * We couldn't find any flushable dirty buffers but
2010 * still have too many dirty buffers, we
2011 * have to sleep and try again. (rare)
2013 tsleep(&bd_request, 0, "qsleep", hz / 2);
2018 static void
2019 buf_daemon_hw(void)
2022 * This process needs to be suspended prior to shutdown sync.
2024 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2025 bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2028 * This process is allowed to take the buffer cache to the limit
2030 crit_enter();
2032 for (;;) {
2033 kproc_suspend_loop();
2036 * Do the flush. Limit the amount of in-transit I/O we
2037 * allow to build up, otherwise we would completely saturate
2038 * the I/O system. Wakeup any waiting processes before we
2039 * normally would so they can run in parallel with our drain.
2041 while (numdirtybuffershw > lodirtybuffers) {
2042 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2043 break;
2044 waitrunningbufspace();
2045 numdirtywakeup();
2049 * Only clear bd_request if we have reached our low water
2050 * mark. The buf_daemon normally waits 5 seconds and
2051 * then incrementally flushes any dirty buffers that have
2052 * built up, within reason.
2054 * If we were unable to hit our low water mark and couldn't
2055 * find any flushable buffers, we sleep half a second.
2056 * Otherwise we loop immediately.
2058 if (numdirtybuffershw <= lodirtybuffers) {
2060 * We reached our low water mark, reset the
2061 * request and sleep until we are needed again.
2062 * The sleep is just so the suspend code works.
2064 spin_lock_wr(&needsbuffer_spin);
2065 bd_request_hw = 0;
2066 msleep(&bd_request_hw, &needsbuffer_spin, 0,
2067 "psleep", hz);
2068 spin_unlock_wr(&needsbuffer_spin);
2069 } else {
2071 * We couldn't find any flushable dirty buffers but
2072 * still have too many dirty buffers, we
2073 * have to sleep and try again. (rare)
2075 tsleep(&bd_request_hw, 0, "qsleep", hz / 2);
2081 * flushbufqueues:
2083 * Try to flush a buffer in the dirty queue. We must be careful to
2084 * free up B_INVAL buffers instead of write them, which NFS is
2085 * particularly sensitive to.
2088 static int
2089 flushbufqueues(bufq_type_t q)
2091 struct buf *bp;
2092 int r = 0;
2094 bp = TAILQ_FIRST(&bufqueues[q]);
2096 while (bp) {
2097 KASSERT((bp->b_flags & B_DELWRI),
2098 ("unexpected clean buffer %p", bp));
2099 if (bp->b_flags & B_DELWRI) {
2100 if (bp->b_flags & B_INVAL) {
2101 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2102 panic("flushbufqueues: locked buf");
2103 bremfree(bp);
2104 brelse(bp);
2105 ++r;
2106 break;
2108 if (LIST_FIRST(&bp->b_dep) != NULL &&
2109 (bp->b_flags & B_DEFERRED) == 0 &&
2110 buf_countdeps(bp, 0)) {
2111 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2112 TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2113 b_freelist);
2114 bp->b_flags |= B_DEFERRED;
2115 bp = TAILQ_FIRST(&bufqueues[q]);
2116 continue;
2120 * Only write it out if we can successfully lock
2121 * it. If the buffer has a dependancy,
2122 * buf_checkwrite must also return 0.
2124 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2125 if (LIST_FIRST(&bp->b_dep) != NULL &&
2126 buf_checkwrite(bp)) {
2127 bremfree(bp);
2128 brelse(bp);
2129 } else {
2130 vfs_bio_awrite(bp);
2132 ++r;
2133 break;
2136 bp = TAILQ_NEXT(bp, b_freelist);
2138 return (r);
2142 * inmem:
2144 * Returns true if no I/O is needed to access the associated VM object.
2145 * This is like findblk except it also hunts around in the VM system for
2146 * the data.
2148 * Note that we ignore vm_page_free() races from interrupts against our
2149 * lookup, since if the caller is not protected our return value will not
2150 * be any more valid then otherwise once we exit the critical section.
2153 inmem(struct vnode *vp, off_t loffset)
2155 vm_object_t obj;
2156 vm_offset_t toff, tinc, size;
2157 vm_page_t m;
2159 if (findblk(vp, loffset))
2160 return 1;
2161 if (vp->v_mount == NULL)
2162 return 0;
2163 if ((obj = vp->v_object) == NULL)
2164 return 0;
2166 size = PAGE_SIZE;
2167 if (size > vp->v_mount->mnt_stat.f_iosize)
2168 size = vp->v_mount->mnt_stat.f_iosize;
2170 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2171 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2172 if (m == NULL)
2173 return 0;
2174 tinc = size;
2175 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2176 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2177 if (vm_page_is_valid(m,
2178 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2179 return 0;
2181 return 1;
2185 * vfs_setdirty:
2187 * Sets the dirty range for a buffer based on the status of the dirty
2188 * bits in the pages comprising the buffer.
2190 * The range is limited to the size of the buffer.
2192 * This routine is primarily used by NFS, but is generalized for the
2193 * B_VMIO case.
2195 static void
2196 vfs_setdirty(struct buf *bp)
2198 int i;
2199 vm_object_t object;
2202 * Degenerate case - empty buffer
2205 if (bp->b_bufsize == 0)
2206 return;
2209 * We qualify the scan for modified pages on whether the
2210 * object has been flushed yet. The OBJ_WRITEABLE flag
2211 * is not cleared simply by protecting pages off.
2214 if ((bp->b_flags & B_VMIO) == 0)
2215 return;
2217 object = bp->b_xio.xio_pages[0]->object;
2219 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2220 kprintf("Warning: object %p writeable but not mightbedirty\n", object);
2221 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2222 kprintf("Warning: object %p mightbedirty but not writeable\n", object);
2224 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2225 vm_offset_t boffset;
2226 vm_offset_t eoffset;
2229 * test the pages to see if they have been modified directly
2230 * by users through the VM system.
2232 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2233 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2234 vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2238 * Calculate the encompassing dirty range, boffset and eoffset,
2239 * (eoffset - boffset) bytes.
2242 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2243 if (bp->b_xio.xio_pages[i]->dirty)
2244 break;
2246 boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2248 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2249 if (bp->b_xio.xio_pages[i]->dirty) {
2250 break;
2253 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2256 * Fit it to the buffer.
2259 if (eoffset > bp->b_bcount)
2260 eoffset = bp->b_bcount;
2263 * If we have a good dirty range, merge with the existing
2264 * dirty range.
2267 if (boffset < eoffset) {
2268 if (bp->b_dirtyoff > boffset)
2269 bp->b_dirtyoff = boffset;
2270 if (bp->b_dirtyend < eoffset)
2271 bp->b_dirtyend = eoffset;
2277 * findblk:
2279 * Locate and return the specified buffer, or NULL if the buffer does
2280 * not exist. Do not attempt to lock the buffer or manipulate it in
2281 * any way. The caller must validate that the correct buffer has been
2282 * obtain after locking it.
2284 struct buf *
2285 findblk(struct vnode *vp, off_t loffset)
2287 struct buf *bp;
2289 crit_enter();
2290 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2291 crit_exit();
2292 return(bp);
2296 * getblk:
2298 * Get a block given a specified block and offset into a file/device.
2299 * B_INVAL may or may not be set on return. The caller should clear
2300 * B_INVAL prior to initiating a READ.
2302 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2303 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2304 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2305 * without doing any of those things the system will likely believe
2306 * the buffer to be valid (especially if it is not B_VMIO), and the
2307 * next getblk() will return the buffer with B_CACHE set.
2309 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2310 * an existing buffer.
2312 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2313 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2314 * and then cleared based on the backing VM. If the previous buffer is
2315 * non-0-sized but invalid, B_CACHE will be cleared.
2317 * If getblk() must create a new buffer, the new buffer is returned with
2318 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2319 * case it is returned with B_INVAL clear and B_CACHE set based on the
2320 * backing VM.
2322 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2323 * B_CACHE bit is clear.
2325 * What this means, basically, is that the caller should use B_CACHE to
2326 * determine whether the buffer is fully valid or not and should clear
2327 * B_INVAL prior to issuing a read. If the caller intends to validate
2328 * the buffer by loading its data area with something, the caller needs
2329 * to clear B_INVAL. If the caller does this without issuing an I/O,
2330 * the caller should set B_CACHE ( as an optimization ), else the caller
2331 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2332 * a write attempt or if it was a successfull read. If the caller
2333 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2334 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2336 * getblk flags:
2338 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2339 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2341 struct buf *
2342 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2344 struct buf *bp;
2345 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2347 if (size > MAXBSIZE)
2348 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2349 if (vp->v_object == NULL)
2350 panic("getblk: vnode %p has no object!", vp);
2352 crit_enter();
2353 loop:
2354 if ((bp = findblk(vp, loffset))) {
2356 * The buffer was found in the cache, but we need to lock it.
2357 * Even with LK_NOWAIT the lockmgr may break our critical
2358 * section, so double-check the validity of the buffer
2359 * once the lock has been obtained.
2361 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2362 int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2363 if (blkflags & GETBLK_PCATCH)
2364 lkflags |= LK_PCATCH;
2365 if (BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo) ==
2366 ENOLCK) {
2367 goto loop;
2369 crit_exit();
2370 return (NULL);
2374 * Once the buffer has been locked, make sure we didn't race
2375 * a buffer recyclement. Buffers that are no longer hashed
2376 * will have b_vp == NULL, so this takes care of that check
2377 * as well.
2379 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2380 kprintf("Warning buffer %p (vp %p loffset %lld) was recycled\n", bp, vp, loffset);
2381 BUF_UNLOCK(bp);
2382 goto loop;
2386 * All vnode-based buffers must be backed by a VM object.
2388 KKASSERT(bp->b_flags & B_VMIO);
2389 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2392 * Make sure that B_INVAL buffers do not have a cached
2393 * block number translation.
2395 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2396 kprintf("Warning invalid buffer %p (vp %p loffset %lld) did not have cleared bio_offset cache\n", bp, vp, loffset);
2397 clearbiocache(&bp->b_bio2);
2401 * The buffer is locked. B_CACHE is cleared if the buffer is
2402 * invalid.
2404 if (bp->b_flags & B_INVAL)
2405 bp->b_flags &= ~B_CACHE;
2406 bremfree(bp);
2409 * Any size inconsistancy with a dirty buffer or a buffer
2410 * with a softupdates dependancy must be resolved. Resizing
2411 * the buffer in such circumstances can lead to problems.
2413 if (size != bp->b_bcount) {
2414 if (bp->b_flags & B_DELWRI) {
2415 bp->b_flags |= B_NOCACHE;
2416 bwrite(bp);
2417 } else if (LIST_FIRST(&bp->b_dep)) {
2418 bp->b_flags |= B_NOCACHE;
2419 bwrite(bp);
2420 } else {
2421 bp->b_flags |= B_RELBUF;
2422 brelse(bp);
2424 goto loop;
2426 KKASSERT(size <= bp->b_kvasize);
2427 KASSERT(bp->b_loffset != NOOFFSET,
2428 ("getblk: no buffer offset"));
2431 * A buffer with B_DELWRI set and B_CACHE clear must
2432 * be committed before we can return the buffer in
2433 * order to prevent the caller from issuing a read
2434 * ( due to B_CACHE not being set ) and overwriting
2435 * it.
2437 * Most callers, including NFS and FFS, need this to
2438 * operate properly either because they assume they
2439 * can issue a read if B_CACHE is not set, or because
2440 * ( for example ) an uncached B_DELWRI might loop due
2441 * to softupdates re-dirtying the buffer. In the latter
2442 * case, B_CACHE is set after the first write completes,
2443 * preventing further loops.
2445 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2446 * above while extending the buffer, we cannot allow the
2447 * buffer to remain with B_CACHE set after the write
2448 * completes or it will represent a corrupt state. To
2449 * deal with this we set B_NOCACHE to scrap the buffer
2450 * after the write.
2452 * We might be able to do something fancy, like setting
2453 * B_CACHE in bwrite() except if B_DELWRI is already set,
2454 * so the below call doesn't set B_CACHE, but that gets real
2455 * confusing. This is much easier.
2458 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2459 bp->b_flags |= B_NOCACHE;
2460 bwrite(bp);
2461 goto loop;
2463 crit_exit();
2464 } else {
2466 * Buffer is not in-core, create new buffer. The buffer
2467 * returned by getnewbuf() is locked. Note that the returned
2468 * buffer is also considered valid (not marked B_INVAL).
2470 * Calculating the offset for the I/O requires figuring out
2471 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2472 * the mount's f_iosize otherwise. If the vnode does not
2473 * have an associated mount we assume that the passed size is
2474 * the block size.
2476 * Note that vn_isdisk() cannot be used here since it may
2477 * return a failure for numerous reasons. Note that the
2478 * buffer size may be larger then the block size (the caller
2479 * will use block numbers with the proper multiple). Beware
2480 * of using any v_* fields which are part of unions. In
2481 * particular, in DragonFly the mount point overloading
2482 * mechanism uses the namecache only and the underlying
2483 * directory vnode is not a special case.
2485 int bsize, maxsize;
2487 if (vp->v_type == VBLK || vp->v_type == VCHR)
2488 bsize = DEV_BSIZE;
2489 else if (vp->v_mount)
2490 bsize = vp->v_mount->mnt_stat.f_iosize;
2491 else
2492 bsize = size;
2494 maxsize = size + (loffset & PAGE_MASK);
2495 maxsize = imax(maxsize, bsize);
2497 if ((bp = getnewbuf(blkflags, slptimeo, size, maxsize)) == NULL) {
2498 if (slpflags || slptimeo) {
2499 crit_exit();
2500 return NULL;
2502 goto loop;
2506 * This code is used to make sure that a buffer is not
2507 * created while the getnewbuf routine is blocked.
2508 * This can be a problem whether the vnode is locked or not.
2509 * If the buffer is created out from under us, we have to
2510 * throw away the one we just created. There is no window
2511 * race because we are safely running in a critical section
2512 * from the point of the duplicate buffer creation through
2513 * to here, and we've locked the buffer.
2515 if (findblk(vp, loffset)) {
2516 bp->b_flags |= B_INVAL;
2517 brelse(bp);
2518 goto loop;
2522 * Insert the buffer into the hash, so that it can
2523 * be found by findblk().
2525 * Make sure the translation layer has been cleared.
2527 bp->b_loffset = loffset;
2528 bp->b_bio2.bio_offset = NOOFFSET;
2529 /* bp->b_bio2.bio_next = NULL; */
2531 bgetvp(vp, bp);
2534 * All vnode-based buffers must be backed by a VM object.
2536 KKASSERT(vp->v_object != NULL);
2537 bp->b_flags |= B_VMIO;
2538 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2540 allocbuf(bp, size);
2542 crit_exit();
2544 return (bp);
2548 * regetblk(bp)
2550 * Reacquire a buffer that was previously released to the locked queue,
2551 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2552 * set B_LOCKED (which handles the acquisition race).
2554 * To this end, either B_LOCKED must be set or the dependancy list must be
2555 * non-empty.
2557 void
2558 regetblk(struct buf *bp)
2560 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2561 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2562 crit_enter();
2563 bremfree(bp);
2564 crit_exit();
2568 * geteblk:
2570 * Get an empty, disassociated buffer of given size. The buffer is
2571 * initially set to B_INVAL.
2573 * critical section protection is not required for the allocbuf()
2574 * call because races are impossible here.
2576 struct buf *
2577 geteblk(int size)
2579 struct buf *bp;
2580 int maxsize;
2582 maxsize = (size + BKVAMASK) & ~BKVAMASK;
2584 crit_enter();
2585 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2587 crit_exit();
2588 allocbuf(bp, size);
2589 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
2590 return (bp);
2595 * allocbuf:
2597 * This code constitutes the buffer memory from either anonymous system
2598 * memory (in the case of non-VMIO operations) or from an associated
2599 * VM object (in the case of VMIO operations). This code is able to
2600 * resize a buffer up or down.
2602 * Note that this code is tricky, and has many complications to resolve
2603 * deadlock or inconsistant data situations. Tread lightly!!!
2604 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2605 * the caller. Calling this code willy nilly can result in the loss of data.
2607 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2608 * B_CACHE for the non-VMIO case.
2610 * This routine does not need to be called from a critical section but you
2611 * must own the buffer.
2614 allocbuf(struct buf *bp, int size)
2616 int newbsize, mbsize;
2617 int i;
2619 if (BUF_REFCNT(bp) == 0)
2620 panic("allocbuf: buffer not busy");
2622 if (bp->b_kvasize < size)
2623 panic("allocbuf: buffer too small");
2625 if ((bp->b_flags & B_VMIO) == 0) {
2626 caddr_t origbuf;
2627 int origbufsize;
2629 * Just get anonymous memory from the kernel. Don't
2630 * mess with B_CACHE.
2632 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2633 if (bp->b_flags & B_MALLOC)
2634 newbsize = mbsize;
2635 else
2636 newbsize = round_page(size);
2638 if (newbsize < bp->b_bufsize) {
2640 * Malloced buffers are not shrunk
2642 if (bp->b_flags & B_MALLOC) {
2643 if (newbsize) {
2644 bp->b_bcount = size;
2645 } else {
2646 kfree(bp->b_data, M_BIOBUF);
2647 if (bp->b_bufsize) {
2648 bufmallocspace -= bp->b_bufsize;
2649 bufspacewakeup();
2650 bp->b_bufsize = 0;
2652 bp->b_data = bp->b_kvabase;
2653 bp->b_bcount = 0;
2654 bp->b_flags &= ~B_MALLOC;
2656 return 1;
2658 vm_hold_free_pages(
2660 (vm_offset_t) bp->b_data + newbsize,
2661 (vm_offset_t) bp->b_data + bp->b_bufsize);
2662 } else if (newbsize > bp->b_bufsize) {
2664 * We only use malloced memory on the first allocation.
2665 * and revert to page-allocated memory when the buffer
2666 * grows.
2668 if ((bufmallocspace < maxbufmallocspace) &&
2669 (bp->b_bufsize == 0) &&
2670 (mbsize <= PAGE_SIZE/2)) {
2672 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
2673 bp->b_bufsize = mbsize;
2674 bp->b_bcount = size;
2675 bp->b_flags |= B_MALLOC;
2676 bufmallocspace += mbsize;
2677 return 1;
2679 origbuf = NULL;
2680 origbufsize = 0;
2682 * If the buffer is growing on its other-than-first
2683 * allocation, then we revert to the page-allocation
2684 * scheme.
2686 if (bp->b_flags & B_MALLOC) {
2687 origbuf = bp->b_data;
2688 origbufsize = bp->b_bufsize;
2689 bp->b_data = bp->b_kvabase;
2690 if (bp->b_bufsize) {
2691 bufmallocspace -= bp->b_bufsize;
2692 bufspacewakeup();
2693 bp->b_bufsize = 0;
2695 bp->b_flags &= ~B_MALLOC;
2696 newbsize = round_page(newbsize);
2698 vm_hold_load_pages(
2700 (vm_offset_t) bp->b_data + bp->b_bufsize,
2701 (vm_offset_t) bp->b_data + newbsize);
2702 if (origbuf) {
2703 bcopy(origbuf, bp->b_data, origbufsize);
2704 kfree(origbuf, M_BIOBUF);
2707 } else {
2708 vm_page_t m;
2709 int desiredpages;
2711 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2712 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
2713 newbsize + PAGE_MASK) >> PAGE_SHIFT;
2714 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
2716 if (bp->b_flags & B_MALLOC)
2717 panic("allocbuf: VMIO buffer can't be malloced");
2719 * Set B_CACHE initially if buffer is 0 length or will become
2720 * 0-length.
2722 if (size == 0 || bp->b_bufsize == 0)
2723 bp->b_flags |= B_CACHE;
2725 if (newbsize < bp->b_bufsize) {
2727 * DEV_BSIZE aligned new buffer size is less then the
2728 * DEV_BSIZE aligned existing buffer size. Figure out
2729 * if we have to remove any pages.
2731 if (desiredpages < bp->b_xio.xio_npages) {
2732 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2734 * the page is not freed here -- it
2735 * is the responsibility of
2736 * vnode_pager_setsize
2738 m = bp->b_xio.xio_pages[i];
2739 KASSERT(m != bogus_page,
2740 ("allocbuf: bogus page found"));
2741 while (vm_page_sleep_busy(m, TRUE, "biodep"))
2744 bp->b_xio.xio_pages[i] = NULL;
2745 vm_page_unwire(m, 0);
2747 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2748 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2749 bp->b_xio.xio_npages = desiredpages;
2751 } else if (size > bp->b_bcount) {
2753 * We are growing the buffer, possibly in a
2754 * byte-granular fashion.
2756 struct vnode *vp;
2757 vm_object_t obj;
2758 vm_offset_t toff;
2759 vm_offset_t tinc;
2762 * Step 1, bring in the VM pages from the object,
2763 * allocating them if necessary. We must clear
2764 * B_CACHE if these pages are not valid for the
2765 * range covered by the buffer.
2767 * critical section protection is required to protect
2768 * against interrupts unbusying and freeing pages
2769 * between our vm_page_lookup() and our
2770 * busycheck/wiring call.
2772 vp = bp->b_vp;
2773 obj = vp->v_object;
2775 crit_enter();
2776 while (bp->b_xio.xio_npages < desiredpages) {
2777 vm_page_t m;
2778 vm_pindex_t pi;
2780 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
2781 if ((m = vm_page_lookup(obj, pi)) == NULL) {
2783 * note: must allocate system pages
2784 * since blocking here could intefere
2785 * with paging I/O, no matter which
2786 * process we are.
2788 m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2789 if (m == NULL) {
2790 vm_wait();
2791 vm_pageout_deficit += desiredpages -
2792 bp->b_xio.xio_npages;
2793 } else {
2794 vm_page_wire(m);
2795 vm_page_wakeup(m);
2796 bp->b_flags &= ~B_CACHE;
2797 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2798 ++bp->b_xio.xio_npages;
2800 continue;
2804 * We found a page. If we have to sleep on it,
2805 * retry because it might have gotten freed out
2806 * from under us.
2808 * We can only test PG_BUSY here. Blocking on
2809 * m->busy might lead to a deadlock:
2811 * vm_fault->getpages->cluster_read->allocbuf
2815 if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2816 continue;
2819 * We have a good page. Should we wakeup the
2820 * page daemon?
2822 if ((curthread != pagethread) &&
2823 ((m->queue - m->pc) == PQ_CACHE) &&
2824 ((vmstats.v_free_count + vmstats.v_cache_count) <
2825 (vmstats.v_free_min + vmstats.v_cache_min))) {
2826 pagedaemon_wakeup();
2828 vm_page_flag_clear(m, PG_ZERO);
2829 vm_page_wire(m);
2830 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2831 ++bp->b_xio.xio_npages;
2833 crit_exit();
2836 * Step 2. We've loaded the pages into the buffer,
2837 * we have to figure out if we can still have B_CACHE
2838 * set. Note that B_CACHE is set according to the
2839 * byte-granular range ( bcount and size ), not the
2840 * aligned range ( newbsize ).
2842 * The VM test is against m->valid, which is DEV_BSIZE
2843 * aligned. Needless to say, the validity of the data
2844 * needs to also be DEV_BSIZE aligned. Note that this
2845 * fails with NFS if the server or some other client
2846 * extends the file's EOF. If our buffer is resized,
2847 * B_CACHE may remain set! XXX
2850 toff = bp->b_bcount;
2851 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
2853 while ((bp->b_flags & B_CACHE) && toff < size) {
2854 vm_pindex_t pi;
2856 if (tinc > (size - toff))
2857 tinc = size - toff;
2859 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
2860 PAGE_SHIFT;
2862 vfs_buf_test_cache(
2863 bp,
2864 bp->b_loffset,
2865 toff,
2866 tinc,
2867 bp->b_xio.xio_pages[pi]
2869 toff += tinc;
2870 tinc = PAGE_SIZE;
2874 * Step 3, fixup the KVM pmap. Remember that
2875 * bp->b_data is relative to bp->b_loffset, but
2876 * bp->b_loffset may be offset into the first page.
2879 bp->b_data = (caddr_t)
2880 trunc_page((vm_offset_t)bp->b_data);
2881 pmap_qenter(
2882 (vm_offset_t)bp->b_data,
2883 bp->b_xio.xio_pages,
2884 bp->b_xio.xio_npages
2886 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2887 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
2890 if (newbsize < bp->b_bufsize)
2891 bufspacewakeup();
2892 bp->b_bufsize = newbsize; /* actual buffer allocation */
2893 bp->b_bcount = size; /* requested buffer size */
2894 return 1;
2898 * biowait:
2900 * Wait for buffer I/O completion, returning error status. The buffer
2901 * is left locked on return. B_EINTR is converted into an EINTR error
2902 * and cleared.
2904 * NOTE! The original b_cmd is lost on return, since b_cmd will be
2905 * set to BUF_CMD_DONE.
2908 biowait(struct buf *bp)
2910 crit_enter();
2911 while (bp->b_cmd != BUF_CMD_DONE) {
2912 if (bp->b_cmd == BUF_CMD_READ)
2913 tsleep(bp, 0, "biord", 0);
2914 else
2915 tsleep(bp, 0, "biowr", 0);
2917 crit_exit();
2918 if (bp->b_flags & B_EINTR) {
2919 bp->b_flags &= ~B_EINTR;
2920 return (EINTR);
2922 if (bp->b_flags & B_ERROR) {
2923 return (bp->b_error ? bp->b_error : EIO);
2924 } else {
2925 return (0);
2930 * This associates a tracking count with an I/O. vn_strategy() and
2931 * dev_dstrategy() do this automatically but there are a few cases
2932 * where a vnode or device layer is bypassed when a block translation
2933 * is cached. In such cases bio_start_transaction() may be called on
2934 * the bypassed layers so the system gets an I/O in progress indication
2935 * for those higher layers.
2937 void
2938 bio_start_transaction(struct bio *bio, struct bio_track *track)
2940 bio->bio_track = track;
2941 atomic_add_int(&track->bk_active, 1);
2945 * Initiate I/O on a vnode.
2947 void
2948 vn_strategy(struct vnode *vp, struct bio *bio)
2950 struct bio_track *track;
2952 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
2953 if (bio->bio_buf->b_cmd == BUF_CMD_READ)
2954 track = &vp->v_track_read;
2955 else
2956 track = &vp->v_track_write;
2957 bio->bio_track = track;
2958 atomic_add_int(&track->bk_active, 1);
2959 vop_strategy(*vp->v_ops, vp, bio);
2964 * biodone:
2966 * Finish I/O on a buffer, optionally calling a completion function.
2967 * This is usually called from an interrupt so process blocking is
2968 * not allowed.
2970 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2971 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
2972 * assuming B_INVAL is clear.
2974 * For the VMIO case, we set B_CACHE if the op was a read and no
2975 * read error occured, or if the op was a write. B_CACHE is never
2976 * set if the buffer is invalid or otherwise uncacheable.
2978 * biodone does not mess with B_INVAL, allowing the I/O routine or the
2979 * initiator to leave B_INVAL set to brelse the buffer out of existance
2980 * in the biodone routine.
2982 void
2983 biodone(struct bio *bio)
2985 struct buf *bp = bio->bio_buf;
2986 buf_cmd_t cmd;
2988 crit_enter();
2990 KASSERT(BUF_REFCNTNB(bp) > 0,
2991 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2992 KASSERT(bp->b_cmd != BUF_CMD_DONE,
2993 ("biodone: bp %p already done!", bp));
2995 runningbufwakeup(bp);
2998 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3000 while (bio) {
3001 biodone_t *done_func;
3002 struct bio_track *track;
3005 * BIO tracking. Most but not all BIOs are tracked.
3007 if ((track = bio->bio_track) != NULL) {
3008 atomic_subtract_int(&track->bk_active, 1);
3009 if (track->bk_active < 0) {
3010 panic("biodone: bad active count bio %p\n",
3011 bio);
3013 if (track->bk_waitflag) {
3014 track->bk_waitflag = 0;
3015 wakeup(track);
3017 bio->bio_track = NULL;
3021 * A bio_done function terminates the loop. The function
3022 * will be responsible for any further chaining and/or
3023 * buffer management.
3025 * WARNING! The done function can deallocate the buffer!
3027 if ((done_func = bio->bio_done) != NULL) {
3028 bio->bio_done = NULL;
3029 done_func(bio);
3030 crit_exit();
3031 return;
3033 bio = bio->bio_prev;
3036 cmd = bp->b_cmd;
3037 bp->b_cmd = BUF_CMD_DONE;
3040 * Only reads and writes are processed past this point.
3042 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3043 brelse(bp);
3044 crit_exit();
3045 return;
3049 * Warning: softupdates may re-dirty the buffer.
3051 if (LIST_FIRST(&bp->b_dep) != NULL)
3052 buf_complete(bp);
3054 if (bp->b_flags & B_VMIO) {
3055 int i;
3056 vm_ooffset_t foff;
3057 vm_page_t m;
3058 vm_object_t obj;
3059 int iosize;
3060 struct vnode *vp = bp->b_vp;
3062 obj = vp->v_object;
3064 #if defined(VFS_BIO_DEBUG)
3065 if (vp->v_auxrefs == 0)
3066 panic("biodone: zero vnode hold count");
3067 if ((vp->v_flag & VOBJBUF) == 0)
3068 panic("biodone: vnode is not setup for merged cache");
3069 #endif
3071 foff = bp->b_loffset;
3072 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3073 KASSERT(obj != NULL, ("biodone: missing VM object"));
3075 #if defined(VFS_BIO_DEBUG)
3076 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3077 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3078 obj->paging_in_progress, bp->b_xio.xio_npages);
3080 #endif
3083 * Set B_CACHE if the op was a normal read and no error
3084 * occured. B_CACHE is set for writes in the b*write()
3085 * routines.
3087 iosize = bp->b_bcount - bp->b_resid;
3088 if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3089 bp->b_flags |= B_CACHE;
3092 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3093 int bogusflag = 0;
3094 int resid;
3096 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3097 if (resid > iosize)
3098 resid = iosize;
3101 * cleanup bogus pages, restoring the originals. Since
3102 * the originals should still be wired, we don't have
3103 * to worry about interrupt/freeing races destroying
3104 * the VM object association.
3106 m = bp->b_xio.xio_pages[i];
3107 if (m == bogus_page) {
3108 bogusflag = 1;
3109 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3110 if (m == NULL)
3111 panic("biodone: page disappeared");
3112 bp->b_xio.xio_pages[i] = m;
3113 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3114 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3116 #if defined(VFS_BIO_DEBUG)
3117 if (OFF_TO_IDX(foff) != m->pindex) {
3118 kprintf(
3119 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
3120 (unsigned long)foff, m->pindex);
3122 #endif
3125 * In the write case, the valid and clean bits are
3126 * already changed correctly ( see bdwrite() ), so we
3127 * only need to do this here in the read case.
3129 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3130 vfs_page_set_valid(bp, foff, i, m);
3132 vm_page_flag_clear(m, PG_ZERO);
3135 * when debugging new filesystems or buffer I/O methods, this
3136 * is the most common error that pops up. if you see this, you
3137 * have not set the page busy flag correctly!!!
3139 if (m->busy == 0) {
3140 kprintf("biodone: page busy < 0, "
3141 "pindex: %d, foff: 0x(%x,%x), "
3142 "resid: %d, index: %d\n",
3143 (int) m->pindex, (int)(foff >> 32),
3144 (int) foff & 0xffffffff, resid, i);
3145 if (!vn_isdisk(vp, NULL))
3146 kprintf(" iosize: %ld, loffset: %lld, flags: 0x%08x, npages: %d\n",
3147 bp->b_vp->v_mount->mnt_stat.f_iosize,
3148 bp->b_loffset,
3149 bp->b_flags, bp->b_xio.xio_npages);
3150 else
3151 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3152 bp->b_loffset,
3153 bp->b_flags, bp->b_xio.xio_npages);
3154 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3155 m->valid, m->dirty, m->wire_count);
3156 panic("biodone: page busy < 0");
3158 vm_page_io_finish(m);
3159 vm_object_pip_subtract(obj, 1);
3160 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3161 iosize -= resid;
3163 if (obj)
3164 vm_object_pip_wakeupn(obj, 0);
3168 * For asynchronous completions, release the buffer now. The brelse
3169 * will do a wakeup there if necessary - so no need to do a wakeup
3170 * here in the async case. The sync case always needs to do a wakeup.
3173 if (bp->b_flags & B_ASYNC) {
3174 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
3175 brelse(bp);
3176 else
3177 bqrelse(bp);
3178 } else {
3179 wakeup(bp);
3181 crit_exit();
3185 * vfs_unbusy_pages:
3187 * This routine is called in lieu of iodone in the case of
3188 * incomplete I/O. This keeps the busy status for pages
3189 * consistant.
3191 void
3192 vfs_unbusy_pages(struct buf *bp)
3194 int i;
3196 runningbufwakeup(bp);
3197 if (bp->b_flags & B_VMIO) {
3198 struct vnode *vp = bp->b_vp;
3199 vm_object_t obj;
3201 obj = vp->v_object;
3203 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3204 vm_page_t m = bp->b_xio.xio_pages[i];
3207 * When restoring bogus changes the original pages
3208 * should still be wired, so we are in no danger of
3209 * losing the object association and do not need
3210 * critical section protection particularly.
3212 if (m == bogus_page) {
3213 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3214 if (!m) {
3215 panic("vfs_unbusy_pages: page missing");
3217 bp->b_xio.xio_pages[i] = m;
3218 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3219 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3221 vm_object_pip_subtract(obj, 1);
3222 vm_page_flag_clear(m, PG_ZERO);
3223 vm_page_io_finish(m);
3225 vm_object_pip_wakeupn(obj, 0);
3230 * vfs_page_set_valid:
3232 * Set the valid bits in a page based on the supplied offset. The
3233 * range is restricted to the buffer's size.
3235 * This routine is typically called after a read completes.
3237 static void
3238 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3240 vm_ooffset_t soff, eoff;
3243 * Start and end offsets in buffer. eoff - soff may not cross a
3244 * page boundry or cross the end of the buffer. The end of the
3245 * buffer, in this case, is our file EOF, not the allocation size
3246 * of the buffer.
3248 soff = off;
3249 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3250 if (eoff > bp->b_loffset + bp->b_bcount)
3251 eoff = bp->b_loffset + bp->b_bcount;
3254 * Set valid range. This is typically the entire buffer and thus the
3255 * entire page.
3257 if (eoff > soff) {
3258 vm_page_set_validclean(
3260 (vm_offset_t) (soff & PAGE_MASK),
3261 (vm_offset_t) (eoff - soff)
3267 * vfs_busy_pages:
3269 * This routine is called before a device strategy routine.
3270 * It is used to tell the VM system that paging I/O is in
3271 * progress, and treat the pages associated with the buffer
3272 * almost as being PG_BUSY. Also the object 'paging_in_progress'
3273 * flag is handled to make sure that the object doesn't become
3274 * inconsistant.
3276 * Since I/O has not been initiated yet, certain buffer flags
3277 * such as B_ERROR or B_INVAL may be in an inconsistant state
3278 * and should be ignored.
3280 void
3281 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3283 int i, bogus;
3284 struct lwp *lp = curthread->td_lwp;
3287 * The buffer's I/O command must already be set. If reading,
3288 * B_CACHE must be 0 (double check against callers only doing
3289 * I/O when B_CACHE is 0).
3291 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3292 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3294 if (bp->b_flags & B_VMIO) {
3295 vm_object_t obj;
3296 vm_ooffset_t foff;
3298 obj = vp->v_object;
3299 foff = bp->b_loffset;
3300 KASSERT(bp->b_loffset != NOOFFSET,
3301 ("vfs_busy_pages: no buffer offset"));
3302 vfs_setdirty(bp);
3304 retry:
3305 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3306 vm_page_t m = bp->b_xio.xio_pages[i];
3307 if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3308 goto retry;
3311 bogus = 0;
3312 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3313 vm_page_t m = bp->b_xio.xio_pages[i];
3315 vm_page_flag_clear(m, PG_ZERO);
3316 if ((bp->b_flags & B_CLUSTER) == 0) {
3317 vm_object_pip_add(obj, 1);
3318 vm_page_io_start(m);
3322 * When readying a vnode-backed buffer for a write
3323 * we must zero-fill any invalid portions of the
3324 * backing VM pages.
3326 * When readying a vnode-backed buffer for a read
3327 * we must replace any dirty pages with a bogus
3328 * page so we do not destroy dirty data when
3329 * filling in gaps. Dirty pages might not
3330 * necessarily be marked dirty yet, so use m->valid
3331 * as a reasonable test.
3333 * Bogus page replacement is, uh, bogus. We need
3334 * to find a better way.
3336 vm_page_protect(m, VM_PROT_NONE);
3337 if (bp->b_cmd == BUF_CMD_WRITE) {
3338 vfs_page_set_valid(bp, foff, i, m);
3339 } else if (m->valid == VM_PAGE_BITS_ALL) {
3340 bp->b_xio.xio_pages[i] = bogus_page;
3341 bogus++;
3343 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3345 if (bogus)
3346 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3347 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3351 * This is the easiest place to put the process accounting for the I/O
3352 * for now.
3354 if (lp != NULL) {
3355 if (bp->b_cmd == BUF_CMD_READ)
3356 lp->lwp_ru.ru_inblock++;
3357 else
3358 lp->lwp_ru.ru_oublock++;
3363 * vfs_clean_pages:
3365 * Tell the VM system that the pages associated with this buffer
3366 * are clean. This is used for delayed writes where the data is
3367 * going to go to disk eventually without additional VM intevention.
3369 * Note that while we only really need to clean through to b_bcount, we
3370 * just go ahead and clean through to b_bufsize.
3372 static void
3373 vfs_clean_pages(struct buf *bp)
3375 int i;
3377 if (bp->b_flags & B_VMIO) {
3378 vm_ooffset_t foff;
3380 foff = bp->b_loffset;
3381 KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3382 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3383 vm_page_t m = bp->b_xio.xio_pages[i];
3384 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3385 vm_ooffset_t eoff = noff;
3387 if (eoff > bp->b_loffset + bp->b_bufsize)
3388 eoff = bp->b_loffset + bp->b_bufsize;
3389 vfs_page_set_valid(bp, foff, i, m);
3390 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3391 foff = noff;
3397 * vfs_bio_set_validclean:
3399 * Set the range within the buffer to valid and clean. The range is
3400 * relative to the beginning of the buffer, b_loffset. Note that
3401 * b_loffset itself may be offset from the beginning of the first page.
3404 void
3405 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3407 if (bp->b_flags & B_VMIO) {
3408 int i;
3409 int n;
3412 * Fixup base to be relative to beginning of first page.
3413 * Set initial n to be the maximum number of bytes in the
3414 * first page that can be validated.
3417 base += (bp->b_loffset & PAGE_MASK);
3418 n = PAGE_SIZE - (base & PAGE_MASK);
3420 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3421 vm_page_t m = bp->b_xio.xio_pages[i];
3423 if (n > size)
3424 n = size;
3426 vm_page_set_validclean(m, base & PAGE_MASK, n);
3427 base += n;
3428 size -= n;
3429 n = PAGE_SIZE;
3435 * vfs_bio_clrbuf:
3437 * Clear a buffer. This routine essentially fakes an I/O, so we need
3438 * to clear B_ERROR and B_INVAL.
3440 * Note that while we only theoretically need to clear through b_bcount,
3441 * we go ahead and clear through b_bufsize.
3444 void
3445 vfs_bio_clrbuf(struct buf *bp)
3447 int i, mask = 0;
3448 caddr_t sa, ea;
3449 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3450 bp->b_flags &= ~(B_INVAL|B_ERROR);
3451 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3452 (bp->b_loffset & PAGE_MASK) == 0) {
3453 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3454 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3455 bp->b_resid = 0;
3456 return;
3458 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3459 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3460 bzero(bp->b_data, bp->b_bufsize);
3461 bp->b_xio.xio_pages[0]->valid |= mask;
3462 bp->b_resid = 0;
3463 return;
3466 ea = sa = bp->b_data;
3467 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3468 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3469 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3470 ea = (caddr_t)(vm_offset_t)ulmin(
3471 (u_long)(vm_offset_t)ea,
3472 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3473 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3474 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3475 continue;
3476 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3477 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3478 bzero(sa, ea - sa);
3480 } else {
3481 for (; sa < ea; sa += DEV_BSIZE, j++) {
3482 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3483 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3484 bzero(sa, DEV_BSIZE);
3487 bp->b_xio.xio_pages[i]->valid |= mask;
3488 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3490 bp->b_resid = 0;
3491 } else {
3492 clrbuf(bp);
3497 * vm_hold_load_pages:
3499 * Load pages into the buffer's address space. The pages are
3500 * allocated from the kernel object in order to reduce interference
3501 * with the any VM paging I/O activity. The range of loaded
3502 * pages will be wired.
3504 * If a page cannot be allocated, the 'pagedaemon' is woken up to
3505 * retrieve the full range (to - from) of pages.
3508 void
3509 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3511 vm_offset_t pg;
3512 vm_page_t p;
3513 int index;
3515 to = round_page(to);
3516 from = round_page(from);
3517 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3519 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3521 tryagain:
3524 * Note: must allocate system pages since blocking here
3525 * could intefere with paging I/O, no matter which
3526 * process we are.
3528 p = vm_page_alloc(&kernel_object,
3529 (pg >> PAGE_SHIFT),
3530 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3531 if (!p) {
3532 vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3533 vm_wait();
3534 goto tryagain;
3536 vm_page_wire(p);
3537 p->valid = VM_PAGE_BITS_ALL;
3538 vm_page_flag_clear(p, PG_ZERO);
3539 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3540 bp->b_xio.xio_pages[index] = p;
3541 vm_page_wakeup(p);
3543 bp->b_xio.xio_npages = index;
3547 * vm_hold_free_pages:
3549 * Return pages associated with the buffer back to the VM system.
3551 * The range of pages underlying the buffer's address space will
3552 * be unmapped and un-wired.
3554 void
3555 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3557 vm_offset_t pg;
3558 vm_page_t p;
3559 int index, newnpages;
3561 from = round_page(from);
3562 to = round_page(to);
3563 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3565 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3566 p = bp->b_xio.xio_pages[index];
3567 if (p && (index < bp->b_xio.xio_npages)) {
3568 if (p->busy) {
3569 kprintf("vm_hold_free_pages: doffset: %lld, loffset: %lld\n",
3570 bp->b_bio2.bio_offset, bp->b_loffset);
3572 bp->b_xio.xio_pages[index] = NULL;
3573 pmap_kremove(pg);
3574 vm_page_busy(p);
3575 vm_page_unwire(p, 0);
3576 vm_page_free(p);
3579 bp->b_xio.xio_npages = newnpages;
3583 * vmapbuf:
3585 * Map a user buffer into KVM via a pbuf. On return the buffer's
3586 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
3587 * initialized.
3590 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
3592 caddr_t addr;
3593 vm_offset_t va;
3594 vm_page_t m;
3595 int vmprot;
3596 int error;
3597 int pidx;
3598 int i;
3601 * bp had better have a command and it better be a pbuf.
3603 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3604 KKASSERT(bp->b_flags & B_PAGING);
3606 if (bytes < 0)
3607 return (-1);
3610 * Map the user data into KVM. Mappings have to be page-aligned.
3612 addr = (caddr_t)trunc_page((vm_offset_t)udata);
3613 pidx = 0;
3615 vmprot = VM_PROT_READ;
3616 if (bp->b_cmd == BUF_CMD_READ)
3617 vmprot |= VM_PROT_WRITE;
3619 while (addr < udata + bytes) {
3621 * Do the vm_fault if needed; do the copy-on-write thing
3622 * when reading stuff off device into memory.
3624 * vm_fault_page*() returns a held VM page.
3626 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
3627 va = trunc_page(va);
3629 m = vm_fault_page_quick(va, vmprot, &error);
3630 if (m == NULL) {
3631 for (i = 0; i < pidx; ++i) {
3632 vm_page_unhold(bp->b_xio.xio_pages[i]);
3633 bp->b_xio.xio_pages[i] = NULL;
3635 return(-1);
3637 bp->b_xio.xio_pages[pidx] = m;
3638 addr += PAGE_SIZE;
3639 ++pidx;
3643 * Map the page array and set the buffer fields to point to
3644 * the mapped data buffer.
3646 if (pidx > btoc(MAXPHYS))
3647 panic("vmapbuf: mapped more than MAXPHYS");
3648 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
3650 bp->b_xio.xio_npages = pidx;
3651 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
3652 bp->b_bcount = bytes;
3653 bp->b_bufsize = bytes;
3654 return(0);
3658 * vunmapbuf:
3660 * Free the io map PTEs associated with this IO operation.
3661 * We also invalidate the TLB entries and restore the original b_addr.
3663 void
3664 vunmapbuf(struct buf *bp)
3666 int pidx;
3667 int npages;
3669 KKASSERT(bp->b_flags & B_PAGING);
3671 npages = bp->b_xio.xio_npages;
3672 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3673 for (pidx = 0; pidx < npages; ++pidx) {
3674 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
3675 bp->b_xio.xio_pages[pidx] = NULL;
3677 bp->b_xio.xio_npages = 0;
3678 bp->b_data = bp->b_kvabase;
3682 * Scan all buffers in the system and issue the callback.
3685 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
3687 int count = 0;
3688 int error;
3689 int n;
3691 for (n = 0; n < nbuf; ++n) {
3692 if ((error = callback(&buf[n], info)) < 0) {
3693 count = error;
3694 break;
3696 count += error;
3698 return (count);
3702 * print out statistics from the current status of the buffer pool
3703 * this can be toggeled by the system control option debug.syncprt
3705 #ifdef DEBUG
3706 void
3707 vfs_bufstats(void)
3709 int i, j, count;
3710 struct buf *bp;
3711 struct bqueues *dp;
3712 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3713 static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3715 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3716 count = 0;
3717 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3718 counts[j] = 0;
3719 crit_enter();
3720 TAILQ_FOREACH(bp, dp, b_freelist) {
3721 counts[bp->b_bufsize/PAGE_SIZE]++;
3722 count++;
3724 crit_exit();
3725 kprintf("%s: total-%d", bname[i], count);
3726 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3727 if (counts[j] != 0)
3728 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
3729 kprintf("\n");
3732 #endif
3734 #ifdef DDB
3736 DB_SHOW_COMMAND(buffer, db_show_buffer)
3738 /* get args */
3739 struct buf *bp = (struct buf *)addr;
3741 if (!have_addr) {
3742 db_printf("usage: show buffer <addr>\n");
3743 return;
3746 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3747 db_printf("b_cmd = %d\n", bp->b_cmd);
3748 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
3749 "b_resid = %d\n, b_data = %p, "
3750 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
3751 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3752 bp->b_data, bp->b_bio2.bio_offset, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_offset : (off_t)-1));
3753 if (bp->b_xio.xio_npages) {
3754 int i;
3755 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3756 bp->b_xio.xio_npages);
3757 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3758 vm_page_t m;
3759 m = bp->b_xio.xio_pages[i];
3760 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3761 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3762 if ((i + 1) < bp->b_xio.xio_npages)
3763 db_printf(",");
3765 db_printf("\n");
3768 #endif /* DDB */