if_iwm - Factor out firmware station handling into if_iwm_sta.c.
[dragonfly.git] / contrib / gcc-5.0 / gcc / sel-sched.c
blobdab06ec10da1069666e814d02f9b1be4b87dcf54
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "hashtab.h"
29 #include "hash-set.h"
30 #include "vec.h"
31 #include "machmode.h"
32 #include "input.h"
33 #include "function.h"
34 #include "predict.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "cfgbuild.h"
38 #include "basic-block.h"
39 #include "flags.h"
40 #include "insn-config.h"
41 #include "insn-attr.h"
42 #include "except.h"
43 #include "recog.h"
44 #include "params.h"
45 #include "target.h"
46 #include "output.h"
47 #include "sched-int.h"
48 #include "ggc.h"
49 #include "symtab.h"
50 #include "wide-int.h"
51 #include "inchash.h"
52 #include "tree.h"
53 #include "langhooks.h"
54 #include "rtlhooks-def.h"
55 #include "emit-rtl.h"
56 #include "ira.h"
57 #include "ira-int.h"
58 #include "rtl-iter.h"
60 #ifdef INSN_SCHEDULING
61 #include "sel-sched-ir.h"
62 #include "sel-sched-dump.h"
63 #include "sel-sched.h"
64 #include "dbgcnt.h"
66 /* Implementation of selective scheduling approach.
67 The below implementation follows the original approach with the following
68 changes:
70 o the scheduler works after register allocation (but can be also tuned
71 to work before RA);
72 o some instructions are not copied or register renamed;
73 o conditional jumps are not moved with code duplication;
74 o several jumps in one parallel group are not supported;
75 o when pipelining outer loops, code motion through inner loops
76 is not supported;
77 o control and data speculation are supported;
78 o some improvements for better compile time/performance were made.
80 Terminology
81 ===========
83 A vinsn, or virtual insn, is an insn with additional data characterizing
84 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
85 Vinsns also act as smart pointers to save memory by reusing them in
86 different expressions. A vinsn is described by vinsn_t type.
88 An expression is a vinsn with additional data characterizing its properties
89 at some point in the control flow graph. The data may be its usefulness,
90 priority, speculative status, whether it was renamed/subsituted, etc.
91 An expression is described by expr_t type.
93 Availability set (av_set) is a set of expressions at a given control flow
94 point. It is represented as av_set_t. The expressions in av sets are kept
95 sorted in the terms of expr_greater_p function. It allows to truncate
96 the set while leaving the best expressions.
98 A fence is a point through which code motion is prohibited. On each step,
99 we gather a parallel group of insns at a fence. It is possible to have
100 multiple fences. A fence is represented via fence_t.
102 A boundary is the border between the fence group and the rest of the code.
103 Currently, we never have more than one boundary per fence, as we finalize
104 the fence group when a jump is scheduled. A boundary is represented
105 via bnd_t.
107 High-level overview
108 ===================
110 The scheduler finds regions to schedule, schedules each one, and finalizes.
111 The regions are formed starting from innermost loops, so that when the inner
112 loop is pipelined, its prologue can be scheduled together with yet unprocessed
113 outer loop. The rest of acyclic regions are found using extend_rgns:
114 the blocks that are not yet allocated to any regions are traversed in top-down
115 order, and a block is added to a region to which all its predecessors belong;
116 otherwise, the block starts its own region.
118 The main scheduling loop (sel_sched_region_2) consists of just
119 scheduling on each fence and updating fences. For each fence,
120 we fill a parallel group of insns (fill_insns) until some insns can be added.
121 First, we compute available exprs (av-set) at the boundary of the current
122 group. Second, we choose the best expression from it. If the stall is
123 required to schedule any of the expressions, we advance the current cycle
124 appropriately. So, the final group does not exactly correspond to a VLIW
125 word. Third, we move the chosen expression to the boundary (move_op)
126 and update the intermediate av sets and liveness sets. We quit fill_insns
127 when either no insns left for scheduling or we have scheduled enough insns
128 so we feel like advancing a scheduling point.
130 Computing available expressions
131 ===============================
133 The computation (compute_av_set) is a bottom-up traversal. At each insn,
134 we're moving the union of its successors' sets through it via
135 moveup_expr_set. The dependent expressions are removed. Local
136 transformations (substitution, speculation) are applied to move more
137 exprs. Then the expr corresponding to the current insn is added.
138 The result is saved on each basic block header.
140 When traversing the CFG, we're moving down for no more than max_ws insns.
141 Also, we do not move down to ineligible successors (is_ineligible_successor),
142 which include moving along a back-edge, moving to already scheduled code,
143 and moving to another fence. The first two restrictions are lifted during
144 pipelining, which allows us to move insns along a back-edge. We always have
145 an acyclic region for scheduling because we forbid motion through fences.
147 Choosing the best expression
148 ============================
150 We sort the final availability set via sel_rank_for_schedule, then we remove
151 expressions which are not yet ready (tick_check_p) or which dest registers
152 cannot be used. For some of them, we choose another register via
153 find_best_reg. To do this, we run find_used_regs to calculate the set of
154 registers which cannot be used. The find_used_regs function performs
155 a traversal of code motion paths for an expr. We consider for renaming
156 only registers which are from the same regclass as the original one and
157 using which does not interfere with any live ranges. Finally, we convert
158 the resulting set to the ready list format and use max_issue and reorder*
159 hooks similarly to the Haifa scheduler.
161 Scheduling the best expression
162 ==============================
164 We run the move_op routine to perform the same type of code motion paths
165 traversal as in find_used_regs. (These are working via the same driver,
166 code_motion_path_driver.) When moving down the CFG, we look for original
167 instruction that gave birth to a chosen expression. We undo
168 the transformations performed on an expression via the history saved in it.
169 When found, we remove the instruction or leave a reg-reg copy/speculation
170 check if needed. On a way up, we insert bookkeeping copies at each join
171 point. If a copy is not needed, it will be removed later during this
172 traversal. We update the saved av sets and liveness sets on the way up, too.
174 Finalizing the schedule
175 =======================
177 When pipelining, we reschedule the blocks from which insns were pipelined
178 to get a tighter schedule. On Itanium, we also perform bundling via
179 the same routine from ia64.c.
181 Dependence analysis changes
182 ===========================
184 We augmented the sched-deps.c with hooks that get called when a particular
185 dependence is found in a particular part of an insn. Using these hooks, we
186 can do several actions such as: determine whether an insn can be moved through
187 another (has_dependence_p, moveup_expr); find out whether an insn can be
188 scheduled on the current cycle (tick_check_p); find out registers that
189 are set/used/clobbered by an insn and find out all the strange stuff that
190 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
191 init_global_and_expr_for_insn).
193 Initialization changes
194 ======================
196 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
197 reused in all of the schedulers. We have split up the initialization of data
198 of such parts into different functions prefixed with scheduler type and
199 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
200 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
201 The same splitting is done with current_sched_info structure:
202 dependence-related parts are in sched_deps_info, common part is in
203 common_sched_info, and haifa/sel/etc part is in current_sched_info.
205 Target contexts
206 ===============
208 As we now have multiple-point scheduling, this would not work with backends
209 which save some of the scheduler state to use it in the target hooks.
210 For this purpose, we introduce a concept of target contexts, which
211 encapsulate such information. The backend should implement simple routines
212 of allocating/freeing/setting such a context. The scheduler calls these
213 as target hooks and handles the target context as an opaque pointer (similar
214 to the DFA state type, state_t).
216 Various speedups
217 ================
219 As the correct data dependence graph is not supported during scheduling (which
220 is to be changed in mid-term), we cache as much of the dependence analysis
221 results as possible to avoid reanalyzing. This includes: bitmap caches on
222 each insn in stream of the region saying yes/no for a query with a pair of
223 UIDs; hashtables with the previously done transformations on each insn in
224 stream; a vector keeping a history of transformations on each expr.
226 Also, we try to minimize the dependence context used on each fence to check
227 whether the given expression is ready for scheduling by removing from it
228 insns that are definitely completed the execution. The results of
229 tick_check_p checks are also cached in a vector on each fence.
231 We keep a valid liveness set on each insn in a region to avoid the high
232 cost of recomputation on large basic blocks.
234 Finally, we try to minimize the number of needed updates to the availability
235 sets. The updates happen in two cases: when fill_insns terminates,
236 we advance all fences and increase the stage number to show that the region
237 has changed and the sets are to be recomputed; and when the next iteration
238 of a loop in fill_insns happens (but this one reuses the saved av sets
239 on bb headers.) Thus, we try to break the fill_insns loop only when
240 "significant" number of insns from the current scheduling window was
241 scheduled. This should be made a target param.
244 TODO: correctly support the data dependence graph at all stages and get rid
245 of all caches. This should speed up the scheduler.
246 TODO: implement moving cond jumps with bookkeeping copies on both targets.
247 TODO: tune the scheduler before RA so it does not create too much pseudos.
250 References:
251 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
252 selective scheduling and software pipelining.
253 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
255 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
256 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
257 for GCC. In Proceedings of GCC Developers' Summit 2006.
259 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
260 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
261 http://rogue.colorado.edu/EPIC7/.
265 /* True when pipelining is enabled. */
266 bool pipelining_p;
268 /* True if bookkeeping is enabled. */
269 bool bookkeeping_p;
271 /* Maximum number of insns that are eligible for renaming. */
272 int max_insns_to_rename;
275 /* Definitions of local types and macros. */
277 /* Represents possible outcomes of moving an expression through an insn. */
278 enum MOVEUP_EXPR_CODE
280 /* The expression is not changed. */
281 MOVEUP_EXPR_SAME,
283 /* Not changed, but requires a new destination register. */
284 MOVEUP_EXPR_AS_RHS,
286 /* Cannot be moved. */
287 MOVEUP_EXPR_NULL,
289 /* Changed (substituted or speculated). */
290 MOVEUP_EXPR_CHANGED
293 /* The container to be passed into rtx search & replace functions. */
294 struct rtx_search_arg
296 /* What we are searching for. */
297 rtx x;
299 /* The occurrence counter. */
300 int n;
303 typedef struct rtx_search_arg *rtx_search_arg_p;
305 /* This struct contains precomputed hard reg sets that are needed when
306 computing registers available for renaming. */
307 struct hard_regs_data
309 /* For every mode, this stores registers available for use with
310 that mode. */
311 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
313 /* True when regs_for_mode[mode] is initialized. */
314 bool regs_for_mode_ok[NUM_MACHINE_MODES];
316 /* For every register, it has regs that are ok to rename into it.
317 The register in question is always set. If not, this means
318 that the whole set is not computed yet. */
319 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
321 /* For every mode, this stores registers not available due to
322 call clobbering. */
323 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
325 /* All registers that are used or call used. */
326 HARD_REG_SET regs_ever_used;
328 #ifdef STACK_REGS
329 /* Stack registers. */
330 HARD_REG_SET stack_regs;
331 #endif
334 /* Holds the results of computation of available for renaming and
335 unavailable hard registers. */
336 struct reg_rename
338 /* These are unavailable due to calls crossing, globalness, etc. */
339 HARD_REG_SET unavailable_hard_regs;
341 /* These are *available* for renaming. */
342 HARD_REG_SET available_for_renaming;
344 /* Whether this code motion path crosses a call. */
345 bool crosses_call;
348 /* A global structure that contains the needed information about harg
349 regs. */
350 static struct hard_regs_data sel_hrd;
353 /* This structure holds local data used in code_motion_path_driver hooks on
354 the same or adjacent levels of recursion. Here we keep those parameters
355 that are not used in code_motion_path_driver routine itself, but only in
356 its hooks. Moreover, all parameters that can be modified in hooks are
357 in this structure, so all other parameters passed explicitly to hooks are
358 read-only. */
359 struct cmpd_local_params
361 /* Local params used in move_op_* functions. */
363 /* Edges for bookkeeping generation. */
364 edge e1, e2;
366 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
367 expr_t c_expr_merged, c_expr_local;
369 /* Local params used in fur_* functions. */
370 /* Copy of the ORIGINAL_INSN list, stores the original insns already
371 found before entering the current level of code_motion_path_driver. */
372 def_list_t old_original_insns;
374 /* Local params used in move_op_* functions. */
375 /* True when we have removed last insn in the block which was
376 also a boundary. Do not update anything or create bookkeeping copies. */
377 BOOL_BITFIELD removed_last_insn : 1;
380 /* Stores the static parameters for move_op_* calls. */
381 struct moveop_static_params
383 /* Destination register. */
384 rtx dest;
386 /* Current C_EXPR. */
387 expr_t c_expr;
389 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
390 they are to be removed. */
391 int uid;
393 #ifdef ENABLE_CHECKING
394 /* This is initialized to the insn on which the driver stopped its traversal. */
395 insn_t failed_insn;
396 #endif
398 /* True if we scheduled an insn with different register. */
399 bool was_renamed;
402 /* Stores the static parameters for fur_* calls. */
403 struct fur_static_params
405 /* Set of registers unavailable on the code motion path. */
406 regset used_regs;
408 /* Pointer to the list of original insns definitions. */
409 def_list_t *original_insns;
411 /* True if a code motion path contains a CALL insn. */
412 bool crosses_call;
415 typedef struct fur_static_params *fur_static_params_p;
416 typedef struct cmpd_local_params *cmpd_local_params_p;
417 typedef struct moveop_static_params *moveop_static_params_p;
419 /* Set of hooks and parameters that determine behaviour specific to
420 move_op or find_used_regs functions. */
421 struct code_motion_path_driver_info_def
423 /* Called on enter to the basic block. */
424 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
426 /* Called when original expr is found. */
427 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
429 /* Called while descending current basic block if current insn is not
430 the original EXPR we're searching for. */
431 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
433 /* Function to merge C_EXPRes from different successors. */
434 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
436 /* Function to finalize merge from different successors and possibly
437 deallocate temporary data structures used for merging. */
438 void (*after_merge_succs) (cmpd_local_params_p, void *);
440 /* Called on the backward stage of recursion to do moveup_expr.
441 Used only with move_op_*. */
442 void (*ascend) (insn_t, void *);
444 /* Called on the ascending pass, before returning from the current basic
445 block or from the whole traversal. */
446 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
448 /* When processing successors in move_op we need only descend into
449 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
450 int succ_flags;
452 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
453 const char *routine_name;
456 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
457 FUR_HOOKS. */
458 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
460 /* Set of hooks for performing move_op and find_used_regs routines with
461 code_motion_path_driver. */
462 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
464 /* True if/when we want to emulate Haifa scheduler in the common code.
465 This is used in sched_rgn_local_init and in various places in
466 sched-deps.c. */
467 int sched_emulate_haifa_p;
469 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
470 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
471 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
472 scheduling window. */
473 int global_level;
475 /* Current fences. */
476 flist_t fences;
478 /* True when separable insns should be scheduled as RHSes. */
479 static bool enable_schedule_as_rhs_p;
481 /* Used in verify_target_availability to assert that target reg is reported
482 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
483 we haven't scheduled anything on the previous fence.
484 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
485 have more conservative value than the one returned by the
486 find_used_regs, thus we shouldn't assert that these values are equal. */
487 static bool scheduled_something_on_previous_fence;
489 /* All newly emitted insns will have their uids greater than this value. */
490 static int first_emitted_uid;
492 /* Set of basic blocks that are forced to start new ebbs. This is a subset
493 of all the ebb heads. */
494 static bitmap_head _forced_ebb_heads;
495 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
497 /* Blocks that need to be rescheduled after pipelining. */
498 bitmap blocks_to_reschedule = NULL;
500 /* True when the first lv set should be ignored when updating liveness. */
501 static bool ignore_first = false;
503 /* Number of insns max_issue has initialized data structures for. */
504 static int max_issue_size = 0;
506 /* Whether we can issue more instructions. */
507 static int can_issue_more;
509 /* Maximum software lookahead window size, reduced when rescheduling after
510 pipelining. */
511 static int max_ws;
513 /* Number of insns scheduled in current region. */
514 static int num_insns_scheduled;
516 /* A vector of expressions is used to be able to sort them. */
517 static vec<expr_t> vec_av_set = vNULL;
519 /* A vector of vinsns is used to hold temporary lists of vinsns. */
520 typedef vec<vinsn_t> vinsn_vec_t;
522 /* This vector has the exprs which may still present in av_sets, but actually
523 can't be moved up due to bookkeeping created during code motion to another
524 fence. See comment near the call to update_and_record_unavailable_insns
525 for the detailed explanations. */
526 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
528 /* This vector has vinsns which are scheduled with renaming on the first fence
529 and then seen on the second. For expressions with such vinsns, target
530 availability information may be wrong. */
531 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
533 /* Vector to store temporary nops inserted in move_op to prevent removal
534 of empty bbs. */
535 static vec<insn_t> vec_temp_moveop_nops = vNULL;
537 /* These bitmaps record original instructions scheduled on the current
538 iteration and bookkeeping copies created by them. */
539 static bitmap current_originators = NULL;
540 static bitmap current_copies = NULL;
542 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
543 visit them afterwards. */
544 static bitmap code_motion_visited_blocks = NULL;
546 /* Variables to accumulate different statistics. */
548 /* The number of bookkeeping copies created. */
549 static int stat_bookkeeping_copies;
551 /* The number of insns that required bookkeeiping for their scheduling. */
552 static int stat_insns_needed_bookkeeping;
554 /* The number of insns that got renamed. */
555 static int stat_renamed_scheduled;
557 /* The number of substitutions made during scheduling. */
558 static int stat_substitutions_total;
561 /* Forward declarations of static functions. */
562 static bool rtx_ok_for_substitution_p (rtx, rtx);
563 static int sel_rank_for_schedule (const void *, const void *);
564 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
565 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
567 static rtx get_dest_from_orig_ops (av_set_t);
568 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
569 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
570 def_list_t *);
571 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
572 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
573 cmpd_local_params_p, void *);
574 static void sel_sched_region_1 (void);
575 static void sel_sched_region_2 (int);
576 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
578 static void debug_state (state_t);
581 /* Functions that work with fences. */
583 /* Advance one cycle on FENCE. */
584 static void
585 advance_one_cycle (fence_t fence)
587 unsigned i;
588 int cycle;
589 rtx_insn *insn;
591 advance_state (FENCE_STATE (fence));
592 cycle = ++FENCE_CYCLE (fence);
593 FENCE_ISSUED_INSNS (fence) = 0;
594 FENCE_STARTS_CYCLE_P (fence) = 1;
595 can_issue_more = issue_rate;
596 FENCE_ISSUE_MORE (fence) = can_issue_more;
598 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
600 if (INSN_READY_CYCLE (insn) < cycle)
602 remove_from_deps (FENCE_DC (fence), insn);
603 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
604 continue;
606 i++;
608 if (sched_verbose >= 2)
610 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
611 debug_state (FENCE_STATE (fence));
615 /* Returns true when SUCC in a fallthru bb of INSN, possibly
616 skipping empty basic blocks. */
617 static bool
618 in_fallthru_bb_p (rtx insn, rtx succ)
620 basic_block bb = BLOCK_FOR_INSN (insn);
621 edge e;
623 if (bb == BLOCK_FOR_INSN (succ))
624 return true;
626 e = find_fallthru_edge_from (bb);
627 if (e)
628 bb = e->dest;
629 else
630 return false;
632 while (sel_bb_empty_p (bb))
633 bb = bb->next_bb;
635 return bb == BLOCK_FOR_INSN (succ);
638 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
639 When a successor will continue a ebb, transfer all parameters of a fence
640 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
641 of scheduling helping to distinguish between the old and the new code. */
642 static void
643 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
644 int orig_max_seqno)
646 bool was_here_p = false;
647 insn_t insn = NULL;
648 insn_t succ;
649 succ_iterator si;
650 ilist_iterator ii;
651 fence_t fence = FLIST_FENCE (old_fences);
652 basic_block bb;
654 /* Get the only element of FENCE_BNDS (fence). */
655 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
657 gcc_assert (!was_here_p);
658 was_here_p = true;
660 gcc_assert (was_here_p && insn != NULL_RTX);
662 /* When in the "middle" of the block, just move this fence
663 to the new list. */
664 bb = BLOCK_FOR_INSN (insn);
665 if (! sel_bb_end_p (insn)
666 || (single_succ_p (bb)
667 && single_pred_p (single_succ (bb))))
669 insn_t succ;
671 succ = (sel_bb_end_p (insn)
672 ? sel_bb_head (single_succ (bb))
673 : NEXT_INSN (insn));
675 if (INSN_SEQNO (succ) > 0
676 && INSN_SEQNO (succ) <= orig_max_seqno
677 && INSN_SCHED_TIMES (succ) <= 0)
679 FENCE_INSN (fence) = succ;
680 move_fence_to_fences (old_fences, new_fences);
682 if (sched_verbose >= 1)
683 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
684 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
686 return;
689 /* Otherwise copy fence's structures to (possibly) multiple successors. */
690 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
692 int seqno = INSN_SEQNO (succ);
694 if (0 < seqno && seqno <= orig_max_seqno
695 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
697 bool b = (in_same_ebb_p (insn, succ)
698 || in_fallthru_bb_p (insn, succ));
700 if (sched_verbose >= 1)
701 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
702 INSN_UID (insn), INSN_UID (succ),
703 BLOCK_NUM (succ), b ? "continue" : "reset");
705 if (b)
706 add_dirty_fence_to_fences (new_fences, succ, fence);
707 else
709 /* Mark block of the SUCC as head of the new ebb. */
710 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
711 add_clean_fence_to_fences (new_fences, succ, fence);
718 /* Functions to support substitution. */
720 /* Returns whether INSN with dependence status DS is eligible for
721 substitution, i.e. it's a copy operation x := y, and RHS that is
722 moved up through this insn should be substituted. */
723 static bool
724 can_substitute_through_p (insn_t insn, ds_t ds)
726 /* We can substitute only true dependencies. */
727 if ((ds & DEP_OUTPUT)
728 || (ds & DEP_ANTI)
729 || ! INSN_RHS (insn)
730 || ! INSN_LHS (insn))
731 return false;
733 /* Now we just need to make sure the INSN_RHS consists of only one
734 simple REG rtx. */
735 if (REG_P (INSN_LHS (insn))
736 && REG_P (INSN_RHS (insn)))
737 return true;
738 return false;
741 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
742 source (if INSN is eligible for substitution). Returns TRUE if
743 substitution was actually performed, FALSE otherwise. Substitution might
744 be not performed because it's either EXPR' vinsn doesn't contain INSN's
745 destination or the resulting insn is invalid for the target machine.
746 When UNDO is true, perform unsubstitution instead (the difference is in
747 the part of rtx on which validate_replace_rtx is called). */
748 static bool
749 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
751 rtx *where;
752 bool new_insn_valid;
753 vinsn_t *vi = &EXPR_VINSN (expr);
754 bool has_rhs = VINSN_RHS (*vi) != NULL;
755 rtx old, new_rtx;
757 /* Do not try to replace in SET_DEST. Although we'll choose new
758 register for the RHS, we don't want to change RHS' original reg.
759 If the insn is not SET, we may still be able to substitute something
760 in it, and if we're here (don't have deps), it doesn't write INSN's
761 dest. */
762 where = (has_rhs
763 ? &VINSN_RHS (*vi)
764 : &PATTERN (VINSN_INSN_RTX (*vi)));
765 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
767 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
768 if (rtx_ok_for_substitution_p (old, *where))
770 rtx_insn *new_insn;
771 rtx *where_replace;
773 /* We should copy these rtxes before substitution. */
774 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
775 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
777 /* Where we'll replace.
778 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
779 used instead of SET_SRC. */
780 where_replace = (has_rhs
781 ? &SET_SRC (PATTERN (new_insn))
782 : &PATTERN (new_insn));
784 new_insn_valid
785 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
786 new_insn);
788 /* ??? Actually, constrain_operands result depends upon choice of
789 destination register. E.g. if we allow single register to be an rhs,
790 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
791 in invalid insn dx=dx, so we'll loose this rhs here.
792 Just can't come up with significant testcase for this, so just
793 leaving it for now. */
794 if (new_insn_valid)
796 change_vinsn_in_expr (expr,
797 create_vinsn_from_insn_rtx (new_insn, false));
799 /* Do not allow clobbering the address register of speculative
800 insns. */
801 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
802 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
803 expr_dest_reg (expr)))
804 EXPR_TARGET_AVAILABLE (expr) = false;
806 return true;
808 else
809 return false;
811 else
812 return false;
815 /* Return the number of places WHAT appears within WHERE.
816 Bail out when we found a reference occupying several hard registers. */
817 static int
818 count_occurrences_equiv (const_rtx what, const_rtx where)
820 int count = 0;
821 subrtx_iterator::array_type array;
822 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
824 const_rtx x = *iter;
825 if (REG_P (x) && REGNO (x) == REGNO (what))
827 /* Bail out if mode is different or more than one register is
828 used. */
829 if (GET_MODE (x) != GET_MODE (what)
830 || (HARD_REGISTER_P (x)
831 && hard_regno_nregs[REGNO (x)][GET_MODE (x)] > 1))
832 return 0;
833 count += 1;
835 else if (GET_CODE (x) == SUBREG
836 && (!REG_P (SUBREG_REG (x))
837 || REGNO (SUBREG_REG (x)) == REGNO (what)))
838 /* ??? Do not support substituting regs inside subregs. In that case,
839 simplify_subreg will be called by validate_replace_rtx, and
840 unsubstitution will fail later. */
841 return 0;
843 return count;
846 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
847 static bool
848 rtx_ok_for_substitution_p (rtx what, rtx where)
850 return (count_occurrences_equiv (what, where) > 0);
854 /* Functions to support register renaming. */
856 /* Substitute VI's set source with REGNO. Returns newly created pattern
857 that has REGNO as its source. */
858 static rtx_insn *
859 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
861 rtx lhs_rtx;
862 rtx pattern;
863 rtx_insn *insn_rtx;
865 lhs_rtx = copy_rtx (VINSN_LHS (vi));
867 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
868 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
870 return insn_rtx;
873 /* Returns whether INSN's src can be replaced with register number
874 NEW_SRC_REG. E.g. the following insn is valid for i386:
876 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
877 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
878 (reg:SI 0 ax [orig:770 c1 ] [770]))
879 (const_int 288 [0x120])) [0 str S1 A8])
880 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
881 (nil))
883 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
884 because of operand constraints:
886 (define_insn "*movqi_1"
887 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
888 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
891 So do constrain_operands here, before choosing NEW_SRC_REG as best
892 reg for rhs. */
894 static bool
895 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
897 vinsn_t vi = INSN_VINSN (insn);
898 machine_mode mode;
899 rtx dst_loc;
900 bool res;
902 gcc_assert (VINSN_SEPARABLE_P (vi));
904 get_dest_and_mode (insn, &dst_loc, &mode);
905 gcc_assert (mode == GET_MODE (new_src_reg));
907 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
908 return true;
910 /* See whether SET_SRC can be replaced with this register. */
911 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
912 res = verify_changes (0);
913 cancel_changes (0);
915 return res;
918 /* Returns whether INSN still be valid after replacing it's DEST with
919 register NEW_REG. */
920 static bool
921 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
923 vinsn_t vi = INSN_VINSN (insn);
924 bool res;
926 /* We should deal here only with separable insns. */
927 gcc_assert (VINSN_SEPARABLE_P (vi));
928 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
930 /* See whether SET_DEST can be replaced with this register. */
931 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
932 res = verify_changes (0);
933 cancel_changes (0);
935 return res;
938 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
939 static rtx_insn *
940 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
942 rtx rhs_rtx;
943 rtx pattern;
944 rtx_insn *insn_rtx;
946 rhs_rtx = copy_rtx (VINSN_RHS (vi));
948 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
949 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
951 return insn_rtx;
954 /* Substitute lhs in the given expression EXPR for the register with number
955 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
956 static void
957 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
959 rtx_insn *insn_rtx;
960 vinsn_t vinsn;
962 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
963 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
965 change_vinsn_in_expr (expr, vinsn);
966 EXPR_WAS_RENAMED (expr) = 1;
967 EXPR_TARGET_AVAILABLE (expr) = 1;
970 /* Returns whether VI writes either one of the USED_REGS registers or,
971 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
972 static bool
973 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
974 HARD_REG_SET unavailable_hard_regs)
976 unsigned regno;
977 reg_set_iterator rsi;
979 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
981 if (REGNO_REG_SET_P (used_regs, regno))
982 return true;
983 if (HARD_REGISTER_NUM_P (regno)
984 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
985 return true;
988 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
990 if (REGNO_REG_SET_P (used_regs, regno))
991 return true;
992 if (HARD_REGISTER_NUM_P (regno)
993 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
994 return true;
997 return false;
1000 /* Returns register class of the output register in INSN.
1001 Returns NO_REGS for call insns because some targets have constraints on
1002 destination register of a call insn.
1004 Code adopted from regrename.c::build_def_use. */
1005 static enum reg_class
1006 get_reg_class (rtx_insn *insn)
1008 int i, n_ops;
1010 extract_constrain_insn (insn);
1011 preprocess_constraints (insn);
1012 n_ops = recog_data.n_operands;
1014 const operand_alternative *op_alt = which_op_alt ();
1015 if (asm_noperands (PATTERN (insn)) > 0)
1017 for (i = 0; i < n_ops; i++)
1018 if (recog_data.operand_type[i] == OP_OUT)
1020 rtx *loc = recog_data.operand_loc[i];
1021 rtx op = *loc;
1022 enum reg_class cl = alternative_class (op_alt, i);
1024 if (REG_P (op)
1025 && REGNO (op) == ORIGINAL_REGNO (op))
1026 continue;
1028 return cl;
1031 else if (!CALL_P (insn))
1033 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1035 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1036 enum reg_class cl = alternative_class (op_alt, opn);
1038 if (recog_data.operand_type[opn] == OP_OUT ||
1039 recog_data.operand_type[opn] == OP_INOUT)
1040 return cl;
1044 /* Insns like
1045 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1046 may result in returning NO_REGS, cause flags is written implicitly through
1047 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1048 return NO_REGS;
1051 #ifdef HARD_REGNO_RENAME_OK
1052 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1053 static void
1054 init_hard_regno_rename (int regno)
1056 int cur_reg;
1058 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1060 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1062 /* We are not interested in renaming in other regs. */
1063 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1064 continue;
1066 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1067 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1070 #endif
1072 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1073 data first. */
1074 static inline bool
1075 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1077 #ifdef HARD_REGNO_RENAME_OK
1078 /* Check whether this is all calculated. */
1079 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1080 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1082 init_hard_regno_rename (from);
1084 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1085 #else
1086 return true;
1087 #endif
1090 /* Calculate set of registers that are capable of holding MODE. */
1091 static void
1092 init_regs_for_mode (machine_mode mode)
1094 int cur_reg;
1096 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1097 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1099 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1101 int nregs;
1102 int i;
1104 /* See whether it accepts all modes that occur in
1105 original insns. */
1106 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1107 continue;
1109 nregs = hard_regno_nregs[cur_reg][mode];
1111 for (i = nregs - 1; i >= 0; --i)
1112 if (fixed_regs[cur_reg + i]
1113 || global_regs[cur_reg + i]
1114 /* Can't use regs which aren't saved by
1115 the prologue. */
1116 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1117 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1118 it affects aliasing globally and invalidates all AV sets. */
1119 || get_reg_base_value (cur_reg + i)
1120 #ifdef LEAF_REGISTERS
1121 /* We can't use a non-leaf register if we're in a
1122 leaf function. */
1123 || (crtl->is_leaf
1124 && !LEAF_REGISTERS[cur_reg + i])
1125 #endif
1127 break;
1129 if (i >= 0)
1130 continue;
1132 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1133 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1134 cur_reg);
1136 /* If the CUR_REG passed all the checks above,
1137 then it's ok. */
1138 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1141 sel_hrd.regs_for_mode_ok[mode] = true;
1144 /* Init all register sets gathered in HRD. */
1145 static void
1146 init_hard_regs_data (void)
1148 int cur_reg = 0;
1149 int cur_mode = 0;
1151 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1152 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1153 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1154 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1156 /* Initialize registers that are valid based on mode when this is
1157 really needed. */
1158 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1159 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1161 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1162 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1163 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1165 #ifdef STACK_REGS
1166 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1168 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1169 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1170 #endif
1173 /* Mark hardware regs in REG_RENAME_P that are not suitable
1174 for renaming rhs in INSN due to hardware restrictions (register class,
1175 modes compatibility etc). This doesn't affect original insn's dest reg,
1176 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1177 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1178 Registers that are in used_regs are always marked in
1179 unavailable_hard_regs as well. */
1181 static void
1182 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1183 regset used_regs ATTRIBUTE_UNUSED)
1185 machine_mode mode;
1186 enum reg_class cl = NO_REGS;
1187 rtx orig_dest;
1188 unsigned cur_reg, regno;
1189 hard_reg_set_iterator hrsi;
1191 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1192 gcc_assert (reg_rename_p);
1194 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1196 /* We have decided not to rename 'mem = something;' insns, as 'something'
1197 is usually a register. */
1198 if (!REG_P (orig_dest))
1199 return;
1201 regno = REGNO (orig_dest);
1203 /* If before reload, don't try to work with pseudos. */
1204 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1205 return;
1207 if (reload_completed)
1208 cl = get_reg_class (def->orig_insn);
1210 /* Stop if the original register is one of the fixed_regs, global_regs or
1211 frame pointer, or we could not discover its class. */
1212 if (fixed_regs[regno]
1213 || global_regs[regno]
1214 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1215 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1216 #else
1217 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1218 #endif
1219 || (reload_completed && cl == NO_REGS))
1221 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1223 /* Give a chance for original register, if it isn't in used_regs. */
1224 if (!def->crosses_call)
1225 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1227 return;
1230 /* If something allocated on stack in this function, mark frame pointer
1231 register unavailable, considering also modes.
1232 FIXME: it is enough to do this once per all original defs. */
1233 if (frame_pointer_needed)
1235 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1236 Pmode, FRAME_POINTER_REGNUM);
1238 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1239 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1240 Pmode, HARD_FRAME_POINTER_REGNUM);
1243 #ifdef STACK_REGS
1244 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1245 is equivalent to as if all stack regs were in this set.
1246 I.e. no stack register can be renamed, and even if it's an original
1247 register here we make sure it won't be lifted over it's previous def
1248 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1249 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1250 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1251 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1252 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1253 sel_hrd.stack_regs);
1254 #endif
1256 /* If there's a call on this path, make regs from call_used_reg_set
1257 unavailable. */
1258 if (def->crosses_call)
1259 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1260 call_used_reg_set);
1262 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1263 but not register classes. */
1264 if (!reload_completed)
1265 return;
1267 /* Leave regs as 'available' only from the current
1268 register class. */
1269 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1270 reg_class_contents[cl]);
1272 mode = GET_MODE (orig_dest);
1274 /* Leave only registers available for this mode. */
1275 if (!sel_hrd.regs_for_mode_ok[mode])
1276 init_regs_for_mode (mode);
1277 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1278 sel_hrd.regs_for_mode[mode]);
1280 /* Exclude registers that are partially call clobbered. */
1281 if (def->crosses_call
1282 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1283 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1284 sel_hrd.regs_for_call_clobbered[mode]);
1286 /* Leave only those that are ok to rename. */
1287 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1288 0, cur_reg, hrsi)
1290 int nregs;
1291 int i;
1293 nregs = hard_regno_nregs[cur_reg][mode];
1294 gcc_assert (nregs > 0);
1296 for (i = nregs - 1; i >= 0; --i)
1297 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1298 break;
1300 if (i >= 0)
1301 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1302 cur_reg);
1305 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1306 reg_rename_p->unavailable_hard_regs);
1308 /* Regno is always ok from the renaming part of view, but it really
1309 could be in *unavailable_hard_regs already, so set it here instead
1310 of there. */
1311 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1314 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1315 best register more recently than REG2. */
1316 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1318 /* Indicates the number of times renaming happened before the current one. */
1319 static int reg_rename_this_tick;
1321 /* Choose the register among free, that is suitable for storing
1322 the rhs value.
1324 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1325 originally appears. There could be multiple original operations
1326 for single rhs since we moving it up and merging along different
1327 paths.
1329 Some code is adapted from regrename.c (regrename_optimize).
1330 If original register is available, function returns it.
1331 Otherwise it performs the checks, so the new register should
1332 comply with the following:
1333 - it should not violate any live ranges (such registers are in
1334 REG_RENAME_P->available_for_renaming set);
1335 - it should not be in the HARD_REGS_USED regset;
1336 - it should be in the class compatible with original uses;
1337 - it should not be clobbered through reference with different mode;
1338 - if we're in the leaf function, then the new register should
1339 not be in the LEAF_REGISTERS;
1340 - etc.
1342 If several registers meet the conditions, the register with smallest
1343 tick is returned to achieve more even register allocation.
1345 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1347 If no register satisfies the above conditions, NULL_RTX is returned. */
1348 static rtx
1349 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1350 struct reg_rename *reg_rename_p,
1351 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1353 int best_new_reg;
1354 unsigned cur_reg;
1355 machine_mode mode = VOIDmode;
1356 unsigned regno, i, n;
1357 hard_reg_set_iterator hrsi;
1358 def_list_iterator di;
1359 def_t def;
1361 /* If original register is available, return it. */
1362 *is_orig_reg_p_ptr = true;
1364 FOR_EACH_DEF (def, di, original_insns)
1366 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1368 gcc_assert (REG_P (orig_dest));
1370 /* Check that all original operations have the same mode.
1371 This is done for the next loop; if we'd return from this
1372 loop, we'd check only part of them, but in this case
1373 it doesn't matter. */
1374 if (mode == VOIDmode)
1375 mode = GET_MODE (orig_dest);
1376 gcc_assert (mode == GET_MODE (orig_dest));
1378 regno = REGNO (orig_dest);
1379 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1380 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1381 break;
1383 /* All hard registers are available. */
1384 if (i == n)
1386 gcc_assert (mode != VOIDmode);
1388 /* Hard registers should not be shared. */
1389 return gen_rtx_REG (mode, regno);
1393 *is_orig_reg_p_ptr = false;
1394 best_new_reg = -1;
1396 /* Among all available regs choose the register that was
1397 allocated earliest. */
1398 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1399 0, cur_reg, hrsi)
1400 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1402 /* Check that all hard regs for mode are available. */
1403 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1404 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1405 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1406 cur_reg + i))
1407 break;
1409 if (i < n)
1410 continue;
1412 /* All hard registers are available. */
1413 if (best_new_reg < 0
1414 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1416 best_new_reg = cur_reg;
1418 /* Return immediately when we know there's no better reg. */
1419 if (! reg_rename_tick[best_new_reg])
1420 break;
1424 if (best_new_reg >= 0)
1426 /* Use the check from the above loop. */
1427 gcc_assert (mode != VOIDmode);
1428 return gen_rtx_REG (mode, best_new_reg);
1431 return NULL_RTX;
1434 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1435 assumptions about available registers in the function. */
1436 static rtx
1437 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1438 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1440 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1441 original_insns, is_orig_reg_p_ptr);
1443 /* FIXME loop over hard_regno_nregs here. */
1444 gcc_assert (best_reg == NULL_RTX
1445 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1447 return best_reg;
1450 /* Choose the pseudo register for storing rhs value. As this is supposed
1451 to work before reload, we return either the original register or make
1452 the new one. The parameters are the same that in choose_nest_reg_1
1453 functions, except that USED_REGS may contain pseudos.
1454 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1456 TODO: take into account register pressure while doing this. Up to this
1457 moment, this function would never return NULL for pseudos, but we should
1458 not rely on this. */
1459 static rtx
1460 choose_best_pseudo_reg (regset used_regs,
1461 struct reg_rename *reg_rename_p,
1462 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1464 def_list_iterator i;
1465 def_t def;
1466 machine_mode mode = VOIDmode;
1467 bool bad_hard_regs = false;
1469 /* We should not use this after reload. */
1470 gcc_assert (!reload_completed);
1472 /* If original register is available, return it. */
1473 *is_orig_reg_p_ptr = true;
1475 FOR_EACH_DEF (def, i, original_insns)
1477 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1478 int orig_regno;
1480 gcc_assert (REG_P (dest));
1482 /* Check that all original operations have the same mode. */
1483 if (mode == VOIDmode)
1484 mode = GET_MODE (dest);
1485 else
1486 gcc_assert (mode == GET_MODE (dest));
1487 orig_regno = REGNO (dest);
1489 /* Check that nothing in used_regs intersects with orig_regno. When
1490 we have a hard reg here, still loop over hard_regno_nregs. */
1491 if (HARD_REGISTER_NUM_P (orig_regno))
1493 int j, n;
1494 for (j = 0, n = hard_regno_nregs[orig_regno][mode]; j < n; j++)
1495 if (REGNO_REG_SET_P (used_regs, orig_regno + j))
1496 break;
1497 if (j < n)
1498 continue;
1500 else
1502 if (REGNO_REG_SET_P (used_regs, orig_regno))
1503 continue;
1505 if (HARD_REGISTER_NUM_P (orig_regno))
1507 gcc_assert (df_regs_ever_live_p (orig_regno));
1509 /* For hard registers, we have to check hardware imposed
1510 limitations (frame/stack registers, calls crossed). */
1511 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1512 orig_regno))
1514 /* Don't let register cross a call if it doesn't already
1515 cross one. This condition is written in accordance with
1516 that in sched-deps.c sched_analyze_reg(). */
1517 if (!reg_rename_p->crosses_call
1518 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1519 return gen_rtx_REG (mode, orig_regno);
1522 bad_hard_regs = true;
1524 else
1525 return dest;
1528 *is_orig_reg_p_ptr = false;
1530 /* We had some original hard registers that couldn't be used.
1531 Those were likely special. Don't try to create a pseudo. */
1532 if (bad_hard_regs)
1533 return NULL_RTX;
1535 /* We haven't found a register from original operations. Get a new one.
1536 FIXME: control register pressure somehow. */
1538 rtx new_reg = gen_reg_rtx (mode);
1540 gcc_assert (mode != VOIDmode);
1542 max_regno = max_reg_num ();
1543 maybe_extend_reg_info_p ();
1544 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1546 return new_reg;
1550 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1551 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1552 static void
1553 verify_target_availability (expr_t expr, regset used_regs,
1554 struct reg_rename *reg_rename_p)
1556 unsigned n, i, regno;
1557 machine_mode mode;
1558 bool target_available, live_available, hard_available;
1560 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1561 return;
1563 regno = expr_dest_regno (expr);
1564 mode = GET_MODE (EXPR_LHS (expr));
1565 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1566 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1568 live_available = hard_available = true;
1569 for (i = 0; i < n; i++)
1571 if (bitmap_bit_p (used_regs, regno + i))
1572 live_available = false;
1573 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1574 hard_available = false;
1577 /* When target is not available, it may be due to hard register
1578 restrictions, e.g. crosses calls, so we check hard_available too. */
1579 if (target_available)
1580 gcc_assert (live_available);
1581 else
1582 /* Check only if we haven't scheduled something on the previous fence,
1583 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1584 and having more than one fence, we may end having targ_un in a block
1585 in which successors target register is actually available.
1587 The last condition handles the case when a dependence from a call insn
1588 was created in sched-deps.c for insns with destination registers that
1589 never crossed a call before, but do cross one after our code motion.
1591 FIXME: in the latter case, we just uselessly called find_used_regs,
1592 because we can't move this expression with any other register
1593 as well. */
1594 gcc_assert (scheduled_something_on_previous_fence || !live_available
1595 || !hard_available
1596 || (!reload_completed && reg_rename_p->crosses_call
1597 && REG_N_CALLS_CROSSED (regno) == 0));
1600 /* Collect unavailable registers due to liveness for EXPR from BNDS
1601 into USED_REGS. Save additional information about available
1602 registers and unavailable due to hardware restriction registers
1603 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1604 list. */
1605 static void
1606 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1607 struct reg_rename *reg_rename_p,
1608 def_list_t *original_insns)
1610 for (; bnds; bnds = BLIST_NEXT (bnds))
1612 bool res;
1613 av_set_t orig_ops = NULL;
1614 bnd_t bnd = BLIST_BND (bnds);
1616 /* If the chosen best expr doesn't belong to current boundary,
1617 skip it. */
1618 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1619 continue;
1621 /* Put in ORIG_OPS all exprs from this boundary that became
1622 RES on top. */
1623 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1625 /* Compute used regs and OR it into the USED_REGS. */
1626 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1627 reg_rename_p, original_insns);
1629 /* FIXME: the assert is true until we'd have several boundaries. */
1630 gcc_assert (res);
1631 av_set_clear (&orig_ops);
1635 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1636 If BEST_REG is valid, replace LHS of EXPR with it. */
1637 static bool
1638 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1640 /* Try whether we'll be able to generate the insn
1641 'dest := best_reg' at the place of the original operation. */
1642 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1644 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1646 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1648 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1649 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1650 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1651 return false;
1654 /* Make sure that EXPR has the right destination
1655 register. */
1656 if (expr_dest_regno (expr) != REGNO (best_reg))
1657 replace_dest_with_reg_in_expr (expr, best_reg);
1658 else
1659 EXPR_TARGET_AVAILABLE (expr) = 1;
1661 return true;
1664 /* Select and assign best register to EXPR searching from BNDS.
1665 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1666 Return FALSE if no register can be chosen, which could happen when:
1667 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1668 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1669 that are used on the moving path. */
1670 static bool
1671 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1673 static struct reg_rename reg_rename_data;
1675 regset used_regs;
1676 def_list_t original_insns = NULL;
1677 bool reg_ok;
1679 *is_orig_reg_p = false;
1681 /* Don't bother to do anything if this insn doesn't set any registers. */
1682 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1683 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1684 return true;
1686 used_regs = get_clear_regset_from_pool ();
1687 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1689 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1690 &original_insns);
1692 #ifdef ENABLE_CHECKING
1693 /* If after reload, make sure we're working with hard regs here. */
1694 if (reload_completed)
1696 reg_set_iterator rsi;
1697 unsigned i;
1699 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1700 gcc_unreachable ();
1702 #endif
1704 if (EXPR_SEPARABLE_P (expr))
1706 rtx best_reg = NULL_RTX;
1707 /* Check that we have computed availability of a target register
1708 correctly. */
1709 verify_target_availability (expr, used_regs, &reg_rename_data);
1711 /* Turn everything in hard regs after reload. */
1712 if (reload_completed)
1714 HARD_REG_SET hard_regs_used;
1715 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1717 /* Join hard registers unavailable due to register class
1718 restrictions and live range intersection. */
1719 IOR_HARD_REG_SET (hard_regs_used,
1720 reg_rename_data.unavailable_hard_regs);
1722 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1723 original_insns, is_orig_reg_p);
1725 else
1726 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1727 original_insns, is_orig_reg_p);
1729 if (!best_reg)
1730 reg_ok = false;
1731 else if (*is_orig_reg_p)
1733 /* In case of unification BEST_REG may be different from EXPR's LHS
1734 when EXPR's LHS is unavailable, and there is another LHS among
1735 ORIGINAL_INSNS. */
1736 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1738 else
1740 /* Forbid renaming of low-cost insns. */
1741 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1742 reg_ok = false;
1743 else
1744 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1747 else
1749 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1750 any of the HARD_REGS_USED set. */
1751 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1752 reg_rename_data.unavailable_hard_regs))
1754 reg_ok = false;
1755 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1757 else
1759 reg_ok = true;
1760 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1764 ilist_clear (&original_insns);
1765 return_regset_to_pool (used_regs);
1767 return reg_ok;
1771 /* Return true if dependence described by DS can be overcomed. */
1772 static bool
1773 can_speculate_dep_p (ds_t ds)
1775 if (spec_info == NULL)
1776 return false;
1778 /* Leave only speculative data. */
1779 ds &= SPECULATIVE;
1781 if (ds == 0)
1782 return false;
1785 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1786 that we can overcome. */
1787 ds_t spec_mask = spec_info->mask;
1789 if ((ds & spec_mask) != ds)
1790 return false;
1793 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1794 return false;
1796 return true;
1799 /* Get a speculation check instruction.
1800 C_EXPR is a speculative expression,
1801 CHECK_DS describes speculations that should be checked,
1802 ORIG_INSN is the original non-speculative insn in the stream. */
1803 static insn_t
1804 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1806 rtx check_pattern;
1807 rtx_insn *insn_rtx;
1808 insn_t insn;
1809 basic_block recovery_block;
1810 rtx_insn *label;
1812 /* Create a recovery block if target is going to emit branchy check, or if
1813 ORIG_INSN was speculative already. */
1814 if (targetm.sched.needs_block_p (check_ds)
1815 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1817 recovery_block = sel_create_recovery_block (orig_insn);
1818 label = BB_HEAD (recovery_block);
1820 else
1822 recovery_block = NULL;
1823 label = NULL;
1826 /* Get pattern of the check. */
1827 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1828 check_ds);
1830 gcc_assert (check_pattern != NULL);
1832 /* Emit check. */
1833 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1835 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1836 INSN_SEQNO (orig_insn), orig_insn);
1838 /* Make check to be non-speculative. */
1839 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1840 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1842 /* Decrease priority of check by difference of load/check instruction
1843 latencies. */
1844 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1845 - sel_vinsn_cost (INSN_VINSN (insn)));
1847 /* Emit copy of original insn (though with replaced target register,
1848 if needed) to the recovery block. */
1849 if (recovery_block != NULL)
1851 rtx twin_rtx;
1853 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1854 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1855 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1856 INSN_EXPR (orig_insn),
1857 INSN_SEQNO (insn),
1858 bb_note (recovery_block));
1861 /* If we've generated a data speculation check, make sure
1862 that all the bookkeeping instruction we'll create during
1863 this move_op () will allocate an ALAT entry so that the
1864 check won't fail.
1865 In case of control speculation we must convert C_EXPR to control
1866 speculative mode, because failing to do so will bring us an exception
1867 thrown by the non-control-speculative load. */
1868 check_ds = ds_get_max_dep_weak (check_ds);
1869 speculate_expr (c_expr, check_ds);
1871 return insn;
1874 /* True when INSN is a "regN = regN" copy. */
1875 static bool
1876 identical_copy_p (rtx insn)
1878 rtx lhs, rhs, pat;
1880 pat = PATTERN (insn);
1882 if (GET_CODE (pat) != SET)
1883 return false;
1885 lhs = SET_DEST (pat);
1886 if (!REG_P (lhs))
1887 return false;
1889 rhs = SET_SRC (pat);
1890 if (!REG_P (rhs))
1891 return false;
1893 return REGNO (lhs) == REGNO (rhs);
1896 /* Undo all transformations on *AV_PTR that were done when
1897 moving through INSN. */
1898 static void
1899 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1901 av_set_iterator av_iter;
1902 expr_t expr;
1903 av_set_t new_set = NULL;
1905 /* First, kill any EXPR that uses registers set by an insn. This is
1906 required for correctness. */
1907 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1908 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1909 && bitmap_intersect_p (INSN_REG_SETS (insn),
1910 VINSN_REG_USES (EXPR_VINSN (expr)))
1911 /* When an insn looks like 'r1 = r1', we could substitute through
1912 it, but the above condition will still hold. This happened with
1913 gcc.c-torture/execute/961125-1.c. */
1914 && !identical_copy_p (insn))
1916 if (sched_verbose >= 6)
1917 sel_print ("Expr %d removed due to use/set conflict\n",
1918 INSN_UID (EXPR_INSN_RTX (expr)));
1919 av_set_iter_remove (&av_iter);
1922 /* Undo transformations looking at the history vector. */
1923 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1925 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1926 insn, EXPR_VINSN (expr), true);
1928 if (index >= 0)
1930 expr_history_def *phist;
1932 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1934 switch (phist->type)
1936 case TRANS_SPECULATION:
1938 ds_t old_ds, new_ds;
1940 /* Compute the difference between old and new speculative
1941 statuses: that's what we need to check.
1942 Earlier we used to assert that the status will really
1943 change. This no longer works because only the probability
1944 bits in the status may have changed during compute_av_set,
1945 and in the case of merging different probabilities of the
1946 same speculative status along different paths we do not
1947 record this in the history vector. */
1948 old_ds = phist->spec_ds;
1949 new_ds = EXPR_SPEC_DONE_DS (expr);
1951 old_ds &= SPECULATIVE;
1952 new_ds &= SPECULATIVE;
1953 new_ds &= ~old_ds;
1955 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1956 break;
1958 case TRANS_SUBSTITUTION:
1960 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1961 vinsn_t new_vi;
1962 bool add = true;
1964 new_vi = phist->old_expr_vinsn;
1966 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1967 == EXPR_SEPARABLE_P (expr));
1968 copy_expr (tmp_expr, expr);
1970 if (vinsn_equal_p (phist->new_expr_vinsn,
1971 EXPR_VINSN (tmp_expr)))
1972 change_vinsn_in_expr (tmp_expr, new_vi);
1973 else
1974 /* This happens when we're unsubstituting on a bookkeeping
1975 copy, which was in turn substituted. The history is wrong
1976 in this case. Do it the hard way. */
1977 add = substitute_reg_in_expr (tmp_expr, insn, true);
1978 if (add)
1979 av_set_add (&new_set, tmp_expr);
1980 clear_expr (tmp_expr);
1981 break;
1983 default:
1984 gcc_unreachable ();
1990 av_set_union_and_clear (av_ptr, &new_set, NULL);
1994 /* Moveup_* helpers for code motion and computing av sets. */
1996 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1997 The difference from the below function is that only substitution is
1998 performed. */
1999 static enum MOVEUP_EXPR_CODE
2000 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2002 vinsn_t vi = EXPR_VINSN (expr);
2003 ds_t *has_dep_p;
2004 ds_t full_ds;
2006 /* Do this only inside insn group. */
2007 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2009 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2010 if (full_ds == 0)
2011 return MOVEUP_EXPR_SAME;
2013 /* Substitution is the possible choice in this case. */
2014 if (has_dep_p[DEPS_IN_RHS])
2016 /* Can't substitute UNIQUE VINSNs. */
2017 gcc_assert (!VINSN_UNIQUE_P (vi));
2019 if (can_substitute_through_p (through_insn,
2020 has_dep_p[DEPS_IN_RHS])
2021 && substitute_reg_in_expr (expr, through_insn, false))
2023 EXPR_WAS_SUBSTITUTED (expr) = true;
2024 return MOVEUP_EXPR_CHANGED;
2027 /* Don't care about this, as even true dependencies may be allowed
2028 in an insn group. */
2029 return MOVEUP_EXPR_SAME;
2032 /* This can catch output dependencies in COND_EXECs. */
2033 if (has_dep_p[DEPS_IN_INSN])
2034 return MOVEUP_EXPR_NULL;
2036 /* This is either an output or an anti dependence, which usually have
2037 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2038 will fix this. */
2039 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2040 return MOVEUP_EXPR_AS_RHS;
2043 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2044 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2045 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2046 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2047 && !sel_insn_is_speculation_check (through_insn))
2049 /* True when a conflict on a target register was found during moveup_expr. */
2050 static bool was_target_conflict = false;
2052 /* Return true when moving a debug INSN across THROUGH_INSN will
2053 create a bookkeeping block. We don't want to create such blocks,
2054 for they would cause codegen differences between compilations with
2055 and without debug info. */
2057 static bool
2058 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2059 insn_t through_insn)
2061 basic_block bbi, bbt;
2062 edge e1, e2;
2063 edge_iterator ei1, ei2;
2065 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2067 if (sched_verbose >= 9)
2068 sel_print ("no bookkeeping required: ");
2069 return FALSE;
2072 bbi = BLOCK_FOR_INSN (insn);
2074 if (EDGE_COUNT (bbi->preds) == 1)
2076 if (sched_verbose >= 9)
2077 sel_print ("only one pred edge: ");
2078 return TRUE;
2081 bbt = BLOCK_FOR_INSN (through_insn);
2083 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2085 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2087 if (find_block_for_bookkeeping (e1, e2, TRUE))
2089 if (sched_verbose >= 9)
2090 sel_print ("found existing block: ");
2091 return FALSE;
2096 if (sched_verbose >= 9)
2097 sel_print ("would create bookkeeping block: ");
2099 return TRUE;
2102 /* Return true when the conflict with newly created implicit clobbers
2103 between EXPR and THROUGH_INSN is found because of renaming. */
2104 static bool
2105 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2107 HARD_REG_SET temp;
2108 rtx_insn *insn;
2109 rtx reg, rhs, pat;
2110 hard_reg_set_iterator hrsi;
2111 unsigned regno;
2112 bool valid;
2114 /* Make a new pseudo register. */
2115 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2116 max_regno = max_reg_num ();
2117 maybe_extend_reg_info_p ();
2119 /* Validate a change and bail out early. */
2120 insn = EXPR_INSN_RTX (expr);
2121 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2122 valid = verify_changes (0);
2123 cancel_changes (0);
2124 if (!valid)
2126 if (sched_verbose >= 6)
2127 sel_print ("implicit clobbers failed validation, ");
2128 return true;
2131 /* Make a new insn with it. */
2132 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2133 pat = gen_rtx_SET (VOIDmode, reg, rhs);
2134 start_sequence ();
2135 insn = emit_insn (pat);
2136 end_sequence ();
2138 /* Calculate implicit clobbers. */
2139 extract_insn (insn);
2140 preprocess_constraints (insn);
2141 alternative_mask prefrred = get_preferred_alternatives (insn);
2142 ira_implicitly_set_insn_hard_regs (&temp, prefrred);
2143 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2145 /* If any implicit clobber registers intersect with regular ones in
2146 through_insn, we have a dependency and thus bail out. */
2147 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2149 vinsn_t vi = INSN_VINSN (through_insn);
2150 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2151 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2152 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2153 return true;
2156 return false;
2159 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2160 performing necessary transformations. Record the type of transformation
2161 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2162 permit all dependencies except true ones, and try to remove those
2163 too via forward substitution. All cases when a non-eliminable
2164 non-zero cost dependency exists inside an insn group will be fixed
2165 in tick_check_p instead. */
2166 static enum MOVEUP_EXPR_CODE
2167 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2168 enum local_trans_type *ptrans_type)
2170 vinsn_t vi = EXPR_VINSN (expr);
2171 insn_t insn = VINSN_INSN_RTX (vi);
2172 bool was_changed = false;
2173 bool as_rhs = false;
2174 ds_t *has_dep_p;
2175 ds_t full_ds;
2177 /* ??? We use dependencies of non-debug insns on debug insns to
2178 indicate that the debug insns need to be reset if the non-debug
2179 insn is pulled ahead of it. It's hard to figure out how to
2180 introduce such a notion in sel-sched, but it already fails to
2181 support debug insns in other ways, so we just go ahead and
2182 let the deug insns go corrupt for now. */
2183 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2184 return MOVEUP_EXPR_SAME;
2186 /* When inside_insn_group, delegate to the helper. */
2187 if (inside_insn_group)
2188 return moveup_expr_inside_insn_group (expr, through_insn);
2190 /* Deal with unique insns and control dependencies. */
2191 if (VINSN_UNIQUE_P (vi))
2193 /* We can move jumps without side-effects or jumps that are
2194 mutually exclusive with instruction THROUGH_INSN (all in cases
2195 dependencies allow to do so and jump is not speculative). */
2196 if (control_flow_insn_p (insn))
2198 basic_block fallthru_bb;
2200 /* Do not move checks and do not move jumps through other
2201 jumps. */
2202 if (control_flow_insn_p (through_insn)
2203 || sel_insn_is_speculation_check (insn))
2204 return MOVEUP_EXPR_NULL;
2206 /* Don't move jumps through CFG joins. */
2207 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2208 return MOVEUP_EXPR_NULL;
2210 /* The jump should have a clear fallthru block, and
2211 this block should be in the current region. */
2212 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2213 || ! in_current_region_p (fallthru_bb))
2214 return MOVEUP_EXPR_NULL;
2216 /* And it should be mutually exclusive with through_insn. */
2217 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2218 && ! DEBUG_INSN_P (through_insn))
2219 return MOVEUP_EXPR_NULL;
2222 /* Don't move what we can't move. */
2223 if (EXPR_CANT_MOVE (expr)
2224 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2225 return MOVEUP_EXPR_NULL;
2227 /* Don't move SCHED_GROUP instruction through anything.
2228 If we don't force this, then it will be possible to start
2229 scheduling a sched_group before all its dependencies are
2230 resolved.
2231 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2232 as late as possible through rank_for_schedule. */
2233 if (SCHED_GROUP_P (insn))
2234 return MOVEUP_EXPR_NULL;
2236 else
2237 gcc_assert (!control_flow_insn_p (insn));
2239 /* Don't move debug insns if this would require bookkeeping. */
2240 if (DEBUG_INSN_P (insn)
2241 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2242 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2243 return MOVEUP_EXPR_NULL;
2245 /* Deal with data dependencies. */
2246 was_target_conflict = false;
2247 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2248 if (full_ds == 0)
2250 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2251 return MOVEUP_EXPR_SAME;
2253 else
2255 /* We can move UNIQUE insn up only as a whole and unchanged,
2256 so it shouldn't have any dependencies. */
2257 if (VINSN_UNIQUE_P (vi))
2258 return MOVEUP_EXPR_NULL;
2261 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2263 int res;
2265 res = speculate_expr (expr, full_ds);
2266 if (res >= 0)
2268 /* Speculation was successful. */
2269 full_ds = 0;
2270 was_changed = (res > 0);
2271 if (res == 2)
2272 was_target_conflict = true;
2273 if (ptrans_type)
2274 *ptrans_type = TRANS_SPECULATION;
2275 sel_clear_has_dependence ();
2279 if (has_dep_p[DEPS_IN_INSN])
2280 /* We have some dependency that cannot be discarded. */
2281 return MOVEUP_EXPR_NULL;
2283 if (has_dep_p[DEPS_IN_LHS])
2285 /* Only separable insns can be moved up with the new register.
2286 Anyways, we should mark that the original register is
2287 unavailable. */
2288 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2289 return MOVEUP_EXPR_NULL;
2291 /* When renaming a hard register to a pseudo before reload, extra
2292 dependencies can occur from the implicit clobbers of the insn.
2293 Filter out such cases here. */
2294 if (!reload_completed && REG_P (EXPR_LHS (expr))
2295 && HARD_REGISTER_P (EXPR_LHS (expr))
2296 && implicit_clobber_conflict_p (through_insn, expr))
2298 if (sched_verbose >= 6)
2299 sel_print ("implicit clobbers conflict detected, ");
2300 return MOVEUP_EXPR_NULL;
2302 EXPR_TARGET_AVAILABLE (expr) = false;
2303 was_target_conflict = true;
2304 as_rhs = true;
2307 /* At this point we have either separable insns, that will be lifted
2308 up only as RHSes, or non-separable insns with no dependency in lhs.
2309 If dependency is in RHS, then try to perform substitution and move up
2310 substituted RHS:
2312 Ex. 1: Ex.2
2313 y = x; y = x;
2314 z = y*2; y = y*2;
2316 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2317 moved above y=x assignment as z=x*2.
2319 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2320 side can be moved because of the output dependency. The operation was
2321 cropped to its rhs above. */
2322 if (has_dep_p[DEPS_IN_RHS])
2324 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2326 /* Can't substitute UNIQUE VINSNs. */
2327 gcc_assert (!VINSN_UNIQUE_P (vi));
2329 if (can_speculate_dep_p (*rhs_dsp))
2331 int res;
2333 res = speculate_expr (expr, *rhs_dsp);
2334 if (res >= 0)
2336 /* Speculation was successful. */
2337 *rhs_dsp = 0;
2338 was_changed = (res > 0);
2339 if (res == 2)
2340 was_target_conflict = true;
2341 if (ptrans_type)
2342 *ptrans_type = TRANS_SPECULATION;
2344 else
2345 return MOVEUP_EXPR_NULL;
2347 else if (can_substitute_through_p (through_insn,
2348 *rhs_dsp)
2349 && substitute_reg_in_expr (expr, through_insn, false))
2351 /* ??? We cannot perform substitution AND speculation on the same
2352 insn. */
2353 gcc_assert (!was_changed);
2354 was_changed = true;
2355 if (ptrans_type)
2356 *ptrans_type = TRANS_SUBSTITUTION;
2357 EXPR_WAS_SUBSTITUTED (expr) = true;
2359 else
2360 return MOVEUP_EXPR_NULL;
2363 /* Don't move trapping insns through jumps.
2364 This check should be at the end to give a chance to control speculation
2365 to perform its duties. */
2366 if (CANT_MOVE_TRAPPING (expr, through_insn))
2367 return MOVEUP_EXPR_NULL;
2369 return (was_changed
2370 ? MOVEUP_EXPR_CHANGED
2371 : (as_rhs
2372 ? MOVEUP_EXPR_AS_RHS
2373 : MOVEUP_EXPR_SAME));
2376 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2377 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2378 that can exist within a parallel group. Write to RES the resulting
2379 code for moveup_expr. */
2380 static bool
2381 try_bitmap_cache (expr_t expr, insn_t insn,
2382 bool inside_insn_group,
2383 enum MOVEUP_EXPR_CODE *res)
2385 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2387 /* First check whether we've analyzed this situation already. */
2388 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2390 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2392 if (sched_verbose >= 6)
2393 sel_print ("removed (cached)\n");
2394 *res = MOVEUP_EXPR_NULL;
2395 return true;
2397 else
2399 if (sched_verbose >= 6)
2400 sel_print ("unchanged (cached)\n");
2401 *res = MOVEUP_EXPR_SAME;
2402 return true;
2405 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2407 if (inside_insn_group)
2409 if (sched_verbose >= 6)
2410 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2411 *res = MOVEUP_EXPR_SAME;
2412 return true;
2415 else
2416 EXPR_TARGET_AVAILABLE (expr) = false;
2418 /* This is the only case when propagation result can change over time,
2419 as we can dynamically switch off scheduling as RHS. In this case,
2420 just check the flag to reach the correct decision. */
2421 if (enable_schedule_as_rhs_p)
2423 if (sched_verbose >= 6)
2424 sel_print ("unchanged (as RHS, cached)\n");
2425 *res = MOVEUP_EXPR_AS_RHS;
2426 return true;
2428 else
2430 if (sched_verbose >= 6)
2431 sel_print ("removed (cached as RHS, but renaming"
2432 " is now disabled)\n");
2433 *res = MOVEUP_EXPR_NULL;
2434 return true;
2438 return false;
2441 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2442 if successful. Write to RES the resulting code for moveup_expr. */
2443 static bool
2444 try_transformation_cache (expr_t expr, insn_t insn,
2445 enum MOVEUP_EXPR_CODE *res)
2447 struct transformed_insns *pti
2448 = (struct transformed_insns *)
2449 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2450 &EXPR_VINSN (expr),
2451 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2452 if (pti)
2454 /* This EXPR was already moved through this insn and was
2455 changed as a result. Fetch the proper data from
2456 the hashtable. */
2457 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2458 INSN_UID (insn), pti->type,
2459 pti->vinsn_old, pti->vinsn_new,
2460 EXPR_SPEC_DONE_DS (expr));
2462 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2463 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2464 change_vinsn_in_expr (expr, pti->vinsn_new);
2465 if (pti->was_target_conflict)
2466 EXPR_TARGET_AVAILABLE (expr) = false;
2467 if (pti->type == TRANS_SPECULATION)
2469 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2470 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2473 if (sched_verbose >= 6)
2475 sel_print ("changed (cached): ");
2476 dump_expr (expr);
2477 sel_print ("\n");
2480 *res = MOVEUP_EXPR_CHANGED;
2481 return true;
2484 return false;
2487 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2488 static void
2489 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2490 enum MOVEUP_EXPR_CODE res)
2492 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2494 /* Do not cache result of propagating jumps through an insn group,
2495 as it is always true, which is not useful outside the group. */
2496 if (inside_insn_group)
2497 return;
2499 if (res == MOVEUP_EXPR_NULL)
2501 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2502 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2504 else if (res == MOVEUP_EXPR_SAME)
2506 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2507 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2509 else if (res == MOVEUP_EXPR_AS_RHS)
2511 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2512 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2514 else
2515 gcc_unreachable ();
2518 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2519 and transformation type TRANS_TYPE. */
2520 static void
2521 update_transformation_cache (expr_t expr, insn_t insn,
2522 bool inside_insn_group,
2523 enum local_trans_type trans_type,
2524 vinsn_t expr_old_vinsn)
2526 struct transformed_insns *pti;
2528 if (inside_insn_group)
2529 return;
2531 pti = XNEW (struct transformed_insns);
2532 pti->vinsn_old = expr_old_vinsn;
2533 pti->vinsn_new = EXPR_VINSN (expr);
2534 pti->type = trans_type;
2535 pti->was_target_conflict = was_target_conflict;
2536 pti->ds = EXPR_SPEC_DONE_DS (expr);
2537 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2538 vinsn_attach (pti->vinsn_old);
2539 vinsn_attach (pti->vinsn_new);
2540 *((struct transformed_insns **)
2541 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2542 pti, VINSN_HASH_RTX (expr_old_vinsn),
2543 INSERT)) = pti;
2546 /* Same as moveup_expr, but first looks up the result of
2547 transformation in caches. */
2548 static enum MOVEUP_EXPR_CODE
2549 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2551 enum MOVEUP_EXPR_CODE res;
2552 bool got_answer = false;
2554 if (sched_verbose >= 6)
2556 sel_print ("Moving ");
2557 dump_expr (expr);
2558 sel_print (" through %d: ", INSN_UID (insn));
2561 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2562 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2563 == EXPR_INSN_RTX (expr)))
2564 /* Don't use cached information for debug insns that are heads of
2565 basic blocks. */;
2566 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2567 /* When inside insn group, we do not want remove stores conflicting
2568 with previosly issued loads. */
2569 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2570 else if (try_transformation_cache (expr, insn, &res))
2571 got_answer = true;
2573 if (! got_answer)
2575 /* Invoke moveup_expr and record the results. */
2576 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2577 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2578 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2579 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2580 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2582 /* ??? Invent something better than this. We can't allow old_vinsn
2583 to go, we need it for the history vector. */
2584 vinsn_attach (expr_old_vinsn);
2586 res = moveup_expr (expr, insn, inside_insn_group,
2587 &trans_type);
2588 switch (res)
2590 case MOVEUP_EXPR_NULL:
2591 update_bitmap_cache (expr, insn, inside_insn_group, res);
2592 if (sched_verbose >= 6)
2593 sel_print ("removed\n");
2594 break;
2596 case MOVEUP_EXPR_SAME:
2597 update_bitmap_cache (expr, insn, inside_insn_group, res);
2598 if (sched_verbose >= 6)
2599 sel_print ("unchanged\n");
2600 break;
2602 case MOVEUP_EXPR_AS_RHS:
2603 gcc_assert (!unique_p || inside_insn_group);
2604 update_bitmap_cache (expr, insn, inside_insn_group, res);
2605 if (sched_verbose >= 6)
2606 sel_print ("unchanged (as RHS)\n");
2607 break;
2609 case MOVEUP_EXPR_CHANGED:
2610 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2611 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2612 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2613 INSN_UID (insn), trans_type,
2614 expr_old_vinsn, EXPR_VINSN (expr),
2615 expr_old_spec_ds);
2616 update_transformation_cache (expr, insn, inside_insn_group,
2617 trans_type, expr_old_vinsn);
2618 if (sched_verbose >= 6)
2620 sel_print ("changed: ");
2621 dump_expr (expr);
2622 sel_print ("\n");
2624 break;
2625 default:
2626 gcc_unreachable ();
2629 vinsn_detach (expr_old_vinsn);
2632 return res;
2635 /* Moves an av set AVP up through INSN, performing necessary
2636 transformations. */
2637 static void
2638 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2640 av_set_iterator i;
2641 expr_t expr;
2643 FOR_EACH_EXPR_1 (expr, i, avp)
2646 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2648 case MOVEUP_EXPR_SAME:
2649 case MOVEUP_EXPR_AS_RHS:
2650 break;
2652 case MOVEUP_EXPR_NULL:
2653 av_set_iter_remove (&i);
2654 break;
2656 case MOVEUP_EXPR_CHANGED:
2657 expr = merge_with_other_exprs (avp, &i, expr);
2658 break;
2660 default:
2661 gcc_unreachable ();
2666 /* Moves AVP set along PATH. */
2667 static void
2668 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2670 int last_cycle;
2672 if (sched_verbose >= 6)
2673 sel_print ("Moving expressions up in the insn group...\n");
2674 if (! path)
2675 return;
2676 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2677 while (path
2678 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2680 moveup_set_expr (avp, ILIST_INSN (path), true);
2681 path = ILIST_NEXT (path);
2685 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2686 static bool
2687 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2689 expr_def _tmp, *tmp = &_tmp;
2690 int last_cycle;
2691 bool res = true;
2693 copy_expr_onside (tmp, expr);
2694 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2695 while (path
2696 && res
2697 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2699 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2700 != MOVEUP_EXPR_NULL);
2701 path = ILIST_NEXT (path);
2704 if (res)
2706 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2707 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2709 if (tmp_vinsn != expr_vliw_vinsn)
2710 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2713 clear_expr (tmp);
2714 return res;
2718 /* Functions that compute av and lv sets. */
2720 /* Returns true if INSN is not a downward continuation of the given path P in
2721 the current stage. */
2722 static bool
2723 is_ineligible_successor (insn_t insn, ilist_t p)
2725 insn_t prev_insn;
2727 /* Check if insn is not deleted. */
2728 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2729 gcc_unreachable ();
2730 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2731 gcc_unreachable ();
2733 /* If it's the first insn visited, then the successor is ok. */
2734 if (!p)
2735 return false;
2737 prev_insn = ILIST_INSN (p);
2739 if (/* a backward edge. */
2740 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2741 /* is already visited. */
2742 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2743 && (ilist_is_in_p (p, insn)
2744 /* We can reach another fence here and still seqno of insn
2745 would be equal to seqno of prev_insn. This is possible
2746 when prev_insn is a previously created bookkeeping copy.
2747 In that case it'd get a seqno of insn. Thus, check here
2748 whether insn is in current fence too. */
2749 || IN_CURRENT_FENCE_P (insn)))
2750 /* Was already scheduled on this round. */
2751 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2752 && IN_CURRENT_FENCE_P (insn))
2753 /* An insn from another fence could also be
2754 scheduled earlier even if this insn is not in
2755 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2756 || (!pipelining_p
2757 && INSN_SCHED_TIMES (insn) > 0))
2758 return true;
2759 else
2760 return false;
2763 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2764 of handling multiple successors and properly merging its av_sets. P is
2765 the current path traversed. WS is the size of lookahead window.
2766 Return the av set computed. */
2767 static av_set_t
2768 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2770 struct succs_info *sinfo;
2771 av_set_t expr_in_all_succ_branches = NULL;
2772 int is;
2773 insn_t succ, zero_succ = NULL;
2774 av_set_t av1 = NULL;
2776 gcc_assert (sel_bb_end_p (insn));
2778 /* Find different kind of successors needed for correct computing of
2779 SPEC and TARGET_AVAILABLE attributes. */
2780 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2782 /* Debug output. */
2783 if (sched_verbose >= 6)
2785 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2786 dump_insn_vector (sinfo->succs_ok);
2787 sel_print ("\n");
2788 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2789 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2792 /* Add insn to the tail of current path. */
2793 ilist_add (&p, insn);
2795 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2797 av_set_t succ_set;
2799 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2800 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2802 av_set_split_usefulness (succ_set,
2803 sinfo->probs_ok[is],
2804 sinfo->all_prob);
2806 if (sinfo->all_succs_n > 1)
2808 /* Find EXPR'es that came from *all* successors and save them
2809 into expr_in_all_succ_branches. This set will be used later
2810 for calculating speculation attributes of EXPR'es. */
2811 if (is == 0)
2813 expr_in_all_succ_branches = av_set_copy (succ_set);
2815 /* Remember the first successor for later. */
2816 zero_succ = succ;
2818 else
2820 av_set_iterator i;
2821 expr_t expr;
2823 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2824 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2825 av_set_iter_remove (&i);
2829 /* Union the av_sets. Check liveness restrictions on target registers
2830 in special case of two successors. */
2831 if (sinfo->succs_ok_n == 2 && is == 1)
2833 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2834 basic_block bb1 = BLOCK_FOR_INSN (succ);
2836 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2837 av_set_union_and_live (&av1, &succ_set,
2838 BB_LV_SET (bb0),
2839 BB_LV_SET (bb1),
2840 insn);
2842 else
2843 av_set_union_and_clear (&av1, &succ_set, insn);
2846 /* Check liveness restrictions via hard way when there are more than
2847 two successors. */
2848 if (sinfo->succs_ok_n > 2)
2849 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2851 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2853 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2854 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2855 BB_LV_SET (succ_bb));
2858 /* Finally, check liveness restrictions on paths leaving the region. */
2859 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2860 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2861 mark_unavailable_targets
2862 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2864 if (sinfo->all_succs_n > 1)
2866 av_set_iterator i;
2867 expr_t expr;
2869 /* Increase the spec attribute of all EXPR'es that didn't come
2870 from all successors. */
2871 FOR_EACH_EXPR (expr, i, av1)
2872 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2873 EXPR_SPEC (expr)++;
2875 av_set_clear (&expr_in_all_succ_branches);
2877 /* Do not move conditional branches through other
2878 conditional branches. So, remove all conditional
2879 branches from av_set if current operator is a conditional
2880 branch. */
2881 av_set_substract_cond_branches (&av1);
2884 ilist_remove (&p);
2885 free_succs_info (sinfo);
2887 if (sched_verbose >= 6)
2889 sel_print ("av_succs (%d): ", INSN_UID (insn));
2890 dump_av_set (av1);
2891 sel_print ("\n");
2894 return av1;
2897 /* This function computes av_set for the FIRST_INSN by dragging valid
2898 av_set through all basic block insns either from the end of basic block
2899 (computed using compute_av_set_at_bb_end) or from the insn on which
2900 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2901 below the basic block and handling conditional branches.
2902 FIRST_INSN - the basic block head, P - path consisting of the insns
2903 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2904 and bb ends are added to the path), WS - current window size,
2905 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2906 static av_set_t
2907 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2908 bool need_copy_p)
2910 insn_t cur_insn;
2911 int end_ws = ws;
2912 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2913 insn_t after_bb_end = NEXT_INSN (bb_end);
2914 insn_t last_insn;
2915 av_set_t av = NULL;
2916 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2918 /* Return NULL if insn is not on the legitimate downward path. */
2919 if (is_ineligible_successor (first_insn, p))
2921 if (sched_verbose >= 6)
2922 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2924 return NULL;
2927 /* If insn already has valid av(insn) computed, just return it. */
2928 if (AV_SET_VALID_P (first_insn))
2930 av_set_t av_set;
2932 if (sel_bb_head_p (first_insn))
2933 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2934 else
2935 av_set = NULL;
2937 if (sched_verbose >= 6)
2939 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2940 dump_av_set (av_set);
2941 sel_print ("\n");
2944 return need_copy_p ? av_set_copy (av_set) : av_set;
2947 ilist_add (&p, first_insn);
2949 /* As the result after this loop have completed, in LAST_INSN we'll
2950 have the insn which has valid av_set to start backward computation
2951 from: it either will be NULL because on it the window size was exceeded
2952 or other valid av_set as returned by compute_av_set for the last insn
2953 of the basic block. */
2954 for (last_insn = first_insn; last_insn != after_bb_end;
2955 last_insn = NEXT_INSN (last_insn))
2957 /* We may encounter valid av_set not only on bb_head, but also on
2958 those insns on which previously MAX_WS was exceeded. */
2959 if (AV_SET_VALID_P (last_insn))
2961 if (sched_verbose >= 6)
2962 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2963 break;
2966 /* The special case: the last insn of the BB may be an
2967 ineligible_successor due to its SEQ_NO that was set on
2968 it as a bookkeeping. */
2969 if (last_insn != first_insn
2970 && is_ineligible_successor (last_insn, p))
2972 if (sched_verbose >= 6)
2973 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2974 break;
2977 if (DEBUG_INSN_P (last_insn))
2978 continue;
2980 if (end_ws > max_ws)
2982 /* We can reach max lookahead size at bb_header, so clean av_set
2983 first. */
2984 INSN_WS_LEVEL (last_insn) = global_level;
2986 if (sched_verbose >= 6)
2987 sel_print ("Insn %d is beyond the software lookahead window size\n",
2988 INSN_UID (last_insn));
2989 break;
2992 end_ws++;
2995 /* Get the valid av_set into AV above the LAST_INSN to start backward
2996 computation from. It either will be empty av_set or av_set computed from
2997 the successors on the last insn of the current bb. */
2998 if (last_insn != after_bb_end)
3000 av = NULL;
3002 /* This is needed only to obtain av_sets that are identical to
3003 those computed by the old compute_av_set version. */
3004 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
3005 av_set_add (&av, INSN_EXPR (last_insn));
3007 else
3008 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
3009 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
3011 /* Compute av_set in AV starting from below the LAST_INSN up to
3012 location above the FIRST_INSN. */
3013 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
3014 cur_insn = PREV_INSN (cur_insn))
3015 if (!INSN_NOP_P (cur_insn))
3017 expr_t expr;
3019 moveup_set_expr (&av, cur_insn, false);
3021 /* If the expression for CUR_INSN is already in the set,
3022 replace it by the new one. */
3023 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
3024 if (expr != NULL)
3026 clear_expr (expr);
3027 copy_expr (expr, INSN_EXPR (cur_insn));
3029 else
3030 av_set_add (&av, INSN_EXPR (cur_insn));
3033 /* Clear stale bb_av_set. */
3034 if (sel_bb_head_p (first_insn))
3036 av_set_clear (&BB_AV_SET (cur_bb));
3037 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3038 BB_AV_LEVEL (cur_bb) = global_level;
3041 if (sched_verbose >= 6)
3043 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3044 dump_av_set (av);
3045 sel_print ("\n");
3048 ilist_remove (&p);
3049 return av;
3052 /* Compute av set before INSN.
3053 INSN - the current operation (actual rtx INSN)
3054 P - the current path, which is list of insns visited so far
3055 WS - software lookahead window size.
3056 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3057 if we want to save computed av_set in s_i_d, we should make a copy of it.
3059 In the resulting set we will have only expressions that don't have delay
3060 stalls and nonsubstitutable dependences. */
3061 static av_set_t
3062 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3064 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3067 /* Propagate a liveness set LV through INSN. */
3068 static void
3069 propagate_lv_set (regset lv, insn_t insn)
3071 gcc_assert (INSN_P (insn));
3073 if (INSN_NOP_P (insn))
3074 return;
3076 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3079 /* Return livness set at the end of BB. */
3080 static regset
3081 compute_live_after_bb (basic_block bb)
3083 edge e;
3084 edge_iterator ei;
3085 regset lv = get_clear_regset_from_pool ();
3087 gcc_assert (!ignore_first);
3089 FOR_EACH_EDGE (e, ei, bb->succs)
3090 if (sel_bb_empty_p (e->dest))
3092 if (! BB_LV_SET_VALID_P (e->dest))
3094 gcc_unreachable ();
3095 gcc_assert (BB_LV_SET (e->dest) == NULL);
3096 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3097 BB_LV_SET_VALID_P (e->dest) = true;
3099 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3101 else
3102 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3104 return lv;
3107 /* Compute the set of all live registers at the point before INSN and save
3108 it at INSN if INSN is bb header. */
3109 regset
3110 compute_live (insn_t insn)
3112 basic_block bb = BLOCK_FOR_INSN (insn);
3113 insn_t final, temp;
3114 regset lv;
3116 /* Return the valid set if we're already on it. */
3117 if (!ignore_first)
3119 regset src = NULL;
3121 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3122 src = BB_LV_SET (bb);
3123 else
3125 gcc_assert (in_current_region_p (bb));
3126 if (INSN_LIVE_VALID_P (insn))
3127 src = INSN_LIVE (insn);
3130 if (src)
3132 lv = get_regset_from_pool ();
3133 COPY_REG_SET (lv, src);
3135 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3137 COPY_REG_SET (BB_LV_SET (bb), lv);
3138 BB_LV_SET_VALID_P (bb) = true;
3141 return_regset_to_pool (lv);
3142 return lv;
3146 /* We've skipped the wrong lv_set. Don't skip the right one. */
3147 ignore_first = false;
3148 gcc_assert (in_current_region_p (bb));
3150 /* Find a valid LV set in this block or below, if needed.
3151 Start searching from the next insn: either ignore_first is true, or
3152 INSN doesn't have a correct live set. */
3153 temp = NEXT_INSN (insn);
3154 final = NEXT_INSN (BB_END (bb));
3155 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3156 temp = NEXT_INSN (temp);
3157 if (temp == final)
3159 lv = compute_live_after_bb (bb);
3160 temp = PREV_INSN (temp);
3162 else
3164 lv = get_regset_from_pool ();
3165 COPY_REG_SET (lv, INSN_LIVE (temp));
3168 /* Put correct lv sets on the insns which have bad sets. */
3169 final = PREV_INSN (insn);
3170 while (temp != final)
3172 propagate_lv_set (lv, temp);
3173 COPY_REG_SET (INSN_LIVE (temp), lv);
3174 INSN_LIVE_VALID_P (temp) = true;
3175 temp = PREV_INSN (temp);
3178 /* Also put it in a BB. */
3179 if (sel_bb_head_p (insn))
3181 basic_block bb = BLOCK_FOR_INSN (insn);
3183 COPY_REG_SET (BB_LV_SET (bb), lv);
3184 BB_LV_SET_VALID_P (bb) = true;
3187 /* We return LV to the pool, but will not clear it there. Thus we can
3188 legimatelly use LV till the next use of regset_pool_get (). */
3189 return_regset_to_pool (lv);
3190 return lv;
3193 /* Update liveness sets for INSN. */
3194 static inline void
3195 update_liveness_on_insn (rtx_insn *insn)
3197 ignore_first = true;
3198 compute_live (insn);
3201 /* Compute liveness below INSN and write it into REGS. */
3202 static inline void
3203 compute_live_below_insn (rtx_insn *insn, regset regs)
3205 rtx_insn *succ;
3206 succ_iterator si;
3208 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3209 IOR_REG_SET (regs, compute_live (succ));
3212 /* Update the data gathered in av and lv sets starting from INSN. */
3213 static void
3214 update_data_sets (rtx_insn *insn)
3216 update_liveness_on_insn (insn);
3217 if (sel_bb_head_p (insn))
3219 gcc_assert (AV_LEVEL (insn) != 0);
3220 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3221 compute_av_set (insn, NULL, 0, 0);
3226 /* Helper for move_op () and find_used_regs ().
3227 Return speculation type for which a check should be created on the place
3228 of INSN. EXPR is one of the original ops we are searching for. */
3229 static ds_t
3230 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3232 ds_t to_check_ds;
3233 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3235 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3237 if (targetm.sched.get_insn_checked_ds)
3238 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3240 if (spec_info != NULL
3241 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3242 already_checked_ds |= BEGIN_CONTROL;
3244 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3246 to_check_ds &= ~already_checked_ds;
3248 return to_check_ds;
3251 /* Find the set of registers that are unavailable for storing expres
3252 while moving ORIG_OPS up on the path starting from INSN due to
3253 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3255 All the original operations found during the traversal are saved in the
3256 ORIGINAL_INSNS list.
3258 REG_RENAME_P denotes the set of hardware registers that
3259 can not be used with renaming due to the register class restrictions,
3260 mode restrictions and other (the register we'll choose should be
3261 compatible class with the original uses, shouldn't be in call_used_regs,
3262 should be HARD_REGNO_RENAME_OK etc).
3264 Returns TRUE if we've found all original insns, FALSE otherwise.
3266 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3267 to traverse the code motion paths. This helper function finds registers
3268 that are not available for storing expres while moving ORIG_OPS up on the
3269 path starting from INSN. A register considered as used on the moving path,
3270 if one of the following conditions is not satisfied:
3272 (1) a register not set or read on any path from xi to an instance of
3273 the original operation,
3274 (2) not among the live registers of the point immediately following the
3275 first original operation on a given downward path, except for the
3276 original target register of the operation,
3277 (3) not live on the other path of any conditional branch that is passed
3278 by the operation, in case original operations are not present on
3279 both paths of the conditional branch.
3281 All the original operations found during the traversal are saved in the
3282 ORIGINAL_INSNS list.
3284 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3285 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3286 to unavailable hard regs at the point original operation is found. */
3288 static bool
3289 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3290 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3292 def_list_iterator i;
3293 def_t def;
3294 int res;
3295 bool needs_spec_check_p = false;
3296 expr_t expr;
3297 av_set_iterator expr_iter;
3298 struct fur_static_params sparams;
3299 struct cmpd_local_params lparams;
3301 /* We haven't visited any blocks yet. */
3302 bitmap_clear (code_motion_visited_blocks);
3304 /* Init parameters for code_motion_path_driver. */
3305 sparams.crosses_call = false;
3306 sparams.original_insns = original_insns;
3307 sparams.used_regs = used_regs;
3309 /* Set the appropriate hooks and data. */
3310 code_motion_path_driver_info = &fur_hooks;
3312 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3314 reg_rename_p->crosses_call |= sparams.crosses_call;
3316 gcc_assert (res == 1);
3317 gcc_assert (original_insns && *original_insns);
3319 /* ??? We calculate whether an expression needs a check when computing
3320 av sets. This information is not as precise as it could be due to
3321 merging this bit in merge_expr. We can do better in find_used_regs,
3322 but we want to avoid multiple traversals of the same code motion
3323 paths. */
3324 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3325 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3327 /* Mark hardware regs in REG_RENAME_P that are not suitable
3328 for renaming expr in INSN due to hardware restrictions (register class,
3329 modes compatibility etc). */
3330 FOR_EACH_DEF (def, i, *original_insns)
3332 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3334 if (VINSN_SEPARABLE_P (vinsn))
3335 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3337 /* Do not allow clobbering of ld.[sa] address in case some of the
3338 original operations need a check. */
3339 if (needs_spec_check_p)
3340 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3343 return true;
3347 /* Functions to choose the best insn from available ones. */
3349 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3350 static int
3351 sel_target_adjust_priority (expr_t expr)
3353 int priority = EXPR_PRIORITY (expr);
3354 int new_priority;
3356 if (targetm.sched.adjust_priority)
3357 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3358 else
3359 new_priority = priority;
3361 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3362 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3364 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3366 if (sched_verbose >= 4)
3367 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3368 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3369 EXPR_PRIORITY_ADJ (expr), new_priority);
3371 return new_priority;
3374 /* Rank two available exprs for schedule. Never return 0 here. */
3375 static int
3376 sel_rank_for_schedule (const void *x, const void *y)
3378 expr_t tmp = *(const expr_t *) y;
3379 expr_t tmp2 = *(const expr_t *) x;
3380 insn_t tmp_insn, tmp2_insn;
3381 vinsn_t tmp_vinsn, tmp2_vinsn;
3382 int val;
3384 tmp_vinsn = EXPR_VINSN (tmp);
3385 tmp2_vinsn = EXPR_VINSN (tmp2);
3386 tmp_insn = EXPR_INSN_RTX (tmp);
3387 tmp2_insn = EXPR_INSN_RTX (tmp2);
3389 /* Schedule debug insns as early as possible. */
3390 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3391 return -1;
3392 else if (DEBUG_INSN_P (tmp2_insn))
3393 return 1;
3395 /* Prefer SCHED_GROUP_P insns to any others. */
3396 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3398 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3399 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3401 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3402 cannot be cloned. */
3403 if (VINSN_UNIQUE_P (tmp2_vinsn))
3404 return 1;
3405 return -1;
3408 /* Discourage scheduling of speculative checks. */
3409 val = (sel_insn_is_speculation_check (tmp_insn)
3410 - sel_insn_is_speculation_check (tmp2_insn));
3411 if (val)
3412 return val;
3414 /* Prefer not scheduled insn over scheduled one. */
3415 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3417 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3418 if (val)
3419 return val;
3422 /* Prefer jump over non-jump instruction. */
3423 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3424 return -1;
3425 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3426 return 1;
3428 /* Prefer an expr with greater priority. */
3429 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3431 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3432 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3434 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3436 else
3437 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3438 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3439 if (val)
3440 return val;
3442 if (spec_info != NULL && spec_info->mask != 0)
3443 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3445 ds_t ds1, ds2;
3446 dw_t dw1, dw2;
3447 int dw;
3449 ds1 = EXPR_SPEC_DONE_DS (tmp);
3450 if (ds1)
3451 dw1 = ds_weak (ds1);
3452 else
3453 dw1 = NO_DEP_WEAK;
3455 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3456 if (ds2)
3457 dw2 = ds_weak (ds2);
3458 else
3459 dw2 = NO_DEP_WEAK;
3461 dw = dw2 - dw1;
3462 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3463 return dw;
3466 /* Prefer an old insn to a bookkeeping insn. */
3467 if (INSN_UID (tmp_insn) < first_emitted_uid
3468 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3469 return -1;
3470 if (INSN_UID (tmp_insn) >= first_emitted_uid
3471 && INSN_UID (tmp2_insn) < first_emitted_uid)
3472 return 1;
3474 /* Prefer an insn with smaller UID, as a last resort.
3475 We can't safely use INSN_LUID as it is defined only for those insns
3476 that are in the stream. */
3477 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3480 /* Filter out expressions from av set pointed to by AV_PTR
3481 that are pipelined too many times. */
3482 static void
3483 process_pipelined_exprs (av_set_t *av_ptr)
3485 expr_t expr;
3486 av_set_iterator si;
3488 /* Don't pipeline already pipelined code as that would increase
3489 number of unnecessary register moves. */
3490 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3492 if (EXPR_SCHED_TIMES (expr)
3493 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3494 av_set_iter_remove (&si);
3498 /* Filter speculative insns from AV_PTR if we don't want them. */
3499 static void
3500 process_spec_exprs (av_set_t *av_ptr)
3502 expr_t expr;
3503 av_set_iterator si;
3505 if (spec_info == NULL)
3506 return;
3508 /* Scan *AV_PTR to find out if we want to consider speculative
3509 instructions for scheduling. */
3510 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3512 ds_t ds;
3514 ds = EXPR_SPEC_DONE_DS (expr);
3516 /* The probability of a success is too low - don't speculate. */
3517 if ((ds & SPECULATIVE)
3518 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3519 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3520 || (pipelining_p && false
3521 && (ds & DATA_SPEC)
3522 && (ds & CONTROL_SPEC))))
3524 av_set_iter_remove (&si);
3525 continue;
3530 /* Search for any use-like insns in AV_PTR and decide on scheduling
3531 them. Return one when found, and NULL otherwise.
3532 Note that we check here whether a USE could be scheduled to avoid
3533 an infinite loop later. */
3534 static expr_t
3535 process_use_exprs (av_set_t *av_ptr)
3537 expr_t expr;
3538 av_set_iterator si;
3539 bool uses_present_p = false;
3540 bool try_uses_p = true;
3542 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3544 /* This will also initialize INSN_CODE for later use. */
3545 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3547 /* If we have a USE in *AV_PTR that was not scheduled yet,
3548 do so because it will do good only. */
3549 if (EXPR_SCHED_TIMES (expr) <= 0)
3551 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3552 return expr;
3554 av_set_iter_remove (&si);
3556 else
3558 gcc_assert (pipelining_p);
3560 uses_present_p = true;
3563 else
3564 try_uses_p = false;
3567 if (uses_present_p)
3569 /* If we don't want to schedule any USEs right now and we have some
3570 in *AV_PTR, remove them, else just return the first one found. */
3571 if (!try_uses_p)
3573 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3574 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3575 av_set_iter_remove (&si);
3577 else
3579 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3581 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3583 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3584 return expr;
3586 av_set_iter_remove (&si);
3591 return NULL;
3594 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3595 EXPR's history of changes. */
3596 static bool
3597 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3599 vinsn_t vinsn, expr_vinsn;
3600 int n;
3601 unsigned i;
3603 /* Start with checking expr itself and then proceed with all the old forms
3604 of expr taken from its history vector. */
3605 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3606 expr_vinsn;
3607 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3608 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3609 : NULL))
3610 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3611 if (VINSN_SEPARABLE_P (vinsn))
3613 if (vinsn_equal_p (vinsn, expr_vinsn))
3614 return true;
3616 else
3618 /* For non-separable instructions, the blocking insn can have
3619 another pattern due to substitution, and we can't choose
3620 different register as in the above case. Check all registers
3621 being written instead. */
3622 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3623 VINSN_REG_SETS (expr_vinsn)))
3624 return true;
3627 return false;
3630 #ifdef ENABLE_CHECKING
3631 /* Return true if either of expressions from ORIG_OPS can be blocked
3632 by previously created bookkeeping code. STATIC_PARAMS points to static
3633 parameters of move_op. */
3634 static bool
3635 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3637 expr_t expr;
3638 av_set_iterator iter;
3639 moveop_static_params_p sparams;
3641 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3642 created while scheduling on another fence. */
3643 FOR_EACH_EXPR (expr, iter, orig_ops)
3644 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3645 return true;
3647 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3648 sparams = (moveop_static_params_p) static_params;
3650 /* Expressions can be also blocked by bookkeeping created during current
3651 move_op. */
3652 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3653 FOR_EACH_EXPR (expr, iter, orig_ops)
3654 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3655 return true;
3657 /* Expressions in ORIG_OPS may have wrong destination register due to
3658 renaming. Check with the right register instead. */
3659 if (sparams->dest && REG_P (sparams->dest))
3661 rtx reg = sparams->dest;
3662 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3664 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3665 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3666 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3667 return true;
3670 return false;
3672 #endif
3674 /* Clear VINSN_VEC and detach vinsns. */
3675 static void
3676 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3678 unsigned len = vinsn_vec->length ();
3679 if (len > 0)
3681 vinsn_t vinsn;
3682 int n;
3684 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3685 vinsn_detach (vinsn);
3686 vinsn_vec->block_remove (0, len);
3690 /* Add the vinsn of EXPR to the VINSN_VEC. */
3691 static void
3692 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3694 vinsn_attach (EXPR_VINSN (expr));
3695 vinsn_vec->safe_push (EXPR_VINSN (expr));
3698 /* Free the vector representing blocked expressions. */
3699 static void
3700 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3702 vinsn_vec.release ();
3705 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3707 void sel_add_to_insn_priority (rtx insn, int amount)
3709 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3711 if (sched_verbose >= 2)
3712 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3713 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3714 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3717 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3718 true if there is something to schedule. BNDS and FENCE are current
3719 boundaries and fence, respectively. If we need to stall for some cycles
3720 before an expr from AV would become available, write this number to
3721 *PNEED_STALL. */
3722 static bool
3723 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3724 int *pneed_stall)
3726 av_set_iterator si;
3727 expr_t expr;
3728 int sched_next_worked = 0, stalled, n;
3729 static int av_max_prio, est_ticks_till_branch;
3730 int min_need_stall = -1;
3731 deps_t dc = BND_DC (BLIST_BND (bnds));
3733 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3734 already scheduled. */
3735 if (av == NULL)
3736 return false;
3738 /* Empty vector from the previous stuff. */
3739 if (vec_av_set.length () > 0)
3740 vec_av_set.block_remove (0, vec_av_set.length ());
3742 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3743 for each insn. */
3744 gcc_assert (vec_av_set.is_empty ());
3745 FOR_EACH_EXPR (expr, si, av)
3747 vec_av_set.safe_push (expr);
3749 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3751 /* Adjust priority using target backend hook. */
3752 sel_target_adjust_priority (expr);
3755 /* Sort the vector. */
3756 vec_av_set.qsort (sel_rank_for_schedule);
3758 /* We record maximal priority of insns in av set for current instruction
3759 group. */
3760 if (FENCE_STARTS_CYCLE_P (fence))
3761 av_max_prio = est_ticks_till_branch = INT_MIN;
3763 /* Filter out inappropriate expressions. Loop's direction is reversed to
3764 visit "best" instructions first. We assume that vec::unordered_remove
3765 moves last element in place of one being deleted. */
3766 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3768 expr_t expr = vec_av_set[n];
3769 insn_t insn = EXPR_INSN_RTX (expr);
3770 signed char target_available;
3771 bool is_orig_reg_p = true;
3772 int need_cycles, new_prio;
3773 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3775 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3776 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3778 vec_av_set.unordered_remove (n);
3779 continue;
3782 /* Set number of sched_next insns (just in case there
3783 could be several). */
3784 if (FENCE_SCHED_NEXT (fence))
3785 sched_next_worked++;
3787 /* Check all liveness requirements and try renaming.
3788 FIXME: try to minimize calls to this. */
3789 target_available = EXPR_TARGET_AVAILABLE (expr);
3791 /* If insn was already scheduled on the current fence,
3792 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3793 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3794 && !fence_insn_p)
3795 target_available = -1;
3797 /* If the availability of the EXPR is invalidated by the insertion of
3798 bookkeeping earlier, make sure that we won't choose this expr for
3799 scheduling if it's not separable, and if it is separable, then
3800 we have to recompute the set of available registers for it. */
3801 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3803 vec_av_set.unordered_remove (n);
3804 if (sched_verbose >= 4)
3805 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3806 INSN_UID (insn));
3807 continue;
3810 if (target_available == true)
3812 /* Do nothing -- we can use an existing register. */
3813 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3815 else if (/* Non-separable instruction will never
3816 get another register. */
3817 (target_available == false
3818 && !EXPR_SEPARABLE_P (expr))
3819 /* Don't try to find a register for low-priority expression. */
3820 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3821 /* ??? FIXME: Don't try to rename data speculation. */
3822 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3823 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3825 vec_av_set.unordered_remove (n);
3826 if (sched_verbose >= 4)
3827 sel_print ("Expr %d has no suitable target register\n",
3828 INSN_UID (insn));
3830 /* A fence insn should not get here. */
3831 gcc_assert (!fence_insn_p);
3832 continue;
3835 /* At this point a fence insn should always be available. */
3836 gcc_assert (!fence_insn_p
3837 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3839 /* Filter expressions that need to be renamed or speculated when
3840 pipelining, because compensating register copies or speculation
3841 checks are likely to be placed near the beginning of the loop,
3842 causing a stall. */
3843 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3844 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3846 /* Estimation of number of cycles until loop branch for
3847 renaming/speculation to be successful. */
3848 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3850 if ((int) current_loop_nest->ninsns < 9)
3852 vec_av_set.unordered_remove (n);
3853 if (sched_verbose >= 4)
3854 sel_print ("Pipelining expr %d will likely cause stall\n",
3855 INSN_UID (insn));
3856 continue;
3859 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3860 < need_n_ticks_till_branch * issue_rate / 2
3861 && est_ticks_till_branch < need_n_ticks_till_branch)
3863 vec_av_set.unordered_remove (n);
3864 if (sched_verbose >= 4)
3865 sel_print ("Pipelining expr %d will likely cause stall\n",
3866 INSN_UID (insn));
3867 continue;
3871 /* We want to schedule speculation checks as late as possible. Discard
3872 them from av set if there are instructions with higher priority. */
3873 if (sel_insn_is_speculation_check (insn)
3874 && EXPR_PRIORITY (expr) < av_max_prio)
3876 stalled++;
3877 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3878 vec_av_set.unordered_remove (n);
3879 if (sched_verbose >= 4)
3880 sel_print ("Delaying speculation check %d until its first use\n",
3881 INSN_UID (insn));
3882 continue;
3885 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3886 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3887 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3889 /* Don't allow any insns whose data is not yet ready.
3890 Check first whether we've already tried them and failed. */
3891 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3893 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3894 - FENCE_CYCLE (fence));
3895 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3896 est_ticks_till_branch = MAX (est_ticks_till_branch,
3897 EXPR_PRIORITY (expr) + need_cycles);
3899 if (need_cycles > 0)
3901 stalled++;
3902 min_need_stall = (min_need_stall < 0
3903 ? need_cycles
3904 : MIN (min_need_stall, need_cycles));
3905 vec_av_set.unordered_remove (n);
3907 if (sched_verbose >= 4)
3908 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3909 INSN_UID (insn),
3910 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3911 continue;
3915 /* Now resort to dependence analysis to find whether EXPR might be
3916 stalled due to dependencies from FENCE's context. */
3917 need_cycles = tick_check_p (expr, dc, fence);
3918 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3920 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3921 est_ticks_till_branch = MAX (est_ticks_till_branch,
3922 new_prio);
3924 if (need_cycles > 0)
3926 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3928 int new_size = INSN_UID (insn) * 3 / 2;
3930 FENCE_READY_TICKS (fence)
3931 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3932 new_size, FENCE_READY_TICKS_SIZE (fence),
3933 sizeof (int));
3935 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3936 = FENCE_CYCLE (fence) + need_cycles;
3938 stalled++;
3939 min_need_stall = (min_need_stall < 0
3940 ? need_cycles
3941 : MIN (min_need_stall, need_cycles));
3943 vec_av_set.unordered_remove (n);
3945 if (sched_verbose >= 4)
3946 sel_print ("Expr %d is not ready yet until cycle %d\n",
3947 INSN_UID (insn),
3948 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3949 continue;
3952 if (sched_verbose >= 4)
3953 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3954 min_need_stall = 0;
3957 /* Clear SCHED_NEXT. */
3958 if (FENCE_SCHED_NEXT (fence))
3960 gcc_assert (sched_next_worked == 1);
3961 FENCE_SCHED_NEXT (fence) = NULL;
3964 /* No need to stall if this variable was not initialized. */
3965 if (min_need_stall < 0)
3966 min_need_stall = 0;
3968 if (vec_av_set.is_empty ())
3970 /* We need to set *pneed_stall here, because later we skip this code
3971 when ready list is empty. */
3972 *pneed_stall = min_need_stall;
3973 return false;
3975 else
3976 gcc_assert (min_need_stall == 0);
3978 /* Sort the vector. */
3979 vec_av_set.qsort (sel_rank_for_schedule);
3981 if (sched_verbose >= 4)
3983 sel_print ("Total ready exprs: %d, stalled: %d\n",
3984 vec_av_set.length (), stalled);
3985 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3986 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3987 dump_expr (expr);
3988 sel_print ("\n");
3991 *pneed_stall = 0;
3992 return true;
3995 /* Convert a vectored and sorted av set to the ready list that
3996 the rest of the backend wants to see. */
3997 static void
3998 convert_vec_av_set_to_ready (void)
4000 int n;
4001 expr_t expr;
4003 /* Allocate and fill the ready list from the sorted vector. */
4004 ready.n_ready = vec_av_set.length ();
4005 ready.first = ready.n_ready - 1;
4007 gcc_assert (ready.n_ready > 0);
4009 if (ready.n_ready > max_issue_size)
4011 max_issue_size = ready.n_ready;
4012 sched_extend_ready_list (ready.n_ready);
4015 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
4017 vinsn_t vi = EXPR_VINSN (expr);
4018 insn_t insn = VINSN_INSN_RTX (vi);
4020 ready_try[n] = 0;
4021 ready.vec[n] = insn;
4025 /* Initialize ready list from *AV_PTR for the max_issue () call.
4026 If any unrecognizable insn found in *AV_PTR, return it (and skip
4027 max_issue). BND and FENCE are current boundary and fence,
4028 respectively. If we need to stall for some cycles before an expr
4029 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4030 static expr_t
4031 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4032 int *pneed_stall)
4034 expr_t expr;
4036 /* We do not support multiple boundaries per fence. */
4037 gcc_assert (BLIST_NEXT (bnds) == NULL);
4039 /* Process expressions required special handling, i.e. pipelined,
4040 speculative and recog() < 0 expressions first. */
4041 process_pipelined_exprs (av_ptr);
4042 process_spec_exprs (av_ptr);
4044 /* A USE could be scheduled immediately. */
4045 expr = process_use_exprs (av_ptr);
4046 if (expr)
4048 *pneed_stall = 0;
4049 return expr;
4052 /* Turn the av set to a vector for sorting. */
4053 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4055 ready.n_ready = 0;
4056 return NULL;
4059 /* Build the final ready list. */
4060 convert_vec_av_set_to_ready ();
4061 return NULL;
4064 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4065 static bool
4066 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4068 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4069 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4070 : FENCE_CYCLE (fence) - 1;
4071 bool res = false;
4072 int sort_p = 0;
4074 if (!targetm.sched.dfa_new_cycle)
4075 return false;
4077 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4079 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4080 insn, last_scheduled_cycle,
4081 FENCE_CYCLE (fence), &sort_p))
4083 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4084 advance_one_cycle (fence);
4085 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4086 res = true;
4089 return res;
4092 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4093 we can issue. FENCE is the current fence. */
4094 static int
4095 invoke_reorder_hooks (fence_t fence)
4097 int issue_more;
4098 bool ran_hook = false;
4100 /* Call the reorder hook at the beginning of the cycle, and call
4101 the reorder2 hook in the middle of the cycle. */
4102 if (FENCE_ISSUED_INSNS (fence) == 0)
4104 if (targetm.sched.reorder
4105 && !SCHED_GROUP_P (ready_element (&ready, 0))
4106 && ready.n_ready > 1)
4108 /* Don't give reorder the most prioritized insn as it can break
4109 pipelining. */
4110 if (pipelining_p)
4111 --ready.n_ready;
4113 issue_more
4114 = targetm.sched.reorder (sched_dump, sched_verbose,
4115 ready_lastpos (&ready),
4116 &ready.n_ready, FENCE_CYCLE (fence));
4118 if (pipelining_p)
4119 ++ready.n_ready;
4121 ran_hook = true;
4123 else
4124 /* Initialize can_issue_more for variable_issue. */
4125 issue_more = issue_rate;
4127 else if (targetm.sched.reorder2
4128 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4130 if (ready.n_ready == 1)
4131 issue_more =
4132 targetm.sched.reorder2 (sched_dump, sched_verbose,
4133 ready_lastpos (&ready),
4134 &ready.n_ready, FENCE_CYCLE (fence));
4135 else
4137 if (pipelining_p)
4138 --ready.n_ready;
4140 issue_more =
4141 targetm.sched.reorder2 (sched_dump, sched_verbose,
4142 ready.n_ready
4143 ? ready_lastpos (&ready) : NULL,
4144 &ready.n_ready, FENCE_CYCLE (fence));
4146 if (pipelining_p)
4147 ++ready.n_ready;
4150 ran_hook = true;
4152 else
4153 issue_more = FENCE_ISSUE_MORE (fence);
4155 /* Ensure that ready list and vec_av_set are in line with each other,
4156 i.e. vec_av_set[i] == ready_element (&ready, i). */
4157 if (issue_more && ran_hook)
4159 int i, j, n;
4160 rtx_insn **arr = ready.vec;
4161 expr_t *vec = vec_av_set.address ();
4163 for (i = 0, n = ready.n_ready; i < n; i++)
4164 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4166 expr_t tmp;
4168 for (j = i; j < n; j++)
4169 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4170 break;
4171 gcc_assert (j < n);
4173 tmp = vec[i];
4174 vec[i] = vec[j];
4175 vec[j] = tmp;
4179 return issue_more;
4182 /* Return an EXPR corresponding to INDEX element of ready list, if
4183 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4184 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4185 ready.vec otherwise. */
4186 static inline expr_t
4187 find_expr_for_ready (int index, bool follow_ready_element)
4189 expr_t expr;
4190 int real_index;
4192 real_index = follow_ready_element ? ready.first - index : index;
4194 expr = vec_av_set[real_index];
4195 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4197 return expr;
4200 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4201 of such insns found. */
4202 static int
4203 invoke_dfa_lookahead_guard (void)
4205 int i, n;
4206 bool have_hook
4207 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4209 if (sched_verbose >= 2)
4210 sel_print ("ready after reorder: ");
4212 for (i = 0, n = 0; i < ready.n_ready; i++)
4214 expr_t expr;
4215 insn_t insn;
4216 int r;
4218 /* In this loop insn is Ith element of the ready list given by
4219 ready_element, not Ith element of ready.vec. */
4220 insn = ready_element (&ready, i);
4222 if (! have_hook || i == 0)
4223 r = 0;
4224 else
4225 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4227 gcc_assert (INSN_CODE (insn) >= 0);
4229 /* Only insns with ready_try = 0 can get here
4230 from fill_ready_list. */
4231 gcc_assert (ready_try [i] == 0);
4232 ready_try[i] = r;
4233 if (!r)
4234 n++;
4236 expr = find_expr_for_ready (i, true);
4238 if (sched_verbose >= 2)
4240 dump_vinsn (EXPR_VINSN (expr));
4241 sel_print (":%d; ", ready_try[i]);
4245 if (sched_verbose >= 2)
4246 sel_print ("\n");
4247 return n;
4250 /* Calculate the number of privileged insns and return it. */
4251 static int
4252 calculate_privileged_insns (void)
4254 expr_t cur_expr, min_spec_expr = NULL;
4255 int privileged_n = 0, i;
4257 for (i = 0; i < ready.n_ready; i++)
4259 if (ready_try[i])
4260 continue;
4262 if (! min_spec_expr)
4263 min_spec_expr = find_expr_for_ready (i, true);
4265 cur_expr = find_expr_for_ready (i, true);
4267 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4268 break;
4270 ++privileged_n;
4273 if (i == ready.n_ready)
4274 privileged_n = 0;
4276 if (sched_verbose >= 2)
4277 sel_print ("privileged_n: %d insns with SPEC %d\n",
4278 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4279 return privileged_n;
4282 /* Call the rest of the hooks after the choice was made. Return
4283 the number of insns that still can be issued given that the current
4284 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4285 and the insn chosen for scheduling, respectively. */
4286 static int
4287 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4289 gcc_assert (INSN_P (best_insn));
4291 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4292 sel_dfa_new_cycle (best_insn, fence);
4294 if (targetm.sched.variable_issue)
4296 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4297 issue_more =
4298 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4299 issue_more);
4300 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4302 else if (GET_CODE (PATTERN (best_insn)) != USE
4303 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4304 issue_more--;
4306 return issue_more;
4309 /* Estimate the cost of issuing INSN on DFA state STATE. */
4310 static int
4311 estimate_insn_cost (rtx_insn *insn, state_t state)
4313 static state_t temp = NULL;
4314 int cost;
4316 if (!temp)
4317 temp = xmalloc (dfa_state_size);
4319 memcpy (temp, state, dfa_state_size);
4320 cost = state_transition (temp, insn);
4322 if (cost < 0)
4323 return 0;
4324 else if (cost == 0)
4325 return 1;
4326 return cost;
4329 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4330 This function properly handles ASMs, USEs etc. */
4331 static int
4332 get_expr_cost (expr_t expr, fence_t fence)
4334 rtx_insn *insn = EXPR_INSN_RTX (expr);
4336 if (recog_memoized (insn) < 0)
4338 if (!FENCE_STARTS_CYCLE_P (fence)
4339 && INSN_ASM_P (insn))
4340 /* This is asm insn which is tryed to be issued on the
4341 cycle not first. Issue it on the next cycle. */
4342 return 1;
4343 else
4344 /* A USE insn, or something else we don't need to
4345 understand. We can't pass these directly to
4346 state_transition because it will trigger a
4347 fatal error for unrecognizable insns. */
4348 return 0;
4350 else
4351 return estimate_insn_cost (insn, FENCE_STATE (fence));
4354 /* Find the best insn for scheduling, either via max_issue or just take
4355 the most prioritized available. */
4356 static int
4357 choose_best_insn (fence_t fence, int privileged_n, int *index)
4359 int can_issue = 0;
4361 if (dfa_lookahead > 0)
4363 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4364 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4365 can_issue = max_issue (&ready, privileged_n,
4366 FENCE_STATE (fence), true, index);
4367 if (sched_verbose >= 2)
4368 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4369 can_issue, FENCE_ISSUED_INSNS (fence));
4371 else
4373 /* We can't use max_issue; just return the first available element. */
4374 int i;
4376 for (i = 0; i < ready.n_ready; i++)
4378 expr_t expr = find_expr_for_ready (i, true);
4380 if (get_expr_cost (expr, fence) < 1)
4382 can_issue = can_issue_more;
4383 *index = i;
4385 if (sched_verbose >= 2)
4386 sel_print ("using %dth insn from the ready list\n", i + 1);
4388 break;
4392 if (i == ready.n_ready)
4394 can_issue = 0;
4395 *index = -1;
4399 return can_issue;
4402 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4403 BNDS and FENCE are current boundaries and scheduling fence respectively.
4404 Return the expr found and NULL if nothing can be issued atm.
4405 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4406 static expr_t
4407 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4408 int *pneed_stall)
4410 expr_t best;
4412 /* Choose the best insn for scheduling via:
4413 1) sorting the ready list based on priority;
4414 2) calling the reorder hook;
4415 3) calling max_issue. */
4416 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4417 if (best == NULL && ready.n_ready > 0)
4419 int privileged_n, index;
4421 can_issue_more = invoke_reorder_hooks (fence);
4422 if (can_issue_more > 0)
4424 /* Try choosing the best insn until we find one that is could be
4425 scheduled due to liveness restrictions on its destination register.
4426 In the future, we'd like to choose once and then just probe insns
4427 in the order of their priority. */
4428 invoke_dfa_lookahead_guard ();
4429 privileged_n = calculate_privileged_insns ();
4430 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4431 if (can_issue_more)
4432 best = find_expr_for_ready (index, true);
4434 /* We had some available insns, so if we can't issue them,
4435 we have a stall. */
4436 if (can_issue_more == 0)
4438 best = NULL;
4439 *pneed_stall = 1;
4443 if (best != NULL)
4445 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4446 can_issue_more);
4447 if (targetm.sched.variable_issue
4448 && can_issue_more == 0)
4449 *pneed_stall = 1;
4452 if (sched_verbose >= 2)
4454 if (best != NULL)
4456 sel_print ("Best expression (vliw form): ");
4457 dump_expr (best);
4458 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4460 else
4461 sel_print ("No best expr found!\n");
4464 return best;
4468 /* Functions that implement the core of the scheduler. */
4471 /* Emit an instruction from EXPR with SEQNO and VINSN after
4472 PLACE_TO_INSERT. */
4473 static insn_t
4474 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4475 insn_t place_to_insert)
4477 /* This assert fails when we have identical instructions
4478 one of which dominates the other. In this case move_op ()
4479 finds the first instruction and doesn't search for second one.
4480 The solution would be to compute av_set after the first found
4481 insn and, if insn present in that set, continue searching.
4482 For now we workaround this issue in move_op. */
4483 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4485 if (EXPR_WAS_RENAMED (expr))
4487 unsigned regno = expr_dest_regno (expr);
4489 if (HARD_REGISTER_NUM_P (regno))
4491 df_set_regs_ever_live (regno, true);
4492 reg_rename_tick[regno] = ++reg_rename_this_tick;
4496 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4497 place_to_insert);
4500 /* Return TRUE if BB can hold bookkeeping code. */
4501 static bool
4502 block_valid_for_bookkeeping_p (basic_block bb)
4504 insn_t bb_end = BB_END (bb);
4506 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4507 return false;
4509 if (INSN_P (bb_end))
4511 if (INSN_SCHED_TIMES (bb_end) > 0)
4512 return false;
4514 else
4515 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4517 return true;
4520 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4521 into E2->dest, except from E1->src (there may be a sequence of empty basic
4522 blocks between E1->src and E2->dest). Return found block, or NULL if new
4523 one must be created. If LAX holds, don't assume there is a simple path
4524 from E1->src to E2->dest. */
4525 static basic_block
4526 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4528 basic_block candidate_block = NULL;
4529 edge e;
4531 /* Loop over edges from E1 to E2, inclusive. */
4532 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4533 EDGE_SUCC (e->dest, 0))
4535 if (EDGE_COUNT (e->dest->preds) == 2)
4537 if (candidate_block == NULL)
4538 candidate_block = (EDGE_PRED (e->dest, 0) == e
4539 ? EDGE_PRED (e->dest, 1)->src
4540 : EDGE_PRED (e->dest, 0)->src);
4541 else
4542 /* Found additional edge leading to path from e1 to e2
4543 from aside. */
4544 return NULL;
4546 else if (EDGE_COUNT (e->dest->preds) > 2)
4547 /* Several edges leading to path from e1 to e2 from aside. */
4548 return NULL;
4550 if (e == e2)
4551 return ((!lax || candidate_block)
4552 && block_valid_for_bookkeeping_p (candidate_block)
4553 ? candidate_block
4554 : NULL);
4556 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4557 return NULL;
4560 if (lax)
4561 return NULL;
4563 gcc_unreachable ();
4566 /* Create new basic block for bookkeeping code for path(s) incoming into
4567 E2->dest, except from E1->src. Return created block. */
4568 static basic_block
4569 create_block_for_bookkeeping (edge e1, edge e2)
4571 basic_block new_bb, bb = e2->dest;
4573 /* Check that we don't spoil the loop structure. */
4574 if (current_loop_nest)
4576 basic_block latch = current_loop_nest->latch;
4578 /* We do not split header. */
4579 gcc_assert (e2->dest != current_loop_nest->header);
4581 /* We do not redirect the only edge to the latch block. */
4582 gcc_assert (e1->dest != latch
4583 || !single_pred_p (latch)
4584 || e1 != single_pred_edge (latch));
4587 /* Split BB to insert BOOK_INSN there. */
4588 new_bb = sched_split_block (bb, NULL);
4590 /* Move note_list from the upper bb. */
4591 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4592 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4593 BB_NOTE_LIST (bb) = NULL;
4595 gcc_assert (e2->dest == bb);
4597 /* Skip block for bookkeeping copy when leaving E1->src. */
4598 if (e1->flags & EDGE_FALLTHRU)
4599 sel_redirect_edge_and_branch_force (e1, new_bb);
4600 else
4601 sel_redirect_edge_and_branch (e1, new_bb);
4603 gcc_assert (e1->dest == new_bb);
4604 gcc_assert (sel_bb_empty_p (bb));
4606 /* To keep basic block numbers in sync between debug and non-debug
4607 compilations, we have to rotate blocks here. Consider that we
4608 started from (a,b)->d, (c,d)->e, and d contained only debug
4609 insns. It would have been removed before if the debug insns
4610 weren't there, so we'd have split e rather than d. So what we do
4611 now is to swap the block numbers of new_bb and
4612 single_succ(new_bb) == e, so that the insns that were in e before
4613 get the new block number. */
4615 if (MAY_HAVE_DEBUG_INSNS)
4617 basic_block succ;
4618 insn_t insn = sel_bb_head (new_bb);
4619 insn_t last;
4621 if (DEBUG_INSN_P (insn)
4622 && single_succ_p (new_bb)
4623 && (succ = single_succ (new_bb))
4624 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4625 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4627 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4628 insn = NEXT_INSN (insn);
4630 if (insn == last)
4632 sel_global_bb_info_def gbi;
4633 sel_region_bb_info_def rbi;
4634 int i;
4636 if (sched_verbose >= 2)
4637 sel_print ("Swapping block ids %i and %i\n",
4638 new_bb->index, succ->index);
4640 i = new_bb->index;
4641 new_bb->index = succ->index;
4642 succ->index = i;
4644 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4645 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4647 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4648 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4649 sizeof (gbi));
4650 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4652 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4653 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4654 sizeof (rbi));
4655 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4657 i = BLOCK_TO_BB (new_bb->index);
4658 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4659 BLOCK_TO_BB (succ->index) = i;
4661 i = CONTAINING_RGN (new_bb->index);
4662 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4663 CONTAINING_RGN (succ->index) = i;
4665 for (i = 0; i < current_nr_blocks; i++)
4666 if (BB_TO_BLOCK (i) == succ->index)
4667 BB_TO_BLOCK (i) = new_bb->index;
4668 else if (BB_TO_BLOCK (i) == new_bb->index)
4669 BB_TO_BLOCK (i) = succ->index;
4671 FOR_BB_INSNS (new_bb, insn)
4672 if (INSN_P (insn))
4673 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4675 FOR_BB_INSNS (succ, insn)
4676 if (INSN_P (insn))
4677 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4679 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4680 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4682 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4683 && LABEL_P (BB_HEAD (succ)));
4685 if (sched_verbose >= 4)
4686 sel_print ("Swapping code labels %i and %i\n",
4687 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4688 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4690 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4691 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4692 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4693 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4698 return bb;
4701 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4702 into E2->dest, except from E1->src. If the returned insn immediately
4703 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4704 static insn_t
4705 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4707 insn_t place_to_insert;
4708 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4709 create new basic block, but insert bookkeeping there. */
4710 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4712 if (book_block)
4714 place_to_insert = BB_END (book_block);
4716 /* Don't use a block containing only debug insns for
4717 bookkeeping, this causes scheduling differences between debug
4718 and non-debug compilations, for the block would have been
4719 removed already. */
4720 if (DEBUG_INSN_P (place_to_insert))
4722 rtx_insn *insn = sel_bb_head (book_block);
4724 while (insn != place_to_insert &&
4725 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4726 insn = NEXT_INSN (insn);
4728 if (insn == place_to_insert)
4729 book_block = NULL;
4733 if (!book_block)
4735 book_block = create_block_for_bookkeeping (e1, e2);
4736 place_to_insert = BB_END (book_block);
4737 if (sched_verbose >= 9)
4738 sel_print ("New block is %i, split from bookkeeping block %i\n",
4739 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4741 else
4743 if (sched_verbose >= 9)
4744 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4747 *fence_to_rewind = NULL;
4748 /* If basic block ends with a jump, insert bookkeeping code right before it.
4749 Notice if we are crossing a fence when taking PREV_INSN. */
4750 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4752 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4753 place_to_insert = PREV_INSN (place_to_insert);
4756 return place_to_insert;
4759 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4760 for JOIN_POINT. */
4761 static int
4762 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4764 int seqno;
4765 rtx next;
4767 /* Check if we are about to insert bookkeeping copy before a jump, and use
4768 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4769 next = NEXT_INSN (place_to_insert);
4770 if (INSN_P (next)
4771 && JUMP_P (next)
4772 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4774 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4775 seqno = INSN_SEQNO (next);
4777 else if (INSN_SEQNO (join_point) > 0)
4778 seqno = INSN_SEQNO (join_point);
4779 else
4781 seqno = get_seqno_by_preds (place_to_insert);
4783 /* Sometimes the fences can move in such a way that there will be
4784 no instructions with positive seqno around this bookkeeping.
4785 This means that there will be no way to get to it by a regular
4786 fence movement. Never mind because we pick up such pieces for
4787 rescheduling anyways, so any positive value will do for now. */
4788 if (seqno < 0)
4790 gcc_assert (pipelining_p);
4791 seqno = 1;
4795 gcc_assert (seqno > 0);
4796 return seqno;
4799 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4800 NEW_SEQNO to it. Return created insn. */
4801 static insn_t
4802 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4804 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4806 vinsn_t new_vinsn
4807 = create_vinsn_from_insn_rtx (new_insn_rtx,
4808 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4810 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4811 place_to_insert);
4813 INSN_SCHED_TIMES (new_insn) = 0;
4814 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4816 return new_insn;
4819 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4820 E2->dest, except from E1->src (there may be a sequence of empty blocks
4821 between E1->src and E2->dest). Return block containing the copy.
4822 All scheduler data is initialized for the newly created insn. */
4823 static basic_block
4824 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4826 insn_t join_point, place_to_insert, new_insn;
4827 int new_seqno;
4828 bool need_to_exchange_data_sets;
4829 fence_t fence_to_rewind;
4831 if (sched_verbose >= 4)
4832 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4833 e2->dest->index);
4835 join_point = sel_bb_head (e2->dest);
4836 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4837 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4838 need_to_exchange_data_sets
4839 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4841 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4843 if (fence_to_rewind)
4844 FENCE_INSN (fence_to_rewind) = new_insn;
4846 /* When inserting bookkeeping insn in new block, av sets should be
4847 following: old basic block (that now holds bookkeeping) data sets are
4848 the same as was before generation of bookkeeping, and new basic block
4849 (that now hold all other insns of old basic block) data sets are
4850 invalid. So exchange data sets for these basic blocks as sel_split_block
4851 mistakenly exchanges them in this case. Cannot do it earlier because
4852 when single instruction is added to new basic block it should hold NULL
4853 lv_set. */
4854 if (need_to_exchange_data_sets)
4855 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4856 BLOCK_FOR_INSN (join_point));
4858 stat_bookkeeping_copies++;
4859 return BLOCK_FOR_INSN (new_insn);
4862 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4863 on FENCE, but we are unable to copy them. */
4864 static void
4865 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4867 expr_t expr;
4868 av_set_iterator i;
4870 /* An expression does not need bookkeeping if it is available on all paths
4871 from current block to original block and current block dominates
4872 original block. We check availability on all paths by examining
4873 EXPR_SPEC; this is not equivalent, because it may be positive even
4874 if expr is available on all paths (but if expr is not available on
4875 any path, EXPR_SPEC will be positive). */
4877 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4879 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4880 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4881 && (EXPR_SPEC (expr)
4882 || !EXPR_ORIG_BB_INDEX (expr)
4883 || !dominated_by_p (CDI_DOMINATORS,
4884 BASIC_BLOCK_FOR_FN (cfun,
4885 EXPR_ORIG_BB_INDEX (expr)),
4886 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4888 if (sched_verbose >= 4)
4889 sel_print ("Expr %d removed because it would need bookkeeping, which "
4890 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4891 av_set_iter_remove (&i);
4896 /* Moving conditional jump through some instructions.
4898 Consider example:
4900 ... <- current scheduling point
4901 NOTE BASIC BLOCK: <- bb header
4902 (p8) add r14=r14+0x9;;
4903 (p8) mov [r14]=r23
4904 (!p8) jump L1;;
4905 NOTE BASIC BLOCK:
4908 We can schedule jump one cycle earlier, than mov, because they cannot be
4909 executed together as their predicates are mutually exclusive.
4911 This is done in this way: first, new fallthrough basic block is created
4912 after jump (it is always can be done, because there already should be a
4913 fallthrough block, where control flow goes in case of predicate being true -
4914 in our example; otherwise there should be a dependence between those
4915 instructions and jump and we cannot schedule jump right now);
4916 next, all instructions between jump and current scheduling point are moved
4917 to this new block. And the result is this:
4919 NOTE BASIC BLOCK:
4920 (!p8) jump L1 <- current scheduling point
4921 NOTE BASIC BLOCK: <- bb header
4922 (p8) add r14=r14+0x9;;
4923 (p8) mov [r14]=r23
4924 NOTE BASIC BLOCK:
4927 static void
4928 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4930 edge ft_edge;
4931 basic_block block_from, block_next, block_new, block_bnd, bb;
4932 rtx_insn *next, *prev, *link, *head;
4934 block_from = BLOCK_FOR_INSN (insn);
4935 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4936 prev = BND_TO (bnd);
4938 #ifdef ENABLE_CHECKING
4939 /* Moving of jump should not cross any other jumps or beginnings of new
4940 basic blocks. The only exception is when we move a jump through
4941 mutually exclusive insns along fallthru edges. */
4942 if (block_from != block_bnd)
4944 bb = block_from;
4945 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4946 link = PREV_INSN (link))
4948 if (INSN_P (link))
4949 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4950 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4952 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4953 bb = BLOCK_FOR_INSN (link);
4957 #endif
4959 /* Jump is moved to the boundary. */
4960 next = PREV_INSN (insn);
4961 BND_TO (bnd) = insn;
4963 ft_edge = find_fallthru_edge_from (block_from);
4964 block_next = ft_edge->dest;
4965 /* There must be a fallthrough block (or where should go
4966 control flow in case of false jump predicate otherwise?). */
4967 gcc_assert (block_next);
4969 /* Create new empty basic block after source block. */
4970 block_new = sel_split_edge (ft_edge);
4971 gcc_assert (block_new->next_bb == block_next
4972 && block_from->next_bb == block_new);
4974 /* Move all instructions except INSN to BLOCK_NEW. */
4975 bb = block_bnd;
4976 head = BB_HEAD (block_new);
4977 while (bb != block_from->next_bb)
4979 rtx_insn *from, *to;
4980 from = bb == block_bnd ? prev : sel_bb_head (bb);
4981 to = bb == block_from ? next : sel_bb_end (bb);
4983 /* The jump being moved can be the first insn in the block.
4984 In this case we don't have to move anything in this block. */
4985 if (NEXT_INSN (to) != from)
4987 reorder_insns (from, to, head);
4989 for (link = to; link != head; link = PREV_INSN (link))
4990 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4991 head = to;
4994 /* Cleanup possibly empty blocks left. */
4995 block_next = bb->next_bb;
4996 if (bb != block_from)
4997 tidy_control_flow (bb, false);
4998 bb = block_next;
5001 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
5002 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
5004 gcc_assert (!sel_bb_empty_p (block_from)
5005 && !sel_bb_empty_p (block_new));
5007 /* Update data sets for BLOCK_NEW to represent that INSN and
5008 instructions from the other branch of INSN is no longer
5009 available at BLOCK_NEW. */
5010 BB_AV_LEVEL (block_new) = global_level;
5011 gcc_assert (BB_LV_SET (block_new) == NULL);
5012 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
5013 update_data_sets (sel_bb_head (block_new));
5015 /* INSN is a new basic block header - so prepare its data
5016 structures and update availability and liveness sets. */
5017 update_data_sets (insn);
5019 if (sched_verbose >= 4)
5020 sel_print ("Moving jump %d\n", INSN_UID (insn));
5023 /* Remove nops generated during move_op for preventing removal of empty
5024 basic blocks. */
5025 static void
5026 remove_temp_moveop_nops (bool full_tidying)
5028 int i;
5029 insn_t insn;
5031 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
5033 gcc_assert (INSN_NOP_P (insn));
5034 return_nop_to_pool (insn, full_tidying);
5037 /* Empty the vector. */
5038 if (vec_temp_moveop_nops.length () > 0)
5039 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5042 /* Records the maximal UID before moving up an instruction. Used for
5043 distinguishing between bookkeeping copies and original insns. */
5044 static int max_uid_before_move_op = 0;
5046 /* Remove from AV_VLIW_P all instructions but next when debug counter
5047 tells us so. Next instruction is fetched from BNDS. */
5048 static void
5049 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5051 if (! dbg_cnt (sel_sched_insn_cnt))
5052 /* Leave only the next insn in av_vliw. */
5054 av_set_iterator av_it;
5055 expr_t expr;
5056 bnd_t bnd = BLIST_BND (bnds);
5057 insn_t next = BND_TO (bnd);
5059 gcc_assert (BLIST_NEXT (bnds) == NULL);
5061 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5062 if (EXPR_INSN_RTX (expr) != next)
5063 av_set_iter_remove (&av_it);
5067 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5068 the computed set to *AV_VLIW_P. */
5069 static void
5070 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5072 if (sched_verbose >= 2)
5074 sel_print ("Boundaries: ");
5075 dump_blist (bnds);
5076 sel_print ("\n");
5079 for (; bnds; bnds = BLIST_NEXT (bnds))
5081 bnd_t bnd = BLIST_BND (bnds);
5082 av_set_t av1_copy;
5083 insn_t bnd_to = BND_TO (bnd);
5085 /* Rewind BND->TO to the basic block header in case some bookkeeping
5086 instructions were inserted before BND->TO and it needs to be
5087 adjusted. */
5088 if (sel_bb_head_p (bnd_to))
5089 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5090 else
5091 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5093 bnd_to = PREV_INSN (bnd_to);
5094 if (sel_bb_head_p (bnd_to))
5095 break;
5098 if (BND_TO (bnd) != bnd_to)
5100 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5101 FENCE_INSN (fence) = bnd_to;
5102 BND_TO (bnd) = bnd_to;
5105 av_set_clear (&BND_AV (bnd));
5106 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5108 av_set_clear (&BND_AV1 (bnd));
5109 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5111 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5113 av1_copy = av_set_copy (BND_AV1 (bnd));
5114 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5117 if (sched_verbose >= 2)
5119 sel_print ("Available exprs (vliw form): ");
5120 dump_av_set (*av_vliw_p);
5121 sel_print ("\n");
5125 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5126 expression. When FOR_MOVEOP is true, also replace the register of
5127 expressions found with the register from EXPR_VLIW. */
5128 static av_set_t
5129 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5131 av_set_t expr_seq = NULL;
5132 expr_t expr;
5133 av_set_iterator i;
5135 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5137 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5139 if (for_moveop)
5141 /* The sequential expression has the right form to pass
5142 to move_op except when renaming happened. Put the
5143 correct register in EXPR then. */
5144 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5146 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5148 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5149 stat_renamed_scheduled++;
5151 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5152 This is needed when renaming came up with original
5153 register. */
5154 else if (EXPR_TARGET_AVAILABLE (expr)
5155 != EXPR_TARGET_AVAILABLE (expr_vliw))
5157 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5158 EXPR_TARGET_AVAILABLE (expr) = 1;
5161 if (EXPR_WAS_SUBSTITUTED (expr))
5162 stat_substitutions_total++;
5165 av_set_add (&expr_seq, expr);
5167 /* With substitution inside insn group, it is possible
5168 that more than one expression in expr_seq will correspond
5169 to expr_vliw. In this case, choose one as the attempt to
5170 move both leads to miscompiles. */
5171 break;
5175 if (for_moveop && sched_verbose >= 2)
5177 sel_print ("Best expression(s) (sequential form): ");
5178 dump_av_set (expr_seq);
5179 sel_print ("\n");
5182 return expr_seq;
5186 /* Move nop to previous block. */
5187 static void ATTRIBUTE_UNUSED
5188 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5190 insn_t prev_insn, next_insn, note;
5192 gcc_assert (sel_bb_head_p (nop)
5193 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5194 note = bb_note (BLOCK_FOR_INSN (nop));
5195 prev_insn = sel_bb_end (prev_bb);
5196 next_insn = NEXT_INSN (nop);
5197 gcc_assert (prev_insn != NULL_RTX
5198 && PREV_INSN (note) == prev_insn);
5200 SET_NEXT_INSN (prev_insn) = nop;
5201 SET_PREV_INSN (nop) = prev_insn;
5203 SET_PREV_INSN (note) = nop;
5204 SET_NEXT_INSN (note) = next_insn;
5206 SET_NEXT_INSN (nop) = note;
5207 SET_PREV_INSN (next_insn) = note;
5209 BB_END (prev_bb) = nop;
5210 BLOCK_FOR_INSN (nop) = prev_bb;
5213 /* Prepare a place to insert the chosen expression on BND. */
5214 static insn_t
5215 prepare_place_to_insert (bnd_t bnd)
5217 insn_t place_to_insert;
5219 /* Init place_to_insert before calling move_op, as the later
5220 can possibly remove BND_TO (bnd). */
5221 if (/* If this is not the first insn scheduled. */
5222 BND_PTR (bnd))
5224 /* Add it after last scheduled. */
5225 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5226 if (DEBUG_INSN_P (place_to_insert))
5228 ilist_t l = BND_PTR (bnd);
5229 while ((l = ILIST_NEXT (l)) &&
5230 DEBUG_INSN_P (ILIST_INSN (l)))
5232 if (!l)
5233 place_to_insert = NULL;
5236 else
5237 place_to_insert = NULL;
5239 if (!place_to_insert)
5241 /* Add it before BND_TO. The difference is in the
5242 basic block, where INSN will be added. */
5243 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5244 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5245 == BLOCK_FOR_INSN (BND_TO (bnd)));
5248 return place_to_insert;
5251 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5252 Return the expression to emit in C_EXPR. */
5253 static bool
5254 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5255 av_set_t expr_seq, expr_t c_expr)
5257 bool b, should_move;
5258 unsigned book_uid;
5259 bitmap_iterator bi;
5260 int n_bookkeeping_copies_before_moveop;
5262 /* Make a move. This call will remove the original operation,
5263 insert all necessary bookkeeping instructions and update the
5264 data sets. After that all we have to do is add the operation
5265 at before BND_TO (BND). */
5266 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5267 max_uid_before_move_op = get_max_uid ();
5268 bitmap_clear (current_copies);
5269 bitmap_clear (current_originators);
5271 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5272 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5274 /* We should be able to find the expression we've chosen for
5275 scheduling. */
5276 gcc_assert (b);
5278 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5279 stat_insns_needed_bookkeeping++;
5281 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5283 unsigned uid;
5284 bitmap_iterator bi;
5286 /* We allocate these bitmaps lazily. */
5287 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5288 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5290 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5291 current_originators);
5293 /* Transitively add all originators' originators. */
5294 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5295 if (INSN_ORIGINATORS_BY_UID (uid))
5296 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5297 INSN_ORIGINATORS_BY_UID (uid));
5300 return should_move;
5304 /* Debug a DFA state as an array of bytes. */
5305 static void
5306 debug_state (state_t state)
5308 unsigned char *p;
5309 unsigned int i, size = dfa_state_size;
5311 sel_print ("state (%u):", size);
5312 for (i = 0, p = (unsigned char *) state; i < size; i++)
5313 sel_print (" %d", p[i]);
5314 sel_print ("\n");
5317 /* Advance state on FENCE with INSN. Return true if INSN is
5318 an ASM, and we should advance state once more. */
5319 static bool
5320 advance_state_on_fence (fence_t fence, insn_t insn)
5322 bool asm_p;
5324 if (recog_memoized (insn) >= 0)
5326 int res;
5327 state_t temp_state = alloca (dfa_state_size);
5329 gcc_assert (!INSN_ASM_P (insn));
5330 asm_p = false;
5332 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5333 res = state_transition (FENCE_STATE (fence), insn);
5334 gcc_assert (res < 0);
5336 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5338 FENCE_ISSUED_INSNS (fence)++;
5340 /* We should never issue more than issue_rate insns. */
5341 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5342 gcc_unreachable ();
5345 else
5347 /* This could be an ASM insn which we'd like to schedule
5348 on the next cycle. */
5349 asm_p = INSN_ASM_P (insn);
5350 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5351 advance_one_cycle (fence);
5354 if (sched_verbose >= 2)
5355 debug_state (FENCE_STATE (fence));
5356 if (!DEBUG_INSN_P (insn))
5357 FENCE_STARTS_CYCLE_P (fence) = 0;
5358 FENCE_ISSUE_MORE (fence) = can_issue_more;
5359 return asm_p;
5362 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5363 is nonzero if we need to stall after issuing INSN. */
5364 static void
5365 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5367 bool asm_p;
5369 /* First, reflect that something is scheduled on this fence. */
5370 asm_p = advance_state_on_fence (fence, insn);
5371 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5372 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5373 if (SCHED_GROUP_P (insn))
5375 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5376 SCHED_GROUP_P (insn) = 0;
5378 else
5379 FENCE_SCHED_NEXT (fence) = NULL;
5380 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5381 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5383 /* Set instruction scheduling info. This will be used in bundling,
5384 pipelining, tick computations etc. */
5385 ++INSN_SCHED_TIMES (insn);
5386 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5387 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5388 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5389 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5391 /* This does not account for adjust_cost hooks, just add the biggest
5392 constant the hook may add to the latency. TODO: make this
5393 a target dependent constant. */
5394 INSN_READY_CYCLE (insn)
5395 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5397 : maximal_insn_latency (insn) + 1);
5399 /* Change these fields last, as they're used above. */
5400 FENCE_AFTER_STALL_P (fence) = 0;
5401 if (asm_p || need_stall)
5402 advance_one_cycle (fence);
5404 /* Indicate that we've scheduled something on this fence. */
5405 FENCE_SCHEDULED_P (fence) = true;
5406 scheduled_something_on_previous_fence = true;
5408 /* Print debug information when insn's fields are updated. */
5409 if (sched_verbose >= 2)
5411 sel_print ("Scheduling insn: ");
5412 dump_insn_1 (insn, 1);
5413 sel_print ("\n");
5417 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5418 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5419 return it. */
5420 static blist_t *
5421 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5422 blist_t *bnds_tailp)
5424 succ_iterator si;
5425 insn_t succ;
5427 advance_deps_context (BND_DC (bnd), insn);
5428 FOR_EACH_SUCC_1 (succ, si, insn,
5429 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5431 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5433 ilist_add (&ptr, insn);
5435 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5436 && is_ineligible_successor (succ, ptr))
5438 ilist_clear (&ptr);
5439 continue;
5442 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5444 if (sched_verbose >= 9)
5445 sel_print ("Updating fence insn from %i to %i\n",
5446 INSN_UID (insn), INSN_UID (succ));
5447 FENCE_INSN (fence) = succ;
5449 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5450 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5453 blist_remove (bndsp);
5454 return bnds_tailp;
5457 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5458 static insn_t
5459 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5461 av_set_t expr_seq;
5462 expr_t c_expr = XALLOCA (expr_def);
5463 insn_t place_to_insert;
5464 insn_t insn;
5465 bool should_move;
5467 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5469 /* In case of scheduling a jump skipping some other instructions,
5470 prepare CFG. After this, jump is at the boundary and can be
5471 scheduled as usual insn by MOVE_OP. */
5472 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5474 insn = EXPR_INSN_RTX (expr_vliw);
5476 /* Speculative jumps are not handled. */
5477 if (insn != BND_TO (bnd)
5478 && !sel_insn_is_speculation_check (insn))
5479 move_cond_jump (insn, bnd);
5482 /* Find a place for C_EXPR to schedule. */
5483 place_to_insert = prepare_place_to_insert (bnd);
5484 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5485 clear_expr (c_expr);
5487 /* Add the instruction. The corner case to care about is when
5488 the expr_seq set has more than one expr, and we chose the one that
5489 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5490 we can't use it. Generate the new vinsn. */
5491 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5493 vinsn_t vinsn_new;
5495 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5496 change_vinsn_in_expr (expr_vliw, vinsn_new);
5497 should_move = false;
5499 if (should_move)
5500 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5501 else
5502 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5503 place_to_insert);
5505 /* Return the nops generated for preserving of data sets back
5506 into pool. */
5507 if (INSN_NOP_P (place_to_insert))
5508 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5509 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5511 av_set_clear (&expr_seq);
5513 /* Save the expression scheduled so to reset target availability if we'll
5514 meet it later on the same fence. */
5515 if (EXPR_WAS_RENAMED (expr_vliw))
5516 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5518 /* Check that the recent movement didn't destroyed loop
5519 structure. */
5520 gcc_assert (!pipelining_p
5521 || current_loop_nest == NULL
5522 || loop_latch_edge (current_loop_nest));
5523 return insn;
5526 /* Stall for N cycles on FENCE. */
5527 static void
5528 stall_for_cycles (fence_t fence, int n)
5530 int could_more;
5532 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5533 while (n--)
5534 advance_one_cycle (fence);
5535 if (could_more)
5536 FENCE_AFTER_STALL_P (fence) = 1;
5539 /* Gather a parallel group of insns at FENCE and assign their seqno
5540 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5541 list for later recalculation of seqnos. */
5542 static void
5543 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5545 blist_t bnds = NULL, *bnds_tailp;
5546 av_set_t av_vliw = NULL;
5547 insn_t insn = FENCE_INSN (fence);
5549 if (sched_verbose >= 2)
5550 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5551 INSN_UID (insn), FENCE_CYCLE (fence));
5553 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5554 bnds_tailp = &BLIST_NEXT (bnds);
5555 set_target_context (FENCE_TC (fence));
5556 can_issue_more = FENCE_ISSUE_MORE (fence);
5557 target_bb = INSN_BB (insn);
5559 /* Do while we can add any operation to the current group. */
5562 blist_t *bnds_tailp1, *bndsp;
5563 expr_t expr_vliw;
5564 int need_stall = false;
5565 int was_stall = 0, scheduled_insns = 0;
5566 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5567 int max_stall = pipelining_p ? 1 : 3;
5568 bool last_insn_was_debug = false;
5569 bool was_debug_bb_end_p = false;
5571 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5572 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5573 remove_insns_for_debug (bnds, &av_vliw);
5575 /* Return early if we have nothing to schedule. */
5576 if (av_vliw == NULL)
5577 break;
5579 /* Choose the best expression and, if needed, destination register
5580 for it. */
5583 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5584 if (! expr_vliw && need_stall)
5586 /* All expressions required a stall. Do not recompute av sets
5587 as we'll get the same answer (modulo the insns between
5588 the fence and its boundary, which will not be available for
5589 pipelining).
5590 If we are going to stall for too long, break to recompute av
5591 sets and bring more insns for pipelining. */
5592 was_stall++;
5593 if (need_stall <= 3)
5594 stall_for_cycles (fence, need_stall);
5595 else
5597 stall_for_cycles (fence, 1);
5598 break;
5602 while (! expr_vliw && need_stall);
5604 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5605 if (!expr_vliw)
5607 av_set_clear (&av_vliw);
5608 break;
5611 bndsp = &bnds;
5612 bnds_tailp1 = bnds_tailp;
5615 /* This code will be executed only once until we'd have several
5616 boundaries per fence. */
5618 bnd_t bnd = BLIST_BND (*bndsp);
5620 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5622 bndsp = &BLIST_NEXT (*bndsp);
5623 continue;
5626 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5627 last_insn_was_debug = DEBUG_INSN_P (insn);
5628 if (last_insn_was_debug)
5629 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5630 update_fence_and_insn (fence, insn, need_stall);
5631 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5633 /* Add insn to the list of scheduled on this cycle instructions. */
5634 ilist_add (*scheduled_insns_tailpp, insn);
5635 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5637 while (*bndsp != *bnds_tailp1);
5639 av_set_clear (&av_vliw);
5640 if (!last_insn_was_debug)
5641 scheduled_insns++;
5643 /* We currently support information about candidate blocks only for
5644 one 'target_bb' block. Hence we can't schedule after jump insn,
5645 as this will bring two boundaries and, hence, necessity to handle
5646 information for two or more blocks concurrently. */
5647 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5648 || (was_stall
5649 && (was_stall >= max_stall
5650 || scheduled_insns >= max_insns)))
5651 break;
5653 while (bnds);
5655 gcc_assert (!FENCE_BNDS (fence));
5657 /* Update boundaries of the FENCE. */
5658 while (bnds)
5660 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5662 if (ptr)
5664 insn = ILIST_INSN (ptr);
5666 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5667 ilist_add (&FENCE_BNDS (fence), insn);
5670 blist_remove (&bnds);
5673 /* Update target context on the fence. */
5674 reset_target_context (FENCE_TC (fence), false);
5677 /* All exprs in ORIG_OPS must have the same destination register or memory.
5678 Return that destination. */
5679 static rtx
5680 get_dest_from_orig_ops (av_set_t orig_ops)
5682 rtx dest = NULL_RTX;
5683 av_set_iterator av_it;
5684 expr_t expr;
5685 bool first_p = true;
5687 FOR_EACH_EXPR (expr, av_it, orig_ops)
5689 rtx x = EXPR_LHS (expr);
5691 if (first_p)
5693 first_p = false;
5694 dest = x;
5696 else
5697 gcc_assert (dest == x
5698 || (dest != NULL_RTX && x != NULL_RTX
5699 && rtx_equal_p (dest, x)));
5702 return dest;
5705 /* Update data sets for the bookkeeping block and record those expressions
5706 which become no longer available after inserting this bookkeeping. */
5707 static void
5708 update_and_record_unavailable_insns (basic_block book_block)
5710 av_set_iterator i;
5711 av_set_t old_av_set = NULL;
5712 expr_t cur_expr;
5713 rtx_insn *bb_end = sel_bb_end (book_block);
5715 /* First, get correct liveness in the bookkeeping block. The problem is
5716 the range between the bookeeping insn and the end of block. */
5717 update_liveness_on_insn (bb_end);
5718 if (control_flow_insn_p (bb_end))
5719 update_liveness_on_insn (PREV_INSN (bb_end));
5721 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5722 fence above, where we may choose to schedule an insn which is
5723 actually blocked from moving up with the bookkeeping we create here. */
5724 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5726 old_av_set = av_set_copy (BB_AV_SET (book_block));
5727 update_data_sets (sel_bb_head (book_block));
5729 /* Traverse all the expressions in the old av_set and check whether
5730 CUR_EXPR is in new AV_SET. */
5731 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5733 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5734 EXPR_VINSN (cur_expr));
5736 if (! new_expr
5737 /* In this case, we can just turn off the E_T_A bit, but we can't
5738 represent this information with the current vector. */
5739 || EXPR_TARGET_AVAILABLE (new_expr)
5740 != EXPR_TARGET_AVAILABLE (cur_expr))
5741 /* Unfortunately, the below code could be also fired up on
5742 separable insns, e.g. when moving insns through the new
5743 speculation check as in PR 53701. */
5744 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5747 av_set_clear (&old_av_set);
5751 /* The main effect of this function is that sparams->c_expr is merged
5752 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5753 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5754 lparams->c_expr_merged is copied back to sparams->c_expr after all
5755 successors has been traversed. lparams->c_expr_local is an expr allocated
5756 on stack in the caller function, and is used if there is more than one
5757 successor.
5759 SUCC is one of the SUCCS_NORMAL successors of INSN,
5760 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5761 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5762 static void
5763 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5764 insn_t succ ATTRIBUTE_UNUSED,
5765 int moveop_drv_call_res,
5766 cmpd_local_params_p lparams, void *static_params)
5768 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5770 /* Nothing to do, if original expr wasn't found below. */
5771 if (moveop_drv_call_res != 1)
5772 return;
5774 /* If this is a first successor. */
5775 if (!lparams->c_expr_merged)
5777 lparams->c_expr_merged = sparams->c_expr;
5778 sparams->c_expr = lparams->c_expr_local;
5780 else
5782 /* We must merge all found expressions to get reasonable
5783 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5784 do so then we can first find the expr with epsilon
5785 speculation success probability and only then with the
5786 good probability. As a result the insn will get epsilon
5787 probability and will never be scheduled because of
5788 weakness_cutoff in find_best_expr.
5790 We call merge_expr_data here instead of merge_expr
5791 because due to speculation C_EXPR and X may have the
5792 same insns with different speculation types. And as of
5793 now such insns are considered non-equal.
5795 However, EXPR_SCHED_TIMES is different -- we must get
5796 SCHED_TIMES from a real insn, not a bookkeeping copy.
5797 We force this here. Instead, we may consider merging
5798 SCHED_TIMES to the maximum instead of minimum in the
5799 below function. */
5800 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5802 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5803 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5804 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5806 clear_expr (sparams->c_expr);
5810 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5812 SUCC is one of the SUCCS_NORMAL successors of INSN,
5813 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5814 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5815 STATIC_PARAMS contain USED_REGS set. */
5816 static void
5817 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5818 int moveop_drv_call_res,
5819 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5820 void *static_params)
5822 regset succ_live;
5823 fur_static_params_p sparams = (fur_static_params_p) static_params;
5825 /* Here we compute live regsets only for branches that do not lie
5826 on the code motion paths. These branches correspond to value
5827 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5828 for such branches code_motion_path_driver is not called. */
5829 if (moveop_drv_call_res != 0)
5830 return;
5832 /* Mark all registers that do not meet the following condition:
5833 (3) not live on the other path of any conditional branch
5834 that is passed by the operation, in case original
5835 operations are not present on both paths of the
5836 conditional branch. */
5837 succ_live = compute_live (succ);
5838 IOR_REG_SET (sparams->used_regs, succ_live);
5841 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5842 into SP->CEXPR. */
5843 static void
5844 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5846 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5848 sp->c_expr = lp->c_expr_merged;
5851 /* Track bookkeeping copies created, insns scheduled, and blocks for
5852 rescheduling when INSN is found by move_op. */
5853 static void
5854 track_scheduled_insns_and_blocks (rtx insn)
5856 /* Even if this insn can be a copy that will be removed during current move_op,
5857 we still need to count it as an originator. */
5858 bitmap_set_bit (current_originators, INSN_UID (insn));
5860 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5862 /* Note that original block needs to be rescheduled, as we pulled an
5863 instruction out of it. */
5864 if (INSN_SCHED_TIMES (insn) > 0)
5865 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5866 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5867 num_insns_scheduled++;
5870 /* For instructions we must immediately remove insn from the
5871 stream, so subsequent update_data_sets () won't include this
5872 insn into av_set.
5873 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5874 if (INSN_UID (insn) > max_uid_before_move_op)
5875 stat_bookkeeping_copies--;
5878 /* Emit a register-register copy for INSN if needed. Return true if
5879 emitted one. PARAMS is the move_op static parameters. */
5880 static bool
5881 maybe_emit_renaming_copy (rtx_insn *insn,
5882 moveop_static_params_p params)
5884 bool insn_emitted = false;
5885 rtx cur_reg;
5887 /* Bail out early when expression can not be renamed at all. */
5888 if (!EXPR_SEPARABLE_P (params->c_expr))
5889 return false;
5891 cur_reg = expr_dest_reg (params->c_expr);
5892 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5894 /* If original operation has expr and the register chosen for
5895 that expr is not original operation's dest reg, substitute
5896 operation's right hand side with the register chosen. */
5897 if (REGNO (params->dest) != REGNO (cur_reg))
5899 insn_t reg_move_insn, reg_move_insn_rtx;
5901 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5902 params->dest);
5903 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5904 INSN_EXPR (insn),
5905 INSN_SEQNO (insn),
5906 insn);
5907 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5908 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5910 insn_emitted = true;
5911 params->was_renamed = true;
5914 return insn_emitted;
5917 /* Emit a speculative check for INSN speculated as EXPR if needed.
5918 Return true if we've emitted one. PARAMS is the move_op static
5919 parameters. */
5920 static bool
5921 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5922 moveop_static_params_p params)
5924 bool insn_emitted = false;
5925 insn_t x;
5926 ds_t check_ds;
5928 check_ds = get_spec_check_type_for_insn (insn, expr);
5929 if (check_ds != 0)
5931 /* A speculation check should be inserted. */
5932 x = create_speculation_check (params->c_expr, check_ds, insn);
5933 insn_emitted = true;
5935 else
5937 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5938 x = insn;
5941 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5942 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5943 return insn_emitted;
5946 /* Handle transformations that leave an insn in place of original
5947 insn such as renaming/speculation. Return true if one of such
5948 transformations actually happened, and we have emitted this insn. */
5949 static bool
5950 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5951 moveop_static_params_p params)
5953 bool insn_emitted = false;
5955 insn_emitted = maybe_emit_renaming_copy (insn, params);
5956 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5958 return insn_emitted;
5961 /* If INSN is the only insn in the basic block (not counting JUMP,
5962 which may be a jump to next insn, and DEBUG_INSNs), we want to
5963 leave a NOP there till the return to fill_insns. */
5965 static bool
5966 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5968 insn_t bb_head, bb_end, bb_next, in_next;
5969 basic_block bb = BLOCK_FOR_INSN (insn);
5971 bb_head = sel_bb_head (bb);
5972 bb_end = sel_bb_end (bb);
5974 if (bb_head == bb_end)
5975 return true;
5977 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5978 bb_head = NEXT_INSN (bb_head);
5980 if (bb_head == bb_end)
5981 return true;
5983 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5984 bb_end = PREV_INSN (bb_end);
5986 if (bb_head == bb_end)
5987 return true;
5989 bb_next = NEXT_INSN (bb_head);
5990 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5991 bb_next = NEXT_INSN (bb_next);
5993 if (bb_next == bb_end && JUMP_P (bb_end))
5994 return true;
5996 in_next = NEXT_INSN (insn);
5997 while (DEBUG_INSN_P (in_next))
5998 in_next = NEXT_INSN (in_next);
6000 if (IN_CURRENT_FENCE_P (in_next))
6001 return true;
6003 return false;
6006 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
6007 is not removed but reused when INSN is re-emitted. */
6008 static void
6009 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
6011 /* If there's only one insn in the BB, make sure that a nop is
6012 inserted into it, so the basic block won't disappear when we'll
6013 delete INSN below with sel_remove_insn. It should also survive
6014 till the return to fill_insns. */
6015 if (need_nop_to_preserve_insn_bb (insn))
6017 insn_t nop = get_nop_from_pool (insn);
6018 gcc_assert (INSN_NOP_P (nop));
6019 vec_temp_moveop_nops.safe_push (nop);
6022 sel_remove_insn (insn, only_disconnect, false);
6025 /* This function is called when original expr is found.
6026 INSN - current insn traversed, EXPR - the corresponding expr found.
6027 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
6028 is static parameters of move_op. */
6029 static void
6030 move_op_orig_expr_found (insn_t insn, expr_t expr,
6031 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6032 void *static_params)
6034 bool only_disconnect;
6035 moveop_static_params_p params = (moveop_static_params_p) static_params;
6037 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6038 track_scheduled_insns_and_blocks (insn);
6039 handle_emitting_transformations (insn, expr, params);
6040 only_disconnect = params->uid == INSN_UID (insn);
6042 /* Mark that we've disconnected an insn. */
6043 if (only_disconnect)
6044 params->uid = -1;
6045 remove_insn_from_stream (insn, only_disconnect);
6048 /* The function is called when original expr is found.
6049 INSN - current insn traversed, EXPR - the corresponding expr found,
6050 crosses_call and original_insns in STATIC_PARAMS are updated. */
6051 static void
6052 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6053 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6054 void *static_params)
6056 fur_static_params_p params = (fur_static_params_p) static_params;
6057 regset tmp;
6059 if (CALL_P (insn))
6060 params->crosses_call = true;
6062 def_list_add (params->original_insns, insn, params->crosses_call);
6064 /* Mark the registers that do not meet the following condition:
6065 (2) not among the live registers of the point
6066 immediately following the first original operation on
6067 a given downward path, except for the original target
6068 register of the operation. */
6069 tmp = get_clear_regset_from_pool ();
6070 compute_live_below_insn (insn, tmp);
6071 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6072 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6073 IOR_REG_SET (params->used_regs, tmp);
6074 return_regset_to_pool (tmp);
6076 /* (*1) We need to add to USED_REGS registers that are read by
6077 INSN's lhs. This may lead to choosing wrong src register.
6078 E.g. (scheduling const expr enabled):
6080 429: ax=0x0 <- Can't use AX for this expr (0x0)
6081 433: dx=[bp-0x18]
6082 427: [ax+dx+0x1]=ax
6083 REG_DEAD: ax
6084 168: di=dx
6085 REG_DEAD: dx
6087 /* FIXME: see comment above and enable MEM_P
6088 in vinsn_separable_p. */
6089 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6090 || !MEM_P (INSN_LHS (insn)));
6093 /* This function is called on the ascending pass, before returning from
6094 current basic block. */
6095 static void
6096 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6097 void *static_params)
6099 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6100 basic_block book_block = NULL;
6102 /* When we have removed the boundary insn for scheduling, which also
6103 happened to be the end insn in its bb, we don't need to update sets. */
6104 if (!lparams->removed_last_insn
6105 && lparams->e1
6106 && sel_bb_head_p (insn))
6108 /* We should generate bookkeeping code only if we are not at the
6109 top level of the move_op. */
6110 if (sel_num_cfg_preds_gt_1 (insn))
6111 book_block = generate_bookkeeping_insn (sparams->c_expr,
6112 lparams->e1, lparams->e2);
6113 /* Update data sets for the current insn. */
6114 update_data_sets (insn);
6117 /* If bookkeeping code was inserted, we need to update av sets of basic
6118 block that received bookkeeping. After generation of bookkeeping insn,
6119 bookkeeping block does not contain valid av set because we are not following
6120 the original algorithm in every detail with regards to e.g. renaming
6121 simple reg-reg copies. Consider example:
6123 bookkeeping block scheduling fence
6125 \ join /
6126 ----------
6128 ----------
6131 r1 := r2 r1 := r3
6133 We try to schedule insn "r1 := r3" on the current
6134 scheduling fence. Also, note that av set of bookkeeping block
6135 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6136 been scheduled, the CFG is as follows:
6138 r1 := r3 r1 := r3
6139 bookkeeping block scheduling fence
6141 \ join /
6142 ----------
6144 ----------
6147 r1 := r2
6149 Here, insn "r1 := r3" was scheduled at the current scheduling point
6150 and bookkeeping code was generated at the bookeeping block. This
6151 way insn "r1 := r2" is no longer available as a whole instruction
6152 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6153 This situation is handled by calling update_data_sets.
6155 Since update_data_sets is called only on the bookkeeping block, and
6156 it also may have predecessors with av_sets, containing instructions that
6157 are no longer available, we save all such expressions that become
6158 unavailable during data sets update on the bookkeeping block in
6159 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6160 expressions for scheduling. This allows us to avoid recomputation of
6161 av_sets outside the code motion path. */
6163 if (book_block)
6164 update_and_record_unavailable_insns (book_block);
6166 /* If INSN was previously marked for deletion, it's time to do it. */
6167 if (lparams->removed_last_insn)
6168 insn = PREV_INSN (insn);
6170 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6171 kill a block with a single nop in which the insn should be emitted. */
6172 if (lparams->e1)
6173 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6176 /* This function is called on the ascending pass, before returning from the
6177 current basic block. */
6178 static void
6179 fur_at_first_insn (insn_t insn,
6180 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6181 void *static_params ATTRIBUTE_UNUSED)
6183 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6184 || AV_LEVEL (insn) == -1);
6187 /* Called on the backward stage of recursion to call moveup_expr for insn
6188 and sparams->c_expr. */
6189 static void
6190 move_op_ascend (insn_t insn, void *static_params)
6192 enum MOVEUP_EXPR_CODE res;
6193 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6195 if (! INSN_NOP_P (insn))
6197 res = moveup_expr_cached (sparams->c_expr, insn, false);
6198 gcc_assert (res != MOVEUP_EXPR_NULL);
6201 /* Update liveness for this insn as it was invalidated. */
6202 update_liveness_on_insn (insn);
6205 /* This function is called on enter to the basic block.
6206 Returns TRUE if this block already have been visited and
6207 code_motion_path_driver should return 1, FALSE otherwise. */
6208 static int
6209 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6210 void *static_params, bool visited_p)
6212 fur_static_params_p sparams = (fur_static_params_p) static_params;
6214 if (visited_p)
6216 /* If we have found something below this block, there should be at
6217 least one insn in ORIGINAL_INSNS. */
6218 gcc_assert (*sparams->original_insns);
6220 /* Adjust CROSSES_CALL, since we may have come to this block along
6221 different path. */
6222 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6223 |= sparams->crosses_call;
6225 else
6226 local_params->old_original_insns = *sparams->original_insns;
6228 return 1;
6231 /* Same as above but for move_op. */
6232 static int
6233 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6234 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6235 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6237 if (visited_p)
6238 return -1;
6239 return 1;
6242 /* This function is called while descending current basic block if current
6243 insn is not the original EXPR we're searching for.
6245 Return value: FALSE, if code_motion_path_driver should perform a local
6246 cleanup and return 0 itself;
6247 TRUE, if code_motion_path_driver should continue. */
6248 static bool
6249 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6250 void *static_params)
6252 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6254 #ifdef ENABLE_CHECKING
6255 sparams->failed_insn = insn;
6256 #endif
6258 /* If we're scheduling separate expr, in order to generate correct code
6259 we need to stop the search at bookkeeping code generated with the
6260 same destination register or memory. */
6261 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6262 return false;
6263 return true;
6266 /* This function is called while descending current basic block if current
6267 insn is not the original EXPR we're searching for.
6269 Return value: TRUE (code_motion_path_driver should continue). */
6270 static bool
6271 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6273 bool mutexed;
6274 expr_t r;
6275 av_set_iterator avi;
6276 fur_static_params_p sparams = (fur_static_params_p) static_params;
6278 if (CALL_P (insn))
6279 sparams->crosses_call = true;
6280 else if (DEBUG_INSN_P (insn))
6281 return true;
6283 /* If current insn we are looking at cannot be executed together
6284 with original insn, then we can skip it safely.
6286 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6287 INSN = (!p6) r14 = r14 + 1;
6289 Here we can schedule ORIG_OP with lhs = r14, though only
6290 looking at the set of used and set registers of INSN we must
6291 forbid it. So, add set/used in INSN registers to the
6292 untouchable set only if there is an insn in ORIG_OPS that can
6293 affect INSN. */
6294 mutexed = true;
6295 FOR_EACH_EXPR (r, avi, orig_ops)
6296 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6298 mutexed = false;
6299 break;
6302 /* Mark all registers that do not meet the following condition:
6303 (1) Not set or read on any path from xi to an instance of the
6304 original operation. */
6305 if (!mutexed)
6307 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6308 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6309 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6312 return true;
6315 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6316 struct code_motion_path_driver_info_def move_op_hooks = {
6317 move_op_on_enter,
6318 move_op_orig_expr_found,
6319 move_op_orig_expr_not_found,
6320 move_op_merge_succs,
6321 move_op_after_merge_succs,
6322 move_op_ascend,
6323 move_op_at_first_insn,
6324 SUCCS_NORMAL,
6325 "move_op"
6328 /* Hooks and data to perform find_used_regs operations
6329 with code_motion_path_driver. */
6330 struct code_motion_path_driver_info_def fur_hooks = {
6331 fur_on_enter,
6332 fur_orig_expr_found,
6333 fur_orig_expr_not_found,
6334 fur_merge_succs,
6335 NULL, /* fur_after_merge_succs */
6336 NULL, /* fur_ascend */
6337 fur_at_first_insn,
6338 SUCCS_ALL,
6339 "find_used_regs"
6342 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6343 code_motion_path_driver is called recursively. Original operation
6344 was found at least on one path that is starting with one of INSN's
6345 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6346 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6347 of either move_op or find_used_regs depending on the caller.
6349 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6350 know for sure at this point. */
6351 static int
6352 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6353 ilist_t path, void *static_params)
6355 int res = 0;
6356 succ_iterator succ_i;
6357 insn_t succ;
6358 basic_block bb;
6359 int old_index;
6360 unsigned old_succs;
6362 struct cmpd_local_params lparams;
6363 expr_def _x;
6365 lparams.c_expr_local = &_x;
6366 lparams.c_expr_merged = NULL;
6368 /* We need to process only NORMAL succs for move_op, and collect live
6369 registers from ALL branches (including those leading out of the
6370 region) for find_used_regs.
6372 In move_op, there can be a case when insn's bb number has changed
6373 due to created bookkeeping. This happens very rare, as we need to
6374 move expression from the beginning to the end of the same block.
6375 Rescan successors in this case. */
6377 rescan:
6378 bb = BLOCK_FOR_INSN (insn);
6379 old_index = bb->index;
6380 old_succs = EDGE_COUNT (bb->succs);
6382 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6384 int b;
6386 lparams.e1 = succ_i.e1;
6387 lparams.e2 = succ_i.e2;
6389 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6390 current region). */
6391 if (succ_i.current_flags == SUCCS_NORMAL)
6392 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6393 static_params);
6394 else
6395 b = 0;
6397 /* Merge c_expres found or unify live register sets from different
6398 successors. */
6399 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6400 static_params);
6401 if (b == 1)
6402 res = b;
6403 else if (b == -1 && res != 1)
6404 res = b;
6406 /* We have simplified the control flow below this point. In this case,
6407 the iterator becomes invalid. We need to try again.
6408 If we have removed the insn itself, it could be only an
6409 unconditional jump. Thus, do not rescan but break immediately --
6410 we have already visited the only successor block. */
6411 if (!BLOCK_FOR_INSN (insn))
6413 if (sched_verbose >= 6)
6414 sel_print ("Not doing rescan: already visited the only successor"
6415 " of block %d\n", old_index);
6416 break;
6418 if (BLOCK_FOR_INSN (insn)->index != old_index
6419 || EDGE_COUNT (bb->succs) != old_succs)
6421 if (sched_verbose >= 6)
6422 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6423 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6424 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6425 goto rescan;
6429 #ifdef ENABLE_CHECKING
6430 /* Here, RES==1 if original expr was found at least for one of the
6431 successors. After the loop, RES may happen to have zero value
6432 only if at some point the expr searched is present in av_set, but is
6433 not found below. In most cases, this situation is an error.
6434 The exception is when the original operation is blocked by
6435 bookkeeping generated for another fence or for another path in current
6436 move_op. */
6437 gcc_assert (res == 1
6438 || (res == 0
6439 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6440 static_params))
6441 || res == -1);
6442 #endif
6444 /* Merge data, clean up, etc. */
6445 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6446 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6448 return res;
6452 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6453 is the pointer to the av set with expressions we were looking for,
6454 PATH_P is the pointer to the traversed path. */
6455 static inline void
6456 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6458 ilist_remove (path_p);
6459 av_set_clear (orig_ops_p);
6462 /* The driver function that implements move_op or find_used_regs
6463 functionality dependent whether code_motion_path_driver_INFO is set to
6464 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6465 of code (CFG traversal etc) that are shared among both functions. INSN
6466 is the insn we're starting the search from, ORIG_OPS are the expressions
6467 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6468 parameters of the driver, and STATIC_PARAMS are static parameters of
6469 the caller.
6471 Returns whether original instructions were found. Note that top-level
6472 code_motion_path_driver always returns true. */
6473 static int
6474 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6475 cmpd_local_params_p local_params_in,
6476 void *static_params)
6478 expr_t expr = NULL;
6479 basic_block bb = BLOCK_FOR_INSN (insn);
6480 insn_t first_insn, bb_tail, before_first;
6481 bool removed_last_insn = false;
6483 if (sched_verbose >= 6)
6485 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6486 dump_insn (insn);
6487 sel_print (",");
6488 dump_av_set (orig_ops);
6489 sel_print (")\n");
6492 gcc_assert (orig_ops);
6494 /* If no original operations exist below this insn, return immediately. */
6495 if (is_ineligible_successor (insn, path))
6497 if (sched_verbose >= 6)
6498 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6499 return false;
6502 /* The block can have invalid av set, in which case it was created earlier
6503 during move_op. Return immediately. */
6504 if (sel_bb_head_p (insn))
6506 if (! AV_SET_VALID_P (insn))
6508 if (sched_verbose >= 6)
6509 sel_print ("Returned from block %d as it had invalid av set\n",
6510 bb->index);
6511 return false;
6514 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6516 /* We have already found an original operation on this branch, do not
6517 go any further and just return TRUE here. If we don't stop here,
6518 function can have exponential behaviour even on the small code
6519 with many different paths (e.g. with data speculation and
6520 recovery blocks). */
6521 if (sched_verbose >= 6)
6522 sel_print ("Block %d already visited in this traversal\n", bb->index);
6523 if (code_motion_path_driver_info->on_enter)
6524 return code_motion_path_driver_info->on_enter (insn,
6525 local_params_in,
6526 static_params,
6527 true);
6531 if (code_motion_path_driver_info->on_enter)
6532 code_motion_path_driver_info->on_enter (insn, local_params_in,
6533 static_params, false);
6534 orig_ops = av_set_copy (orig_ops);
6536 /* Filter the orig_ops set. */
6537 if (AV_SET_VALID_P (insn))
6538 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6540 /* If no more original ops, return immediately. */
6541 if (!orig_ops)
6543 if (sched_verbose >= 6)
6544 sel_print ("No intersection with av set of block %d\n", bb->index);
6545 return false;
6548 /* For non-speculative insns we have to leave only one form of the
6549 original operation, because if we don't, we may end up with
6550 different C_EXPRes and, consequently, with bookkeepings for different
6551 expression forms along the same code motion path. That may lead to
6552 generation of incorrect code. So for each code motion we stick to
6553 the single form of the instruction, except for speculative insns
6554 which we need to keep in different forms with all speculation
6555 types. */
6556 av_set_leave_one_nonspec (&orig_ops);
6558 /* It is not possible that all ORIG_OPS are filtered out. */
6559 gcc_assert (orig_ops);
6561 /* It is enough to place only heads and tails of visited basic blocks into
6562 the PATH. */
6563 ilist_add (&path, insn);
6564 first_insn = insn;
6565 bb_tail = sel_bb_end (bb);
6567 /* Descend the basic block in search of the original expr; this part
6568 corresponds to the part of the original move_op procedure executed
6569 before the recursive call. */
6570 for (;;)
6572 /* Look at the insn and decide if it could be an ancestor of currently
6573 scheduling operation. If it is so, then the insn "dest = op" could
6574 either be replaced with "dest = reg", because REG now holds the result
6575 of OP, or just removed, if we've scheduled the insn as a whole.
6577 If this insn doesn't contain currently scheduling OP, then proceed
6578 with searching and look at its successors. Operations we're searching
6579 for could have changed when moving up through this insn via
6580 substituting. In this case, perform unsubstitution on them first.
6582 When traversing the DAG below this insn is finished, insert
6583 bookkeeping code, if the insn is a joint point, and remove
6584 leftovers. */
6586 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6587 if (expr)
6589 insn_t last_insn = PREV_INSN (insn);
6591 /* We have found the original operation. */
6592 if (sched_verbose >= 6)
6593 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6595 code_motion_path_driver_info->orig_expr_found
6596 (insn, expr, local_params_in, static_params);
6598 /* Step back, so on the way back we'll start traversing from the
6599 previous insn (or we'll see that it's bb_note and skip that
6600 loop). */
6601 if (insn == first_insn)
6603 first_insn = NEXT_INSN (last_insn);
6604 removed_last_insn = sel_bb_end_p (last_insn);
6606 insn = last_insn;
6607 break;
6609 else
6611 /* We haven't found the original expr, continue descending the basic
6612 block. */
6613 if (code_motion_path_driver_info->orig_expr_not_found
6614 (insn, orig_ops, static_params))
6616 /* Av set ops could have been changed when moving through this
6617 insn. To find them below it, we have to un-substitute them. */
6618 undo_transformations (&orig_ops, insn);
6620 else
6622 /* Clean up and return, if the hook tells us to do so. It may
6623 happen if we've encountered the previously created
6624 bookkeeping. */
6625 code_motion_path_driver_cleanup (&orig_ops, &path);
6626 return -1;
6629 gcc_assert (orig_ops);
6632 /* Stop at insn if we got to the end of BB. */
6633 if (insn == bb_tail)
6634 break;
6636 insn = NEXT_INSN (insn);
6639 /* Here INSN either points to the insn before the original insn (may be
6640 bb_note, if original insn was a bb_head) or to the bb_end. */
6641 if (!expr)
6643 int res;
6644 rtx_insn *last_insn = PREV_INSN (insn);
6645 bool added_to_path;
6647 gcc_assert (insn == sel_bb_end (bb));
6649 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6650 it's already in PATH then). */
6651 if (insn != first_insn)
6653 ilist_add (&path, insn);
6654 added_to_path = true;
6656 else
6657 added_to_path = false;
6659 /* Process_successors should be able to find at least one
6660 successor for which code_motion_path_driver returns TRUE. */
6661 res = code_motion_process_successors (insn, orig_ops,
6662 path, static_params);
6664 /* Jump in the end of basic block could have been removed or replaced
6665 during code_motion_process_successors, so recompute insn as the
6666 last insn in bb. */
6667 if (NEXT_INSN (last_insn) != insn)
6669 insn = sel_bb_end (bb);
6670 first_insn = sel_bb_head (bb);
6673 /* Remove bb tail from path. */
6674 if (added_to_path)
6675 ilist_remove (&path);
6677 if (res != 1)
6679 /* This is the case when one of the original expr is no longer available
6680 due to bookkeeping created on this branch with the same register.
6681 In the original algorithm, which doesn't have update_data_sets call
6682 on a bookkeeping block, it would simply result in returning
6683 FALSE when we've encountered a previously generated bookkeeping
6684 insn in moveop_orig_expr_not_found. */
6685 code_motion_path_driver_cleanup (&orig_ops, &path);
6686 return res;
6690 /* Don't need it any more. */
6691 av_set_clear (&orig_ops);
6693 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6694 the beginning of the basic block. */
6695 before_first = PREV_INSN (first_insn);
6696 while (insn != before_first)
6698 if (code_motion_path_driver_info->ascend)
6699 code_motion_path_driver_info->ascend (insn, static_params);
6701 insn = PREV_INSN (insn);
6704 /* Now we're at the bb head. */
6705 insn = first_insn;
6706 ilist_remove (&path);
6707 local_params_in->removed_last_insn = removed_last_insn;
6708 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6710 /* This should be the very last operation as at bb head we could change
6711 the numbering by creating bookkeeping blocks. */
6712 if (removed_last_insn)
6713 insn = PREV_INSN (insn);
6715 /* If we have simplified the control flow and removed the first jump insn,
6716 there's no point in marking this block in the visited blocks bitmap. */
6717 if (BLOCK_FOR_INSN (insn))
6718 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6719 return true;
6722 /* Move up the operations from ORIG_OPS set traversing the dag starting
6723 from INSN. PATH represents the edges traversed so far.
6724 DEST is the register chosen for scheduling the current expr. Insert
6725 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6726 C_EXPR is how it looks like at the given cfg point.
6727 Set *SHOULD_MOVE to indicate whether we have only disconnected
6728 one of the insns found.
6730 Returns whether original instructions were found, which is asserted
6731 to be true in the caller. */
6732 static bool
6733 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6734 rtx dest, expr_t c_expr, bool *should_move)
6736 struct moveop_static_params sparams;
6737 struct cmpd_local_params lparams;
6738 int res;
6740 /* Init params for code_motion_path_driver. */
6741 sparams.dest = dest;
6742 sparams.c_expr = c_expr;
6743 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6744 #ifdef ENABLE_CHECKING
6745 sparams.failed_insn = NULL;
6746 #endif
6747 sparams.was_renamed = false;
6748 lparams.e1 = NULL;
6750 /* We haven't visited any blocks yet. */
6751 bitmap_clear (code_motion_visited_blocks);
6753 /* Set appropriate hooks and data. */
6754 code_motion_path_driver_info = &move_op_hooks;
6755 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6757 gcc_assert (res != -1);
6759 if (sparams.was_renamed)
6760 EXPR_WAS_RENAMED (expr_vliw) = true;
6762 *should_move = (sparams.uid == -1);
6764 return res;
6768 /* Functions that work with regions. */
6770 /* Current number of seqno used in init_seqno and init_seqno_1. */
6771 static int cur_seqno;
6773 /* A helper for init_seqno. Traverse the region starting from BB and
6774 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6775 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6776 static void
6777 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6779 int bbi = BLOCK_TO_BB (bb->index);
6780 insn_t insn, note = bb_note (bb);
6781 insn_t succ_insn;
6782 succ_iterator si;
6784 bitmap_set_bit (visited_bbs, bbi);
6785 if (blocks_to_reschedule)
6786 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6788 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6789 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6791 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6792 int succ_bbi = BLOCK_TO_BB (succ->index);
6794 gcc_assert (in_current_region_p (succ));
6796 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6798 gcc_assert (succ_bbi > bbi);
6800 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6802 else if (blocks_to_reschedule)
6803 bitmap_set_bit (forced_ebb_heads, succ->index);
6806 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6807 INSN_SEQNO (insn) = cur_seqno--;
6810 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6811 blocks on which we're rescheduling when pipelining, FROM is the block where
6812 traversing region begins (it may not be the head of the region when
6813 pipelining, but the head of the loop instead).
6815 Returns the maximal seqno found. */
6816 static int
6817 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6819 sbitmap visited_bbs;
6820 bitmap_iterator bi;
6821 unsigned bbi;
6823 visited_bbs = sbitmap_alloc (current_nr_blocks);
6825 if (blocks_to_reschedule)
6827 bitmap_ones (visited_bbs);
6828 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6830 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6831 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6834 else
6836 bitmap_clear (visited_bbs);
6837 from = EBB_FIRST_BB (0);
6840 cur_seqno = sched_max_luid - 1;
6841 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6843 /* cur_seqno may be positive if the number of instructions is less than
6844 sched_max_luid - 1 (when rescheduling or if some instructions have been
6845 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6846 gcc_assert (cur_seqno >= 0);
6848 sbitmap_free (visited_bbs);
6849 return sched_max_luid - 1;
6852 /* Initialize scheduling parameters for current region. */
6853 static void
6854 sel_setup_region_sched_flags (void)
6856 enable_schedule_as_rhs_p = 1;
6857 bookkeeping_p = 1;
6858 pipelining_p = (bookkeeping_p
6859 && (flag_sel_sched_pipelining != 0)
6860 && current_loop_nest != NULL
6861 && loop_has_exit_edges (current_loop_nest));
6862 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6863 max_ws = MAX_WS;
6866 /* Return true if all basic blocks of current region are empty. */
6867 static bool
6868 current_region_empty_p (void)
6870 int i;
6871 for (i = 0; i < current_nr_blocks; i++)
6872 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6873 return false;
6875 return true;
6878 /* Prepare and verify loop nest for pipelining. */
6879 static void
6880 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6882 current_loop_nest = get_loop_nest_for_rgn (rgn);
6884 if (!current_loop_nest)
6885 return;
6887 /* If this loop has any saved loop preheaders from nested loops,
6888 add these basic blocks to the current region. */
6889 sel_add_loop_preheaders (bbs);
6891 /* Check that we're starting with a valid information. */
6892 gcc_assert (loop_latch_edge (current_loop_nest));
6893 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6896 /* Compute instruction priorities for current region. */
6897 static void
6898 sel_compute_priorities (int rgn)
6900 sched_rgn_compute_dependencies (rgn);
6902 /* Compute insn priorities in haifa style. Then free haifa style
6903 dependencies that we've calculated for this. */
6904 compute_priorities ();
6906 if (sched_verbose >= 5)
6907 debug_rgn_dependencies (0);
6909 free_rgn_deps ();
6912 /* Init scheduling data for RGN. Returns true when this region should not
6913 be scheduled. */
6914 static bool
6915 sel_region_init (int rgn)
6917 int i;
6918 bb_vec_t bbs;
6920 rgn_setup_region (rgn);
6922 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6923 do region initialization here so the region can be bundled correctly,
6924 but we'll skip the scheduling in sel_sched_region (). */
6925 if (current_region_empty_p ())
6926 return true;
6928 bbs.create (current_nr_blocks);
6930 for (i = 0; i < current_nr_blocks; i++)
6931 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6933 sel_init_bbs (bbs);
6935 if (flag_sel_sched_pipelining)
6936 setup_current_loop_nest (rgn, &bbs);
6938 sel_setup_region_sched_flags ();
6940 /* Initialize luids and dependence analysis which both sel-sched and haifa
6941 need. */
6942 sched_init_luids (bbs);
6943 sched_deps_init (false);
6945 /* Initialize haifa data. */
6946 rgn_setup_sched_infos ();
6947 sel_set_sched_flags ();
6948 haifa_init_h_i_d (bbs);
6950 sel_compute_priorities (rgn);
6951 init_deps_global ();
6953 /* Main initialization. */
6954 sel_setup_sched_infos ();
6955 sel_init_global_and_expr (bbs);
6957 bbs.release ();
6959 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6961 /* Init correct liveness sets on each instruction of a single-block loop.
6962 This is the only situation when we can't update liveness when calling
6963 compute_live for the first insn of the loop. */
6964 if (current_loop_nest)
6966 int header =
6967 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6969 : 0);
6971 if (current_nr_blocks == header + 1)
6972 update_liveness_on_insn
6973 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6976 /* Set hooks so that no newly generated insn will go out unnoticed. */
6977 sel_register_cfg_hooks ();
6979 /* !!! We call target.sched.init () for the whole region, but we invoke
6980 targetm.sched.finish () for every ebb. */
6981 if (targetm.sched.init)
6982 /* None of the arguments are actually used in any target. */
6983 targetm.sched.init (sched_dump, sched_verbose, -1);
6985 first_emitted_uid = get_max_uid () + 1;
6986 preheader_removed = false;
6988 /* Reset register allocation ticks array. */
6989 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6990 reg_rename_this_tick = 0;
6992 bitmap_initialize (forced_ebb_heads, 0);
6993 bitmap_clear (forced_ebb_heads);
6995 setup_nop_vinsn ();
6996 current_copies = BITMAP_ALLOC (NULL);
6997 current_originators = BITMAP_ALLOC (NULL);
6998 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
7000 return false;
7003 /* Simplify insns after the scheduling. */
7004 static void
7005 simplify_changed_insns (void)
7007 int i;
7009 for (i = 0; i < current_nr_blocks; i++)
7011 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
7012 rtx_insn *insn;
7014 FOR_BB_INSNS (bb, insn)
7015 if (INSN_P (insn))
7017 expr_t expr = INSN_EXPR (insn);
7019 if (EXPR_WAS_SUBSTITUTED (expr))
7020 validate_simplify_insn (insn);
7025 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
7026 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
7027 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
7028 static void
7029 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
7031 rtx_insn *head, *tail;
7032 basic_block bb1 = bb;
7033 if (sched_verbose >= 2)
7034 sel_print ("Finishing schedule in bbs: ");
7038 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7040 if (sched_verbose >= 2)
7041 sel_print ("%d; ", bb1->index);
7043 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7045 if (sched_verbose >= 2)
7046 sel_print ("\n");
7048 get_ebb_head_tail (bb, bb1, &head, &tail);
7050 current_sched_info->head = head;
7051 current_sched_info->tail = tail;
7052 current_sched_info->prev_head = PREV_INSN (head);
7053 current_sched_info->next_tail = NEXT_INSN (tail);
7056 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7057 static void
7058 reset_sched_cycles_in_current_ebb (void)
7060 int last_clock = 0;
7061 int haifa_last_clock = -1;
7062 int haifa_clock = 0;
7063 int issued_insns = 0;
7064 insn_t insn;
7066 if (targetm.sched.init)
7068 /* None of the arguments are actually used in any target.
7069 NB: We should have md_reset () hook for cases like this. */
7070 targetm.sched.init (sched_dump, sched_verbose, -1);
7073 state_reset (curr_state);
7074 advance_state (curr_state);
7076 for (insn = current_sched_info->head;
7077 insn != current_sched_info->next_tail;
7078 insn = NEXT_INSN (insn))
7080 int cost, haifa_cost;
7081 int sort_p;
7082 bool asm_p, real_insn, after_stall, all_issued;
7083 int clock;
7085 if (!INSN_P (insn))
7086 continue;
7088 asm_p = false;
7089 real_insn = recog_memoized (insn) >= 0;
7090 clock = INSN_SCHED_CYCLE (insn);
7092 cost = clock - last_clock;
7094 /* Initialize HAIFA_COST. */
7095 if (! real_insn)
7097 asm_p = INSN_ASM_P (insn);
7099 if (asm_p)
7100 /* This is asm insn which *had* to be scheduled first
7101 on the cycle. */
7102 haifa_cost = 1;
7103 else
7104 /* This is a use/clobber insn. It should not change
7105 cost. */
7106 haifa_cost = 0;
7108 else
7109 haifa_cost = estimate_insn_cost (insn, curr_state);
7111 /* Stall for whatever cycles we've stalled before. */
7112 after_stall = 0;
7113 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7115 haifa_cost = cost;
7116 after_stall = 1;
7118 all_issued = issued_insns == issue_rate;
7119 if (haifa_cost == 0 && all_issued)
7120 haifa_cost = 1;
7121 if (haifa_cost > 0)
7123 int i = 0;
7125 while (haifa_cost--)
7127 advance_state (curr_state);
7128 issued_insns = 0;
7129 i++;
7131 if (sched_verbose >= 2)
7133 sel_print ("advance_state (state_transition)\n");
7134 debug_state (curr_state);
7137 /* The DFA may report that e.g. insn requires 2 cycles to be
7138 issued, but on the next cycle it says that insn is ready
7139 to go. Check this here. */
7140 if (!after_stall
7141 && real_insn
7142 && haifa_cost > 0
7143 && estimate_insn_cost (insn, curr_state) == 0)
7144 break;
7146 /* When the data dependency stall is longer than the DFA stall,
7147 and when we have issued exactly issue_rate insns and stalled,
7148 it could be that after this longer stall the insn will again
7149 become unavailable to the DFA restrictions. Looks strange
7150 but happens e.g. on x86-64. So recheck DFA on the last
7151 iteration. */
7152 if ((after_stall || all_issued)
7153 && real_insn
7154 && haifa_cost == 0)
7155 haifa_cost = estimate_insn_cost (insn, curr_state);
7158 haifa_clock += i;
7159 if (sched_verbose >= 2)
7160 sel_print ("haifa clock: %d\n", haifa_clock);
7162 else
7163 gcc_assert (haifa_cost == 0);
7165 if (sched_verbose >= 2)
7166 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7168 if (targetm.sched.dfa_new_cycle)
7169 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7170 haifa_last_clock, haifa_clock,
7171 &sort_p))
7173 advance_state (curr_state);
7174 issued_insns = 0;
7175 haifa_clock++;
7176 if (sched_verbose >= 2)
7178 sel_print ("advance_state (dfa_new_cycle)\n");
7179 debug_state (curr_state);
7180 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7184 if (real_insn)
7186 static state_t temp = NULL;
7188 if (!temp)
7189 temp = xmalloc (dfa_state_size);
7190 memcpy (temp, curr_state, dfa_state_size);
7192 cost = state_transition (curr_state, insn);
7193 if (memcmp (temp, curr_state, dfa_state_size))
7194 issued_insns++;
7196 if (sched_verbose >= 2)
7198 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7199 haifa_clock + 1);
7200 debug_state (curr_state);
7202 gcc_assert (cost < 0);
7205 if (targetm.sched.variable_issue)
7206 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7208 INSN_SCHED_CYCLE (insn) = haifa_clock;
7210 last_clock = clock;
7211 haifa_last_clock = haifa_clock;
7215 /* Put TImode markers on insns starting a new issue group. */
7216 static void
7217 put_TImodes (void)
7219 int last_clock = -1;
7220 insn_t insn;
7222 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7223 insn = NEXT_INSN (insn))
7225 int cost, clock;
7227 if (!INSN_P (insn))
7228 continue;
7230 clock = INSN_SCHED_CYCLE (insn);
7231 cost = (last_clock == -1) ? 1 : clock - last_clock;
7233 gcc_assert (cost >= 0);
7235 if (issue_rate > 1
7236 && GET_CODE (PATTERN (insn)) != USE
7237 && GET_CODE (PATTERN (insn)) != CLOBBER)
7239 if (reload_completed && cost > 0)
7240 PUT_MODE (insn, TImode);
7242 last_clock = clock;
7245 if (sched_verbose >= 2)
7246 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7250 /* Perform MD_FINISH on EBBs comprising current region. When
7251 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7252 to produce correct sched cycles on insns. */
7253 static void
7254 sel_region_target_finish (bool reset_sched_cycles_p)
7256 int i;
7257 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7259 for (i = 0; i < current_nr_blocks; i++)
7261 if (bitmap_bit_p (scheduled_blocks, i))
7262 continue;
7264 /* While pipelining outer loops, skip bundling for loop
7265 preheaders. Those will be rescheduled in the outer loop. */
7266 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7267 continue;
7269 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7271 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7272 continue;
7274 if (reset_sched_cycles_p)
7275 reset_sched_cycles_in_current_ebb ();
7277 if (targetm.sched.init)
7278 targetm.sched.init (sched_dump, sched_verbose, -1);
7280 put_TImodes ();
7282 if (targetm.sched.finish)
7284 targetm.sched.finish (sched_dump, sched_verbose);
7286 /* Extend luids so that insns generated by the target will
7287 get zero luid. */
7288 sched_extend_luids ();
7292 BITMAP_FREE (scheduled_blocks);
7295 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7296 is true, make an additional pass emulating scheduler to get correct insn
7297 cycles for md_finish calls. */
7298 static void
7299 sel_region_finish (bool reset_sched_cycles_p)
7301 simplify_changed_insns ();
7302 sched_finish_ready_list ();
7303 free_nop_pool ();
7305 /* Free the vectors. */
7306 vec_av_set.release ();
7307 BITMAP_FREE (current_copies);
7308 BITMAP_FREE (current_originators);
7309 BITMAP_FREE (code_motion_visited_blocks);
7310 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7311 vinsn_vec_free (vec_target_unavailable_vinsns);
7313 /* If LV_SET of the region head should be updated, do it now because
7314 there will be no other chance. */
7316 succ_iterator si;
7317 insn_t insn;
7319 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7320 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7322 basic_block bb = BLOCK_FOR_INSN (insn);
7324 if (!BB_LV_SET_VALID_P (bb))
7325 compute_live (insn);
7329 /* Emulate the Haifa scheduler for bundling. */
7330 if (reload_completed)
7331 sel_region_target_finish (reset_sched_cycles_p);
7333 sel_finish_global_and_expr ();
7335 bitmap_clear (forced_ebb_heads);
7337 free_nop_vinsn ();
7339 finish_deps_global ();
7340 sched_finish_luids ();
7341 h_d_i_d.release ();
7343 sel_finish_bbs ();
7344 BITMAP_FREE (blocks_to_reschedule);
7346 sel_unregister_cfg_hooks ();
7348 max_issue_size = 0;
7352 /* Functions that implement the scheduler driver. */
7354 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7355 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7356 of insns scheduled -- these would be postprocessed later. */
7357 static void
7358 schedule_on_fences (flist_t fences, int max_seqno,
7359 ilist_t **scheduled_insns_tailpp)
7361 flist_t old_fences = fences;
7363 if (sched_verbose >= 1)
7365 sel_print ("\nScheduling on fences: ");
7366 dump_flist (fences);
7367 sel_print ("\n");
7370 scheduled_something_on_previous_fence = false;
7371 for (; fences; fences = FLIST_NEXT (fences))
7373 fence_t fence = NULL;
7374 int seqno = 0;
7375 flist_t fences2;
7376 bool first_p = true;
7378 /* Choose the next fence group to schedule.
7379 The fact that insn can be scheduled only once
7380 on the cycle is guaranteed by two properties:
7381 1. seqnos of parallel groups decrease with each iteration.
7382 2. If is_ineligible_successor () sees the larger seqno, it
7383 checks if candidate insn is_in_current_fence_p (). */
7384 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7386 fence_t f = FLIST_FENCE (fences2);
7388 if (!FENCE_PROCESSED_P (f))
7390 int i = INSN_SEQNO (FENCE_INSN (f));
7392 if (first_p || i > seqno)
7394 seqno = i;
7395 fence = f;
7396 first_p = false;
7398 else
7399 /* ??? Seqnos of different groups should be different. */
7400 gcc_assert (1 || i != seqno);
7404 gcc_assert (fence);
7406 /* As FENCE is nonnull, SEQNO is initialized. */
7407 seqno -= max_seqno + 1;
7408 fill_insns (fence, seqno, scheduled_insns_tailpp);
7409 FENCE_PROCESSED_P (fence) = true;
7412 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7413 don't need to keep bookkeeping-invalidated and target-unavailable
7414 vinsns any more. */
7415 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7416 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7419 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7420 static void
7421 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7423 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7425 /* The first element is already processed. */
7426 while ((fences = FLIST_NEXT (fences)))
7428 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7430 if (*min_seqno > seqno)
7431 *min_seqno = seqno;
7432 else if (*max_seqno < seqno)
7433 *max_seqno = seqno;
7437 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7438 static flist_t
7439 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7441 flist_t old_fences = fences;
7442 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7443 int max_time = 0;
7445 flist_tail_init (new_fences);
7446 for (; fences; fences = FLIST_NEXT (fences))
7448 fence_t fence = FLIST_FENCE (fences);
7449 insn_t insn;
7451 if (!FENCE_BNDS (fence))
7453 /* This fence doesn't have any successors. */
7454 if (!FENCE_SCHEDULED_P (fence))
7456 /* Nothing was scheduled on this fence. */
7457 int seqno;
7459 insn = FENCE_INSN (fence);
7460 seqno = INSN_SEQNO (insn);
7461 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7463 if (sched_verbose >= 1)
7464 sel_print ("Fence %d[%d] has not changed\n",
7465 INSN_UID (insn),
7466 BLOCK_NUM (insn));
7467 move_fence_to_fences (fences, new_fences);
7470 else
7471 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7472 max_time = MAX (max_time, FENCE_CYCLE (fence));
7475 flist_clear (&old_fences);
7476 *ptime = max_time;
7477 return FLIST_TAIL_HEAD (new_fences);
7480 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7481 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7482 the highest seqno used in a region. Return the updated highest seqno. */
7483 static int
7484 update_seqnos_and_stage (int min_seqno, int max_seqno,
7485 int highest_seqno_in_use,
7486 ilist_t *pscheduled_insns)
7488 int new_hs;
7489 ilist_iterator ii;
7490 insn_t insn;
7492 /* Actually, new_hs is the seqno of the instruction, that was
7493 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7494 if (*pscheduled_insns)
7496 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7497 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7498 gcc_assert (new_hs > highest_seqno_in_use);
7500 else
7501 new_hs = highest_seqno_in_use;
7503 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7505 gcc_assert (INSN_SEQNO (insn) < 0);
7506 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7507 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7509 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7510 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7511 require > 1GB of memory e.g. on limit-fnargs.c. */
7512 if (! pipelining_p)
7513 free_data_for_scheduled_insn (insn);
7516 ilist_clear (pscheduled_insns);
7517 global_level++;
7519 return new_hs;
7522 /* The main driver for scheduling a region. This function is responsible
7523 for correct propagation of fences (i.e. scheduling points) and creating
7524 a group of parallel insns at each of them. It also supports
7525 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7526 of scheduling. */
7527 static void
7528 sel_sched_region_2 (int orig_max_seqno)
7530 int highest_seqno_in_use = orig_max_seqno;
7531 int max_time = 0;
7533 stat_bookkeeping_copies = 0;
7534 stat_insns_needed_bookkeeping = 0;
7535 stat_renamed_scheduled = 0;
7536 stat_substitutions_total = 0;
7537 num_insns_scheduled = 0;
7539 while (fences)
7541 int min_seqno, max_seqno;
7542 ilist_t scheduled_insns = NULL;
7543 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7545 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7546 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7547 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7548 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7549 highest_seqno_in_use,
7550 &scheduled_insns);
7553 if (sched_verbose >= 1)
7555 sel_print ("Total scheduling time: %d cycles\n", max_time);
7556 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7557 "bookkeeping, %d insns renamed, %d insns substituted\n",
7558 stat_bookkeeping_copies,
7559 stat_insns_needed_bookkeeping,
7560 stat_renamed_scheduled,
7561 stat_substitutions_total);
7565 /* Schedule a region. When pipelining, search for possibly never scheduled
7566 bookkeeping code and schedule it. Reschedule pipelined code without
7567 pipelining after. */
7568 static void
7569 sel_sched_region_1 (void)
7571 int orig_max_seqno;
7573 /* Remove empty blocks that might be in the region from the beginning. */
7574 purge_empty_blocks ();
7576 orig_max_seqno = init_seqno (NULL, NULL);
7577 gcc_assert (orig_max_seqno >= 1);
7579 /* When pipelining outer loops, create fences on the loop header,
7580 not preheader. */
7581 fences = NULL;
7582 if (current_loop_nest)
7583 init_fences (BB_END (EBB_FIRST_BB (0)));
7584 else
7585 init_fences (bb_note (EBB_FIRST_BB (0)));
7586 global_level = 1;
7588 sel_sched_region_2 (orig_max_seqno);
7590 gcc_assert (fences == NULL);
7592 if (pipelining_p)
7594 int i;
7595 basic_block bb;
7596 struct flist_tail_def _new_fences;
7597 flist_tail_t new_fences = &_new_fences;
7598 bool do_p = true;
7600 pipelining_p = false;
7601 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7602 bookkeeping_p = false;
7603 enable_schedule_as_rhs_p = false;
7605 /* Schedule newly created code, that has not been scheduled yet. */
7606 do_p = true;
7608 while (do_p)
7610 do_p = false;
7612 for (i = 0; i < current_nr_blocks; i++)
7614 basic_block bb = EBB_FIRST_BB (i);
7616 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7618 if (! bb_ends_ebb_p (bb))
7619 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7620 if (sel_bb_empty_p (bb))
7622 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7623 continue;
7625 clear_outdated_rtx_info (bb);
7626 if (sel_insn_is_speculation_check (BB_END (bb))
7627 && JUMP_P (BB_END (bb)))
7628 bitmap_set_bit (blocks_to_reschedule,
7629 BRANCH_EDGE (bb)->dest->index);
7631 else if (! sel_bb_empty_p (bb)
7632 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7633 bitmap_set_bit (blocks_to_reschedule, bb->index);
7636 for (i = 0; i < current_nr_blocks; i++)
7638 bb = EBB_FIRST_BB (i);
7640 /* While pipelining outer loops, skip bundling for loop
7641 preheaders. Those will be rescheduled in the outer
7642 loop. */
7643 if (sel_is_loop_preheader_p (bb))
7645 clear_outdated_rtx_info (bb);
7646 continue;
7649 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7651 flist_tail_init (new_fences);
7653 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7655 /* Mark BB as head of the new ebb. */
7656 bitmap_set_bit (forced_ebb_heads, bb->index);
7658 gcc_assert (fences == NULL);
7660 init_fences (bb_note (bb));
7662 sel_sched_region_2 (orig_max_seqno);
7664 do_p = true;
7665 break;
7672 /* Schedule the RGN region. */
7673 void
7674 sel_sched_region (int rgn)
7676 bool schedule_p;
7677 bool reset_sched_cycles_p;
7679 if (sel_region_init (rgn))
7680 return;
7682 if (sched_verbose >= 1)
7683 sel_print ("Scheduling region %d\n", rgn);
7685 schedule_p = (!sched_is_disabled_for_current_region_p ()
7686 && dbg_cnt (sel_sched_region_cnt));
7687 reset_sched_cycles_p = pipelining_p;
7688 if (schedule_p)
7689 sel_sched_region_1 ();
7690 else
7691 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7692 reset_sched_cycles_p = true;
7694 sel_region_finish (reset_sched_cycles_p);
7697 /* Perform global init for the scheduler. */
7698 static void
7699 sel_global_init (void)
7701 calculate_dominance_info (CDI_DOMINATORS);
7702 alloc_sched_pools ();
7704 /* Setup the infos for sched_init. */
7705 sel_setup_sched_infos ();
7706 setup_sched_dump ();
7708 sched_rgn_init (false);
7709 sched_init ();
7711 sched_init_bbs ();
7712 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7713 after_recovery = 0;
7714 can_issue_more = issue_rate;
7716 sched_extend_target ();
7717 sched_deps_init (true);
7718 setup_nop_and_exit_insns ();
7719 sel_extend_global_bb_info ();
7720 init_lv_sets ();
7721 init_hard_regs_data ();
7724 /* Free the global data of the scheduler. */
7725 static void
7726 sel_global_finish (void)
7728 free_bb_note_pool ();
7729 free_lv_sets ();
7730 sel_finish_global_bb_info ();
7732 free_regset_pool ();
7733 free_nop_and_exit_insns ();
7735 sched_rgn_finish ();
7736 sched_deps_finish ();
7737 sched_finish ();
7739 if (current_loops)
7740 sel_finish_pipelining ();
7742 free_sched_pools ();
7743 free_dominance_info (CDI_DOMINATORS);
7746 /* Return true when we need to skip selective scheduling. Used for debugging. */
7747 bool
7748 maybe_skip_selective_scheduling (void)
7750 return ! dbg_cnt (sel_sched_cnt);
7753 /* The entry point. */
7754 void
7755 run_selective_scheduling (void)
7757 int rgn;
7759 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7760 return;
7762 sel_global_init ();
7764 for (rgn = 0; rgn < nr_regions; rgn++)
7765 sel_sched_region (rgn);
7767 sel_global_finish ();
7770 #endif