HAMMER 40B/Many: Inode/link-count sequencer cleanup pass.
[dragonfly.git] / sys / kern / lwkt_thread.c
blob677a234673ecbe535a7eb8af04d77ee7ac46e90b
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.112 2008/03/01 06:21:28 dillon Exp $
38 * Each cpu in a system has its own self-contained light weight kernel
39 * thread scheduler, which means that generally speaking we only need
40 * to use a critical section to avoid problems. Foreign thread
41 * scheduling is queued via (async) IPIs.
44 #ifdef _KERNEL
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/sysctl.h>
53 #include <sys/kthread.h>
54 #include <machine/cpu.h>
55 #include <sys/lock.h>
56 #include <sys/caps.h>
57 #include <sys/spinlock.h>
58 #include <sys/ktr.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_zone.h>
73 #include <machine/stdarg.h>
74 #include <machine/smp.h>
76 #else
78 #include <sys/stdint.h>
79 #include <libcaps/thread.h>
80 #include <sys/thread.h>
81 #include <sys/msgport.h>
82 #include <sys/errno.h>
83 #include <libcaps/globaldata.h>
84 #include <machine/cpufunc.h>
85 #include <sys/thread2.h>
86 #include <sys/msgport2.h>
87 #include <stdio.h>
88 #include <stdlib.h>
89 #include <string.h>
90 #include <machine/lock.h>
91 #include <machine/atomic.h>
92 #include <machine/cpu.h>
94 #endif
96 static int untimely_switch = 0;
97 #ifdef INVARIANTS
98 static int panic_on_cscount = 0;
99 #endif
100 static __int64_t switch_count = 0;
101 static __int64_t preempt_hit = 0;
102 static __int64_t preempt_miss = 0;
103 static __int64_t preempt_weird = 0;
104 static __int64_t token_contention_count = 0;
105 static __int64_t mplock_contention_count = 0;
106 static int lwkt_use_spin_port;
108 #ifdef _KERNEL
111 * We can make all thread ports use the spin backend instead of the thread
112 * backend. This should only be set to debug the spin backend.
114 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
116 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
117 #ifdef INVARIANTS
118 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
119 #endif
120 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
121 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
123 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
124 #ifdef INVARIANTS
125 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
126 &token_contention_count, 0, "spinning due to token contention");
127 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
128 &mplock_contention_count, 0, "spinning due to MPLOCK contention");
129 #endif
130 #endif
133 * Kernel Trace
135 #ifdef _KERNEL
137 #if !defined(KTR_GIANT_CONTENTION)
138 #define KTR_GIANT_CONTENTION KTR_ALL
139 #endif
141 KTR_INFO_MASTER(giant);
142 KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
143 KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
145 #define loggiant(name) KTR_LOG(giant_ ## name, curthread)
147 #endif
150 * These helper procedures handle the runq, they can only be called from
151 * within a critical section.
153 * WARNING! Prior to SMP being brought up it is possible to enqueue and
154 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
155 * instead of 'mycpu' when referencing the globaldata structure. Once
156 * SMP live enqueuing and dequeueing only occurs on the current cpu.
158 static __inline
159 void
160 _lwkt_dequeue(thread_t td)
162 if (td->td_flags & TDF_RUNQ) {
163 int nq = td->td_pri & TDPRI_MASK;
164 struct globaldata *gd = td->td_gd;
166 td->td_flags &= ~TDF_RUNQ;
167 TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
168 /* runqmask is passively cleaned up by the switcher */
172 static __inline
173 void
174 _lwkt_enqueue(thread_t td)
176 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
177 int nq = td->td_pri & TDPRI_MASK;
178 struct globaldata *gd = td->td_gd;
180 td->td_flags |= TDF_RUNQ;
181 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
182 gd->gd_runqmask |= 1 << nq;
187 * Schedule a thread to run. As the current thread we can always safely
188 * schedule ourselves, and a shortcut procedure is provided for that
189 * function.
191 * (non-blocking, self contained on a per cpu basis)
193 void
194 lwkt_schedule_self(thread_t td)
196 crit_enter_quick(td);
197 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
198 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
199 _lwkt_enqueue(td);
200 crit_exit_quick(td);
204 * Deschedule a thread.
206 * (non-blocking, self contained on a per cpu basis)
208 void
209 lwkt_deschedule_self(thread_t td)
211 crit_enter_quick(td);
212 _lwkt_dequeue(td);
213 crit_exit_quick(td);
216 #ifdef _KERNEL
219 * LWKTs operate on a per-cpu basis
221 * WARNING! Called from early boot, 'mycpu' may not work yet.
223 void
224 lwkt_gdinit(struct globaldata *gd)
226 int i;
228 for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
229 TAILQ_INIT(&gd->gd_tdrunq[i]);
230 gd->gd_runqmask = 0;
231 TAILQ_INIT(&gd->gd_tdallq);
234 #endif /* _KERNEL */
237 * Create a new thread. The thread must be associated with a process context
238 * or LWKT start address before it can be scheduled. If the target cpu is
239 * -1 the thread will be created on the current cpu.
241 * If you intend to create a thread without a process context this function
242 * does everything except load the startup and switcher function.
244 thread_t
245 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
247 void *stack;
248 globaldata_t gd = mycpu;
250 if (td == NULL) {
251 crit_enter_gd(gd);
252 if (gd->gd_tdfreecount > 0) {
253 --gd->gd_tdfreecount;
254 td = TAILQ_FIRST(&gd->gd_tdfreeq);
255 KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
256 ("lwkt_alloc_thread: unexpected NULL or corrupted td"));
257 TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq);
258 crit_exit_gd(gd);
259 flags |= td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
260 } else {
261 crit_exit_gd(gd);
262 #ifdef _KERNEL
263 td = zalloc(thread_zone);
264 #else
265 td = malloc(sizeof(struct thread));
266 #endif
267 td->td_kstack = NULL;
268 td->td_kstack_size = 0;
269 flags |= TDF_ALLOCATED_THREAD;
272 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
273 if (flags & TDF_ALLOCATED_STACK) {
274 #ifdef _KERNEL
275 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
276 #else
277 libcaps_free_stack(stack, td->td_kstack_size);
278 #endif
279 stack = NULL;
282 if (stack == NULL) {
283 #ifdef _KERNEL
284 stack = (void *)kmem_alloc(&kernel_map, stksize);
285 #else
286 stack = libcaps_alloc_stack(stksize);
287 #endif
288 flags |= TDF_ALLOCATED_STACK;
290 if (cpu < 0)
291 lwkt_init_thread(td, stack, stksize, flags, mycpu);
292 else
293 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
294 return(td);
297 #ifdef _KERNEL
300 * Initialize a preexisting thread structure. This function is used by
301 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
303 * All threads start out in a critical section at a priority of
304 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
305 * appropriate. This function may send an IPI message when the
306 * requested cpu is not the current cpu and consequently gd_tdallq may
307 * not be initialized synchronously from the point of view of the originating
308 * cpu.
310 * NOTE! we have to be careful in regards to creating threads for other cpus
311 * if SMP has not yet been activated.
313 #ifdef SMP
315 static void
316 lwkt_init_thread_remote(void *arg)
318 thread_t td = arg;
321 * Protected by critical section held by IPI dispatch
323 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
326 #endif
328 void
329 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
330 struct globaldata *gd)
332 globaldata_t mygd = mycpu;
334 bzero(td, sizeof(struct thread));
335 td->td_kstack = stack;
336 td->td_kstack_size = stksize;
337 td->td_flags = flags;
338 td->td_gd = gd;
339 td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
340 #ifdef SMP
341 if ((flags & TDF_MPSAFE) == 0)
342 td->td_mpcount = 1;
343 #endif
344 if (lwkt_use_spin_port)
345 lwkt_initport_spin(&td->td_msgport);
346 else
347 lwkt_initport_thread(&td->td_msgport, td);
348 pmap_init_thread(td);
349 #ifdef SMP
351 * Normally initializing a thread for a remote cpu requires sending an
352 * IPI. However, the idlethread is setup before the other cpus are
353 * activated so we have to treat it as a special case. XXX manipulation
354 * of gd_tdallq requires the BGL.
356 if (gd == mygd || td == &gd->gd_idlethread) {
357 crit_enter_gd(mygd);
358 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
359 crit_exit_gd(mygd);
360 } else {
361 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
363 #else
364 crit_enter_gd(mygd);
365 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
366 crit_exit_gd(mygd);
367 #endif
370 #endif /* _KERNEL */
372 void
373 lwkt_set_comm(thread_t td, const char *ctl, ...)
375 __va_list va;
377 __va_start(va, ctl);
378 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
379 __va_end(va);
382 void
383 lwkt_hold(thread_t td)
385 ++td->td_refs;
388 void
389 lwkt_rele(thread_t td)
391 KKASSERT(td->td_refs > 0);
392 --td->td_refs;
395 #ifdef _KERNEL
397 void
398 lwkt_wait_free(thread_t td)
400 while (td->td_refs)
401 tsleep(td, 0, "tdreap", hz);
404 #endif
406 void
407 lwkt_free_thread(thread_t td)
409 struct globaldata *gd = mycpu;
411 KASSERT((td->td_flags & TDF_RUNNING) == 0,
412 ("lwkt_free_thread: did not exit! %p", td));
414 crit_enter_gd(gd);
415 if (gd->gd_tdfreecount < CACHE_NTHREADS &&
416 (td->td_flags & TDF_ALLOCATED_THREAD)
418 ++gd->gd_tdfreecount;
419 TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
420 crit_exit_gd(gd);
421 } else {
422 crit_exit_gd(gd);
423 if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
424 #ifdef _KERNEL
425 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
426 #else
427 libcaps_free_stack(td->td_kstack, td->td_kstack_size);
428 #endif
429 /* gd invalid */
430 td->td_kstack = NULL;
431 td->td_kstack_size = 0;
433 if (td->td_flags & TDF_ALLOCATED_THREAD) {
434 #ifdef _KERNEL
435 zfree(thread_zone, td);
436 #else
437 free(td);
438 #endif
445 * Switch to the next runnable lwkt. If no LWKTs are runnable then
446 * switch to the idlethread. Switching must occur within a critical
447 * section to avoid races with the scheduling queue.
449 * We always have full control over our cpu's run queue. Other cpus
450 * that wish to manipulate our queue must use the cpu_*msg() calls to
451 * talk to our cpu, so a critical section is all that is needed and
452 * the result is very, very fast thread switching.
454 * The LWKT scheduler uses a fixed priority model and round-robins at
455 * each priority level. User process scheduling is a totally
456 * different beast and LWKT priorities should not be confused with
457 * user process priorities.
459 * The MP lock may be out of sync with the thread's td_mpcount. lwkt_switch()
460 * cleans it up. Note that the td_switch() function cannot do anything that
461 * requires the MP lock since the MP lock will have already been setup for
462 * the target thread (not the current thread). It's nice to have a scheduler
463 * that does not need the MP lock to work because it allows us to do some
464 * really cool high-performance MP lock optimizations.
466 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
467 * is not called by the current thread in the preemption case, only when
468 * the preempting thread blocks (in order to return to the original thread).
470 void
471 lwkt_switch(void)
473 globaldata_t gd = mycpu;
474 thread_t td = gd->gd_curthread;
475 thread_t ntd;
476 #ifdef SMP
477 int mpheld;
478 #endif
481 * Switching from within a 'fast' (non thread switched) interrupt or IPI
482 * is illegal. However, we may have to do it anyway if we hit a fatal
483 * kernel trap or we have paniced.
485 * If this case occurs save and restore the interrupt nesting level.
487 if (gd->gd_intr_nesting_level) {
488 int savegdnest;
489 int savegdtrap;
491 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
492 panic("lwkt_switch: cannot switch from within "
493 "a fast interrupt, yet, td %p\n", td);
494 } else {
495 savegdnest = gd->gd_intr_nesting_level;
496 savegdtrap = gd->gd_trap_nesting_level;
497 gd->gd_intr_nesting_level = 0;
498 gd->gd_trap_nesting_level = 0;
499 if ((td->td_flags & TDF_PANICWARN) == 0) {
500 td->td_flags |= TDF_PANICWARN;
501 kprintf("Warning: thread switch from interrupt or IPI, "
502 "thread %p (%s)\n", td, td->td_comm);
503 #ifdef DDB
504 db_print_backtrace();
505 #endif
507 lwkt_switch();
508 gd->gd_intr_nesting_level = savegdnest;
509 gd->gd_trap_nesting_level = savegdtrap;
510 return;
515 * Passive release (used to transition from user to kernel mode
516 * when we block or switch rather then when we enter the kernel).
517 * This function is NOT called if we are switching into a preemption
518 * or returning from a preemption. Typically this causes us to lose
519 * our current process designation (if we have one) and become a true
520 * LWKT thread, and may also hand the current process designation to
521 * another process and schedule thread.
523 if (td->td_release)
524 td->td_release(td);
526 crit_enter_gd(gd);
527 if (td->td_toks)
528 lwkt_relalltokens(td);
531 * We had better not be holding any spin locks, but don't get into an
532 * endless panic loop.
534 KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
535 ("lwkt_switch: still holding a shared spinlock %p!",
536 gd->gd_spinlock_rd));
537 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
538 ("lwkt_switch: still holding %d exclusive spinlocks!",
539 gd->gd_spinlocks_wr));
542 #ifdef SMP
544 * td_mpcount cannot be used to determine if we currently hold the
545 * MP lock because get_mplock() will increment it prior to attempting
546 * to get the lock, and switch out if it can't. Our ownership of
547 * the actual lock will remain stable while we are in a critical section
548 * (but, of course, another cpu may own or release the lock so the
549 * actual value of mp_lock is not stable).
551 mpheld = MP_LOCK_HELD();
552 #ifdef INVARIANTS
553 if (td->td_cscount) {
554 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
555 td);
556 if (panic_on_cscount)
557 panic("switching while mastering cpusync");
559 #endif
560 #endif
561 if ((ntd = td->td_preempted) != NULL) {
563 * We had preempted another thread on this cpu, resume the preempted
564 * thread. This occurs transparently, whether the preempted thread
565 * was scheduled or not (it may have been preempted after descheduling
566 * itself).
568 * We have to setup the MP lock for the original thread after backing
569 * out the adjustment that was made to curthread when the original
570 * was preempted.
572 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
573 #ifdef SMP
574 if (ntd->td_mpcount && mpheld == 0) {
575 panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
576 td, ntd, td->td_mpcount, ntd->td_mpcount);
578 if (ntd->td_mpcount) {
579 td->td_mpcount -= ntd->td_mpcount;
580 KKASSERT(td->td_mpcount >= 0);
582 #endif
583 ntd->td_flags |= TDF_PREEMPT_DONE;
586 * XXX. The interrupt may have woken a thread up, we need to properly
587 * set the reschedule flag if the originally interrupted thread is at
588 * a lower priority.
590 if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
591 need_lwkt_resched();
592 /* YYY release mp lock on switchback if original doesn't need it */
593 } else {
595 * Priority queue / round-robin at each priority. Note that user
596 * processes run at a fixed, low priority and the user process
597 * scheduler deals with interactions between user processes
598 * by scheduling and descheduling them from the LWKT queue as
599 * necessary.
601 * We have to adjust the MP lock for the target thread. If we
602 * need the MP lock and cannot obtain it we try to locate a
603 * thread that does not need the MP lock. If we cannot, we spin
604 * instead of HLT.
606 * A similar issue exists for the tokens held by the target thread.
607 * If we cannot obtain ownership of the tokens we cannot immediately
608 * schedule the thread.
612 * If an LWKT reschedule was requested, well that is what we are
613 * doing now so clear it.
615 clear_lwkt_resched();
616 again:
617 if (gd->gd_runqmask) {
618 int nq = bsrl(gd->gd_runqmask);
619 if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
620 gd->gd_runqmask &= ~(1 << nq);
621 goto again;
623 #ifdef SMP
625 * THREAD SELECTION FOR AN SMP MACHINE BUILD
627 * If the target needs the MP lock and we couldn't get it,
628 * or if the target is holding tokens and we could not
629 * gain ownership of the tokens, continue looking for a
630 * thread to schedule and spin instead of HLT if we can't.
632 * NOTE: the mpheld variable invalid after this conditional, it
633 * can change due to both cpu_try_mplock() returning success
634 * AND interactions in lwkt_getalltokens() due to the fact that
635 * we are trying to check the mpcount of a thread other then
636 * the current thread. Because of this, if the current thread
637 * is not holding td_mpcount, an IPI indirectly run via
638 * lwkt_getalltokens() can obtain and release the MP lock and
639 * cause the core MP lock to be released.
641 if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
642 (ntd->td_toks && lwkt_getalltokens(ntd) == 0)
644 u_int32_t rqmask = gd->gd_runqmask;
646 mpheld = MP_LOCK_HELD();
647 ntd = NULL;
648 while (rqmask) {
649 TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
650 if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
651 /* spinning due to MP lock being held */
652 #ifdef INVARIANTS
653 ++mplock_contention_count;
654 #endif
655 /* mplock still not held, 'mpheld' still valid */
656 continue;
660 * mpheld state invalid after getalltokens call returns
661 * failure, but the variable is only needed for
662 * the loop.
664 if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
665 /* spinning due to token contention */
666 #ifdef INVARIANTS
667 ++token_contention_count;
668 #endif
669 mpheld = MP_LOCK_HELD();
670 continue;
672 break;
674 if (ntd)
675 break;
676 rqmask &= ~(1 << nq);
677 nq = bsrl(rqmask);
679 if (ntd == NULL) {
680 cpu_mplock_contested();
681 ntd = &gd->gd_idlethread;
682 ntd->td_flags |= TDF_IDLE_NOHLT;
683 goto using_idle_thread;
684 } else {
685 ++gd->gd_cnt.v_swtch;
686 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
687 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
689 } else {
690 ++gd->gd_cnt.v_swtch;
691 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
692 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
694 #else
696 * THREAD SELECTION FOR A UP MACHINE BUILD. We don't have to
697 * worry about tokens or the BGL. However, we still have
698 * to call lwkt_getalltokens() in order to properly detect
699 * stale tokens. This call cannot fail for a UP build!
701 lwkt_getalltokens(ntd);
702 ++gd->gd_cnt.v_swtch;
703 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
704 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
705 #endif
706 } else {
708 * We have nothing to run but only let the idle loop halt
709 * the cpu if there are no pending interrupts.
711 ntd = &gd->gd_idlethread;
712 if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
713 ntd->td_flags |= TDF_IDLE_NOHLT;
714 #ifdef SMP
715 using_idle_thread:
717 * The idle thread should not be holding the MP lock unless we
718 * are trapping in the kernel or in a panic. Since we select the
719 * idle thread unconditionally when no other thread is available,
720 * if the MP lock is desired during a panic or kernel trap, we
721 * have to loop in the scheduler until we get it.
723 if (ntd->td_mpcount) {
724 mpheld = MP_LOCK_HELD();
725 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
726 panic("Idle thread %p was holding the BGL!", ntd);
727 } else if (mpheld == 0) {
728 cpu_mplock_contested();
729 goto again;
732 #endif
735 KASSERT(ntd->td_pri >= TDPRI_CRIT,
736 ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
739 * Do the actual switch. If the new target does not need the MP lock
740 * and we are holding it, release the MP lock. If the new target requires
741 * the MP lock we have already acquired it for the target.
743 #ifdef SMP
744 if (ntd->td_mpcount == 0 ) {
745 if (MP_LOCK_HELD())
746 cpu_rel_mplock();
747 } else {
748 ASSERT_MP_LOCK_HELD(ntd);
750 #endif
751 if (td != ntd) {
752 ++switch_count;
753 td->td_switch(ntd);
755 /* NOTE: current cpu may have changed after switch */
756 crit_exit_quick(td);
760 * Request that the target thread preempt the current thread. Preemption
761 * only works under a specific set of conditions:
763 * - We are not preempting ourselves
764 * - The target thread is owned by the current cpu
765 * - We are not currently being preempted
766 * - The target is not currently being preempted
767 * - We are not holding any spin locks
768 * - The target thread is not holding any tokens
769 * - We are able to satisfy the target's MP lock requirements (if any).
771 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
772 * this is called via lwkt_schedule() through the td_preemptable callback.
773 * critpri is the managed critical priority that we should ignore in order
774 * to determine whether preemption is possible (aka usually just the crit
775 * priority of lwkt_schedule() itself).
777 * XXX at the moment we run the target thread in a critical section during
778 * the preemption in order to prevent the target from taking interrupts
779 * that *WE* can't. Preemption is strictly limited to interrupt threads
780 * and interrupt-like threads, outside of a critical section, and the
781 * preempted source thread will be resumed the instant the target blocks
782 * whether or not the source is scheduled (i.e. preemption is supposed to
783 * be as transparent as possible).
785 * The target thread inherits our MP count (added to its own) for the
786 * duration of the preemption in order to preserve the atomicy of the
787 * MP lock during the preemption. Therefore, any preempting targets must be
788 * careful in regards to MP assertions. Note that the MP count may be
789 * out of sync with the physical mp_lock, but we do not have to preserve
790 * the original ownership of the lock if it was out of synch (that is, we
791 * can leave it synchronized on return).
793 void
794 lwkt_preempt(thread_t ntd, int critpri)
796 struct globaldata *gd = mycpu;
797 thread_t td;
798 #ifdef SMP
799 int mpheld;
800 int savecnt;
801 #endif
804 * The caller has put us in a critical section. We can only preempt
805 * if the caller of the caller was not in a critical section (basically
806 * a local interrupt), as determined by the 'critpri' parameter. We
807 * also can't preempt if the caller is holding any spinlocks (even if
808 * he isn't in a critical section). This also handles the tokens test.
810 * YYY The target thread must be in a critical section (else it must
811 * inherit our critical section? I dunno yet).
813 * Set need_lwkt_resched() unconditionally for now YYY.
815 KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
817 td = gd->gd_curthread;
818 if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
819 ++preempt_miss;
820 return;
822 if ((td->td_pri & ~TDPRI_MASK) > critpri) {
823 ++preempt_miss;
824 need_lwkt_resched();
825 return;
827 #ifdef SMP
828 if (ntd->td_gd != gd) {
829 ++preempt_miss;
830 need_lwkt_resched();
831 return;
833 #endif
835 * Take the easy way out and do not preempt if we are holding
836 * any spinlocks. We could test whether the thread(s) being
837 * preempted interlock against the target thread's tokens and whether
838 * we can get all the target thread's tokens, but this situation
839 * should not occur very often so its easier to simply not preempt.
840 * Also, plain spinlocks are impossible to figure out at this point so
841 * just don't preempt.
843 * Do not try to preempt if the target thread is holding any tokens.
844 * We could try to acquire the tokens but this case is so rare there
845 * is no need to support it.
847 if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
848 ++preempt_miss;
849 need_lwkt_resched();
850 return;
852 if (ntd->td_toks) {
853 ++preempt_miss;
854 need_lwkt_resched();
855 return;
857 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
858 ++preempt_weird;
859 need_lwkt_resched();
860 return;
862 if (ntd->td_preempted) {
863 ++preempt_hit;
864 need_lwkt_resched();
865 return;
867 #ifdef SMP
869 * note: an interrupt might have occured just as we were transitioning
870 * to or from the MP lock. In this case td_mpcount will be pre-disposed
871 * (non-zero) but not actually synchronized with the actual state of the
872 * lock. We can use it to imply an MP lock requirement for the
873 * preemption but we cannot use it to test whether we hold the MP lock
874 * or not.
876 savecnt = td->td_mpcount;
877 mpheld = MP_LOCK_HELD();
878 ntd->td_mpcount += td->td_mpcount;
879 if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
880 ntd->td_mpcount -= td->td_mpcount;
881 ++preempt_miss;
882 need_lwkt_resched();
883 return;
885 #endif
888 * Since we are able to preempt the current thread, there is no need to
889 * call need_lwkt_resched().
891 ++preempt_hit;
892 ntd->td_preempted = td;
893 td->td_flags |= TDF_PREEMPT_LOCK;
894 td->td_switch(ntd);
895 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
896 #ifdef SMP
897 KKASSERT(savecnt == td->td_mpcount);
898 mpheld = MP_LOCK_HELD();
899 if (mpheld && td->td_mpcount == 0)
900 cpu_rel_mplock();
901 else if (mpheld == 0 && td->td_mpcount)
902 panic("lwkt_preempt(): MP lock was not held through");
903 #endif
904 ntd->td_preempted = NULL;
905 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
909 * Yield our thread while higher priority threads are pending. This is
910 * typically called when we leave a critical section but it can be safely
911 * called while we are in a critical section.
913 * This function will not generally yield to equal priority threads but it
914 * can occur as a side effect. Note that lwkt_switch() is called from
915 * inside the critical section to prevent its own crit_exit() from reentering
916 * lwkt_yield_quick().
918 * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
919 * came along but was blocked and made pending.
921 * (self contained on a per cpu basis)
923 void
924 lwkt_yield_quick(void)
926 globaldata_t gd = mycpu;
927 thread_t td = gd->gd_curthread;
930 * gd_reqflags is cleared in splz if the cpl is 0. If we were to clear
931 * it with a non-zero cpl then we might not wind up calling splz after
932 * a task switch when the critical section is exited even though the
933 * new task could accept the interrupt.
935 * XXX from crit_exit() only called after last crit section is released.
936 * If called directly will run splz() even if in a critical section.
938 * td_nest_count prevent deep nesting via splz() or doreti(). Note that
939 * except for this special case, we MUST call splz() here to handle any
940 * pending ints, particularly after we switch, or we might accidently
941 * halt the cpu with interrupts pending.
943 if (gd->gd_reqflags && td->td_nest_count < 2)
944 splz();
947 * YYY enabling will cause wakeup() to task-switch, which really
948 * confused the old 4.x code. This is a good way to simulate
949 * preemption and MP without actually doing preemption or MP, because a
950 * lot of code assumes that wakeup() does not block.
952 if (untimely_switch && td->td_nest_count == 0 &&
953 gd->gd_intr_nesting_level == 0
955 crit_enter_quick(td);
957 * YYY temporary hacks until we disassociate the userland scheduler
958 * from the LWKT scheduler.
960 if (td->td_flags & TDF_RUNQ) {
961 lwkt_switch(); /* will not reenter yield function */
962 } else {
963 lwkt_schedule_self(td); /* make sure we are scheduled */
964 lwkt_switch(); /* will not reenter yield function */
965 lwkt_deschedule_self(td); /* make sure we are descheduled */
967 crit_exit_noyield(td);
972 * This implements a normal yield which, unlike _quick, will yield to equal
973 * priority threads as well. Note that gd_reqflags tests will be handled by
974 * the crit_exit() call in lwkt_switch().
976 * (self contained on a per cpu basis)
978 void
979 lwkt_yield(void)
981 lwkt_schedule_self(curthread);
982 lwkt_switch();
986 * Generic schedule. Possibly schedule threads belonging to other cpus and
987 * deal with threads that might be blocked on a wait queue.
989 * We have a little helper inline function which does additional work after
990 * the thread has been enqueued, including dealing with preemption and
991 * setting need_lwkt_resched() (which prevents the kernel from returning
992 * to userland until it has processed higher priority threads).
994 * It is possible for this routine to be called after a failed _enqueue
995 * (due to the target thread migrating, sleeping, or otherwise blocked).
996 * We have to check that the thread is actually on the run queue!
998 static __inline
999 void
1000 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri)
1002 if (ntd->td_flags & TDF_RUNQ) {
1003 if (ntd->td_preemptable) {
1004 ntd->td_preemptable(ntd, cpri); /* YYY +token */
1005 } else if ((ntd->td_flags & TDF_NORESCHED) == 0 &&
1006 (ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK)
1008 need_lwkt_resched();
1013 void
1014 lwkt_schedule(thread_t td)
1016 globaldata_t mygd = mycpu;
1018 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1019 crit_enter_gd(mygd);
1020 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1021 if (td == mygd->gd_curthread) {
1022 _lwkt_enqueue(td);
1023 } else {
1025 * If we own the thread, there is no race (since we are in a
1026 * critical section). If we do not own the thread there might
1027 * be a race but the target cpu will deal with it.
1029 #ifdef SMP
1030 if (td->td_gd == mygd) {
1031 _lwkt_enqueue(td);
1032 _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1033 } else {
1034 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1036 #else
1037 _lwkt_enqueue(td);
1038 _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1039 #endif
1041 crit_exit_gd(mygd);
1044 #ifdef SMP
1047 * Thread migration using a 'Pull' method. The thread may or may not be
1048 * the current thread. It MUST be descheduled and in a stable state.
1049 * lwkt_giveaway() must be called on the cpu owning the thread.
1051 * At any point after lwkt_giveaway() is called, the target cpu may
1052 * 'pull' the thread by calling lwkt_acquire().
1054 * MPSAFE - must be called under very specific conditions.
1056 void
1057 lwkt_giveaway(thread_t td)
1059 globaldata_t gd = mycpu;
1061 crit_enter_gd(gd);
1062 KKASSERT(td->td_gd == gd);
1063 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1064 td->td_flags |= TDF_MIGRATING;
1065 crit_exit_gd(gd);
1068 void
1069 lwkt_acquire(thread_t td)
1071 globaldata_t gd;
1072 globaldata_t mygd;
1074 KKASSERT(td->td_flags & TDF_MIGRATING);
1075 gd = td->td_gd;
1076 mygd = mycpu;
1077 if (gd != mycpu) {
1078 cpu_lfence();
1079 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1080 crit_enter_gd(mygd);
1081 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK))
1082 cpu_lfence();
1083 td->td_gd = mygd;
1084 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1085 td->td_flags &= ~TDF_MIGRATING;
1086 crit_exit_gd(mygd);
1087 } else {
1088 crit_enter_gd(mygd);
1089 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1090 td->td_flags &= ~TDF_MIGRATING;
1091 crit_exit_gd(mygd);
1095 #endif
1098 * Generic deschedule. Descheduling threads other then your own should be
1099 * done only in carefully controlled circumstances. Descheduling is
1100 * asynchronous.
1102 * This function may block if the cpu has run out of messages.
1104 void
1105 lwkt_deschedule(thread_t td)
1107 crit_enter();
1108 #ifdef SMP
1109 if (td == curthread) {
1110 _lwkt_dequeue(td);
1111 } else {
1112 if (td->td_gd == mycpu) {
1113 _lwkt_dequeue(td);
1114 } else {
1115 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1118 #else
1119 _lwkt_dequeue(td);
1120 #endif
1121 crit_exit();
1125 * Set the target thread's priority. This routine does not automatically
1126 * switch to a higher priority thread, LWKT threads are not designed for
1127 * continuous priority changes. Yield if you want to switch.
1129 * We have to retain the critical section count which uses the high bits
1130 * of the td_pri field. The specified priority may also indicate zero or
1131 * more critical sections by adding TDPRI_CRIT*N.
1133 * Note that we requeue the thread whether it winds up on a different runq
1134 * or not. uio_yield() depends on this and the routine is not normally
1135 * called with the same priority otherwise.
1137 void
1138 lwkt_setpri(thread_t td, int pri)
1140 KKASSERT(pri >= 0);
1141 KKASSERT(td->td_gd == mycpu);
1142 crit_enter();
1143 if (td->td_flags & TDF_RUNQ) {
1144 _lwkt_dequeue(td);
1145 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1146 _lwkt_enqueue(td);
1147 } else {
1148 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1150 crit_exit();
1153 void
1154 lwkt_setpri_self(int pri)
1156 thread_t td = curthread;
1158 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1159 crit_enter();
1160 if (td->td_flags & TDF_RUNQ) {
1161 _lwkt_dequeue(td);
1162 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1163 _lwkt_enqueue(td);
1164 } else {
1165 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1167 crit_exit();
1171 * Determine if there is a runnable thread at a higher priority then
1172 * the current thread. lwkt_setpri() does not check this automatically.
1173 * Return 1 if there is, 0 if there isn't.
1175 * Example: if bit 31 of runqmask is set and the current thread is priority
1176 * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff.
1178 * If nq reaches 31 the shift operation will overflow to 0 and we will wind
1179 * up comparing against 0xffffffff, a comparison that will always be false.
1182 lwkt_checkpri_self(void)
1184 globaldata_t gd = mycpu;
1185 thread_t td = gd->gd_curthread;
1186 int nq = td->td_pri & TDPRI_MASK;
1188 while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) {
1189 if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1]))
1190 return(1);
1191 ++nq;
1193 return(0);
1197 * Migrate the current thread to the specified cpu.
1199 * This is accomplished by descheduling ourselves from the current cpu,
1200 * moving our thread to the tdallq of the target cpu, IPI messaging the
1201 * target cpu, and switching out. TDF_MIGRATING prevents scheduling
1202 * races while the thread is being migrated.
1204 #ifdef SMP
1205 static void lwkt_setcpu_remote(void *arg);
1206 #endif
1208 void
1209 lwkt_setcpu_self(globaldata_t rgd)
1211 #ifdef SMP
1212 thread_t td = curthread;
1214 if (td->td_gd != rgd) {
1215 crit_enter_quick(td);
1216 td->td_flags |= TDF_MIGRATING;
1217 lwkt_deschedule_self(td);
1218 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1219 lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1220 lwkt_switch();
1221 /* we are now on the target cpu */
1222 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1223 crit_exit_quick(td);
1225 #endif
1228 void
1229 lwkt_migratecpu(int cpuid)
1231 #ifdef SMP
1232 globaldata_t rgd;
1234 rgd = globaldata_find(cpuid);
1235 lwkt_setcpu_self(rgd);
1236 #endif
1240 * Remote IPI for cpu migration (called while in a critical section so we
1241 * do not have to enter another one). The thread has already been moved to
1242 * our cpu's allq, but we must wait for the thread to be completely switched
1243 * out on the originating cpu before we schedule it on ours or the stack
1244 * state may be corrupt. We clear TDF_MIGRATING after flushing the GD
1245 * change to main memory.
1247 * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1248 * against wakeups. It is best if this interface is used only when there
1249 * are no pending events that might try to schedule the thread.
1251 #ifdef SMP
1252 static void
1253 lwkt_setcpu_remote(void *arg)
1255 thread_t td = arg;
1256 globaldata_t gd = mycpu;
1258 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK))
1259 cpu_lfence();
1260 td->td_gd = gd;
1261 cpu_sfence();
1262 td->td_flags &= ~TDF_MIGRATING;
1263 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1264 _lwkt_enqueue(td);
1266 #endif
1268 struct lwp *
1269 lwkt_preempted_proc(void)
1271 thread_t td = curthread;
1272 while (td->td_preempted)
1273 td = td->td_preempted;
1274 return(td->td_lwp);
1278 * Create a kernel process/thread/whatever. It shares it's address space
1279 * with proc0 - ie: kernel only.
1281 * NOTE! By default new threads are created with the MP lock held. A
1282 * thread which does not require the MP lock should release it by calling
1283 * rel_mplock() at the start of the new thread.
1286 lwkt_create(void (*func)(void *), void *arg,
1287 struct thread **tdp, thread_t template, int tdflags, int cpu,
1288 const char *fmt, ...)
1290 thread_t td;
1291 __va_list ap;
1293 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1294 tdflags);
1295 if (tdp)
1296 *tdp = td;
1297 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1300 * Set up arg0 for 'ps' etc
1302 __va_start(ap, fmt);
1303 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1304 __va_end(ap);
1307 * Schedule the thread to run
1309 if ((td->td_flags & TDF_STOPREQ) == 0)
1310 lwkt_schedule(td);
1311 else
1312 td->td_flags &= ~TDF_STOPREQ;
1313 return 0;
1317 * kthread_* is specific to the kernel and is not needed by userland.
1319 #ifdef _KERNEL
1322 * Destroy an LWKT thread. Warning! This function is not called when
1323 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1324 * uses a different reaping mechanism.
1326 void
1327 lwkt_exit(void)
1329 thread_t td = curthread;
1330 globaldata_t gd;
1332 if (td->td_flags & TDF_VERBOSE)
1333 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1334 caps_exit(td);
1335 crit_enter_quick(td);
1336 lwkt_deschedule_self(td);
1337 gd = mycpu;
1338 lwkt_remove_tdallq(td);
1339 if (td->td_flags & TDF_ALLOCATED_THREAD) {
1340 ++gd->gd_tdfreecount;
1341 TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq);
1343 cpu_thread_exit();
1346 void
1347 lwkt_remove_tdallq(thread_t td)
1349 KKASSERT(td->td_gd == mycpu);
1350 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1353 #endif /* _KERNEL */
1355 void
1356 crit_panic(void)
1358 thread_t td = curthread;
1359 int lpri = td->td_pri;
1361 td->td_pri = 0;
1362 panic("td_pri is/would-go negative! %p %d", td, lpri);
1365 #ifdef SMP
1368 * Called from debugger/panic on cpus which have been stopped. We must still
1369 * process the IPIQ while stopped, even if we were stopped while in a critical
1370 * section (XXX).
1372 * If we are dumping also try to process any pending interrupts. This may
1373 * or may not work depending on the state of the cpu at the point it was
1374 * stopped.
1376 void
1377 lwkt_smp_stopped(void)
1379 globaldata_t gd = mycpu;
1381 crit_enter_gd(gd);
1382 if (dumping) {
1383 lwkt_process_ipiq();
1384 splz();
1385 } else {
1386 lwkt_process_ipiq();
1388 crit_exit_gd(gd);
1392 * get_mplock() calls this routine if it is unable to obtain the MP lock.
1393 * get_mplock() has already incremented td_mpcount. We must block and
1394 * not return until giant is held.
1396 * All we have to do is lwkt_switch() away. The LWKT scheduler will not
1397 * reschedule the thread until it can obtain the giant lock for it.
1399 void
1400 lwkt_mp_lock_contested(void)
1402 #ifdef _KERNEL
1403 loggiant(beg);
1404 #endif
1405 lwkt_switch();
1406 #ifdef _KERNEL
1407 loggiant(end);
1408 #endif
1411 #endif