if_iwm - Factor out firmware station handling into if_iwm_sta.c.
[dragonfly.git] / contrib / gcc-5.0 / gcc / expr.c
blobd72c05375a733b193f3b581fb04692e44c9e6729
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "machmode.h"
25 #include "rtl.h"
26 #include "hash-set.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "stringpool.h"
37 #include "stor-layout.h"
38 #include "attribs.h"
39 #include "varasm.h"
40 #include "flags.h"
41 #include "regs.h"
42 #include "hard-reg-set.h"
43 #include "except.h"
44 #include "function.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "hashtab.h"
48 #include "statistics.h"
49 #include "real.h"
50 #include "fixed-value.h"
51 #include "expmed.h"
52 #include "dojump.h"
53 #include "explow.h"
54 #include "calls.h"
55 #include "emit-rtl.h"
56 #include "stmt.h"
57 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
58 #include "expr.h"
59 #include "insn-codes.h"
60 #include "optabs.h"
61 #include "libfuncs.h"
62 #include "recog.h"
63 #include "reload.h"
64 #include "typeclass.h"
65 #include "toplev.h"
66 #include "langhooks.h"
67 #include "intl.h"
68 #include "tm_p.h"
69 #include "tree-iterator.h"
70 #include "predict.h"
71 #include "dominance.h"
72 #include "cfg.h"
73 #include "basic-block.h"
74 #include "tree-ssa-alias.h"
75 #include "internal-fn.h"
76 #include "gimple-expr.h"
77 #include "is-a.h"
78 #include "gimple.h"
79 #include "gimple-ssa.h"
80 #include "hash-map.h"
81 #include "plugin-api.h"
82 #include "ipa-ref.h"
83 #include "cgraph.h"
84 #include "tree-ssanames.h"
85 #include "target.h"
86 #include "common/common-target.h"
87 #include "timevar.h"
88 #include "df.h"
89 #include "diagnostic.h"
90 #include "tree-ssa-live.h"
91 #include "tree-outof-ssa.h"
92 #include "target-globals.h"
93 #include "params.h"
94 #include "tree-ssa-address.h"
95 #include "cfgexpand.h"
96 #include "builtins.h"
97 #include "tree-chkp.h"
98 #include "rtl-chkp.h"
99 #include "ccmp.h"
101 #ifndef STACK_PUSH_CODE
102 #ifdef STACK_GROWS_DOWNWARD
103 #define STACK_PUSH_CODE PRE_DEC
104 #else
105 #define STACK_PUSH_CODE PRE_INC
106 #endif
107 #endif
110 /* If this is nonzero, we do not bother generating VOLATILE
111 around volatile memory references, and we are willing to
112 output indirect addresses. If cse is to follow, we reject
113 indirect addresses so a useful potential cse is generated;
114 if it is used only once, instruction combination will produce
115 the same indirect address eventually. */
116 int cse_not_expected;
118 /* This structure is used by move_by_pieces to describe the move to
119 be performed. */
120 struct move_by_pieces_d
122 rtx to;
123 rtx to_addr;
124 int autinc_to;
125 int explicit_inc_to;
126 rtx from;
127 rtx from_addr;
128 int autinc_from;
129 int explicit_inc_from;
130 unsigned HOST_WIDE_INT len;
131 HOST_WIDE_INT offset;
132 int reverse;
135 /* This structure is used by store_by_pieces to describe the clear to
136 be performed. */
138 struct store_by_pieces_d
140 rtx to;
141 rtx to_addr;
142 int autinc_to;
143 int explicit_inc_to;
144 unsigned HOST_WIDE_INT len;
145 HOST_WIDE_INT offset;
146 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode);
147 void *constfundata;
148 int reverse;
151 static void move_by_pieces_1 (insn_gen_fn, machine_mode,
152 struct move_by_pieces_d *);
153 static bool block_move_libcall_safe_for_call_parm (void);
154 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
155 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
156 unsigned HOST_WIDE_INT);
157 static tree emit_block_move_libcall_fn (int);
158 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
159 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, machine_mode);
160 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
161 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
162 static void store_by_pieces_2 (insn_gen_fn, machine_mode,
163 struct store_by_pieces_d *);
164 static tree clear_storage_libcall_fn (int);
165 static rtx_insn *compress_float_constant (rtx, rtx);
166 static rtx get_subtarget (rtx);
167 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
168 HOST_WIDE_INT, machine_mode,
169 tree, int, alias_set_type);
170 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
171 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
172 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
173 machine_mode, tree, alias_set_type, bool);
175 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
177 static int is_aligning_offset (const_tree, const_tree);
178 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
179 static rtx do_store_flag (sepops, rtx, machine_mode);
180 #ifdef PUSH_ROUNDING
181 static void emit_single_push_insn (machine_mode, rtx, tree);
182 #endif
183 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx, int);
184 static rtx const_vector_from_tree (tree);
185 static tree tree_expr_size (const_tree);
186 static HOST_WIDE_INT int_expr_size (tree);
189 /* This is run to set up which modes can be used
190 directly in memory and to initialize the block move optab. It is run
191 at the beginning of compilation and when the target is reinitialized. */
193 void
194 init_expr_target (void)
196 rtx insn, pat;
197 machine_mode mode;
198 int num_clobbers;
199 rtx mem, mem1;
200 rtx reg;
202 /* Try indexing by frame ptr and try by stack ptr.
203 It is known that on the Convex the stack ptr isn't a valid index.
204 With luck, one or the other is valid on any machine. */
205 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
206 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
208 /* A scratch register we can modify in-place below to avoid
209 useless RTL allocations. */
210 reg = gen_rtx_REG (VOIDmode, -1);
212 insn = rtx_alloc (INSN);
213 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
214 PATTERN (insn) = pat;
216 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
217 mode = (machine_mode) ((int) mode + 1))
219 int regno;
221 direct_load[(int) mode] = direct_store[(int) mode] = 0;
222 PUT_MODE (mem, mode);
223 PUT_MODE (mem1, mode);
224 PUT_MODE (reg, mode);
226 /* See if there is some register that can be used in this mode and
227 directly loaded or stored from memory. */
229 if (mode != VOIDmode && mode != BLKmode)
230 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
231 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
232 regno++)
234 if (! HARD_REGNO_MODE_OK (regno, mode))
235 continue;
237 SET_REGNO (reg, regno);
239 SET_SRC (pat) = mem;
240 SET_DEST (pat) = reg;
241 if (recog (pat, insn, &num_clobbers) >= 0)
242 direct_load[(int) mode] = 1;
244 SET_SRC (pat) = mem1;
245 SET_DEST (pat) = reg;
246 if (recog (pat, insn, &num_clobbers) >= 0)
247 direct_load[(int) mode] = 1;
249 SET_SRC (pat) = reg;
250 SET_DEST (pat) = mem;
251 if (recog (pat, insn, &num_clobbers) >= 0)
252 direct_store[(int) mode] = 1;
254 SET_SRC (pat) = reg;
255 SET_DEST (pat) = mem1;
256 if (recog (pat, insn, &num_clobbers) >= 0)
257 direct_store[(int) mode] = 1;
261 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
263 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
264 mode = GET_MODE_WIDER_MODE (mode))
266 machine_mode srcmode;
267 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
268 srcmode = GET_MODE_WIDER_MODE (srcmode))
270 enum insn_code ic;
272 ic = can_extend_p (mode, srcmode, 0);
273 if (ic == CODE_FOR_nothing)
274 continue;
276 PUT_MODE (mem, srcmode);
278 if (insn_operand_matches (ic, 1, mem))
279 float_extend_from_mem[mode][srcmode] = true;
284 /* This is run at the start of compiling a function. */
286 void
287 init_expr (void)
289 memset (&crtl->expr, 0, sizeof (crtl->expr));
292 /* Copy data from FROM to TO, where the machine modes are not the same.
293 Both modes may be integer, or both may be floating, or both may be
294 fixed-point.
295 UNSIGNEDP should be nonzero if FROM is an unsigned type.
296 This causes zero-extension instead of sign-extension. */
298 void
299 convert_move (rtx to, rtx from, int unsignedp)
301 machine_mode to_mode = GET_MODE (to);
302 machine_mode from_mode = GET_MODE (from);
303 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
304 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
305 enum insn_code code;
306 rtx libcall;
308 /* rtx code for making an equivalent value. */
309 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
310 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
313 gcc_assert (to_real == from_real);
314 gcc_assert (to_mode != BLKmode);
315 gcc_assert (from_mode != BLKmode);
317 /* If the source and destination are already the same, then there's
318 nothing to do. */
319 if (to == from)
320 return;
322 /* If FROM is a SUBREG that indicates that we have already done at least
323 the required extension, strip it. We don't handle such SUBREGs as
324 TO here. */
326 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
327 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
328 >= GET_MODE_PRECISION (to_mode))
329 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
330 from = gen_lowpart (to_mode, from), from_mode = to_mode;
332 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
334 if (to_mode == from_mode
335 || (from_mode == VOIDmode && CONSTANT_P (from)))
337 emit_move_insn (to, from);
338 return;
341 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
343 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
345 if (VECTOR_MODE_P (to_mode))
346 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
347 else
348 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
350 emit_move_insn (to, from);
351 return;
354 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
356 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
357 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
358 return;
361 if (to_real)
363 rtx value;
364 rtx_insn *insns;
365 convert_optab tab;
367 gcc_assert ((GET_MODE_PRECISION (from_mode)
368 != GET_MODE_PRECISION (to_mode))
369 || (DECIMAL_FLOAT_MODE_P (from_mode)
370 != DECIMAL_FLOAT_MODE_P (to_mode)));
372 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
373 /* Conversion between decimal float and binary float, same size. */
374 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
375 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
376 tab = sext_optab;
377 else
378 tab = trunc_optab;
380 /* Try converting directly if the insn is supported. */
382 code = convert_optab_handler (tab, to_mode, from_mode);
383 if (code != CODE_FOR_nothing)
385 emit_unop_insn (code, to, from,
386 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
387 return;
390 /* Otherwise use a libcall. */
391 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
393 /* Is this conversion implemented yet? */
394 gcc_assert (libcall);
396 start_sequence ();
397 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
398 1, from, from_mode);
399 insns = get_insns ();
400 end_sequence ();
401 emit_libcall_block (insns, to, value,
402 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
403 from)
404 : gen_rtx_FLOAT_EXTEND (to_mode, from));
405 return;
408 /* Handle pointer conversion. */ /* SPEE 900220. */
409 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
411 convert_optab ctab;
413 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
414 ctab = trunc_optab;
415 else if (unsignedp)
416 ctab = zext_optab;
417 else
418 ctab = sext_optab;
420 if (convert_optab_handler (ctab, to_mode, from_mode)
421 != CODE_FOR_nothing)
423 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
424 to, from, UNKNOWN);
425 return;
429 /* Targets are expected to provide conversion insns between PxImode and
430 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
431 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
433 machine_mode full_mode
434 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
436 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
437 != CODE_FOR_nothing);
439 if (full_mode != from_mode)
440 from = convert_to_mode (full_mode, from, unsignedp);
441 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
442 to, from, UNKNOWN);
443 return;
445 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
447 rtx new_from;
448 machine_mode full_mode
449 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
450 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
451 enum insn_code icode;
453 icode = convert_optab_handler (ctab, full_mode, from_mode);
454 gcc_assert (icode != CODE_FOR_nothing);
456 if (to_mode == full_mode)
458 emit_unop_insn (icode, to, from, UNKNOWN);
459 return;
462 new_from = gen_reg_rtx (full_mode);
463 emit_unop_insn (icode, new_from, from, UNKNOWN);
465 /* else proceed to integer conversions below. */
466 from_mode = full_mode;
467 from = new_from;
470 /* Make sure both are fixed-point modes or both are not. */
471 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
472 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
473 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
475 /* If we widen from_mode to to_mode and they are in the same class,
476 we won't saturate the result.
477 Otherwise, always saturate the result to play safe. */
478 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
479 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
480 expand_fixed_convert (to, from, 0, 0);
481 else
482 expand_fixed_convert (to, from, 0, 1);
483 return;
486 /* Now both modes are integers. */
488 /* Handle expanding beyond a word. */
489 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
490 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
492 rtx_insn *insns;
493 rtx lowpart;
494 rtx fill_value;
495 rtx lowfrom;
496 int i;
497 machine_mode lowpart_mode;
498 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
500 /* Try converting directly if the insn is supported. */
501 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
502 != CODE_FOR_nothing)
504 /* If FROM is a SUBREG, put it into a register. Do this
505 so that we always generate the same set of insns for
506 better cse'ing; if an intermediate assignment occurred,
507 we won't be doing the operation directly on the SUBREG. */
508 if (optimize > 0 && GET_CODE (from) == SUBREG)
509 from = force_reg (from_mode, from);
510 emit_unop_insn (code, to, from, equiv_code);
511 return;
513 /* Next, try converting via full word. */
514 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
515 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
516 != CODE_FOR_nothing))
518 rtx word_to = gen_reg_rtx (word_mode);
519 if (REG_P (to))
521 if (reg_overlap_mentioned_p (to, from))
522 from = force_reg (from_mode, from);
523 emit_clobber (to);
525 convert_move (word_to, from, unsignedp);
526 emit_unop_insn (code, to, word_to, equiv_code);
527 return;
530 /* No special multiword conversion insn; do it by hand. */
531 start_sequence ();
533 /* Since we will turn this into a no conflict block, we must ensure the
534 the source does not overlap the target so force it into an isolated
535 register when maybe so. Likewise for any MEM input, since the
536 conversion sequence might require several references to it and we
537 must ensure we're getting the same value every time. */
539 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
540 from = force_reg (from_mode, from);
542 /* Get a copy of FROM widened to a word, if necessary. */
543 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
544 lowpart_mode = word_mode;
545 else
546 lowpart_mode = from_mode;
548 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
550 lowpart = gen_lowpart (lowpart_mode, to);
551 emit_move_insn (lowpart, lowfrom);
553 /* Compute the value to put in each remaining word. */
554 if (unsignedp)
555 fill_value = const0_rtx;
556 else
557 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
558 LT, lowfrom, const0_rtx,
559 lowpart_mode, 0, -1);
561 /* Fill the remaining words. */
562 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
564 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
565 rtx subword = operand_subword (to, index, 1, to_mode);
567 gcc_assert (subword);
569 if (fill_value != subword)
570 emit_move_insn (subword, fill_value);
573 insns = get_insns ();
574 end_sequence ();
576 emit_insn (insns);
577 return;
580 /* Truncating multi-word to a word or less. */
581 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
582 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
584 if (!((MEM_P (from)
585 && ! MEM_VOLATILE_P (from)
586 && direct_load[(int) to_mode]
587 && ! mode_dependent_address_p (XEXP (from, 0),
588 MEM_ADDR_SPACE (from)))
589 || REG_P (from)
590 || GET_CODE (from) == SUBREG))
591 from = force_reg (from_mode, from);
592 convert_move (to, gen_lowpart (word_mode, from), 0);
593 return;
596 /* Now follow all the conversions between integers
597 no more than a word long. */
599 /* For truncation, usually we can just refer to FROM in a narrower mode. */
600 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
601 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
603 if (!((MEM_P (from)
604 && ! MEM_VOLATILE_P (from)
605 && direct_load[(int) to_mode]
606 && ! mode_dependent_address_p (XEXP (from, 0),
607 MEM_ADDR_SPACE (from)))
608 || REG_P (from)
609 || GET_CODE (from) == SUBREG))
610 from = force_reg (from_mode, from);
611 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
612 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
613 from = copy_to_reg (from);
614 emit_move_insn (to, gen_lowpart (to_mode, from));
615 return;
618 /* Handle extension. */
619 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
621 /* Convert directly if that works. */
622 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
623 != CODE_FOR_nothing)
625 emit_unop_insn (code, to, from, equiv_code);
626 return;
628 else
630 machine_mode intermediate;
631 rtx tmp;
632 int shift_amount;
634 /* Search for a mode to convert via. */
635 for (intermediate = from_mode; intermediate != VOIDmode;
636 intermediate = GET_MODE_WIDER_MODE (intermediate))
637 if (((can_extend_p (to_mode, intermediate, unsignedp)
638 != CODE_FOR_nothing)
639 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
640 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
641 && (can_extend_p (intermediate, from_mode, unsignedp)
642 != CODE_FOR_nothing))
644 convert_move (to, convert_to_mode (intermediate, from,
645 unsignedp), unsignedp);
646 return;
649 /* No suitable intermediate mode.
650 Generate what we need with shifts. */
651 shift_amount = (GET_MODE_PRECISION (to_mode)
652 - GET_MODE_PRECISION (from_mode));
653 from = gen_lowpart (to_mode, force_reg (from_mode, from));
654 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
655 to, unsignedp);
656 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
657 to, unsignedp);
658 if (tmp != to)
659 emit_move_insn (to, tmp);
660 return;
664 /* Support special truncate insns for certain modes. */
665 if (convert_optab_handler (trunc_optab, to_mode,
666 from_mode) != CODE_FOR_nothing)
668 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
669 to, from, UNKNOWN);
670 return;
673 /* Handle truncation of volatile memrefs, and so on;
674 the things that couldn't be truncated directly,
675 and for which there was no special instruction.
677 ??? Code above formerly short-circuited this, for most integer
678 mode pairs, with a force_reg in from_mode followed by a recursive
679 call to this routine. Appears always to have been wrong. */
680 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
682 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
683 emit_move_insn (to, temp);
684 return;
687 /* Mode combination is not recognized. */
688 gcc_unreachable ();
691 /* Return an rtx for a value that would result
692 from converting X to mode MODE.
693 Both X and MODE may be floating, or both integer.
694 UNSIGNEDP is nonzero if X is an unsigned value.
695 This can be done by referring to a part of X in place
696 or by copying to a new temporary with conversion. */
699 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
701 return convert_modes (mode, VOIDmode, x, unsignedp);
704 /* Return an rtx for a value that would result
705 from converting X from mode OLDMODE to mode MODE.
706 Both modes may be floating, or both integer.
707 UNSIGNEDP is nonzero if X is an unsigned value.
709 This can be done by referring to a part of X in place
710 or by copying to a new temporary with conversion.
712 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
715 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
717 rtx temp;
719 /* If FROM is a SUBREG that indicates that we have already done at least
720 the required extension, strip it. */
722 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
723 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
724 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
725 x = gen_lowpart (mode, SUBREG_REG (x));
727 if (GET_MODE (x) != VOIDmode)
728 oldmode = GET_MODE (x);
730 if (mode == oldmode)
731 return x;
733 if (CONST_SCALAR_INT_P (x) && GET_MODE_CLASS (mode) == MODE_INT)
735 /* If the caller did not tell us the old mode, then there is not
736 much to do with respect to canonicalization. We have to
737 assume that all the bits are significant. */
738 if (GET_MODE_CLASS (oldmode) != MODE_INT)
739 oldmode = MAX_MODE_INT;
740 wide_int w = wide_int::from (std::make_pair (x, oldmode),
741 GET_MODE_PRECISION (mode),
742 unsignedp ? UNSIGNED : SIGNED);
743 return immed_wide_int_const (w, mode);
746 /* We can do this with a gen_lowpart if both desired and current modes
747 are integer, and this is either a constant integer, a register, or a
748 non-volatile MEM. */
749 if (GET_MODE_CLASS (mode) == MODE_INT
750 && GET_MODE_CLASS (oldmode) == MODE_INT
751 && GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
752 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) mode])
753 || (REG_P (x)
754 && (!HARD_REGISTER_P (x)
755 || HARD_REGNO_MODE_OK (REGNO (x), mode))
756 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x)))))
758 return gen_lowpart (mode, x);
760 /* Converting from integer constant into mode is always equivalent to an
761 subreg operation. */
762 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
764 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
765 return simplify_gen_subreg (mode, x, oldmode, 0);
768 temp = gen_reg_rtx (mode);
769 convert_move (temp, x, unsignedp);
770 return temp;
773 /* Return the largest alignment we can use for doing a move (or store)
774 of MAX_PIECES. ALIGN is the largest alignment we could use. */
776 static unsigned int
777 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
779 machine_mode tmode;
781 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
782 if (align >= GET_MODE_ALIGNMENT (tmode))
783 align = GET_MODE_ALIGNMENT (tmode);
784 else
786 machine_mode tmode, xmode;
788 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
789 tmode != VOIDmode;
790 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
791 if (GET_MODE_SIZE (tmode) > max_pieces
792 || SLOW_UNALIGNED_ACCESS (tmode, align))
793 break;
795 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
798 return align;
801 /* Return the widest integer mode no wider than SIZE. If no such mode
802 can be found, return VOIDmode. */
804 static machine_mode
805 widest_int_mode_for_size (unsigned int size)
807 machine_mode tmode, mode = VOIDmode;
809 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
810 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
811 if (GET_MODE_SIZE (tmode) < size)
812 mode = tmode;
814 return mode;
817 /* Determine whether the LEN bytes can be moved by using several move
818 instructions. Return nonzero if a call to move_by_pieces should
819 succeed. */
822 can_move_by_pieces (unsigned HOST_WIDE_INT len,
823 unsigned int align)
825 return targetm.use_by_pieces_infrastructure_p (len, align, MOVE_BY_PIECES,
826 optimize_insn_for_speed_p ());
829 /* Generate several move instructions to copy LEN bytes from block FROM to
830 block TO. (These are MEM rtx's with BLKmode).
832 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
833 used to push FROM to the stack.
835 ALIGN is maximum stack alignment we can assume.
837 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
838 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
839 stpcpy. */
842 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
843 unsigned int align, int endp)
845 struct move_by_pieces_d data;
846 machine_mode to_addr_mode;
847 machine_mode from_addr_mode = get_address_mode (from);
848 rtx to_addr, from_addr = XEXP (from, 0);
849 unsigned int max_size = MOVE_MAX_PIECES + 1;
850 enum insn_code icode;
852 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
854 data.offset = 0;
855 data.from_addr = from_addr;
856 if (to)
858 to_addr_mode = get_address_mode (to);
859 to_addr = XEXP (to, 0);
860 data.to = to;
861 data.autinc_to
862 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
863 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
864 data.reverse
865 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
867 else
869 to_addr_mode = VOIDmode;
870 to_addr = NULL_RTX;
871 data.to = NULL_RTX;
872 data.autinc_to = 1;
873 #ifdef STACK_GROWS_DOWNWARD
874 data.reverse = 1;
875 #else
876 data.reverse = 0;
877 #endif
879 data.to_addr = to_addr;
880 data.from = from;
881 data.autinc_from
882 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
883 || GET_CODE (from_addr) == POST_INC
884 || GET_CODE (from_addr) == POST_DEC);
886 data.explicit_inc_from = 0;
887 data.explicit_inc_to = 0;
888 if (data.reverse) data.offset = len;
889 data.len = len;
891 /* If copying requires more than two move insns,
892 copy addresses to registers (to make displacements shorter)
893 and use post-increment if available. */
894 if (!(data.autinc_from && data.autinc_to)
895 && move_by_pieces_ninsns (len, align, max_size) > 2)
897 /* Find the mode of the largest move...
898 MODE might not be used depending on the definitions of the
899 USE_* macros below. */
900 machine_mode mode ATTRIBUTE_UNUSED
901 = widest_int_mode_for_size (max_size);
903 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
905 data.from_addr = copy_to_mode_reg (from_addr_mode,
906 plus_constant (from_addr_mode,
907 from_addr, len));
908 data.autinc_from = 1;
909 data.explicit_inc_from = -1;
911 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
913 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
914 data.autinc_from = 1;
915 data.explicit_inc_from = 1;
917 if (!data.autinc_from && CONSTANT_P (from_addr))
918 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
919 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
921 data.to_addr = copy_to_mode_reg (to_addr_mode,
922 plus_constant (to_addr_mode,
923 to_addr, len));
924 data.autinc_to = 1;
925 data.explicit_inc_to = -1;
927 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
929 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
930 data.autinc_to = 1;
931 data.explicit_inc_to = 1;
933 if (!data.autinc_to && CONSTANT_P (to_addr))
934 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
937 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
939 /* First move what we can in the largest integer mode, then go to
940 successively smaller modes. */
942 while (max_size > 1 && data.len > 0)
944 machine_mode mode = widest_int_mode_for_size (max_size);
946 if (mode == VOIDmode)
947 break;
949 icode = optab_handler (mov_optab, mode);
950 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
951 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
953 max_size = GET_MODE_SIZE (mode);
956 /* The code above should have handled everything. */
957 gcc_assert (!data.len);
959 if (endp)
961 rtx to1;
963 gcc_assert (!data.reverse);
964 if (data.autinc_to)
966 if (endp == 2)
968 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
969 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
970 else
971 data.to_addr = copy_to_mode_reg (to_addr_mode,
972 plus_constant (to_addr_mode,
973 data.to_addr,
974 -1));
976 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
977 data.offset);
979 else
981 if (endp == 2)
982 --data.offset;
983 to1 = adjust_address (data.to, QImode, data.offset);
985 return to1;
987 else
988 return data.to;
991 /* Return number of insns required to move L bytes by pieces.
992 ALIGN (in bits) is maximum alignment we can assume. */
994 unsigned HOST_WIDE_INT
995 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
996 unsigned int max_size)
998 unsigned HOST_WIDE_INT n_insns = 0;
1000 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1002 while (max_size > 1 && l > 0)
1004 machine_mode mode;
1005 enum insn_code icode;
1007 mode = widest_int_mode_for_size (max_size);
1009 if (mode == VOIDmode)
1010 break;
1012 icode = optab_handler (mov_optab, mode);
1013 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1014 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1016 max_size = GET_MODE_SIZE (mode);
1019 gcc_assert (!l);
1020 return n_insns;
1023 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1024 with move instructions for mode MODE. GENFUN is the gen_... function
1025 to make a move insn for that mode. DATA has all the other info. */
1027 static void
1028 move_by_pieces_1 (insn_gen_fn genfun, machine_mode mode,
1029 struct move_by_pieces_d *data)
1031 unsigned int size = GET_MODE_SIZE (mode);
1032 rtx to1 = NULL_RTX, from1;
1034 while (data->len >= size)
1036 if (data->reverse)
1037 data->offset -= size;
1039 if (data->to)
1041 if (data->autinc_to)
1042 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1043 data->offset);
1044 else
1045 to1 = adjust_address (data->to, mode, data->offset);
1048 if (data->autinc_from)
1049 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1050 data->offset);
1051 else
1052 from1 = adjust_address (data->from, mode, data->offset);
1054 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1055 emit_insn (gen_add2_insn (data->to_addr,
1056 gen_int_mode (-(HOST_WIDE_INT) size,
1057 GET_MODE (data->to_addr))));
1058 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1059 emit_insn (gen_add2_insn (data->from_addr,
1060 gen_int_mode (-(HOST_WIDE_INT) size,
1061 GET_MODE (data->from_addr))));
1063 if (data->to)
1064 emit_insn ((*genfun) (to1, from1));
1065 else
1067 #ifdef PUSH_ROUNDING
1068 emit_single_push_insn (mode, from1, NULL);
1069 #else
1070 gcc_unreachable ();
1071 #endif
1074 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1075 emit_insn (gen_add2_insn (data->to_addr,
1076 gen_int_mode (size,
1077 GET_MODE (data->to_addr))));
1078 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1079 emit_insn (gen_add2_insn (data->from_addr,
1080 gen_int_mode (size,
1081 GET_MODE (data->from_addr))));
1083 if (! data->reverse)
1084 data->offset += size;
1086 data->len -= size;
1090 /* Emit code to move a block Y to a block X. This may be done with
1091 string-move instructions, with multiple scalar move instructions,
1092 or with a library call.
1094 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1095 SIZE is an rtx that says how long they are.
1096 ALIGN is the maximum alignment we can assume they have.
1097 METHOD describes what kind of copy this is, and what mechanisms may be used.
1098 MIN_SIZE is the minimal size of block to move
1099 MAX_SIZE is the maximal size of block to move, if it can not be represented
1100 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1102 Return the address of the new block, if memcpy is called and returns it,
1103 0 otherwise. */
1106 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1107 unsigned int expected_align, HOST_WIDE_INT expected_size,
1108 unsigned HOST_WIDE_INT min_size,
1109 unsigned HOST_WIDE_INT max_size,
1110 unsigned HOST_WIDE_INT probable_max_size)
1112 bool may_use_call;
1113 rtx retval = 0;
1114 unsigned int align;
1116 gcc_assert (size);
1117 if (CONST_INT_P (size)
1118 && INTVAL (size) == 0)
1119 return 0;
1121 switch (method)
1123 case BLOCK_OP_NORMAL:
1124 case BLOCK_OP_TAILCALL:
1125 may_use_call = true;
1126 break;
1128 case BLOCK_OP_CALL_PARM:
1129 may_use_call = block_move_libcall_safe_for_call_parm ();
1131 /* Make inhibit_defer_pop nonzero around the library call
1132 to force it to pop the arguments right away. */
1133 NO_DEFER_POP;
1134 break;
1136 case BLOCK_OP_NO_LIBCALL:
1137 may_use_call = false;
1138 break;
1140 default:
1141 gcc_unreachable ();
1144 gcc_assert (MEM_P (x) && MEM_P (y));
1145 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1146 gcc_assert (align >= BITS_PER_UNIT);
1148 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1149 block copy is more efficient for other large modes, e.g. DCmode. */
1150 x = adjust_address (x, BLKmode, 0);
1151 y = adjust_address (y, BLKmode, 0);
1153 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1154 can be incorrect is coming from __builtin_memcpy. */
1155 if (CONST_INT_P (size))
1157 x = shallow_copy_rtx (x);
1158 y = shallow_copy_rtx (y);
1159 set_mem_size (x, INTVAL (size));
1160 set_mem_size (y, INTVAL (size));
1163 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
1164 move_by_pieces (x, y, INTVAL (size), align, 0);
1165 else if (emit_block_move_via_movmem (x, y, size, align,
1166 expected_align, expected_size,
1167 min_size, max_size, probable_max_size))
1169 else if (may_use_call
1170 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1171 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1173 /* Since x and y are passed to a libcall, mark the corresponding
1174 tree EXPR as addressable. */
1175 tree y_expr = MEM_EXPR (y);
1176 tree x_expr = MEM_EXPR (x);
1177 if (y_expr)
1178 mark_addressable (y_expr);
1179 if (x_expr)
1180 mark_addressable (x_expr);
1181 retval = emit_block_move_via_libcall (x, y, size,
1182 method == BLOCK_OP_TAILCALL);
1185 else
1186 emit_block_move_via_loop (x, y, size, align);
1188 if (method == BLOCK_OP_CALL_PARM)
1189 OK_DEFER_POP;
1191 return retval;
1195 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1197 unsigned HOST_WIDE_INT max, min = 0;
1198 if (GET_CODE (size) == CONST_INT)
1199 min = max = UINTVAL (size);
1200 else
1201 max = GET_MODE_MASK (GET_MODE (size));
1202 return emit_block_move_hints (x, y, size, method, 0, -1,
1203 min, max, max);
1206 /* A subroutine of emit_block_move. Returns true if calling the
1207 block move libcall will not clobber any parameters which may have
1208 already been placed on the stack. */
1210 static bool
1211 block_move_libcall_safe_for_call_parm (void)
1213 #if defined (REG_PARM_STACK_SPACE)
1214 tree fn;
1215 #endif
1217 /* If arguments are pushed on the stack, then they're safe. */
1218 if (PUSH_ARGS)
1219 return true;
1221 /* If registers go on the stack anyway, any argument is sure to clobber
1222 an outgoing argument. */
1223 #if defined (REG_PARM_STACK_SPACE)
1224 fn = emit_block_move_libcall_fn (false);
1225 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1226 depend on its argument. */
1227 (void) fn;
1228 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1229 && REG_PARM_STACK_SPACE (fn) != 0)
1230 return false;
1231 #endif
1233 /* If any argument goes in memory, then it might clobber an outgoing
1234 argument. */
1236 CUMULATIVE_ARGS args_so_far_v;
1237 cumulative_args_t args_so_far;
1238 tree fn, arg;
1240 fn = emit_block_move_libcall_fn (false);
1241 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1242 args_so_far = pack_cumulative_args (&args_so_far_v);
1244 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1245 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1247 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1248 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1249 NULL_TREE, true);
1250 if (!tmp || !REG_P (tmp))
1251 return false;
1252 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1253 return false;
1254 targetm.calls.function_arg_advance (args_so_far, mode,
1255 NULL_TREE, true);
1258 return true;
1261 /* A subroutine of emit_block_move. Expand a movmem pattern;
1262 return true if successful. */
1264 static bool
1265 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1266 unsigned int expected_align, HOST_WIDE_INT expected_size,
1267 unsigned HOST_WIDE_INT min_size,
1268 unsigned HOST_WIDE_INT max_size,
1269 unsigned HOST_WIDE_INT probable_max_size)
1271 int save_volatile_ok = volatile_ok;
1272 machine_mode mode;
1274 if (expected_align < align)
1275 expected_align = align;
1276 if (expected_size != -1)
1278 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1279 expected_size = probable_max_size;
1280 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1281 expected_size = min_size;
1284 /* Since this is a move insn, we don't care about volatility. */
1285 volatile_ok = 1;
1287 /* Try the most limited insn first, because there's no point
1288 including more than one in the machine description unless
1289 the more limited one has some advantage. */
1291 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1292 mode = GET_MODE_WIDER_MODE (mode))
1294 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1296 if (code != CODE_FOR_nothing
1297 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1298 here because if SIZE is less than the mode mask, as it is
1299 returned by the macro, it will definitely be less than the
1300 actual mode mask. Since SIZE is within the Pmode address
1301 space, we limit MODE to Pmode. */
1302 && ((CONST_INT_P (size)
1303 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1304 <= (GET_MODE_MASK (mode) >> 1)))
1305 || max_size <= (GET_MODE_MASK (mode) >> 1)
1306 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1308 struct expand_operand ops[9];
1309 unsigned int nops;
1311 /* ??? When called via emit_block_move_for_call, it'd be
1312 nice if there were some way to inform the backend, so
1313 that it doesn't fail the expansion because it thinks
1314 emitting the libcall would be more efficient. */
1315 nops = insn_data[(int) code].n_generator_args;
1316 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1318 create_fixed_operand (&ops[0], x);
1319 create_fixed_operand (&ops[1], y);
1320 /* The check above guarantees that this size conversion is valid. */
1321 create_convert_operand_to (&ops[2], size, mode, true);
1322 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1323 if (nops >= 6)
1325 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1326 create_integer_operand (&ops[5], expected_size);
1328 if (nops >= 8)
1330 create_integer_operand (&ops[6], min_size);
1331 /* If we can not represent the maximal size,
1332 make parameter NULL. */
1333 if ((HOST_WIDE_INT) max_size != -1)
1334 create_integer_operand (&ops[7], max_size);
1335 else
1336 create_fixed_operand (&ops[7], NULL);
1338 if (nops == 9)
1340 /* If we can not represent the maximal size,
1341 make parameter NULL. */
1342 if ((HOST_WIDE_INT) probable_max_size != -1)
1343 create_integer_operand (&ops[8], probable_max_size);
1344 else
1345 create_fixed_operand (&ops[8], NULL);
1347 if (maybe_expand_insn (code, nops, ops))
1349 volatile_ok = save_volatile_ok;
1350 return true;
1355 volatile_ok = save_volatile_ok;
1356 return false;
1359 /* A subroutine of emit_block_move. Expand a call to memcpy.
1360 Return the return value from memcpy, 0 otherwise. */
1363 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1365 rtx dst_addr, src_addr;
1366 tree call_expr, fn, src_tree, dst_tree, size_tree;
1367 machine_mode size_mode;
1368 rtx retval;
1370 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1371 pseudos. We can then place those new pseudos into a VAR_DECL and
1372 use them later. */
1374 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1375 src_addr = copy_addr_to_reg (XEXP (src, 0));
1377 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1378 src_addr = convert_memory_address (ptr_mode, src_addr);
1380 dst_tree = make_tree (ptr_type_node, dst_addr);
1381 src_tree = make_tree (ptr_type_node, src_addr);
1383 size_mode = TYPE_MODE (sizetype);
1385 size = convert_to_mode (size_mode, size, 1);
1386 size = copy_to_mode_reg (size_mode, size);
1388 /* It is incorrect to use the libcall calling conventions to call
1389 memcpy in this context. This could be a user call to memcpy and
1390 the user may wish to examine the return value from memcpy. For
1391 targets where libcalls and normal calls have different conventions
1392 for returning pointers, we could end up generating incorrect code. */
1394 size_tree = make_tree (sizetype, size);
1396 fn = emit_block_move_libcall_fn (true);
1397 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1398 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1400 retval = expand_normal (call_expr);
1402 return retval;
1405 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1406 for the function we use for block copies. */
1408 static GTY(()) tree block_move_fn;
1410 void
1411 init_block_move_fn (const char *asmspec)
1413 if (!block_move_fn)
1415 tree args, fn, attrs, attr_args;
1417 fn = get_identifier ("memcpy");
1418 args = build_function_type_list (ptr_type_node, ptr_type_node,
1419 const_ptr_type_node, sizetype,
1420 NULL_TREE);
1422 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1423 DECL_EXTERNAL (fn) = 1;
1424 TREE_PUBLIC (fn) = 1;
1425 DECL_ARTIFICIAL (fn) = 1;
1426 TREE_NOTHROW (fn) = 1;
1427 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1428 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1430 attr_args = build_tree_list (NULL_TREE, build_string (1, "1"));
1431 attrs = tree_cons (get_identifier ("fn spec"), attr_args, NULL);
1433 decl_attributes (&fn, attrs, ATTR_FLAG_BUILT_IN);
1435 block_move_fn = fn;
1438 if (asmspec)
1439 set_user_assembler_name (block_move_fn, asmspec);
1442 static tree
1443 emit_block_move_libcall_fn (int for_call)
1445 static bool emitted_extern;
1447 if (!block_move_fn)
1448 init_block_move_fn (NULL);
1450 if (for_call && !emitted_extern)
1452 emitted_extern = true;
1453 make_decl_rtl (block_move_fn);
1456 return block_move_fn;
1459 /* A subroutine of emit_block_move. Copy the data via an explicit
1460 loop. This is used only when libcalls are forbidden. */
1461 /* ??? It'd be nice to copy in hunks larger than QImode. */
1463 static void
1464 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1465 unsigned int align ATTRIBUTE_UNUSED)
1467 rtx_code_label *cmp_label, *top_label;
1468 rtx iter, x_addr, y_addr, tmp;
1469 machine_mode x_addr_mode = get_address_mode (x);
1470 machine_mode y_addr_mode = get_address_mode (y);
1471 machine_mode iter_mode;
1473 iter_mode = GET_MODE (size);
1474 if (iter_mode == VOIDmode)
1475 iter_mode = word_mode;
1477 top_label = gen_label_rtx ();
1478 cmp_label = gen_label_rtx ();
1479 iter = gen_reg_rtx (iter_mode);
1481 emit_move_insn (iter, const0_rtx);
1483 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1484 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1485 do_pending_stack_adjust ();
1487 emit_jump (cmp_label);
1488 emit_label (top_label);
1490 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1491 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1493 if (x_addr_mode != y_addr_mode)
1494 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1495 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1497 x = change_address (x, QImode, x_addr);
1498 y = change_address (y, QImode, y_addr);
1500 emit_move_insn (x, y);
1502 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1503 true, OPTAB_LIB_WIDEN);
1504 if (tmp != iter)
1505 emit_move_insn (iter, tmp);
1507 emit_label (cmp_label);
1509 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1510 true, top_label, REG_BR_PROB_BASE * 90 / 100);
1513 /* Copy all or part of a value X into registers starting at REGNO.
1514 The number of registers to be filled is NREGS. */
1516 void
1517 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
1519 int i;
1520 #ifdef HAVE_load_multiple
1521 rtx pat;
1522 rtx_insn *last;
1523 #endif
1525 if (nregs == 0)
1526 return;
1528 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1529 x = validize_mem (force_const_mem (mode, x));
1531 /* See if the machine can do this with a load multiple insn. */
1532 #ifdef HAVE_load_multiple
1533 if (HAVE_load_multiple)
1535 last = get_last_insn ();
1536 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1537 GEN_INT (nregs));
1538 if (pat)
1540 emit_insn (pat);
1541 return;
1543 else
1544 delete_insns_since (last);
1546 #endif
1548 for (i = 0; i < nregs; i++)
1549 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1550 operand_subword_force (x, i, mode));
1553 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1554 The number of registers to be filled is NREGS. */
1556 void
1557 move_block_from_reg (int regno, rtx x, int nregs)
1559 int i;
1561 if (nregs == 0)
1562 return;
1564 /* See if the machine can do this with a store multiple insn. */
1565 #ifdef HAVE_store_multiple
1566 if (HAVE_store_multiple)
1568 rtx_insn *last = get_last_insn ();
1569 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1570 GEN_INT (nregs));
1571 if (pat)
1573 emit_insn (pat);
1574 return;
1576 else
1577 delete_insns_since (last);
1579 #endif
1581 for (i = 0; i < nregs; i++)
1583 rtx tem = operand_subword (x, i, 1, BLKmode);
1585 gcc_assert (tem);
1587 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1591 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1592 ORIG, where ORIG is a non-consecutive group of registers represented by
1593 a PARALLEL. The clone is identical to the original except in that the
1594 original set of registers is replaced by a new set of pseudo registers.
1595 The new set has the same modes as the original set. */
1598 gen_group_rtx (rtx orig)
1600 int i, length;
1601 rtx *tmps;
1603 gcc_assert (GET_CODE (orig) == PARALLEL);
1605 length = XVECLEN (orig, 0);
1606 tmps = XALLOCAVEC (rtx, length);
1608 /* Skip a NULL entry in first slot. */
1609 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1611 if (i)
1612 tmps[0] = 0;
1614 for (; i < length; i++)
1616 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1617 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1619 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1622 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1625 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1626 except that values are placed in TMPS[i], and must later be moved
1627 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1629 static void
1630 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1632 rtx src;
1633 int start, i;
1634 machine_mode m = GET_MODE (orig_src);
1636 gcc_assert (GET_CODE (dst) == PARALLEL);
1638 if (m != VOIDmode
1639 && !SCALAR_INT_MODE_P (m)
1640 && !MEM_P (orig_src)
1641 && GET_CODE (orig_src) != CONCAT)
1643 machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1644 if (imode == BLKmode)
1645 src = assign_stack_temp (GET_MODE (orig_src), ssize);
1646 else
1647 src = gen_reg_rtx (imode);
1648 if (imode != BLKmode)
1649 src = gen_lowpart (GET_MODE (orig_src), src);
1650 emit_move_insn (src, orig_src);
1651 /* ...and back again. */
1652 if (imode != BLKmode)
1653 src = gen_lowpart (imode, src);
1654 emit_group_load_1 (tmps, dst, src, type, ssize);
1655 return;
1658 /* Check for a NULL entry, used to indicate that the parameter goes
1659 both on the stack and in registers. */
1660 if (XEXP (XVECEXP (dst, 0, 0), 0))
1661 start = 0;
1662 else
1663 start = 1;
1665 /* Process the pieces. */
1666 for (i = start; i < XVECLEN (dst, 0); i++)
1668 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1669 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1670 unsigned int bytelen = GET_MODE_SIZE (mode);
1671 int shift = 0;
1673 /* Handle trailing fragments that run over the size of the struct. */
1674 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1676 /* Arrange to shift the fragment to where it belongs.
1677 extract_bit_field loads to the lsb of the reg. */
1678 if (
1679 #ifdef BLOCK_REG_PADDING
1680 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1681 == (BYTES_BIG_ENDIAN ? upward : downward)
1682 #else
1683 BYTES_BIG_ENDIAN
1684 #endif
1686 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1687 bytelen = ssize - bytepos;
1688 gcc_assert (bytelen > 0);
1691 /* If we won't be loading directly from memory, protect the real source
1692 from strange tricks we might play; but make sure that the source can
1693 be loaded directly into the destination. */
1694 src = orig_src;
1695 if (!MEM_P (orig_src)
1696 && (!CONSTANT_P (orig_src)
1697 || (GET_MODE (orig_src) != mode
1698 && GET_MODE (orig_src) != VOIDmode)))
1700 if (GET_MODE (orig_src) == VOIDmode)
1701 src = gen_reg_rtx (mode);
1702 else
1703 src = gen_reg_rtx (GET_MODE (orig_src));
1705 emit_move_insn (src, orig_src);
1708 /* Optimize the access just a bit. */
1709 if (MEM_P (src)
1710 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1711 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1712 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1713 && bytelen == GET_MODE_SIZE (mode))
1715 tmps[i] = gen_reg_rtx (mode);
1716 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1718 else if (COMPLEX_MODE_P (mode)
1719 && GET_MODE (src) == mode
1720 && bytelen == GET_MODE_SIZE (mode))
1721 /* Let emit_move_complex do the bulk of the work. */
1722 tmps[i] = src;
1723 else if (GET_CODE (src) == CONCAT)
1725 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1726 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1728 if ((bytepos == 0 && bytelen == slen0)
1729 || (bytepos != 0 && bytepos + bytelen <= slen))
1731 /* The following assumes that the concatenated objects all
1732 have the same size. In this case, a simple calculation
1733 can be used to determine the object and the bit field
1734 to be extracted. */
1735 tmps[i] = XEXP (src, bytepos / slen0);
1736 if (! CONSTANT_P (tmps[i])
1737 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1738 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1739 (bytepos % slen0) * BITS_PER_UNIT,
1740 1, NULL_RTX, mode, mode);
1742 else
1744 rtx mem;
1746 gcc_assert (!bytepos);
1747 mem = assign_stack_temp (GET_MODE (src), slen);
1748 emit_move_insn (mem, src);
1749 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1750 0, 1, NULL_RTX, mode, mode);
1753 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1754 SIMD register, which is currently broken. While we get GCC
1755 to emit proper RTL for these cases, let's dump to memory. */
1756 else if (VECTOR_MODE_P (GET_MODE (dst))
1757 && REG_P (src))
1759 int slen = GET_MODE_SIZE (GET_MODE (src));
1760 rtx mem;
1762 mem = assign_stack_temp (GET_MODE (src), slen);
1763 emit_move_insn (mem, src);
1764 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1766 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1767 && XVECLEN (dst, 0) > 1)
1768 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
1769 else if (CONSTANT_P (src))
1771 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1773 if (len == ssize)
1774 tmps[i] = src;
1775 else
1777 rtx first, second;
1779 /* TODO: const_wide_int can have sizes other than this... */
1780 gcc_assert (2 * len == ssize);
1781 split_double (src, &first, &second);
1782 if (i)
1783 tmps[i] = second;
1784 else
1785 tmps[i] = first;
1788 else if (REG_P (src) && GET_MODE (src) == mode)
1789 tmps[i] = src;
1790 else
1791 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1792 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1793 mode, mode);
1795 if (shift)
1796 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1797 shift, tmps[i], 0);
1801 /* Emit code to move a block SRC of type TYPE to a block DST,
1802 where DST is non-consecutive registers represented by a PARALLEL.
1803 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1804 if not known. */
1806 void
1807 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1809 rtx *tmps;
1810 int i;
1812 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1813 emit_group_load_1 (tmps, dst, src, type, ssize);
1815 /* Copy the extracted pieces into the proper (probable) hard regs. */
1816 for (i = 0; i < XVECLEN (dst, 0); i++)
1818 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1819 if (d == NULL)
1820 continue;
1821 emit_move_insn (d, tmps[i]);
1825 /* Similar, but load SRC into new pseudos in a format that looks like
1826 PARALLEL. This can later be fed to emit_group_move to get things
1827 in the right place. */
1830 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1832 rtvec vec;
1833 int i;
1835 vec = rtvec_alloc (XVECLEN (parallel, 0));
1836 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1838 /* Convert the vector to look just like the original PARALLEL, except
1839 with the computed values. */
1840 for (i = 0; i < XVECLEN (parallel, 0); i++)
1842 rtx e = XVECEXP (parallel, 0, i);
1843 rtx d = XEXP (e, 0);
1845 if (d)
1847 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1848 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1850 RTVEC_ELT (vec, i) = e;
1853 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1856 /* Emit code to move a block SRC to block DST, where SRC and DST are
1857 non-consecutive groups of registers, each represented by a PARALLEL. */
1859 void
1860 emit_group_move (rtx dst, rtx src)
1862 int i;
1864 gcc_assert (GET_CODE (src) == PARALLEL
1865 && GET_CODE (dst) == PARALLEL
1866 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1868 /* Skip first entry if NULL. */
1869 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1870 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1871 XEXP (XVECEXP (src, 0, i), 0));
1874 /* Move a group of registers represented by a PARALLEL into pseudos. */
1877 emit_group_move_into_temps (rtx src)
1879 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1880 int i;
1882 for (i = 0; i < XVECLEN (src, 0); i++)
1884 rtx e = XVECEXP (src, 0, i);
1885 rtx d = XEXP (e, 0);
1887 if (d)
1888 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1889 RTVEC_ELT (vec, i) = e;
1892 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1895 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1896 where SRC is non-consecutive registers represented by a PARALLEL.
1897 SSIZE represents the total size of block ORIG_DST, or -1 if not
1898 known. */
1900 void
1901 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1903 rtx *tmps, dst;
1904 int start, finish, i;
1905 machine_mode m = GET_MODE (orig_dst);
1907 gcc_assert (GET_CODE (src) == PARALLEL);
1909 if (!SCALAR_INT_MODE_P (m)
1910 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1912 machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1913 if (imode == BLKmode)
1914 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
1915 else
1916 dst = gen_reg_rtx (imode);
1917 emit_group_store (dst, src, type, ssize);
1918 if (imode != BLKmode)
1919 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1920 emit_move_insn (orig_dst, dst);
1921 return;
1924 /* Check for a NULL entry, used to indicate that the parameter goes
1925 both on the stack and in registers. */
1926 if (XEXP (XVECEXP (src, 0, 0), 0))
1927 start = 0;
1928 else
1929 start = 1;
1930 finish = XVECLEN (src, 0);
1932 tmps = XALLOCAVEC (rtx, finish);
1934 /* Copy the (probable) hard regs into pseudos. */
1935 for (i = start; i < finish; i++)
1937 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1938 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1940 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1941 emit_move_insn (tmps[i], reg);
1943 else
1944 tmps[i] = reg;
1947 /* If we won't be storing directly into memory, protect the real destination
1948 from strange tricks we might play. */
1949 dst = orig_dst;
1950 if (GET_CODE (dst) == PARALLEL)
1952 rtx temp;
1954 /* We can get a PARALLEL dst if there is a conditional expression in
1955 a return statement. In that case, the dst and src are the same,
1956 so no action is necessary. */
1957 if (rtx_equal_p (dst, src))
1958 return;
1960 /* It is unclear if we can ever reach here, but we may as well handle
1961 it. Allocate a temporary, and split this into a store/load to/from
1962 the temporary. */
1963 temp = assign_stack_temp (GET_MODE (dst), ssize);
1964 emit_group_store (temp, src, type, ssize);
1965 emit_group_load (dst, temp, type, ssize);
1966 return;
1968 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1970 machine_mode outer = GET_MODE (dst);
1971 machine_mode inner;
1972 HOST_WIDE_INT bytepos;
1973 bool done = false;
1974 rtx temp;
1976 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1977 dst = gen_reg_rtx (outer);
1979 /* Make life a bit easier for combine. */
1980 /* If the first element of the vector is the low part
1981 of the destination mode, use a paradoxical subreg to
1982 initialize the destination. */
1983 if (start < finish)
1985 inner = GET_MODE (tmps[start]);
1986 bytepos = subreg_lowpart_offset (inner, outer);
1987 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1989 temp = simplify_gen_subreg (outer, tmps[start],
1990 inner, 0);
1991 if (temp)
1993 emit_move_insn (dst, temp);
1994 done = true;
1995 start++;
2000 /* If the first element wasn't the low part, try the last. */
2001 if (!done
2002 && start < finish - 1)
2004 inner = GET_MODE (tmps[finish - 1]);
2005 bytepos = subreg_lowpart_offset (inner, outer);
2006 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2008 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2009 inner, 0);
2010 if (temp)
2012 emit_move_insn (dst, temp);
2013 done = true;
2014 finish--;
2019 /* Otherwise, simply initialize the result to zero. */
2020 if (!done)
2021 emit_move_insn (dst, CONST0_RTX (outer));
2024 /* Process the pieces. */
2025 for (i = start; i < finish; i++)
2027 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2028 machine_mode mode = GET_MODE (tmps[i]);
2029 unsigned int bytelen = GET_MODE_SIZE (mode);
2030 unsigned int adj_bytelen;
2031 rtx dest = dst;
2033 /* Handle trailing fragments that run over the size of the struct. */
2034 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2035 adj_bytelen = ssize - bytepos;
2036 else
2037 adj_bytelen = bytelen;
2039 if (GET_CODE (dst) == CONCAT)
2041 if (bytepos + adj_bytelen
2042 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2043 dest = XEXP (dst, 0);
2044 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2046 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2047 dest = XEXP (dst, 1);
2049 else
2051 machine_mode dest_mode = GET_MODE (dest);
2052 machine_mode tmp_mode = GET_MODE (tmps[i]);
2054 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2056 if (GET_MODE_ALIGNMENT (dest_mode)
2057 >= GET_MODE_ALIGNMENT (tmp_mode))
2059 dest = assign_stack_temp (dest_mode,
2060 GET_MODE_SIZE (dest_mode));
2061 emit_move_insn (adjust_address (dest,
2062 tmp_mode,
2063 bytepos),
2064 tmps[i]);
2065 dst = dest;
2067 else
2069 dest = assign_stack_temp (tmp_mode,
2070 GET_MODE_SIZE (tmp_mode));
2071 emit_move_insn (dest, tmps[i]);
2072 dst = adjust_address (dest, dest_mode, bytepos);
2074 break;
2078 /* Handle trailing fragments that run over the size of the struct. */
2079 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2081 /* store_bit_field always takes its value from the lsb.
2082 Move the fragment to the lsb if it's not already there. */
2083 if (
2084 #ifdef BLOCK_REG_PADDING
2085 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2086 == (BYTES_BIG_ENDIAN ? upward : downward)
2087 #else
2088 BYTES_BIG_ENDIAN
2089 #endif
2092 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2093 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2094 shift, tmps[i], 0);
2097 /* Make sure not to write past the end of the struct. */
2098 store_bit_field (dest,
2099 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2100 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2101 VOIDmode, tmps[i]);
2104 /* Optimize the access just a bit. */
2105 else if (MEM_P (dest)
2106 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2107 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2108 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2109 && bytelen == GET_MODE_SIZE (mode))
2110 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2112 else
2113 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2114 0, 0, mode, tmps[i]);
2117 /* Copy from the pseudo into the (probable) hard reg. */
2118 if (orig_dst != dst)
2119 emit_move_insn (orig_dst, dst);
2122 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2123 of the value stored in X. */
2126 maybe_emit_group_store (rtx x, tree type)
2128 machine_mode mode = TYPE_MODE (type);
2129 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2130 if (GET_CODE (x) == PARALLEL)
2132 rtx result = gen_reg_rtx (mode);
2133 emit_group_store (result, x, type, int_size_in_bytes (type));
2134 return result;
2136 return x;
2139 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2141 This is used on targets that return BLKmode values in registers. */
2143 void
2144 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2146 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2147 rtx src = NULL, dst = NULL;
2148 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2149 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2150 machine_mode mode = GET_MODE (srcreg);
2151 machine_mode tmode = GET_MODE (target);
2152 machine_mode copy_mode;
2154 /* BLKmode registers created in the back-end shouldn't have survived. */
2155 gcc_assert (mode != BLKmode);
2157 /* If the structure doesn't take up a whole number of words, see whether
2158 SRCREG is padded on the left or on the right. If it's on the left,
2159 set PADDING_CORRECTION to the number of bits to skip.
2161 In most ABIs, the structure will be returned at the least end of
2162 the register, which translates to right padding on little-endian
2163 targets and left padding on big-endian targets. The opposite
2164 holds if the structure is returned at the most significant
2165 end of the register. */
2166 if (bytes % UNITS_PER_WORD != 0
2167 && (targetm.calls.return_in_msb (type)
2168 ? !BYTES_BIG_ENDIAN
2169 : BYTES_BIG_ENDIAN))
2170 padding_correction
2171 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2173 /* We can use a single move if we have an exact mode for the size. */
2174 else if (MEM_P (target)
2175 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))
2176 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2177 && bytes == GET_MODE_SIZE (mode))
2179 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2180 return;
2183 /* And if we additionally have the same mode for a register. */
2184 else if (REG_P (target)
2185 && GET_MODE (target) == mode
2186 && bytes == GET_MODE_SIZE (mode))
2188 emit_move_insn (target, srcreg);
2189 return;
2192 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2193 into a new pseudo which is a full word. */
2194 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2196 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2197 mode = word_mode;
2200 /* Copy the structure BITSIZE bits at a time. If the target lives in
2201 memory, take care of not reading/writing past its end by selecting
2202 a copy mode suited to BITSIZE. This should always be possible given
2203 how it is computed.
2205 If the target lives in register, make sure not to select a copy mode
2206 larger than the mode of the register.
2208 We could probably emit more efficient code for machines which do not use
2209 strict alignment, but it doesn't seem worth the effort at the current
2210 time. */
2212 copy_mode = word_mode;
2213 if (MEM_P (target))
2215 machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2216 if (mem_mode != BLKmode)
2217 copy_mode = mem_mode;
2219 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2220 copy_mode = tmode;
2222 for (bitpos = 0, xbitpos = padding_correction;
2223 bitpos < bytes * BITS_PER_UNIT;
2224 bitpos += bitsize, xbitpos += bitsize)
2226 /* We need a new source operand each time xbitpos is on a
2227 word boundary and when xbitpos == padding_correction
2228 (the first time through). */
2229 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2230 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2232 /* We need a new destination operand each time bitpos is on
2233 a word boundary. */
2234 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2235 dst = target;
2236 else if (bitpos % BITS_PER_WORD == 0)
2237 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2239 /* Use xbitpos for the source extraction (right justified) and
2240 bitpos for the destination store (left justified). */
2241 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2242 extract_bit_field (src, bitsize,
2243 xbitpos % BITS_PER_WORD, 1,
2244 NULL_RTX, copy_mode, copy_mode));
2248 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2249 register if it contains any data, otherwise return null.
2251 This is used on targets that return BLKmode values in registers. */
2254 copy_blkmode_to_reg (machine_mode mode, tree src)
2256 int i, n_regs;
2257 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2258 unsigned int bitsize;
2259 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2260 machine_mode dst_mode;
2262 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2264 x = expand_normal (src);
2266 bytes = int_size_in_bytes (TREE_TYPE (src));
2267 if (bytes == 0)
2268 return NULL_RTX;
2270 /* If the structure doesn't take up a whole number of words, see
2271 whether the register value should be padded on the left or on
2272 the right. Set PADDING_CORRECTION to the number of padding
2273 bits needed on the left side.
2275 In most ABIs, the structure will be returned at the least end of
2276 the register, which translates to right padding on little-endian
2277 targets and left padding on big-endian targets. The opposite
2278 holds if the structure is returned at the most significant
2279 end of the register. */
2280 if (bytes % UNITS_PER_WORD != 0
2281 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2282 ? !BYTES_BIG_ENDIAN
2283 : BYTES_BIG_ENDIAN))
2284 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2285 * BITS_PER_UNIT));
2287 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2288 dst_words = XALLOCAVEC (rtx, n_regs);
2289 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2291 /* Copy the structure BITSIZE bits at a time. */
2292 for (bitpos = 0, xbitpos = padding_correction;
2293 bitpos < bytes * BITS_PER_UNIT;
2294 bitpos += bitsize, xbitpos += bitsize)
2296 /* We need a new destination pseudo each time xbitpos is
2297 on a word boundary and when xbitpos == padding_correction
2298 (the first time through). */
2299 if (xbitpos % BITS_PER_WORD == 0
2300 || xbitpos == padding_correction)
2302 /* Generate an appropriate register. */
2303 dst_word = gen_reg_rtx (word_mode);
2304 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2306 /* Clear the destination before we move anything into it. */
2307 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2310 /* We need a new source operand each time bitpos is on a word
2311 boundary. */
2312 if (bitpos % BITS_PER_WORD == 0)
2313 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2315 /* Use bitpos for the source extraction (left justified) and
2316 xbitpos for the destination store (right justified). */
2317 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2318 0, 0, word_mode,
2319 extract_bit_field (src_word, bitsize,
2320 bitpos % BITS_PER_WORD, 1,
2321 NULL_RTX, word_mode, word_mode));
2324 if (mode == BLKmode)
2326 /* Find the smallest integer mode large enough to hold the
2327 entire structure. */
2328 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2329 mode != VOIDmode;
2330 mode = GET_MODE_WIDER_MODE (mode))
2331 /* Have we found a large enough mode? */
2332 if (GET_MODE_SIZE (mode) >= bytes)
2333 break;
2335 /* A suitable mode should have been found. */
2336 gcc_assert (mode != VOIDmode);
2339 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2340 dst_mode = word_mode;
2341 else
2342 dst_mode = mode;
2343 dst = gen_reg_rtx (dst_mode);
2345 for (i = 0; i < n_regs; i++)
2346 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2348 if (mode != dst_mode)
2349 dst = gen_lowpart (mode, dst);
2351 return dst;
2354 /* Add a USE expression for REG to the (possibly empty) list pointed
2355 to by CALL_FUSAGE. REG must denote a hard register. */
2357 void
2358 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2360 gcc_assert (REG_P (reg));
2362 if (!HARD_REGISTER_P (reg))
2363 return;
2365 *call_fusage
2366 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2369 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2370 to by CALL_FUSAGE. REG must denote a hard register. */
2372 void
2373 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2375 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2377 *call_fusage
2378 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2381 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2382 starting at REGNO. All of these registers must be hard registers. */
2384 void
2385 use_regs (rtx *call_fusage, int regno, int nregs)
2387 int i;
2389 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2391 for (i = 0; i < nregs; i++)
2392 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2395 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2396 PARALLEL REGS. This is for calls that pass values in multiple
2397 non-contiguous locations. The Irix 6 ABI has examples of this. */
2399 void
2400 use_group_regs (rtx *call_fusage, rtx regs)
2402 int i;
2404 for (i = 0; i < XVECLEN (regs, 0); i++)
2406 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2408 /* A NULL entry means the parameter goes both on the stack and in
2409 registers. This can also be a MEM for targets that pass values
2410 partially on the stack and partially in registers. */
2411 if (reg != 0 && REG_P (reg))
2412 use_reg (call_fusage, reg);
2416 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2417 assigment and the code of the expresion on the RHS is CODE. Return
2418 NULL otherwise. */
2420 static gimple
2421 get_def_for_expr (tree name, enum tree_code code)
2423 gimple def_stmt;
2425 if (TREE_CODE (name) != SSA_NAME)
2426 return NULL;
2428 def_stmt = get_gimple_for_ssa_name (name);
2429 if (!def_stmt
2430 || gimple_assign_rhs_code (def_stmt) != code)
2431 return NULL;
2433 return def_stmt;
2436 #ifdef HAVE_conditional_move
2437 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2438 assigment and the class of the expresion on the RHS is CLASS. Return
2439 NULL otherwise. */
2441 static gimple
2442 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2444 gimple def_stmt;
2446 if (TREE_CODE (name) != SSA_NAME)
2447 return NULL;
2449 def_stmt = get_gimple_for_ssa_name (name);
2450 if (!def_stmt
2451 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2452 return NULL;
2454 return def_stmt;
2456 #endif
2459 /* Determine whether the LEN bytes generated by CONSTFUN can be
2460 stored to memory using several move instructions. CONSTFUNDATA is
2461 a pointer which will be passed as argument in every CONSTFUN call.
2462 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2463 a memset operation and false if it's a copy of a constant string.
2464 Return nonzero if a call to store_by_pieces should succeed. */
2467 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2468 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
2469 void *constfundata, unsigned int align, bool memsetp)
2471 unsigned HOST_WIDE_INT l;
2472 unsigned int max_size;
2473 HOST_WIDE_INT offset = 0;
2474 machine_mode mode;
2475 enum insn_code icode;
2476 int reverse;
2477 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2478 rtx cst ATTRIBUTE_UNUSED;
2480 if (len == 0)
2481 return 1;
2483 if (!targetm.use_by_pieces_infrastructure_p (len, align,
2484 memsetp
2485 ? SET_BY_PIECES
2486 : STORE_BY_PIECES,
2487 optimize_insn_for_speed_p ()))
2488 return 0;
2490 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2492 /* We would first store what we can in the largest integer mode, then go to
2493 successively smaller modes. */
2495 for (reverse = 0;
2496 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2497 reverse++)
2499 l = len;
2500 max_size = STORE_MAX_PIECES + 1;
2501 while (max_size > 1 && l > 0)
2503 mode = widest_int_mode_for_size (max_size);
2505 if (mode == VOIDmode)
2506 break;
2508 icode = optab_handler (mov_optab, mode);
2509 if (icode != CODE_FOR_nothing
2510 && align >= GET_MODE_ALIGNMENT (mode))
2512 unsigned int size = GET_MODE_SIZE (mode);
2514 while (l >= size)
2516 if (reverse)
2517 offset -= size;
2519 cst = (*constfun) (constfundata, offset, mode);
2520 if (!targetm.legitimate_constant_p (mode, cst))
2521 return 0;
2523 if (!reverse)
2524 offset += size;
2526 l -= size;
2530 max_size = GET_MODE_SIZE (mode);
2533 /* The code above should have handled everything. */
2534 gcc_assert (!l);
2537 return 1;
2540 /* Generate several move instructions to store LEN bytes generated by
2541 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2542 pointer which will be passed as argument in every CONSTFUN call.
2543 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2544 a memset operation and false if it's a copy of a constant string.
2545 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2546 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2547 stpcpy. */
2550 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2551 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
2552 void *constfundata, unsigned int align, bool memsetp, int endp)
2554 machine_mode to_addr_mode = get_address_mode (to);
2555 struct store_by_pieces_d data;
2557 if (len == 0)
2559 gcc_assert (endp != 2);
2560 return to;
2563 gcc_assert (targetm.use_by_pieces_infrastructure_p
2564 (len, align,
2565 memsetp
2566 ? SET_BY_PIECES
2567 : STORE_BY_PIECES,
2568 optimize_insn_for_speed_p ()));
2570 data.constfun = constfun;
2571 data.constfundata = constfundata;
2572 data.len = len;
2573 data.to = to;
2574 store_by_pieces_1 (&data, align);
2575 if (endp)
2577 rtx to1;
2579 gcc_assert (!data.reverse);
2580 if (data.autinc_to)
2582 if (endp == 2)
2584 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2585 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2586 else
2587 data.to_addr = copy_to_mode_reg (to_addr_mode,
2588 plus_constant (to_addr_mode,
2589 data.to_addr,
2590 -1));
2592 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2593 data.offset);
2595 else
2597 if (endp == 2)
2598 --data.offset;
2599 to1 = adjust_address (data.to, QImode, data.offset);
2601 return to1;
2603 else
2604 return data.to;
2607 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2608 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2610 static void
2611 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2613 struct store_by_pieces_d data;
2615 if (len == 0)
2616 return;
2618 data.constfun = clear_by_pieces_1;
2619 data.constfundata = NULL;
2620 data.len = len;
2621 data.to = to;
2622 store_by_pieces_1 (&data, align);
2625 /* Callback routine for clear_by_pieces.
2626 Return const0_rtx unconditionally. */
2628 static rtx
2629 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2630 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2631 machine_mode mode ATTRIBUTE_UNUSED)
2633 return const0_rtx;
2636 /* Subroutine of clear_by_pieces and store_by_pieces.
2637 Generate several move instructions to store LEN bytes of block TO. (A MEM
2638 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2640 static void
2641 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2642 unsigned int align ATTRIBUTE_UNUSED)
2644 machine_mode to_addr_mode = get_address_mode (data->to);
2645 rtx to_addr = XEXP (data->to, 0);
2646 unsigned int max_size = STORE_MAX_PIECES + 1;
2647 enum insn_code icode;
2649 data->offset = 0;
2650 data->to_addr = to_addr;
2651 data->autinc_to
2652 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2653 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2655 data->explicit_inc_to = 0;
2656 data->reverse
2657 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2658 if (data->reverse)
2659 data->offset = data->len;
2661 /* If storing requires more than two move insns,
2662 copy addresses to registers (to make displacements shorter)
2663 and use post-increment if available. */
2664 if (!data->autinc_to
2665 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2667 /* Determine the main mode we'll be using.
2668 MODE might not be used depending on the definitions of the
2669 USE_* macros below. */
2670 machine_mode mode ATTRIBUTE_UNUSED
2671 = widest_int_mode_for_size (max_size);
2673 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2675 data->to_addr = copy_to_mode_reg (to_addr_mode,
2676 plus_constant (to_addr_mode,
2677 to_addr,
2678 data->len));
2679 data->autinc_to = 1;
2680 data->explicit_inc_to = -1;
2683 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2684 && ! data->autinc_to)
2686 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2687 data->autinc_to = 1;
2688 data->explicit_inc_to = 1;
2691 if ( !data->autinc_to && CONSTANT_P (to_addr))
2692 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2695 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2697 /* First store what we can in the largest integer mode, then go to
2698 successively smaller modes. */
2700 while (max_size > 1 && data->len > 0)
2702 machine_mode mode = widest_int_mode_for_size (max_size);
2704 if (mode == VOIDmode)
2705 break;
2707 icode = optab_handler (mov_optab, mode);
2708 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2709 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2711 max_size = GET_MODE_SIZE (mode);
2714 /* The code above should have handled everything. */
2715 gcc_assert (!data->len);
2718 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2719 with move instructions for mode MODE. GENFUN is the gen_... function
2720 to make a move insn for that mode. DATA has all the other info. */
2722 static void
2723 store_by_pieces_2 (insn_gen_fn genfun, machine_mode mode,
2724 struct store_by_pieces_d *data)
2726 unsigned int size = GET_MODE_SIZE (mode);
2727 rtx to1, cst;
2729 while (data->len >= size)
2731 if (data->reverse)
2732 data->offset -= size;
2734 if (data->autinc_to)
2735 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2736 data->offset);
2737 else
2738 to1 = adjust_address (data->to, mode, data->offset);
2740 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2741 emit_insn (gen_add2_insn (data->to_addr,
2742 gen_int_mode (-(HOST_WIDE_INT) size,
2743 GET_MODE (data->to_addr))));
2745 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2746 emit_insn ((*genfun) (to1, cst));
2748 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2749 emit_insn (gen_add2_insn (data->to_addr,
2750 gen_int_mode (size,
2751 GET_MODE (data->to_addr))));
2753 if (! data->reverse)
2754 data->offset += size;
2756 data->len -= size;
2760 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2761 its length in bytes. */
2764 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2765 unsigned int expected_align, HOST_WIDE_INT expected_size,
2766 unsigned HOST_WIDE_INT min_size,
2767 unsigned HOST_WIDE_INT max_size,
2768 unsigned HOST_WIDE_INT probable_max_size)
2770 machine_mode mode = GET_MODE (object);
2771 unsigned int align;
2773 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2775 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2776 just move a zero. Otherwise, do this a piece at a time. */
2777 if (mode != BLKmode
2778 && CONST_INT_P (size)
2779 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2781 rtx zero = CONST0_RTX (mode);
2782 if (zero != NULL)
2784 emit_move_insn (object, zero);
2785 return NULL;
2788 if (COMPLEX_MODE_P (mode))
2790 zero = CONST0_RTX (GET_MODE_INNER (mode));
2791 if (zero != NULL)
2793 write_complex_part (object, zero, 0);
2794 write_complex_part (object, zero, 1);
2795 return NULL;
2800 if (size == const0_rtx)
2801 return NULL;
2803 align = MEM_ALIGN (object);
2805 if (CONST_INT_P (size)
2806 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
2807 CLEAR_BY_PIECES,
2808 optimize_insn_for_speed_p ()))
2809 clear_by_pieces (object, INTVAL (size), align);
2810 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2811 expected_align, expected_size,
2812 min_size, max_size, probable_max_size))
2814 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2815 return set_storage_via_libcall (object, size, const0_rtx,
2816 method == BLOCK_OP_TAILCALL);
2817 else
2818 gcc_unreachable ();
2820 return NULL;
2824 clear_storage (rtx object, rtx size, enum block_op_methods method)
2826 unsigned HOST_WIDE_INT max, min = 0;
2827 if (GET_CODE (size) == CONST_INT)
2828 min = max = UINTVAL (size);
2829 else
2830 max = GET_MODE_MASK (GET_MODE (size));
2831 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
2835 /* A subroutine of clear_storage. Expand a call to memset.
2836 Return the return value of memset, 0 otherwise. */
2839 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2841 tree call_expr, fn, object_tree, size_tree, val_tree;
2842 machine_mode size_mode;
2843 rtx retval;
2845 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2846 place those into new pseudos into a VAR_DECL and use them later. */
2848 object = copy_addr_to_reg (XEXP (object, 0));
2850 size_mode = TYPE_MODE (sizetype);
2851 size = convert_to_mode (size_mode, size, 1);
2852 size = copy_to_mode_reg (size_mode, size);
2854 /* It is incorrect to use the libcall calling conventions to call
2855 memset in this context. This could be a user call to memset and
2856 the user may wish to examine the return value from memset. For
2857 targets where libcalls and normal calls have different conventions
2858 for returning pointers, we could end up generating incorrect code. */
2860 object_tree = make_tree (ptr_type_node, object);
2861 if (!CONST_INT_P (val))
2862 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2863 size_tree = make_tree (sizetype, size);
2864 val_tree = make_tree (integer_type_node, val);
2866 fn = clear_storage_libcall_fn (true);
2867 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2868 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2870 retval = expand_normal (call_expr);
2872 return retval;
2875 /* A subroutine of set_storage_via_libcall. Create the tree node
2876 for the function we use for block clears. */
2878 tree block_clear_fn;
2880 void
2881 init_block_clear_fn (const char *asmspec)
2883 if (!block_clear_fn)
2885 tree fn, args;
2887 fn = get_identifier ("memset");
2888 args = build_function_type_list (ptr_type_node, ptr_type_node,
2889 integer_type_node, sizetype,
2890 NULL_TREE);
2892 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2893 DECL_EXTERNAL (fn) = 1;
2894 TREE_PUBLIC (fn) = 1;
2895 DECL_ARTIFICIAL (fn) = 1;
2896 TREE_NOTHROW (fn) = 1;
2897 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2898 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2900 block_clear_fn = fn;
2903 if (asmspec)
2904 set_user_assembler_name (block_clear_fn, asmspec);
2907 static tree
2908 clear_storage_libcall_fn (int for_call)
2910 static bool emitted_extern;
2912 if (!block_clear_fn)
2913 init_block_clear_fn (NULL);
2915 if (for_call && !emitted_extern)
2917 emitted_extern = true;
2918 make_decl_rtl (block_clear_fn);
2921 return block_clear_fn;
2924 /* Expand a setmem pattern; return true if successful. */
2926 bool
2927 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2928 unsigned int expected_align, HOST_WIDE_INT expected_size,
2929 unsigned HOST_WIDE_INT min_size,
2930 unsigned HOST_WIDE_INT max_size,
2931 unsigned HOST_WIDE_INT probable_max_size)
2933 /* Try the most limited insn first, because there's no point
2934 including more than one in the machine description unless
2935 the more limited one has some advantage. */
2937 machine_mode mode;
2939 if (expected_align < align)
2940 expected_align = align;
2941 if (expected_size != -1)
2943 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
2944 expected_size = max_size;
2945 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
2946 expected_size = min_size;
2949 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2950 mode = GET_MODE_WIDER_MODE (mode))
2952 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2954 if (code != CODE_FOR_nothing
2955 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2956 here because if SIZE is less than the mode mask, as it is
2957 returned by the macro, it will definitely be less than the
2958 actual mode mask. Since SIZE is within the Pmode address
2959 space, we limit MODE to Pmode. */
2960 && ((CONST_INT_P (size)
2961 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2962 <= (GET_MODE_MASK (mode) >> 1)))
2963 || max_size <= (GET_MODE_MASK (mode) >> 1)
2964 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
2966 struct expand_operand ops[9];
2967 unsigned int nops;
2969 nops = insn_data[(int) code].n_generator_args;
2970 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
2972 create_fixed_operand (&ops[0], object);
2973 /* The check above guarantees that this size conversion is valid. */
2974 create_convert_operand_to (&ops[1], size, mode, true);
2975 create_convert_operand_from (&ops[2], val, byte_mode, true);
2976 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2977 if (nops >= 6)
2979 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2980 create_integer_operand (&ops[5], expected_size);
2982 if (nops >= 8)
2984 create_integer_operand (&ops[6], min_size);
2985 /* If we can not represent the maximal size,
2986 make parameter NULL. */
2987 if ((HOST_WIDE_INT) max_size != -1)
2988 create_integer_operand (&ops[7], max_size);
2989 else
2990 create_fixed_operand (&ops[7], NULL);
2992 if (nops == 9)
2994 /* If we can not represent the maximal size,
2995 make parameter NULL. */
2996 if ((HOST_WIDE_INT) probable_max_size != -1)
2997 create_integer_operand (&ops[8], probable_max_size);
2998 else
2999 create_fixed_operand (&ops[8], NULL);
3001 if (maybe_expand_insn (code, nops, ops))
3002 return true;
3006 return false;
3010 /* Write to one of the components of the complex value CPLX. Write VAL to
3011 the real part if IMAG_P is false, and the imaginary part if its true. */
3013 void
3014 write_complex_part (rtx cplx, rtx val, bool imag_p)
3016 machine_mode cmode;
3017 machine_mode imode;
3018 unsigned ibitsize;
3020 if (GET_CODE (cplx) == CONCAT)
3022 emit_move_insn (XEXP (cplx, imag_p), val);
3023 return;
3026 cmode = GET_MODE (cplx);
3027 imode = GET_MODE_INNER (cmode);
3028 ibitsize = GET_MODE_BITSIZE (imode);
3030 /* For MEMs simplify_gen_subreg may generate an invalid new address
3031 because, e.g., the original address is considered mode-dependent
3032 by the target, which restricts simplify_subreg from invoking
3033 adjust_address_nv. Instead of preparing fallback support for an
3034 invalid address, we call adjust_address_nv directly. */
3035 if (MEM_P (cplx))
3037 emit_move_insn (adjust_address_nv (cplx, imode,
3038 imag_p ? GET_MODE_SIZE (imode) : 0),
3039 val);
3040 return;
3043 /* If the sub-object is at least word sized, then we know that subregging
3044 will work. This special case is important, since store_bit_field
3045 wants to operate on integer modes, and there's rarely an OImode to
3046 correspond to TCmode. */
3047 if (ibitsize >= BITS_PER_WORD
3048 /* For hard regs we have exact predicates. Assume we can split
3049 the original object if it spans an even number of hard regs.
3050 This special case is important for SCmode on 64-bit platforms
3051 where the natural size of floating-point regs is 32-bit. */
3052 || (REG_P (cplx)
3053 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3054 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
3056 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3057 imag_p ? GET_MODE_SIZE (imode) : 0);
3058 if (part)
3060 emit_move_insn (part, val);
3061 return;
3063 else
3064 /* simplify_gen_subreg may fail for sub-word MEMs. */
3065 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3068 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val);
3071 /* Extract one of the components of the complex value CPLX. Extract the
3072 real part if IMAG_P is false, and the imaginary part if it's true. */
3074 static rtx
3075 read_complex_part (rtx cplx, bool imag_p)
3077 machine_mode cmode, imode;
3078 unsigned ibitsize;
3080 if (GET_CODE (cplx) == CONCAT)
3081 return XEXP (cplx, imag_p);
3083 cmode = GET_MODE (cplx);
3084 imode = GET_MODE_INNER (cmode);
3085 ibitsize = GET_MODE_BITSIZE (imode);
3087 /* Special case reads from complex constants that got spilled to memory. */
3088 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3090 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3091 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3093 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3094 if (CONSTANT_CLASS_P (part))
3095 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3099 /* For MEMs simplify_gen_subreg may generate an invalid new address
3100 because, e.g., the original address is considered mode-dependent
3101 by the target, which restricts simplify_subreg from invoking
3102 adjust_address_nv. Instead of preparing fallback support for an
3103 invalid address, we call adjust_address_nv directly. */
3104 if (MEM_P (cplx))
3105 return adjust_address_nv (cplx, imode,
3106 imag_p ? GET_MODE_SIZE (imode) : 0);
3108 /* If the sub-object is at least word sized, then we know that subregging
3109 will work. This special case is important, since extract_bit_field
3110 wants to operate on integer modes, and there's rarely an OImode to
3111 correspond to TCmode. */
3112 if (ibitsize >= BITS_PER_WORD
3113 /* For hard regs we have exact predicates. Assume we can split
3114 the original object if it spans an even number of hard regs.
3115 This special case is important for SCmode on 64-bit platforms
3116 where the natural size of floating-point regs is 32-bit. */
3117 || (REG_P (cplx)
3118 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3119 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
3121 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3122 imag_p ? GET_MODE_SIZE (imode) : 0);
3123 if (ret)
3124 return ret;
3125 else
3126 /* simplify_gen_subreg may fail for sub-word MEMs. */
3127 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3130 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3131 true, NULL_RTX, imode, imode);
3134 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3135 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3136 represented in NEW_MODE. If FORCE is true, this will never happen, as
3137 we'll force-create a SUBREG if needed. */
3139 static rtx
3140 emit_move_change_mode (machine_mode new_mode,
3141 machine_mode old_mode, rtx x, bool force)
3143 rtx ret;
3145 if (push_operand (x, GET_MODE (x)))
3147 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3148 MEM_COPY_ATTRIBUTES (ret, x);
3150 else if (MEM_P (x))
3152 /* We don't have to worry about changing the address since the
3153 size in bytes is supposed to be the same. */
3154 if (reload_in_progress)
3156 /* Copy the MEM to change the mode and move any
3157 substitutions from the old MEM to the new one. */
3158 ret = adjust_address_nv (x, new_mode, 0);
3159 copy_replacements (x, ret);
3161 else
3162 ret = adjust_address (x, new_mode, 0);
3164 else
3166 /* Note that we do want simplify_subreg's behavior of validating
3167 that the new mode is ok for a hard register. If we were to use
3168 simplify_gen_subreg, we would create the subreg, but would
3169 probably run into the target not being able to implement it. */
3170 /* Except, of course, when FORCE is true, when this is exactly what
3171 we want. Which is needed for CCmodes on some targets. */
3172 if (force)
3173 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3174 else
3175 ret = simplify_subreg (new_mode, x, old_mode, 0);
3178 return ret;
3181 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3182 an integer mode of the same size as MODE. Returns the instruction
3183 emitted, or NULL if such a move could not be generated. */
3185 static rtx_insn *
3186 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3188 machine_mode imode;
3189 enum insn_code code;
3191 /* There must exist a mode of the exact size we require. */
3192 imode = int_mode_for_mode (mode);
3193 if (imode == BLKmode)
3194 return NULL;
3196 /* The target must support moves in this mode. */
3197 code = optab_handler (mov_optab, imode);
3198 if (code == CODE_FOR_nothing)
3199 return NULL;
3201 x = emit_move_change_mode (imode, mode, x, force);
3202 if (x == NULL_RTX)
3203 return NULL;
3204 y = emit_move_change_mode (imode, mode, y, force);
3205 if (y == NULL_RTX)
3206 return NULL;
3207 return emit_insn (GEN_FCN (code) (x, y));
3210 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3211 Return an equivalent MEM that does not use an auto-increment. */
3214 emit_move_resolve_push (machine_mode mode, rtx x)
3216 enum rtx_code code = GET_CODE (XEXP (x, 0));
3217 HOST_WIDE_INT adjust;
3218 rtx temp;
3220 adjust = GET_MODE_SIZE (mode);
3221 #ifdef PUSH_ROUNDING
3222 adjust = PUSH_ROUNDING (adjust);
3223 #endif
3224 if (code == PRE_DEC || code == POST_DEC)
3225 adjust = -adjust;
3226 else if (code == PRE_MODIFY || code == POST_MODIFY)
3228 rtx expr = XEXP (XEXP (x, 0), 1);
3229 HOST_WIDE_INT val;
3231 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3232 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3233 val = INTVAL (XEXP (expr, 1));
3234 if (GET_CODE (expr) == MINUS)
3235 val = -val;
3236 gcc_assert (adjust == val || adjust == -val);
3237 adjust = val;
3240 /* Do not use anti_adjust_stack, since we don't want to update
3241 stack_pointer_delta. */
3242 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3243 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3244 0, OPTAB_LIB_WIDEN);
3245 if (temp != stack_pointer_rtx)
3246 emit_move_insn (stack_pointer_rtx, temp);
3248 switch (code)
3250 case PRE_INC:
3251 case PRE_DEC:
3252 case PRE_MODIFY:
3253 temp = stack_pointer_rtx;
3254 break;
3255 case POST_INC:
3256 case POST_DEC:
3257 case POST_MODIFY:
3258 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3259 break;
3260 default:
3261 gcc_unreachable ();
3264 return replace_equiv_address (x, temp);
3267 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3268 X is known to satisfy push_operand, and MODE is known to be complex.
3269 Returns the last instruction emitted. */
3271 rtx_insn *
3272 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3274 machine_mode submode = GET_MODE_INNER (mode);
3275 bool imag_first;
3277 #ifdef PUSH_ROUNDING
3278 unsigned int submodesize = GET_MODE_SIZE (submode);
3280 /* In case we output to the stack, but the size is smaller than the
3281 machine can push exactly, we need to use move instructions. */
3282 if (PUSH_ROUNDING (submodesize) != submodesize)
3284 x = emit_move_resolve_push (mode, x);
3285 return emit_move_insn (x, y);
3287 #endif
3289 /* Note that the real part always precedes the imag part in memory
3290 regardless of machine's endianness. */
3291 switch (GET_CODE (XEXP (x, 0)))
3293 case PRE_DEC:
3294 case POST_DEC:
3295 imag_first = true;
3296 break;
3297 case PRE_INC:
3298 case POST_INC:
3299 imag_first = false;
3300 break;
3301 default:
3302 gcc_unreachable ();
3305 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3306 read_complex_part (y, imag_first));
3307 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3308 read_complex_part (y, !imag_first));
3311 /* A subroutine of emit_move_complex. Perform the move from Y to X
3312 via two moves of the parts. Returns the last instruction emitted. */
3314 rtx_insn *
3315 emit_move_complex_parts (rtx x, rtx y)
3317 /* Show the output dies here. This is necessary for SUBREGs
3318 of pseudos since we cannot track their lifetimes correctly;
3319 hard regs shouldn't appear here except as return values. */
3320 if (!reload_completed && !reload_in_progress
3321 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3322 emit_clobber (x);
3324 write_complex_part (x, read_complex_part (y, false), false);
3325 write_complex_part (x, read_complex_part (y, true), true);
3327 return get_last_insn ();
3330 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3331 MODE is known to be complex. Returns the last instruction emitted. */
3333 static rtx_insn *
3334 emit_move_complex (machine_mode mode, rtx x, rtx y)
3336 bool try_int;
3338 /* Need to take special care for pushes, to maintain proper ordering
3339 of the data, and possibly extra padding. */
3340 if (push_operand (x, mode))
3341 return emit_move_complex_push (mode, x, y);
3343 /* See if we can coerce the target into moving both values at once, except
3344 for floating point where we favor moving as parts if this is easy. */
3345 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3346 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3347 && !(REG_P (x)
3348 && HARD_REGISTER_P (x)
3349 && hard_regno_nregs[REGNO (x)][mode] == 1)
3350 && !(REG_P (y)
3351 && HARD_REGISTER_P (y)
3352 && hard_regno_nregs[REGNO (y)][mode] == 1))
3353 try_int = false;
3354 /* Not possible if the values are inherently not adjacent. */
3355 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3356 try_int = false;
3357 /* Is possible if both are registers (or subregs of registers). */
3358 else if (register_operand (x, mode) && register_operand (y, mode))
3359 try_int = true;
3360 /* If one of the operands is a memory, and alignment constraints
3361 are friendly enough, we may be able to do combined memory operations.
3362 We do not attempt this if Y is a constant because that combination is
3363 usually better with the by-parts thing below. */
3364 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3365 && (!STRICT_ALIGNMENT
3366 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3367 try_int = true;
3368 else
3369 try_int = false;
3371 if (try_int)
3373 rtx_insn *ret;
3375 /* For memory to memory moves, optimal behavior can be had with the
3376 existing block move logic. */
3377 if (MEM_P (x) && MEM_P (y))
3379 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3380 BLOCK_OP_NO_LIBCALL);
3381 return get_last_insn ();
3384 ret = emit_move_via_integer (mode, x, y, true);
3385 if (ret)
3386 return ret;
3389 return emit_move_complex_parts (x, y);
3392 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3393 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3395 static rtx_insn *
3396 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3398 rtx_insn *ret;
3400 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3401 if (mode != CCmode)
3403 enum insn_code code = optab_handler (mov_optab, CCmode);
3404 if (code != CODE_FOR_nothing)
3406 x = emit_move_change_mode (CCmode, mode, x, true);
3407 y = emit_move_change_mode (CCmode, mode, y, true);
3408 return emit_insn (GEN_FCN (code) (x, y));
3412 /* Otherwise, find the MODE_INT mode of the same width. */
3413 ret = emit_move_via_integer (mode, x, y, false);
3414 gcc_assert (ret != NULL);
3415 return ret;
3418 /* Return true if word I of OP lies entirely in the
3419 undefined bits of a paradoxical subreg. */
3421 static bool
3422 undefined_operand_subword_p (const_rtx op, int i)
3424 machine_mode innermode, innermostmode;
3425 int offset;
3426 if (GET_CODE (op) != SUBREG)
3427 return false;
3428 innermode = GET_MODE (op);
3429 innermostmode = GET_MODE (SUBREG_REG (op));
3430 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3431 /* The SUBREG_BYTE represents offset, as if the value were stored in
3432 memory, except for a paradoxical subreg where we define
3433 SUBREG_BYTE to be 0; undo this exception as in
3434 simplify_subreg. */
3435 if (SUBREG_BYTE (op) == 0
3436 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3438 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3439 if (WORDS_BIG_ENDIAN)
3440 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3441 if (BYTES_BIG_ENDIAN)
3442 offset += difference % UNITS_PER_WORD;
3444 if (offset >= GET_MODE_SIZE (innermostmode)
3445 || offset <= -GET_MODE_SIZE (word_mode))
3446 return true;
3447 return false;
3450 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3451 MODE is any multi-word or full-word mode that lacks a move_insn
3452 pattern. Note that you will get better code if you define such
3453 patterns, even if they must turn into multiple assembler instructions. */
3455 static rtx_insn *
3456 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3458 rtx_insn *last_insn = 0;
3459 rtx_insn *seq;
3460 rtx inner;
3461 bool need_clobber;
3462 int i;
3464 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3466 /* If X is a push on the stack, do the push now and replace
3467 X with a reference to the stack pointer. */
3468 if (push_operand (x, mode))
3469 x = emit_move_resolve_push (mode, x);
3471 /* If we are in reload, see if either operand is a MEM whose address
3472 is scheduled for replacement. */
3473 if (reload_in_progress && MEM_P (x)
3474 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3475 x = replace_equiv_address_nv (x, inner);
3476 if (reload_in_progress && MEM_P (y)
3477 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3478 y = replace_equiv_address_nv (y, inner);
3480 start_sequence ();
3482 need_clobber = false;
3483 for (i = 0;
3484 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3485 i++)
3487 rtx xpart = operand_subword (x, i, 1, mode);
3488 rtx ypart;
3490 /* Do not generate code for a move if it would come entirely
3491 from the undefined bits of a paradoxical subreg. */
3492 if (undefined_operand_subword_p (y, i))
3493 continue;
3495 ypart = operand_subword (y, i, 1, mode);
3497 /* If we can't get a part of Y, put Y into memory if it is a
3498 constant. Otherwise, force it into a register. Then we must
3499 be able to get a part of Y. */
3500 if (ypart == 0 && CONSTANT_P (y))
3502 y = use_anchored_address (force_const_mem (mode, y));
3503 ypart = operand_subword (y, i, 1, mode);
3505 else if (ypart == 0)
3506 ypart = operand_subword_force (y, i, mode);
3508 gcc_assert (xpart && ypart);
3510 need_clobber |= (GET_CODE (xpart) == SUBREG);
3512 last_insn = emit_move_insn (xpart, ypart);
3515 seq = get_insns ();
3516 end_sequence ();
3518 /* Show the output dies here. This is necessary for SUBREGs
3519 of pseudos since we cannot track their lifetimes correctly;
3520 hard regs shouldn't appear here except as return values.
3521 We never want to emit such a clobber after reload. */
3522 if (x != y
3523 && ! (reload_in_progress || reload_completed)
3524 && need_clobber != 0)
3525 emit_clobber (x);
3527 emit_insn (seq);
3529 return last_insn;
3532 /* Low level part of emit_move_insn.
3533 Called just like emit_move_insn, but assumes X and Y
3534 are basically valid. */
3536 rtx_insn *
3537 emit_move_insn_1 (rtx x, rtx y)
3539 machine_mode mode = GET_MODE (x);
3540 enum insn_code code;
3542 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3544 code = optab_handler (mov_optab, mode);
3545 if (code != CODE_FOR_nothing)
3546 return emit_insn (GEN_FCN (code) (x, y));
3548 /* Expand complex moves by moving real part and imag part. */
3549 if (COMPLEX_MODE_P (mode))
3550 return emit_move_complex (mode, x, y);
3552 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3553 || ALL_FIXED_POINT_MODE_P (mode))
3555 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3557 /* If we can't find an integer mode, use multi words. */
3558 if (result)
3559 return result;
3560 else
3561 return emit_move_multi_word (mode, x, y);
3564 if (GET_MODE_CLASS (mode) == MODE_CC)
3565 return emit_move_ccmode (mode, x, y);
3567 /* Try using a move pattern for the corresponding integer mode. This is
3568 only safe when simplify_subreg can convert MODE constants into integer
3569 constants. At present, it can only do this reliably if the value
3570 fits within a HOST_WIDE_INT. */
3571 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3573 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3575 if (ret)
3577 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3578 return ret;
3582 return emit_move_multi_word (mode, x, y);
3585 /* Generate code to copy Y into X.
3586 Both Y and X must have the same mode, except that
3587 Y can be a constant with VOIDmode.
3588 This mode cannot be BLKmode; use emit_block_move for that.
3590 Return the last instruction emitted. */
3592 rtx_insn *
3593 emit_move_insn (rtx x, rtx y)
3595 machine_mode mode = GET_MODE (x);
3596 rtx y_cst = NULL_RTX;
3597 rtx_insn *last_insn;
3598 rtx set;
3600 gcc_assert (mode != BLKmode
3601 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3603 if (CONSTANT_P (y))
3605 if (optimize
3606 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3607 && (last_insn = compress_float_constant (x, y)))
3608 return last_insn;
3610 y_cst = y;
3612 if (!targetm.legitimate_constant_p (mode, y))
3614 y = force_const_mem (mode, y);
3616 /* If the target's cannot_force_const_mem prevented the spill,
3617 assume that the target's move expanders will also take care
3618 of the non-legitimate constant. */
3619 if (!y)
3620 y = y_cst;
3621 else
3622 y = use_anchored_address (y);
3626 /* If X or Y are memory references, verify that their addresses are valid
3627 for the machine. */
3628 if (MEM_P (x)
3629 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3630 MEM_ADDR_SPACE (x))
3631 && ! push_operand (x, GET_MODE (x))))
3632 x = validize_mem (x);
3634 if (MEM_P (y)
3635 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3636 MEM_ADDR_SPACE (y)))
3637 y = validize_mem (y);
3639 gcc_assert (mode != BLKmode);
3641 last_insn = emit_move_insn_1 (x, y);
3643 if (y_cst && REG_P (x)
3644 && (set = single_set (last_insn)) != NULL_RTX
3645 && SET_DEST (set) == x
3646 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3647 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3649 return last_insn;
3652 /* Generate the body of an instruction to copy Y into X.
3653 It may be a list of insns, if one insn isn't enough. */
3656 gen_move_insn (rtx x, rtx y)
3658 rtx_insn *seq;
3660 start_sequence ();
3661 emit_move_insn_1 (x, y);
3662 seq = get_insns ();
3663 end_sequence ();
3664 return seq;
3667 /* If Y is representable exactly in a narrower mode, and the target can
3668 perform the extension directly from constant or memory, then emit the
3669 move as an extension. */
3671 static rtx_insn *
3672 compress_float_constant (rtx x, rtx y)
3674 machine_mode dstmode = GET_MODE (x);
3675 machine_mode orig_srcmode = GET_MODE (y);
3676 machine_mode srcmode;
3677 REAL_VALUE_TYPE r;
3678 int oldcost, newcost;
3679 bool speed = optimize_insn_for_speed_p ();
3681 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3683 if (targetm.legitimate_constant_p (dstmode, y))
3684 oldcost = set_src_cost (y, speed);
3685 else
3686 oldcost = set_src_cost (force_const_mem (dstmode, y), speed);
3688 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3689 srcmode != orig_srcmode;
3690 srcmode = GET_MODE_WIDER_MODE (srcmode))
3692 enum insn_code ic;
3693 rtx trunc_y;
3694 rtx_insn *last_insn;
3696 /* Skip if the target can't extend this way. */
3697 ic = can_extend_p (dstmode, srcmode, 0);
3698 if (ic == CODE_FOR_nothing)
3699 continue;
3701 /* Skip if the narrowed value isn't exact. */
3702 if (! exact_real_truncate (srcmode, &r))
3703 continue;
3705 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3707 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3709 /* Skip if the target needs extra instructions to perform
3710 the extension. */
3711 if (!insn_operand_matches (ic, 1, trunc_y))
3712 continue;
3713 /* This is valid, but may not be cheaper than the original. */
3714 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3715 speed);
3716 if (oldcost < newcost)
3717 continue;
3719 else if (float_extend_from_mem[dstmode][srcmode])
3721 trunc_y = force_const_mem (srcmode, trunc_y);
3722 /* This is valid, but may not be cheaper than the original. */
3723 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3724 speed);
3725 if (oldcost < newcost)
3726 continue;
3727 trunc_y = validize_mem (trunc_y);
3729 else
3730 continue;
3732 /* For CSE's benefit, force the compressed constant pool entry
3733 into a new pseudo. This constant may be used in different modes,
3734 and if not, combine will put things back together for us. */
3735 trunc_y = force_reg (srcmode, trunc_y);
3737 /* If x is a hard register, perform the extension into a pseudo,
3738 so that e.g. stack realignment code is aware of it. */
3739 rtx target = x;
3740 if (REG_P (x) && HARD_REGISTER_P (x))
3741 target = gen_reg_rtx (dstmode);
3743 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3744 last_insn = get_last_insn ();
3746 if (REG_P (target))
3747 set_unique_reg_note (last_insn, REG_EQUAL, y);
3749 if (target != x)
3750 return emit_move_insn (x, target);
3751 return last_insn;
3754 return NULL;
3757 /* Pushing data onto the stack. */
3759 /* Push a block of length SIZE (perhaps variable)
3760 and return an rtx to address the beginning of the block.
3761 The value may be virtual_outgoing_args_rtx.
3763 EXTRA is the number of bytes of padding to push in addition to SIZE.
3764 BELOW nonzero means this padding comes at low addresses;
3765 otherwise, the padding comes at high addresses. */
3768 push_block (rtx size, int extra, int below)
3770 rtx temp;
3772 size = convert_modes (Pmode, ptr_mode, size, 1);
3773 if (CONSTANT_P (size))
3774 anti_adjust_stack (plus_constant (Pmode, size, extra));
3775 else if (REG_P (size) && extra == 0)
3776 anti_adjust_stack (size);
3777 else
3779 temp = copy_to_mode_reg (Pmode, size);
3780 if (extra != 0)
3781 temp = expand_binop (Pmode, add_optab, temp,
3782 gen_int_mode (extra, Pmode),
3783 temp, 0, OPTAB_LIB_WIDEN);
3784 anti_adjust_stack (temp);
3787 #ifndef STACK_GROWS_DOWNWARD
3788 if (0)
3789 #else
3790 if (1)
3791 #endif
3793 temp = virtual_outgoing_args_rtx;
3794 if (extra != 0 && below)
3795 temp = plus_constant (Pmode, temp, extra);
3797 else
3799 if (CONST_INT_P (size))
3800 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3801 -INTVAL (size) - (below ? 0 : extra));
3802 else if (extra != 0 && !below)
3803 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3804 negate_rtx (Pmode, plus_constant (Pmode, size,
3805 extra)));
3806 else
3807 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3808 negate_rtx (Pmode, size));
3811 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3814 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3816 static rtx
3817 mem_autoinc_base (rtx mem)
3819 if (MEM_P (mem))
3821 rtx addr = XEXP (mem, 0);
3822 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3823 return XEXP (addr, 0);
3825 return NULL;
3828 /* A utility routine used here, in reload, and in try_split. The insns
3829 after PREV up to and including LAST are known to adjust the stack,
3830 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3831 placing notes as appropriate. PREV may be NULL, indicating the
3832 entire insn sequence prior to LAST should be scanned.
3834 The set of allowed stack pointer modifications is small:
3835 (1) One or more auto-inc style memory references (aka pushes),
3836 (2) One or more addition/subtraction with the SP as destination,
3837 (3) A single move insn with the SP as destination,
3838 (4) A call_pop insn,
3839 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3841 Insns in the sequence that do not modify the SP are ignored,
3842 except for noreturn calls.
3844 The return value is the amount of adjustment that can be trivially
3845 verified, via immediate operand or auto-inc. If the adjustment
3846 cannot be trivially extracted, the return value is INT_MIN. */
3848 HOST_WIDE_INT
3849 find_args_size_adjust (rtx_insn *insn)
3851 rtx dest, set, pat;
3852 int i;
3854 pat = PATTERN (insn);
3855 set = NULL;
3857 /* Look for a call_pop pattern. */
3858 if (CALL_P (insn))
3860 /* We have to allow non-call_pop patterns for the case
3861 of emit_single_push_insn of a TLS address. */
3862 if (GET_CODE (pat) != PARALLEL)
3863 return 0;
3865 /* All call_pop have a stack pointer adjust in the parallel.
3866 The call itself is always first, and the stack adjust is
3867 usually last, so search from the end. */
3868 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3870 set = XVECEXP (pat, 0, i);
3871 if (GET_CODE (set) != SET)
3872 continue;
3873 dest = SET_DEST (set);
3874 if (dest == stack_pointer_rtx)
3875 break;
3877 /* We'd better have found the stack pointer adjust. */
3878 if (i == 0)
3879 return 0;
3880 /* Fall through to process the extracted SET and DEST
3881 as if it was a standalone insn. */
3883 else if (GET_CODE (pat) == SET)
3884 set = pat;
3885 else if ((set = single_set (insn)) != NULL)
3887 else if (GET_CODE (pat) == PARALLEL)
3889 /* ??? Some older ports use a parallel with a stack adjust
3890 and a store for a PUSH_ROUNDING pattern, rather than a
3891 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3892 /* ??? See h8300 and m68k, pushqi1. */
3893 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3895 set = XVECEXP (pat, 0, i);
3896 if (GET_CODE (set) != SET)
3897 continue;
3898 dest = SET_DEST (set);
3899 if (dest == stack_pointer_rtx)
3900 break;
3902 /* We do not expect an auto-inc of the sp in the parallel. */
3903 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
3904 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3905 != stack_pointer_rtx);
3907 if (i < 0)
3908 return 0;
3910 else
3911 return 0;
3913 dest = SET_DEST (set);
3915 /* Look for direct modifications of the stack pointer. */
3916 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
3918 /* Look for a trivial adjustment, otherwise assume nothing. */
3919 /* Note that the SPU restore_stack_block pattern refers to
3920 the stack pointer in V4SImode. Consider that non-trivial. */
3921 if (SCALAR_INT_MODE_P (GET_MODE (dest))
3922 && GET_CODE (SET_SRC (set)) == PLUS
3923 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
3924 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3925 return INTVAL (XEXP (SET_SRC (set), 1));
3926 /* ??? Reload can generate no-op moves, which will be cleaned
3927 up later. Recognize it and continue searching. */
3928 else if (rtx_equal_p (dest, SET_SRC (set)))
3929 return 0;
3930 else
3931 return HOST_WIDE_INT_MIN;
3933 else
3935 rtx mem, addr;
3937 /* Otherwise only think about autoinc patterns. */
3938 if (mem_autoinc_base (dest) == stack_pointer_rtx)
3940 mem = dest;
3941 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3942 != stack_pointer_rtx);
3944 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
3945 mem = SET_SRC (set);
3946 else
3947 return 0;
3949 addr = XEXP (mem, 0);
3950 switch (GET_CODE (addr))
3952 case PRE_INC:
3953 case POST_INC:
3954 return GET_MODE_SIZE (GET_MODE (mem));
3955 case PRE_DEC:
3956 case POST_DEC:
3957 return -GET_MODE_SIZE (GET_MODE (mem));
3958 case PRE_MODIFY:
3959 case POST_MODIFY:
3960 addr = XEXP (addr, 1);
3961 gcc_assert (GET_CODE (addr) == PLUS);
3962 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
3963 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
3964 return INTVAL (XEXP (addr, 1));
3965 default:
3966 gcc_unreachable ();
3972 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, int end_args_size)
3974 int args_size = end_args_size;
3975 bool saw_unknown = false;
3976 rtx_insn *insn;
3978 for (insn = last; insn != prev; insn = PREV_INSN (insn))
3980 HOST_WIDE_INT this_delta;
3982 if (!NONDEBUG_INSN_P (insn))
3983 continue;
3985 this_delta = find_args_size_adjust (insn);
3986 if (this_delta == 0)
3988 if (!CALL_P (insn)
3989 || ACCUMULATE_OUTGOING_ARGS
3990 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
3991 continue;
3994 gcc_assert (!saw_unknown);
3995 if (this_delta == HOST_WIDE_INT_MIN)
3996 saw_unknown = true;
3998 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
3999 #ifdef STACK_GROWS_DOWNWARD
4000 this_delta = -(unsigned HOST_WIDE_INT) this_delta;
4001 #endif
4002 args_size -= this_delta;
4005 return saw_unknown ? INT_MIN : args_size;
4008 #ifdef PUSH_ROUNDING
4009 /* Emit single push insn. */
4011 static void
4012 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4014 rtx dest_addr;
4015 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4016 rtx dest;
4017 enum insn_code icode;
4019 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4020 /* If there is push pattern, use it. Otherwise try old way of throwing
4021 MEM representing push operation to move expander. */
4022 icode = optab_handler (push_optab, mode);
4023 if (icode != CODE_FOR_nothing)
4025 struct expand_operand ops[1];
4027 create_input_operand (&ops[0], x, mode);
4028 if (maybe_expand_insn (icode, 1, ops))
4029 return;
4031 if (GET_MODE_SIZE (mode) == rounded_size)
4032 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4033 /* If we are to pad downward, adjust the stack pointer first and
4034 then store X into the stack location using an offset. This is
4035 because emit_move_insn does not know how to pad; it does not have
4036 access to type. */
4037 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
4039 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
4040 HOST_WIDE_INT offset;
4042 emit_move_insn (stack_pointer_rtx,
4043 expand_binop (Pmode,
4044 #ifdef STACK_GROWS_DOWNWARD
4045 sub_optab,
4046 #else
4047 add_optab,
4048 #endif
4049 stack_pointer_rtx,
4050 gen_int_mode (rounded_size, Pmode),
4051 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4053 offset = (HOST_WIDE_INT) padding_size;
4054 #ifdef STACK_GROWS_DOWNWARD
4055 if (STACK_PUSH_CODE == POST_DEC)
4056 /* We have already decremented the stack pointer, so get the
4057 previous value. */
4058 offset += (HOST_WIDE_INT) rounded_size;
4059 #else
4060 if (STACK_PUSH_CODE == POST_INC)
4061 /* We have already incremented the stack pointer, so get the
4062 previous value. */
4063 offset -= (HOST_WIDE_INT) rounded_size;
4064 #endif
4065 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4066 gen_int_mode (offset, Pmode));
4068 else
4070 #ifdef STACK_GROWS_DOWNWARD
4071 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4072 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4073 gen_int_mode (-(HOST_WIDE_INT) rounded_size,
4074 Pmode));
4075 #else
4076 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4077 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4078 gen_int_mode (rounded_size, Pmode));
4079 #endif
4080 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4083 dest = gen_rtx_MEM (mode, dest_addr);
4085 if (type != 0)
4087 set_mem_attributes (dest, type, 1);
4089 if (cfun->tail_call_marked)
4090 /* Function incoming arguments may overlap with sibling call
4091 outgoing arguments and we cannot allow reordering of reads
4092 from function arguments with stores to outgoing arguments
4093 of sibling calls. */
4094 set_mem_alias_set (dest, 0);
4096 emit_move_insn (dest, x);
4099 /* Emit and annotate a single push insn. */
4101 static void
4102 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4104 int delta, old_delta = stack_pointer_delta;
4105 rtx_insn *prev = get_last_insn ();
4106 rtx_insn *last;
4108 emit_single_push_insn_1 (mode, x, type);
4110 last = get_last_insn ();
4112 /* Notice the common case where we emitted exactly one insn. */
4113 if (PREV_INSN (last) == prev)
4115 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
4116 return;
4119 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4120 gcc_assert (delta == INT_MIN || delta == old_delta);
4122 #endif
4124 /* Generate code to push X onto the stack, assuming it has mode MODE and
4125 type TYPE.
4126 MODE is redundant except when X is a CONST_INT (since they don't
4127 carry mode info).
4128 SIZE is an rtx for the size of data to be copied (in bytes),
4129 needed only if X is BLKmode.
4131 ALIGN (in bits) is maximum alignment we can assume.
4133 If PARTIAL and REG are both nonzero, then copy that many of the first
4134 bytes of X into registers starting with REG, and push the rest of X.
4135 The amount of space pushed is decreased by PARTIAL bytes.
4136 REG must be a hard register in this case.
4137 If REG is zero but PARTIAL is not, take any all others actions for an
4138 argument partially in registers, but do not actually load any
4139 registers.
4141 EXTRA is the amount in bytes of extra space to leave next to this arg.
4142 This is ignored if an argument block has already been allocated.
4144 On a machine that lacks real push insns, ARGS_ADDR is the address of
4145 the bottom of the argument block for this call. We use indexing off there
4146 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4147 argument block has not been preallocated.
4149 ARGS_SO_FAR is the size of args previously pushed for this call.
4151 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4152 for arguments passed in registers. If nonzero, it will be the number
4153 of bytes required. */
4155 void
4156 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4157 unsigned int align, int partial, rtx reg, int extra,
4158 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4159 rtx alignment_pad)
4161 rtx xinner;
4162 enum direction stack_direction
4163 #ifdef STACK_GROWS_DOWNWARD
4164 = downward;
4165 #else
4166 = upward;
4167 #endif
4169 /* Decide where to pad the argument: `downward' for below,
4170 `upward' for above, or `none' for don't pad it.
4171 Default is below for small data on big-endian machines; else above. */
4172 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
4174 /* Invert direction if stack is post-decrement.
4175 FIXME: why? */
4176 if (STACK_PUSH_CODE == POST_DEC)
4177 if (where_pad != none)
4178 where_pad = (where_pad == downward ? upward : downward);
4180 xinner = x;
4182 if (mode == BLKmode
4183 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4185 /* Copy a block into the stack, entirely or partially. */
4187 rtx temp;
4188 int used;
4189 int offset;
4190 int skip;
4192 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4193 used = partial - offset;
4195 if (mode != BLKmode)
4197 /* A value is to be stored in an insufficiently aligned
4198 stack slot; copy via a suitably aligned slot if
4199 necessary. */
4200 size = GEN_INT (GET_MODE_SIZE (mode));
4201 if (!MEM_P (xinner))
4203 temp = assign_temp (type, 1, 1);
4204 emit_move_insn (temp, xinner);
4205 xinner = temp;
4209 gcc_assert (size);
4211 /* USED is now the # of bytes we need not copy to the stack
4212 because registers will take care of them. */
4214 if (partial != 0)
4215 xinner = adjust_address (xinner, BLKmode, used);
4217 /* If the partial register-part of the arg counts in its stack size,
4218 skip the part of stack space corresponding to the registers.
4219 Otherwise, start copying to the beginning of the stack space,
4220 by setting SKIP to 0. */
4221 skip = (reg_parm_stack_space == 0) ? 0 : used;
4223 #ifdef PUSH_ROUNDING
4224 /* Do it with several push insns if that doesn't take lots of insns
4225 and if there is no difficulty with push insns that skip bytes
4226 on the stack for alignment purposes. */
4227 if (args_addr == 0
4228 && PUSH_ARGS
4229 && CONST_INT_P (size)
4230 && skip == 0
4231 && MEM_ALIGN (xinner) >= align
4232 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4233 /* Here we avoid the case of a structure whose weak alignment
4234 forces many pushes of a small amount of data,
4235 and such small pushes do rounding that causes trouble. */
4236 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
4237 || align >= BIGGEST_ALIGNMENT
4238 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4239 == (align / BITS_PER_UNIT)))
4240 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4242 /* Push padding now if padding above and stack grows down,
4243 or if padding below and stack grows up.
4244 But if space already allocated, this has already been done. */
4245 if (extra && args_addr == 0
4246 && where_pad != none && where_pad != stack_direction)
4247 anti_adjust_stack (GEN_INT (extra));
4249 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4251 else
4252 #endif /* PUSH_ROUNDING */
4254 rtx target;
4256 /* Otherwise make space on the stack and copy the data
4257 to the address of that space. */
4259 /* Deduct words put into registers from the size we must copy. */
4260 if (partial != 0)
4262 if (CONST_INT_P (size))
4263 size = GEN_INT (INTVAL (size) - used);
4264 else
4265 size = expand_binop (GET_MODE (size), sub_optab, size,
4266 gen_int_mode (used, GET_MODE (size)),
4267 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4270 /* Get the address of the stack space.
4271 In this case, we do not deal with EXTRA separately.
4272 A single stack adjust will do. */
4273 if (! args_addr)
4275 temp = push_block (size, extra, where_pad == downward);
4276 extra = 0;
4278 else if (CONST_INT_P (args_so_far))
4279 temp = memory_address (BLKmode,
4280 plus_constant (Pmode, args_addr,
4281 skip + INTVAL (args_so_far)));
4282 else
4283 temp = memory_address (BLKmode,
4284 plus_constant (Pmode,
4285 gen_rtx_PLUS (Pmode,
4286 args_addr,
4287 args_so_far),
4288 skip));
4290 if (!ACCUMULATE_OUTGOING_ARGS)
4292 /* If the source is referenced relative to the stack pointer,
4293 copy it to another register to stabilize it. We do not need
4294 to do this if we know that we won't be changing sp. */
4296 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4297 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4298 temp = copy_to_reg (temp);
4301 target = gen_rtx_MEM (BLKmode, temp);
4303 /* We do *not* set_mem_attributes here, because incoming arguments
4304 may overlap with sibling call outgoing arguments and we cannot
4305 allow reordering of reads from function arguments with stores
4306 to outgoing arguments of sibling calls. We do, however, want
4307 to record the alignment of the stack slot. */
4308 /* ALIGN may well be better aligned than TYPE, e.g. due to
4309 PARM_BOUNDARY. Assume the caller isn't lying. */
4310 set_mem_align (target, align);
4312 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4315 else if (partial > 0)
4317 /* Scalar partly in registers. */
4319 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4320 int i;
4321 int not_stack;
4322 /* # bytes of start of argument
4323 that we must make space for but need not store. */
4324 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4325 int args_offset = INTVAL (args_so_far);
4326 int skip;
4328 /* Push padding now if padding above and stack grows down,
4329 or if padding below and stack grows up.
4330 But if space already allocated, this has already been done. */
4331 if (extra && args_addr == 0
4332 && where_pad != none && where_pad != stack_direction)
4333 anti_adjust_stack (GEN_INT (extra));
4335 /* If we make space by pushing it, we might as well push
4336 the real data. Otherwise, we can leave OFFSET nonzero
4337 and leave the space uninitialized. */
4338 if (args_addr == 0)
4339 offset = 0;
4341 /* Now NOT_STACK gets the number of words that we don't need to
4342 allocate on the stack. Convert OFFSET to words too. */
4343 not_stack = (partial - offset) / UNITS_PER_WORD;
4344 offset /= UNITS_PER_WORD;
4346 /* If the partial register-part of the arg counts in its stack size,
4347 skip the part of stack space corresponding to the registers.
4348 Otherwise, start copying to the beginning of the stack space,
4349 by setting SKIP to 0. */
4350 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4352 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4353 x = validize_mem (force_const_mem (mode, x));
4355 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4356 SUBREGs of such registers are not allowed. */
4357 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4358 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4359 x = copy_to_reg (x);
4361 /* Loop over all the words allocated on the stack for this arg. */
4362 /* We can do it by words, because any scalar bigger than a word
4363 has a size a multiple of a word. */
4364 for (i = size - 1; i >= not_stack; i--)
4365 if (i >= not_stack + offset)
4366 emit_push_insn (operand_subword_force (x, i, mode),
4367 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4368 0, args_addr,
4369 GEN_INT (args_offset + ((i - not_stack + skip)
4370 * UNITS_PER_WORD)),
4371 reg_parm_stack_space, alignment_pad);
4373 else
4375 rtx addr;
4376 rtx dest;
4378 /* Push padding now if padding above and stack grows down,
4379 or if padding below and stack grows up.
4380 But if space already allocated, this has already been done. */
4381 if (extra && args_addr == 0
4382 && where_pad != none && where_pad != stack_direction)
4383 anti_adjust_stack (GEN_INT (extra));
4385 #ifdef PUSH_ROUNDING
4386 if (args_addr == 0 && PUSH_ARGS)
4387 emit_single_push_insn (mode, x, type);
4388 else
4389 #endif
4391 if (CONST_INT_P (args_so_far))
4392 addr
4393 = memory_address (mode,
4394 plus_constant (Pmode, args_addr,
4395 INTVAL (args_so_far)));
4396 else
4397 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4398 args_so_far));
4399 dest = gen_rtx_MEM (mode, addr);
4401 /* We do *not* set_mem_attributes here, because incoming arguments
4402 may overlap with sibling call outgoing arguments and we cannot
4403 allow reordering of reads from function arguments with stores
4404 to outgoing arguments of sibling calls. We do, however, want
4405 to record the alignment of the stack slot. */
4406 /* ALIGN may well be better aligned than TYPE, e.g. due to
4407 PARM_BOUNDARY. Assume the caller isn't lying. */
4408 set_mem_align (dest, align);
4410 emit_move_insn (dest, x);
4414 /* If part should go in registers, copy that part
4415 into the appropriate registers. Do this now, at the end,
4416 since mem-to-mem copies above may do function calls. */
4417 if (partial > 0 && reg != 0)
4419 /* Handle calls that pass values in multiple non-contiguous locations.
4420 The Irix 6 ABI has examples of this. */
4421 if (GET_CODE (reg) == PARALLEL)
4422 emit_group_load (reg, x, type, -1);
4423 else
4425 gcc_assert (partial % UNITS_PER_WORD == 0);
4426 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4430 if (extra && args_addr == 0 && where_pad == stack_direction)
4431 anti_adjust_stack (GEN_INT (extra));
4433 if (alignment_pad && args_addr == 0)
4434 anti_adjust_stack (alignment_pad);
4437 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4438 operations. */
4440 static rtx
4441 get_subtarget (rtx x)
4443 return (optimize
4444 || x == 0
4445 /* Only registers can be subtargets. */
4446 || !REG_P (x)
4447 /* Don't use hard regs to avoid extending their life. */
4448 || REGNO (x) < FIRST_PSEUDO_REGISTER
4449 ? 0 : x);
4452 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4453 FIELD is a bitfield. Returns true if the optimization was successful,
4454 and there's nothing else to do. */
4456 static bool
4457 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4458 unsigned HOST_WIDE_INT bitpos,
4459 unsigned HOST_WIDE_INT bitregion_start,
4460 unsigned HOST_WIDE_INT bitregion_end,
4461 machine_mode mode1, rtx str_rtx,
4462 tree to, tree src)
4464 machine_mode str_mode = GET_MODE (str_rtx);
4465 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4466 tree op0, op1;
4467 rtx value, result;
4468 optab binop;
4469 gimple srcstmt;
4470 enum tree_code code;
4472 if (mode1 != VOIDmode
4473 || bitsize >= BITS_PER_WORD
4474 || str_bitsize > BITS_PER_WORD
4475 || TREE_SIDE_EFFECTS (to)
4476 || TREE_THIS_VOLATILE (to))
4477 return false;
4479 STRIP_NOPS (src);
4480 if (TREE_CODE (src) != SSA_NAME)
4481 return false;
4482 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4483 return false;
4485 srcstmt = get_gimple_for_ssa_name (src);
4486 if (!srcstmt
4487 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4488 return false;
4490 code = gimple_assign_rhs_code (srcstmt);
4492 op0 = gimple_assign_rhs1 (srcstmt);
4494 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4495 to find its initialization. Hopefully the initialization will
4496 be from a bitfield load. */
4497 if (TREE_CODE (op0) == SSA_NAME)
4499 gimple op0stmt = get_gimple_for_ssa_name (op0);
4501 /* We want to eventually have OP0 be the same as TO, which
4502 should be a bitfield. */
4503 if (!op0stmt
4504 || !is_gimple_assign (op0stmt)
4505 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4506 return false;
4507 op0 = gimple_assign_rhs1 (op0stmt);
4510 op1 = gimple_assign_rhs2 (srcstmt);
4512 if (!operand_equal_p (to, op0, 0))
4513 return false;
4515 if (MEM_P (str_rtx))
4517 unsigned HOST_WIDE_INT offset1;
4519 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4520 str_mode = word_mode;
4521 str_mode = get_best_mode (bitsize, bitpos,
4522 bitregion_start, bitregion_end,
4523 MEM_ALIGN (str_rtx), str_mode, 0);
4524 if (str_mode == VOIDmode)
4525 return false;
4526 str_bitsize = GET_MODE_BITSIZE (str_mode);
4528 offset1 = bitpos;
4529 bitpos %= str_bitsize;
4530 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4531 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4533 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4534 return false;
4536 /* If the bit field covers the whole REG/MEM, store_field
4537 will likely generate better code. */
4538 if (bitsize >= str_bitsize)
4539 return false;
4541 /* We can't handle fields split across multiple entities. */
4542 if (bitpos + bitsize > str_bitsize)
4543 return false;
4545 if (BYTES_BIG_ENDIAN)
4546 bitpos = str_bitsize - bitpos - bitsize;
4548 switch (code)
4550 case PLUS_EXPR:
4551 case MINUS_EXPR:
4552 /* For now, just optimize the case of the topmost bitfield
4553 where we don't need to do any masking and also
4554 1 bit bitfields where xor can be used.
4555 We might win by one instruction for the other bitfields
4556 too if insv/extv instructions aren't used, so that
4557 can be added later. */
4558 if (bitpos + bitsize != str_bitsize
4559 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4560 break;
4562 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4563 value = convert_modes (str_mode,
4564 TYPE_MODE (TREE_TYPE (op1)), value,
4565 TYPE_UNSIGNED (TREE_TYPE (op1)));
4567 /* We may be accessing data outside the field, which means
4568 we can alias adjacent data. */
4569 if (MEM_P (str_rtx))
4571 str_rtx = shallow_copy_rtx (str_rtx);
4572 set_mem_alias_set (str_rtx, 0);
4573 set_mem_expr (str_rtx, 0);
4576 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4577 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4579 value = expand_and (str_mode, value, const1_rtx, NULL);
4580 binop = xor_optab;
4582 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4583 result = expand_binop (str_mode, binop, str_rtx,
4584 value, str_rtx, 1, OPTAB_WIDEN);
4585 if (result != str_rtx)
4586 emit_move_insn (str_rtx, result);
4587 return true;
4589 case BIT_IOR_EXPR:
4590 case BIT_XOR_EXPR:
4591 if (TREE_CODE (op1) != INTEGER_CST)
4592 break;
4593 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4594 value = convert_modes (str_mode,
4595 TYPE_MODE (TREE_TYPE (op1)), value,
4596 TYPE_UNSIGNED (TREE_TYPE (op1)));
4598 /* We may be accessing data outside the field, which means
4599 we can alias adjacent data. */
4600 if (MEM_P (str_rtx))
4602 str_rtx = shallow_copy_rtx (str_rtx);
4603 set_mem_alias_set (str_rtx, 0);
4604 set_mem_expr (str_rtx, 0);
4607 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4608 if (bitpos + bitsize != str_bitsize)
4610 rtx mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << bitsize) - 1,
4611 str_mode);
4612 value = expand_and (str_mode, value, mask, NULL_RTX);
4614 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4615 result = expand_binop (str_mode, binop, str_rtx,
4616 value, str_rtx, 1, OPTAB_WIDEN);
4617 if (result != str_rtx)
4618 emit_move_insn (str_rtx, result);
4619 return true;
4621 default:
4622 break;
4625 return false;
4628 /* In the C++ memory model, consecutive bit fields in a structure are
4629 considered one memory location.
4631 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4632 returns the bit range of consecutive bits in which this COMPONENT_REF
4633 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4634 and *OFFSET may be adjusted in the process.
4636 If the access does not need to be restricted, 0 is returned in both
4637 *BITSTART and *BITEND. */
4639 static void
4640 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4641 unsigned HOST_WIDE_INT *bitend,
4642 tree exp,
4643 HOST_WIDE_INT *bitpos,
4644 tree *offset)
4646 HOST_WIDE_INT bitoffset;
4647 tree field, repr;
4649 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4651 field = TREE_OPERAND (exp, 1);
4652 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4653 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4654 need to limit the range we can access. */
4655 if (!repr)
4657 *bitstart = *bitend = 0;
4658 return;
4661 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4662 part of a larger bit field, then the representative does not serve any
4663 useful purpose. This can occur in Ada. */
4664 if (handled_component_p (TREE_OPERAND (exp, 0)))
4666 machine_mode rmode;
4667 HOST_WIDE_INT rbitsize, rbitpos;
4668 tree roffset;
4669 int unsignedp;
4670 int volatilep = 0;
4671 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4672 &roffset, &rmode, &unsignedp, &volatilep, false);
4673 if ((rbitpos % BITS_PER_UNIT) != 0)
4675 *bitstart = *bitend = 0;
4676 return;
4680 /* Compute the adjustment to bitpos from the offset of the field
4681 relative to the representative. DECL_FIELD_OFFSET of field and
4682 repr are the same by construction if they are not constants,
4683 see finish_bitfield_layout. */
4684 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
4685 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
4686 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
4687 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
4688 else
4689 bitoffset = 0;
4690 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4691 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4693 /* If the adjustment is larger than bitpos, we would have a negative bit
4694 position for the lower bound and this may wreak havoc later. Adjust
4695 offset and bitpos to make the lower bound non-negative in that case. */
4696 if (bitoffset > *bitpos)
4698 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4699 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4701 *bitpos += adjust;
4702 if (*offset == NULL_TREE)
4703 *offset = size_int (-adjust / BITS_PER_UNIT);
4704 else
4705 *offset
4706 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4707 *bitstart = 0;
4709 else
4710 *bitstart = *bitpos - bitoffset;
4712 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4715 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4716 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4717 DECL_RTL was not set yet, return NORTL. */
4719 static inline bool
4720 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4722 if (TREE_CODE (addr) != ADDR_EXPR)
4723 return false;
4725 tree base = TREE_OPERAND (addr, 0);
4727 if (!DECL_P (base)
4728 || TREE_ADDRESSABLE (base)
4729 || DECL_MODE (base) == BLKmode)
4730 return false;
4732 if (!DECL_RTL_SET_P (base))
4733 return nortl;
4735 return (!MEM_P (DECL_RTL (base)));
4738 /* Returns true if the MEM_REF REF refers to an object that does not
4739 reside in memory and has non-BLKmode. */
4741 static inline bool
4742 mem_ref_refers_to_non_mem_p (tree ref)
4744 tree base = TREE_OPERAND (ref, 0);
4745 return addr_expr_of_non_mem_decl_p_1 (base, false);
4748 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4749 is true, try generating a nontemporal store. */
4751 void
4752 expand_assignment (tree to, tree from, bool nontemporal)
4754 rtx to_rtx = 0;
4755 rtx result;
4756 machine_mode mode;
4757 unsigned int align;
4758 enum insn_code icode;
4760 /* Don't crash if the lhs of the assignment was erroneous. */
4761 if (TREE_CODE (to) == ERROR_MARK)
4763 expand_normal (from);
4764 return;
4767 /* Optimize away no-op moves without side-effects. */
4768 if (operand_equal_p (to, from, 0))
4769 return;
4771 /* Handle misaligned stores. */
4772 mode = TYPE_MODE (TREE_TYPE (to));
4773 if ((TREE_CODE (to) == MEM_REF
4774 || TREE_CODE (to) == TARGET_MEM_REF)
4775 && mode != BLKmode
4776 && !mem_ref_refers_to_non_mem_p (to)
4777 && ((align = get_object_alignment (to))
4778 < GET_MODE_ALIGNMENT (mode))
4779 && (((icode = optab_handler (movmisalign_optab, mode))
4780 != CODE_FOR_nothing)
4781 || SLOW_UNALIGNED_ACCESS (mode, align)))
4783 rtx reg, mem;
4785 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4786 reg = force_not_mem (reg);
4787 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4789 if (icode != CODE_FOR_nothing)
4791 struct expand_operand ops[2];
4793 create_fixed_operand (&ops[0], mem);
4794 create_input_operand (&ops[1], reg, mode);
4795 /* The movmisalign<mode> pattern cannot fail, else the assignment
4796 would silently be omitted. */
4797 expand_insn (icode, 2, ops);
4799 else
4800 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg);
4801 return;
4804 /* Assignment of a structure component needs special treatment
4805 if the structure component's rtx is not simply a MEM.
4806 Assignment of an array element at a constant index, and assignment of
4807 an array element in an unaligned packed structure field, has the same
4808 problem. Same for (partially) storing into a non-memory object. */
4809 if (handled_component_p (to)
4810 || (TREE_CODE (to) == MEM_REF
4811 && mem_ref_refers_to_non_mem_p (to))
4812 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4814 machine_mode mode1;
4815 HOST_WIDE_INT bitsize, bitpos;
4816 unsigned HOST_WIDE_INT bitregion_start = 0;
4817 unsigned HOST_WIDE_INT bitregion_end = 0;
4818 tree offset;
4819 int unsignedp;
4820 int volatilep = 0;
4821 tree tem;
4823 push_temp_slots ();
4824 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4825 &unsignedp, &volatilep, true);
4827 /* Make sure bitpos is not negative, it can wreak havoc later. */
4828 if (bitpos < 0)
4830 gcc_assert (offset == NULL_TREE);
4831 offset = size_int (bitpos >> (BITS_PER_UNIT == 8
4832 ? 3 : exact_log2 (BITS_PER_UNIT)));
4833 bitpos &= BITS_PER_UNIT - 1;
4836 if (TREE_CODE (to) == COMPONENT_REF
4837 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
4838 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
4839 /* The C++ memory model naturally applies to byte-aligned fields.
4840 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4841 BITSIZE are not byte-aligned, there is no need to limit the range
4842 we can access. This can occur with packed structures in Ada. */
4843 else if (bitsize > 0
4844 && bitsize % BITS_PER_UNIT == 0
4845 && bitpos % BITS_PER_UNIT == 0)
4847 bitregion_start = bitpos;
4848 bitregion_end = bitpos + bitsize - 1;
4851 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
4853 /* If the field has a mode, we want to access it in the
4854 field's mode, not the computed mode.
4855 If a MEM has VOIDmode (external with incomplete type),
4856 use BLKmode for it instead. */
4857 if (MEM_P (to_rtx))
4859 if (mode1 != VOIDmode)
4860 to_rtx = adjust_address (to_rtx, mode1, 0);
4861 else if (GET_MODE (to_rtx) == VOIDmode)
4862 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4865 if (offset != 0)
4867 machine_mode address_mode;
4868 rtx offset_rtx;
4870 if (!MEM_P (to_rtx))
4872 /* We can get constant negative offsets into arrays with broken
4873 user code. Translate this to a trap instead of ICEing. */
4874 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4875 expand_builtin_trap ();
4876 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4879 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4880 address_mode = get_address_mode (to_rtx);
4881 if (GET_MODE (offset_rtx) != address_mode)
4882 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4884 /* If we have an expression in OFFSET_RTX and a non-zero
4885 byte offset in BITPOS, adding the byte offset before the
4886 OFFSET_RTX results in better intermediate code, which makes
4887 later rtl optimization passes perform better.
4889 We prefer intermediate code like this:
4891 r124:DI=r123:DI+0x18
4892 [r124:DI]=r121:DI
4894 ... instead of ...
4896 r124:DI=r123:DI+0x10
4897 [r124:DI+0x8]=r121:DI
4899 This is only done for aligned data values, as these can
4900 be expected to result in single move instructions. */
4901 if (mode1 != VOIDmode
4902 && bitpos != 0
4903 && bitsize > 0
4904 && (bitpos % bitsize) == 0
4905 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4906 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
4908 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4909 bitregion_start = 0;
4910 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
4911 bitregion_end -= bitpos;
4912 bitpos = 0;
4915 to_rtx = offset_address (to_rtx, offset_rtx,
4916 highest_pow2_factor_for_target (to,
4917 offset));
4920 /* No action is needed if the target is not a memory and the field
4921 lies completely outside that target. This can occur if the source
4922 code contains an out-of-bounds access to a small array. */
4923 if (!MEM_P (to_rtx)
4924 && GET_MODE (to_rtx) != BLKmode
4925 && (unsigned HOST_WIDE_INT) bitpos
4926 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
4928 expand_normal (from);
4929 result = NULL;
4931 /* Handle expand_expr of a complex value returning a CONCAT. */
4932 else if (GET_CODE (to_rtx) == CONCAT)
4934 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
4935 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
4936 && bitpos == 0
4937 && bitsize == mode_bitsize)
4938 result = store_expr (from, to_rtx, false, nontemporal);
4939 else if (bitsize == mode_bitsize / 2
4940 && (bitpos == 0 || bitpos == mode_bitsize / 2))
4941 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4942 nontemporal);
4943 else if (bitpos + bitsize <= mode_bitsize / 2)
4944 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
4945 bitregion_start, bitregion_end,
4946 mode1, from,
4947 get_alias_set (to), nontemporal);
4948 else if (bitpos >= mode_bitsize / 2)
4949 result = store_field (XEXP (to_rtx, 1), bitsize,
4950 bitpos - mode_bitsize / 2,
4951 bitregion_start, bitregion_end,
4952 mode1, from,
4953 get_alias_set (to), nontemporal);
4954 else if (bitpos == 0 && bitsize == mode_bitsize)
4956 rtx from_rtx;
4957 result = expand_normal (from);
4958 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
4959 TYPE_MODE (TREE_TYPE (from)), 0);
4960 emit_move_insn (XEXP (to_rtx, 0),
4961 read_complex_part (from_rtx, false));
4962 emit_move_insn (XEXP (to_rtx, 1),
4963 read_complex_part (from_rtx, true));
4965 else
4967 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
4968 GET_MODE_SIZE (GET_MODE (to_rtx)));
4969 write_complex_part (temp, XEXP (to_rtx, 0), false);
4970 write_complex_part (temp, XEXP (to_rtx, 1), true);
4971 result = store_field (temp, bitsize, bitpos,
4972 bitregion_start, bitregion_end,
4973 mode1, from,
4974 get_alias_set (to), nontemporal);
4975 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
4976 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
4979 else
4981 if (MEM_P (to_rtx))
4983 /* If the field is at offset zero, we could have been given the
4984 DECL_RTX of the parent struct. Don't munge it. */
4985 to_rtx = shallow_copy_rtx (to_rtx);
4986 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4987 if (volatilep)
4988 MEM_VOLATILE_P (to_rtx) = 1;
4991 if (optimize_bitfield_assignment_op (bitsize, bitpos,
4992 bitregion_start, bitregion_end,
4993 mode1,
4994 to_rtx, to, from))
4995 result = NULL;
4996 else
4997 result = store_field (to_rtx, bitsize, bitpos,
4998 bitregion_start, bitregion_end,
4999 mode1, from,
5000 get_alias_set (to), nontemporal);
5003 if (result)
5004 preserve_temp_slots (result);
5005 pop_temp_slots ();
5006 return;
5009 /* If the rhs is a function call and its value is not an aggregate,
5010 call the function before we start to compute the lhs.
5011 This is needed for correct code for cases such as
5012 val = setjmp (buf) on machines where reference to val
5013 requires loading up part of an address in a separate insn.
5015 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5016 since it might be a promoted variable where the zero- or sign- extension
5017 needs to be done. Handling this in the normal way is safe because no
5018 computation is done before the call. The same is true for SSA names. */
5019 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5020 && COMPLETE_TYPE_P (TREE_TYPE (from))
5021 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5022 && ! (((TREE_CODE (to) == VAR_DECL
5023 || TREE_CODE (to) == PARM_DECL
5024 || TREE_CODE (to) == RESULT_DECL)
5025 && REG_P (DECL_RTL (to)))
5026 || TREE_CODE (to) == SSA_NAME))
5028 rtx value;
5029 rtx bounds;
5031 push_temp_slots ();
5032 value = expand_normal (from);
5034 /* Split value and bounds to store them separately. */
5035 chkp_split_slot (value, &value, &bounds);
5037 if (to_rtx == 0)
5038 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5040 /* Handle calls that return values in multiple non-contiguous locations.
5041 The Irix 6 ABI has examples of this. */
5042 if (GET_CODE (to_rtx) == PARALLEL)
5044 if (GET_CODE (value) == PARALLEL)
5045 emit_group_move (to_rtx, value);
5046 else
5047 emit_group_load (to_rtx, value, TREE_TYPE (from),
5048 int_size_in_bytes (TREE_TYPE (from)));
5050 else if (GET_CODE (value) == PARALLEL)
5051 emit_group_store (to_rtx, value, TREE_TYPE (from),
5052 int_size_in_bytes (TREE_TYPE (from)));
5053 else if (GET_MODE (to_rtx) == BLKmode)
5055 /* Handle calls that return BLKmode values in registers. */
5056 if (REG_P (value))
5057 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5058 else
5059 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5061 else
5063 if (POINTER_TYPE_P (TREE_TYPE (to)))
5064 value = convert_memory_address_addr_space
5065 (GET_MODE (to_rtx), value,
5066 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5068 emit_move_insn (to_rtx, value);
5071 /* Store bounds if required. */
5072 if (bounds
5073 && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to))))
5075 gcc_assert (MEM_P (to_rtx));
5076 chkp_emit_bounds_store (bounds, value, to_rtx);
5079 preserve_temp_slots (to_rtx);
5080 pop_temp_slots ();
5081 return;
5084 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5085 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5087 /* Don't move directly into a return register. */
5088 if (TREE_CODE (to) == RESULT_DECL
5089 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5091 rtx temp;
5093 push_temp_slots ();
5095 /* If the source is itself a return value, it still is in a pseudo at
5096 this point so we can move it back to the return register directly. */
5097 if (REG_P (to_rtx)
5098 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5099 && TREE_CODE (from) != CALL_EXPR)
5100 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5101 else
5102 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5104 /* Handle calls that return values in multiple non-contiguous locations.
5105 The Irix 6 ABI has examples of this. */
5106 if (GET_CODE (to_rtx) == PARALLEL)
5108 if (GET_CODE (temp) == PARALLEL)
5109 emit_group_move (to_rtx, temp);
5110 else
5111 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5112 int_size_in_bytes (TREE_TYPE (from)));
5114 else if (temp)
5115 emit_move_insn (to_rtx, temp);
5117 preserve_temp_slots (to_rtx);
5118 pop_temp_slots ();
5119 return;
5122 /* In case we are returning the contents of an object which overlaps
5123 the place the value is being stored, use a safe function when copying
5124 a value through a pointer into a structure value return block. */
5125 if (TREE_CODE (to) == RESULT_DECL
5126 && TREE_CODE (from) == INDIRECT_REF
5127 && ADDR_SPACE_GENERIC_P
5128 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5129 && refs_may_alias_p (to, from)
5130 && cfun->returns_struct
5131 && !cfun->returns_pcc_struct)
5133 rtx from_rtx, size;
5135 push_temp_slots ();
5136 size = expr_size (from);
5137 from_rtx = expand_normal (from);
5139 emit_library_call (memmove_libfunc, LCT_NORMAL,
5140 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
5141 XEXP (from_rtx, 0), Pmode,
5142 convert_to_mode (TYPE_MODE (sizetype),
5143 size, TYPE_UNSIGNED (sizetype)),
5144 TYPE_MODE (sizetype));
5146 preserve_temp_slots (to_rtx);
5147 pop_temp_slots ();
5148 return;
5151 /* Compute FROM and store the value in the rtx we got. */
5153 push_temp_slots ();
5154 result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, to);
5155 preserve_temp_slots (result);
5156 pop_temp_slots ();
5157 return;
5160 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5161 succeeded, false otherwise. */
5163 bool
5164 emit_storent_insn (rtx to, rtx from)
5166 struct expand_operand ops[2];
5167 machine_mode mode = GET_MODE (to);
5168 enum insn_code code = optab_handler (storent_optab, mode);
5170 if (code == CODE_FOR_nothing)
5171 return false;
5173 create_fixed_operand (&ops[0], to);
5174 create_input_operand (&ops[1], from, mode);
5175 return maybe_expand_insn (code, 2, ops);
5178 /* Generate code for computing expression EXP,
5179 and storing the value into TARGET.
5181 If the mode is BLKmode then we may return TARGET itself.
5182 It turns out that in BLKmode it doesn't cause a problem.
5183 because C has no operators that could combine two different
5184 assignments into the same BLKmode object with different values
5185 with no sequence point. Will other languages need this to
5186 be more thorough?
5188 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5189 stack, and block moves may need to be treated specially.
5191 If NONTEMPORAL is true, try using a nontemporal store instruction.
5193 If BTARGET is not NULL then computed bounds of EXP are
5194 associated with BTARGET. */
5197 store_expr_with_bounds (tree exp, rtx target, int call_param_p,
5198 bool nontemporal, tree btarget)
5200 rtx temp;
5201 rtx alt_rtl = NULL_RTX;
5202 location_t loc = curr_insn_location ();
5204 if (VOID_TYPE_P (TREE_TYPE (exp)))
5206 /* C++ can generate ?: expressions with a throw expression in one
5207 branch and an rvalue in the other. Here, we resolve attempts to
5208 store the throw expression's nonexistent result. */
5209 gcc_assert (!call_param_p);
5210 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5211 return NULL_RTX;
5213 if (TREE_CODE (exp) == COMPOUND_EXPR)
5215 /* Perform first part of compound expression, then assign from second
5216 part. */
5217 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5218 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5219 return store_expr_with_bounds (TREE_OPERAND (exp, 1), target,
5220 call_param_p, nontemporal, btarget);
5222 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5224 /* For conditional expression, get safe form of the target. Then
5225 test the condition, doing the appropriate assignment on either
5226 side. This avoids the creation of unnecessary temporaries.
5227 For non-BLKmode, it is more efficient not to do this. */
5229 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5231 do_pending_stack_adjust ();
5232 NO_DEFER_POP;
5233 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
5234 store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p,
5235 nontemporal, btarget);
5236 emit_jump_insn (gen_jump (lab2));
5237 emit_barrier ();
5238 emit_label (lab1);
5239 store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p,
5240 nontemporal, btarget);
5241 emit_label (lab2);
5242 OK_DEFER_POP;
5244 return NULL_RTX;
5246 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5247 /* If this is a scalar in a register that is stored in a wider mode
5248 than the declared mode, compute the result into its declared mode
5249 and then convert to the wider mode. Our value is the computed
5250 expression. */
5252 rtx inner_target = 0;
5254 /* We can do the conversion inside EXP, which will often result
5255 in some optimizations. Do the conversion in two steps: first
5256 change the signedness, if needed, then the extend. But don't
5257 do this if the type of EXP is a subtype of something else
5258 since then the conversion might involve more than just
5259 converting modes. */
5260 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5261 && TREE_TYPE (TREE_TYPE (exp)) == 0
5262 && GET_MODE_PRECISION (GET_MODE (target))
5263 == TYPE_PRECISION (TREE_TYPE (exp)))
5265 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5266 TYPE_UNSIGNED (TREE_TYPE (exp))))
5268 /* Some types, e.g. Fortran's logical*4, won't have a signed
5269 version, so use the mode instead. */
5270 tree ntype
5271 = (signed_or_unsigned_type_for
5272 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5273 if (ntype == NULL)
5274 ntype = lang_hooks.types.type_for_mode
5275 (TYPE_MODE (TREE_TYPE (exp)),
5276 SUBREG_PROMOTED_SIGN (target));
5278 exp = fold_convert_loc (loc, ntype, exp);
5281 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5282 (GET_MODE (SUBREG_REG (target)),
5283 SUBREG_PROMOTED_SIGN (target)),
5284 exp);
5286 inner_target = SUBREG_REG (target);
5289 temp = expand_expr (exp, inner_target, VOIDmode,
5290 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5292 /* Handle bounds returned by call. */
5293 if (TREE_CODE (exp) == CALL_EXPR)
5295 rtx bounds;
5296 chkp_split_slot (temp, &temp, &bounds);
5297 if (bounds && btarget)
5299 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5300 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5301 chkp_set_rtl_bounds (btarget, tmp);
5305 /* If TEMP is a VOIDmode constant, use convert_modes to make
5306 sure that we properly convert it. */
5307 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5309 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5310 temp, SUBREG_PROMOTED_SIGN (target));
5311 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
5312 GET_MODE (target), temp,
5313 SUBREG_PROMOTED_SIGN (target));
5316 convert_move (SUBREG_REG (target), temp,
5317 SUBREG_PROMOTED_SIGN (target));
5319 return NULL_RTX;
5321 else if ((TREE_CODE (exp) == STRING_CST
5322 || (TREE_CODE (exp) == MEM_REF
5323 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5324 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5325 == STRING_CST
5326 && integer_zerop (TREE_OPERAND (exp, 1))))
5327 && !nontemporal && !call_param_p
5328 && MEM_P (target))
5330 /* Optimize initialization of an array with a STRING_CST. */
5331 HOST_WIDE_INT exp_len, str_copy_len;
5332 rtx dest_mem;
5333 tree str = TREE_CODE (exp) == STRING_CST
5334 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5336 exp_len = int_expr_size (exp);
5337 if (exp_len <= 0)
5338 goto normal_expr;
5340 if (TREE_STRING_LENGTH (str) <= 0)
5341 goto normal_expr;
5343 str_copy_len = strlen (TREE_STRING_POINTER (str));
5344 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5345 goto normal_expr;
5347 str_copy_len = TREE_STRING_LENGTH (str);
5348 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5349 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5351 str_copy_len += STORE_MAX_PIECES - 1;
5352 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5354 str_copy_len = MIN (str_copy_len, exp_len);
5355 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5356 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5357 MEM_ALIGN (target), false))
5358 goto normal_expr;
5360 dest_mem = target;
5362 dest_mem = store_by_pieces (dest_mem,
5363 str_copy_len, builtin_strncpy_read_str,
5364 CONST_CAST (char *,
5365 TREE_STRING_POINTER (str)),
5366 MEM_ALIGN (target), false,
5367 exp_len > str_copy_len ? 1 : 0);
5368 if (exp_len > str_copy_len)
5369 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5370 GEN_INT (exp_len - str_copy_len),
5371 BLOCK_OP_NORMAL);
5372 return NULL_RTX;
5374 else
5376 rtx tmp_target;
5378 normal_expr:
5379 /* If we want to use a nontemporal store, force the value to
5380 register first. */
5381 tmp_target = nontemporal ? NULL_RTX : target;
5382 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5383 (call_param_p
5384 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5385 &alt_rtl, false);
5387 /* Handle bounds returned by call. */
5388 if (TREE_CODE (exp) == CALL_EXPR)
5390 rtx bounds;
5391 chkp_split_slot (temp, &temp, &bounds);
5392 if (bounds && btarget)
5394 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5395 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5396 chkp_set_rtl_bounds (btarget, tmp);
5401 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5402 the same as that of TARGET, adjust the constant. This is needed, for
5403 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5404 only a word-sized value. */
5405 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5406 && TREE_CODE (exp) != ERROR_MARK
5407 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5408 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5409 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5411 /* If value was not generated in the target, store it there.
5412 Convert the value to TARGET's type first if necessary and emit the
5413 pending incrementations that have been queued when expanding EXP.
5414 Note that we cannot emit the whole queue blindly because this will
5415 effectively disable the POST_INC optimization later.
5417 If TEMP and TARGET compare equal according to rtx_equal_p, but
5418 one or both of them are volatile memory refs, we have to distinguish
5419 two cases:
5420 - expand_expr has used TARGET. In this case, we must not generate
5421 another copy. This can be detected by TARGET being equal according
5422 to == .
5423 - expand_expr has not used TARGET - that means that the source just
5424 happens to have the same RTX form. Since temp will have been created
5425 by expand_expr, it will compare unequal according to == .
5426 We must generate a copy in this case, to reach the correct number
5427 of volatile memory references. */
5429 if ((! rtx_equal_p (temp, target)
5430 || (temp != target && (side_effects_p (temp)
5431 || side_effects_p (target))))
5432 && TREE_CODE (exp) != ERROR_MARK
5433 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5434 but TARGET is not valid memory reference, TEMP will differ
5435 from TARGET although it is really the same location. */
5436 && !(alt_rtl
5437 && rtx_equal_p (alt_rtl, target)
5438 && !side_effects_p (alt_rtl)
5439 && !side_effects_p (target))
5440 /* If there's nothing to copy, don't bother. Don't call
5441 expr_size unless necessary, because some front-ends (C++)
5442 expr_size-hook must not be given objects that are not
5443 supposed to be bit-copied or bit-initialized. */
5444 && expr_size (exp) != const0_rtx)
5446 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5448 if (GET_MODE (target) == BLKmode)
5450 /* Handle calls that return BLKmode values in registers. */
5451 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5452 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5453 else
5454 store_bit_field (target,
5455 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5456 0, 0, 0, GET_MODE (temp), temp);
5458 else
5459 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5462 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5464 /* Handle copying a string constant into an array. The string
5465 constant may be shorter than the array. So copy just the string's
5466 actual length, and clear the rest. First get the size of the data
5467 type of the string, which is actually the size of the target. */
5468 rtx size = expr_size (exp);
5470 if (CONST_INT_P (size)
5471 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5472 emit_block_move (target, temp, size,
5473 (call_param_p
5474 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5475 else
5477 machine_mode pointer_mode
5478 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5479 machine_mode address_mode = get_address_mode (target);
5481 /* Compute the size of the data to copy from the string. */
5482 tree copy_size
5483 = size_binop_loc (loc, MIN_EXPR,
5484 make_tree (sizetype, size),
5485 size_int (TREE_STRING_LENGTH (exp)));
5486 rtx copy_size_rtx
5487 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5488 (call_param_p
5489 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5490 rtx_code_label *label = 0;
5492 /* Copy that much. */
5493 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5494 TYPE_UNSIGNED (sizetype));
5495 emit_block_move (target, temp, copy_size_rtx,
5496 (call_param_p
5497 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5499 /* Figure out how much is left in TARGET that we have to clear.
5500 Do all calculations in pointer_mode. */
5501 if (CONST_INT_P (copy_size_rtx))
5503 size = plus_constant (address_mode, size,
5504 -INTVAL (copy_size_rtx));
5505 target = adjust_address (target, BLKmode,
5506 INTVAL (copy_size_rtx));
5508 else
5510 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5511 copy_size_rtx, NULL_RTX, 0,
5512 OPTAB_LIB_WIDEN);
5514 if (GET_MODE (copy_size_rtx) != address_mode)
5515 copy_size_rtx = convert_to_mode (address_mode,
5516 copy_size_rtx,
5517 TYPE_UNSIGNED (sizetype));
5519 target = offset_address (target, copy_size_rtx,
5520 highest_pow2_factor (copy_size));
5521 label = gen_label_rtx ();
5522 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5523 GET_MODE (size), 0, label);
5526 if (size != const0_rtx)
5527 clear_storage (target, size, BLOCK_OP_NORMAL);
5529 if (label)
5530 emit_label (label);
5533 /* Handle calls that return values in multiple non-contiguous locations.
5534 The Irix 6 ABI has examples of this. */
5535 else if (GET_CODE (target) == PARALLEL)
5537 if (GET_CODE (temp) == PARALLEL)
5538 emit_group_move (target, temp);
5539 else
5540 emit_group_load (target, temp, TREE_TYPE (exp),
5541 int_size_in_bytes (TREE_TYPE (exp)));
5543 else if (GET_CODE (temp) == PARALLEL)
5544 emit_group_store (target, temp, TREE_TYPE (exp),
5545 int_size_in_bytes (TREE_TYPE (exp)));
5546 else if (GET_MODE (temp) == BLKmode)
5547 emit_block_move (target, temp, expr_size (exp),
5548 (call_param_p
5549 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5550 /* If we emit a nontemporal store, there is nothing else to do. */
5551 else if (nontemporal && emit_storent_insn (target, temp))
5553 else
5555 temp = force_operand (temp, target);
5556 if (temp != target)
5557 emit_move_insn (target, temp);
5561 return NULL_RTX;
5564 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5566 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
5568 return store_expr_with_bounds (exp, target, call_param_p, nontemporal, NULL);
5571 /* Return true if field F of structure TYPE is a flexible array. */
5573 static bool
5574 flexible_array_member_p (const_tree f, const_tree type)
5576 const_tree tf;
5578 tf = TREE_TYPE (f);
5579 return (DECL_CHAIN (f) == NULL
5580 && TREE_CODE (tf) == ARRAY_TYPE
5581 && TYPE_DOMAIN (tf)
5582 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5583 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5584 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5585 && int_size_in_bytes (type) >= 0);
5588 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5589 must have in order for it to completely initialize a value of type TYPE.
5590 Return -1 if the number isn't known.
5592 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5594 static HOST_WIDE_INT
5595 count_type_elements (const_tree type, bool for_ctor_p)
5597 switch (TREE_CODE (type))
5599 case ARRAY_TYPE:
5601 tree nelts;
5603 nelts = array_type_nelts (type);
5604 if (nelts && tree_fits_uhwi_p (nelts))
5606 unsigned HOST_WIDE_INT n;
5608 n = tree_to_uhwi (nelts) + 1;
5609 if (n == 0 || for_ctor_p)
5610 return n;
5611 else
5612 return n * count_type_elements (TREE_TYPE (type), false);
5614 return for_ctor_p ? -1 : 1;
5617 case RECORD_TYPE:
5619 unsigned HOST_WIDE_INT n;
5620 tree f;
5622 n = 0;
5623 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5624 if (TREE_CODE (f) == FIELD_DECL)
5626 if (!for_ctor_p)
5627 n += count_type_elements (TREE_TYPE (f), false);
5628 else if (!flexible_array_member_p (f, type))
5629 /* Don't count flexible arrays, which are not supposed
5630 to be initialized. */
5631 n += 1;
5634 return n;
5637 case UNION_TYPE:
5638 case QUAL_UNION_TYPE:
5640 tree f;
5641 HOST_WIDE_INT n, m;
5643 gcc_assert (!for_ctor_p);
5644 /* Estimate the number of scalars in each field and pick the
5645 maximum. Other estimates would do instead; the idea is simply
5646 to make sure that the estimate is not sensitive to the ordering
5647 of the fields. */
5648 n = 1;
5649 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5650 if (TREE_CODE (f) == FIELD_DECL)
5652 m = count_type_elements (TREE_TYPE (f), false);
5653 /* If the field doesn't span the whole union, add an extra
5654 scalar for the rest. */
5655 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5656 TYPE_SIZE (type)) != 1)
5657 m++;
5658 if (n < m)
5659 n = m;
5661 return n;
5664 case COMPLEX_TYPE:
5665 return 2;
5667 case VECTOR_TYPE:
5668 return TYPE_VECTOR_SUBPARTS (type);
5670 case INTEGER_TYPE:
5671 case REAL_TYPE:
5672 case FIXED_POINT_TYPE:
5673 case ENUMERAL_TYPE:
5674 case BOOLEAN_TYPE:
5675 case POINTER_TYPE:
5676 case OFFSET_TYPE:
5677 case REFERENCE_TYPE:
5678 case NULLPTR_TYPE:
5679 return 1;
5681 case ERROR_MARK:
5682 return 0;
5684 case VOID_TYPE:
5685 case METHOD_TYPE:
5686 case FUNCTION_TYPE:
5687 case LANG_TYPE:
5688 default:
5689 gcc_unreachable ();
5693 /* Helper for categorize_ctor_elements. Identical interface. */
5695 static bool
5696 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5697 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5699 unsigned HOST_WIDE_INT idx;
5700 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5701 tree value, purpose, elt_type;
5703 /* Whether CTOR is a valid constant initializer, in accordance with what
5704 initializer_constant_valid_p does. If inferred from the constructor
5705 elements, true until proven otherwise. */
5706 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5707 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5709 nz_elts = 0;
5710 init_elts = 0;
5711 num_fields = 0;
5712 elt_type = NULL_TREE;
5714 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5716 HOST_WIDE_INT mult = 1;
5718 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5720 tree lo_index = TREE_OPERAND (purpose, 0);
5721 tree hi_index = TREE_OPERAND (purpose, 1);
5723 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5724 mult = (tree_to_uhwi (hi_index)
5725 - tree_to_uhwi (lo_index) + 1);
5727 num_fields += mult;
5728 elt_type = TREE_TYPE (value);
5730 switch (TREE_CODE (value))
5732 case CONSTRUCTOR:
5734 HOST_WIDE_INT nz = 0, ic = 0;
5736 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5737 p_complete);
5739 nz_elts += mult * nz;
5740 init_elts += mult * ic;
5742 if (const_from_elts_p && const_p)
5743 const_p = const_elt_p;
5745 break;
5747 case INTEGER_CST:
5748 case REAL_CST:
5749 case FIXED_CST:
5750 if (!initializer_zerop (value))
5751 nz_elts += mult;
5752 init_elts += mult;
5753 break;
5755 case STRING_CST:
5756 nz_elts += mult * TREE_STRING_LENGTH (value);
5757 init_elts += mult * TREE_STRING_LENGTH (value);
5758 break;
5760 case COMPLEX_CST:
5761 if (!initializer_zerop (TREE_REALPART (value)))
5762 nz_elts += mult;
5763 if (!initializer_zerop (TREE_IMAGPART (value)))
5764 nz_elts += mult;
5765 init_elts += mult;
5766 break;
5768 case VECTOR_CST:
5770 unsigned i;
5771 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5773 tree v = VECTOR_CST_ELT (value, i);
5774 if (!initializer_zerop (v))
5775 nz_elts += mult;
5776 init_elts += mult;
5779 break;
5781 default:
5783 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5784 nz_elts += mult * tc;
5785 init_elts += mult * tc;
5787 if (const_from_elts_p && const_p)
5788 const_p = initializer_constant_valid_p (value, elt_type)
5789 != NULL_TREE;
5791 break;
5795 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5796 num_fields, elt_type))
5797 *p_complete = false;
5799 *p_nz_elts += nz_elts;
5800 *p_init_elts += init_elts;
5802 return const_p;
5805 /* Examine CTOR to discover:
5806 * how many scalar fields are set to nonzero values,
5807 and place it in *P_NZ_ELTS;
5808 * how many scalar fields in total are in CTOR,
5809 and place it in *P_ELT_COUNT.
5810 * whether the constructor is complete -- in the sense that every
5811 meaningful byte is explicitly given a value --
5812 and place it in *P_COMPLETE.
5814 Return whether or not CTOR is a valid static constant initializer, the same
5815 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5817 bool
5818 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5819 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5821 *p_nz_elts = 0;
5822 *p_init_elts = 0;
5823 *p_complete = true;
5825 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
5828 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5829 of which had type LAST_TYPE. Each element was itself a complete
5830 initializer, in the sense that every meaningful byte was explicitly
5831 given a value. Return true if the same is true for the constructor
5832 as a whole. */
5834 bool
5835 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
5836 const_tree last_type)
5838 if (TREE_CODE (type) == UNION_TYPE
5839 || TREE_CODE (type) == QUAL_UNION_TYPE)
5841 if (num_elts == 0)
5842 return false;
5844 gcc_assert (num_elts == 1 && last_type);
5846 /* ??? We could look at each element of the union, and find the
5847 largest element. Which would avoid comparing the size of the
5848 initialized element against any tail padding in the union.
5849 Doesn't seem worth the effort... */
5850 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
5853 return count_type_elements (type, true) == num_elts;
5856 /* Return 1 if EXP contains mostly (3/4) zeros. */
5858 static int
5859 mostly_zeros_p (const_tree exp)
5861 if (TREE_CODE (exp) == CONSTRUCTOR)
5863 HOST_WIDE_INT nz_elts, init_elts;
5864 bool complete_p;
5866 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5867 return !complete_p || nz_elts < init_elts / 4;
5870 return initializer_zerop (exp);
5873 /* Return 1 if EXP contains all zeros. */
5875 static int
5876 all_zeros_p (const_tree exp)
5878 if (TREE_CODE (exp) == CONSTRUCTOR)
5880 HOST_WIDE_INT nz_elts, init_elts;
5881 bool complete_p;
5883 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5884 return nz_elts == 0;
5887 return initializer_zerop (exp);
5890 /* Helper function for store_constructor.
5891 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5892 CLEARED is as for store_constructor.
5893 ALIAS_SET is the alias set to use for any stores.
5895 This provides a recursive shortcut back to store_constructor when it isn't
5896 necessary to go through store_field. This is so that we can pass through
5897 the cleared field to let store_constructor know that we may not have to
5898 clear a substructure if the outer structure has already been cleared. */
5900 static void
5901 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5902 HOST_WIDE_INT bitpos, machine_mode mode,
5903 tree exp, int cleared, alias_set_type alias_set)
5905 if (TREE_CODE (exp) == CONSTRUCTOR
5906 /* We can only call store_constructor recursively if the size and
5907 bit position are on a byte boundary. */
5908 && bitpos % BITS_PER_UNIT == 0
5909 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5910 /* If we have a nonzero bitpos for a register target, then we just
5911 let store_field do the bitfield handling. This is unlikely to
5912 generate unnecessary clear instructions anyways. */
5913 && (bitpos == 0 || MEM_P (target)))
5915 if (MEM_P (target))
5916 target
5917 = adjust_address (target,
5918 GET_MODE (target) == BLKmode
5919 || 0 != (bitpos
5920 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5921 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5924 /* Update the alias set, if required. */
5925 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5926 && MEM_ALIAS_SET (target) != 0)
5928 target = copy_rtx (target);
5929 set_mem_alias_set (target, alias_set);
5932 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5934 else
5935 store_field (target, bitsize, bitpos, 0, 0, mode, exp, alias_set, false);
5939 /* Returns the number of FIELD_DECLs in TYPE. */
5941 static int
5942 fields_length (const_tree type)
5944 tree t = TYPE_FIELDS (type);
5945 int count = 0;
5947 for (; t; t = DECL_CHAIN (t))
5948 if (TREE_CODE (t) == FIELD_DECL)
5949 ++count;
5951 return count;
5955 /* Store the value of constructor EXP into the rtx TARGET.
5956 TARGET is either a REG or a MEM; we know it cannot conflict, since
5957 safe_from_p has been called.
5958 CLEARED is true if TARGET is known to have been zero'd.
5959 SIZE is the number of bytes of TARGET we are allowed to modify: this
5960 may not be the same as the size of EXP if we are assigning to a field
5961 which has been packed to exclude padding bits. */
5963 static void
5964 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5966 tree type = TREE_TYPE (exp);
5967 #ifdef WORD_REGISTER_OPERATIONS
5968 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5969 #endif
5971 switch (TREE_CODE (type))
5973 case RECORD_TYPE:
5974 case UNION_TYPE:
5975 case QUAL_UNION_TYPE:
5977 unsigned HOST_WIDE_INT idx;
5978 tree field, value;
5980 /* If size is zero or the target is already cleared, do nothing. */
5981 if (size == 0 || cleared)
5982 cleared = 1;
5983 /* We either clear the aggregate or indicate the value is dead. */
5984 else if ((TREE_CODE (type) == UNION_TYPE
5985 || TREE_CODE (type) == QUAL_UNION_TYPE)
5986 && ! CONSTRUCTOR_ELTS (exp))
5987 /* If the constructor is empty, clear the union. */
5989 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5990 cleared = 1;
5993 /* If we are building a static constructor into a register,
5994 set the initial value as zero so we can fold the value into
5995 a constant. But if more than one register is involved,
5996 this probably loses. */
5997 else if (REG_P (target) && TREE_STATIC (exp)
5998 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
6000 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6001 cleared = 1;
6004 /* If the constructor has fewer fields than the structure or
6005 if we are initializing the structure to mostly zeros, clear
6006 the whole structure first. Don't do this if TARGET is a
6007 register whose mode size isn't equal to SIZE since
6008 clear_storage can't handle this case. */
6009 else if (size > 0
6010 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp))
6011 != fields_length (type))
6012 || mostly_zeros_p (exp))
6013 && (!REG_P (target)
6014 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
6015 == size)))
6017 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6018 cleared = 1;
6021 if (REG_P (target) && !cleared)
6022 emit_clobber (target);
6024 /* Store each element of the constructor into the
6025 corresponding field of TARGET. */
6026 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6028 machine_mode mode;
6029 HOST_WIDE_INT bitsize;
6030 HOST_WIDE_INT bitpos = 0;
6031 tree offset;
6032 rtx to_rtx = target;
6034 /* Just ignore missing fields. We cleared the whole
6035 structure, above, if any fields are missing. */
6036 if (field == 0)
6037 continue;
6039 if (cleared && initializer_zerop (value))
6040 continue;
6042 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6043 bitsize = tree_to_uhwi (DECL_SIZE (field));
6044 else
6045 bitsize = -1;
6047 mode = DECL_MODE (field);
6048 if (DECL_BIT_FIELD (field))
6049 mode = VOIDmode;
6051 offset = DECL_FIELD_OFFSET (field);
6052 if (tree_fits_shwi_p (offset)
6053 && tree_fits_shwi_p (bit_position (field)))
6055 bitpos = int_bit_position (field);
6056 offset = 0;
6058 else
6059 bitpos = tree_to_shwi (DECL_FIELD_BIT_OFFSET (field));
6061 if (offset)
6063 machine_mode address_mode;
6064 rtx offset_rtx;
6066 offset
6067 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
6068 make_tree (TREE_TYPE (exp),
6069 target));
6071 offset_rtx = expand_normal (offset);
6072 gcc_assert (MEM_P (to_rtx));
6074 address_mode = get_address_mode (to_rtx);
6075 if (GET_MODE (offset_rtx) != address_mode)
6076 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
6078 to_rtx = offset_address (to_rtx, offset_rtx,
6079 highest_pow2_factor (offset));
6082 #ifdef WORD_REGISTER_OPERATIONS
6083 /* If this initializes a field that is smaller than a
6084 word, at the start of a word, try to widen it to a full
6085 word. This special case allows us to output C++ member
6086 function initializations in a form that the optimizers
6087 can understand. */
6088 if (REG_P (target)
6089 && bitsize < BITS_PER_WORD
6090 && bitpos % BITS_PER_WORD == 0
6091 && GET_MODE_CLASS (mode) == MODE_INT
6092 && TREE_CODE (value) == INTEGER_CST
6093 && exp_size >= 0
6094 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6096 tree type = TREE_TYPE (value);
6098 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6100 type = lang_hooks.types.type_for_mode
6101 (word_mode, TYPE_UNSIGNED (type));
6102 value = fold_convert (type, value);
6103 /* Make sure the bits beyond the original bitsize are zero
6104 so that we can correctly avoid extra zeroing stores in
6105 later constructor elements. */
6106 tree bitsize_mask
6107 = wide_int_to_tree (type, wi::mask (bitsize, false,
6108 BITS_PER_WORD));
6109 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6112 if (BYTES_BIG_ENDIAN)
6113 value
6114 = fold_build2 (LSHIFT_EXPR, type, value,
6115 build_int_cst (type,
6116 BITS_PER_WORD - bitsize));
6117 bitsize = BITS_PER_WORD;
6118 mode = word_mode;
6120 #endif
6122 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6123 && DECL_NONADDRESSABLE_P (field))
6125 to_rtx = copy_rtx (to_rtx);
6126 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6129 store_constructor_field (to_rtx, bitsize, bitpos, mode,
6130 value, cleared,
6131 get_alias_set (TREE_TYPE (field)));
6133 break;
6135 case ARRAY_TYPE:
6137 tree value, index;
6138 unsigned HOST_WIDE_INT i;
6139 int need_to_clear;
6140 tree domain;
6141 tree elttype = TREE_TYPE (type);
6142 int const_bounds_p;
6143 HOST_WIDE_INT minelt = 0;
6144 HOST_WIDE_INT maxelt = 0;
6146 domain = TYPE_DOMAIN (type);
6147 const_bounds_p = (TYPE_MIN_VALUE (domain)
6148 && TYPE_MAX_VALUE (domain)
6149 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6150 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6152 /* If we have constant bounds for the range of the type, get them. */
6153 if (const_bounds_p)
6155 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6156 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6159 /* If the constructor has fewer elements than the array, clear
6160 the whole array first. Similarly if this is static
6161 constructor of a non-BLKmode object. */
6162 if (cleared)
6163 need_to_clear = 0;
6164 else if (REG_P (target) && TREE_STATIC (exp))
6165 need_to_clear = 1;
6166 else
6168 unsigned HOST_WIDE_INT idx;
6169 tree index, value;
6170 HOST_WIDE_INT count = 0, zero_count = 0;
6171 need_to_clear = ! const_bounds_p;
6173 /* This loop is a more accurate version of the loop in
6174 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6175 is also needed to check for missing elements. */
6176 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6178 HOST_WIDE_INT this_node_count;
6180 if (need_to_clear)
6181 break;
6183 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6185 tree lo_index = TREE_OPERAND (index, 0);
6186 tree hi_index = TREE_OPERAND (index, 1);
6188 if (! tree_fits_uhwi_p (lo_index)
6189 || ! tree_fits_uhwi_p (hi_index))
6191 need_to_clear = 1;
6192 break;
6195 this_node_count = (tree_to_uhwi (hi_index)
6196 - tree_to_uhwi (lo_index) + 1);
6198 else
6199 this_node_count = 1;
6201 count += this_node_count;
6202 if (mostly_zeros_p (value))
6203 zero_count += this_node_count;
6206 /* Clear the entire array first if there are any missing
6207 elements, or if the incidence of zero elements is >=
6208 75%. */
6209 if (! need_to_clear
6210 && (count < maxelt - minelt + 1
6211 || 4 * zero_count >= 3 * count))
6212 need_to_clear = 1;
6215 if (need_to_clear && size > 0)
6217 if (REG_P (target))
6218 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6219 else
6220 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6221 cleared = 1;
6224 if (!cleared && REG_P (target))
6225 /* Inform later passes that the old value is dead. */
6226 emit_clobber (target);
6228 /* Store each element of the constructor into the
6229 corresponding element of TARGET, determined by counting the
6230 elements. */
6231 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6233 machine_mode mode;
6234 HOST_WIDE_INT bitsize;
6235 HOST_WIDE_INT bitpos;
6236 rtx xtarget = target;
6238 if (cleared && initializer_zerop (value))
6239 continue;
6241 mode = TYPE_MODE (elttype);
6242 if (mode == BLKmode)
6243 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6244 ? tree_to_uhwi (TYPE_SIZE (elttype))
6245 : -1);
6246 else
6247 bitsize = GET_MODE_BITSIZE (mode);
6249 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6251 tree lo_index = TREE_OPERAND (index, 0);
6252 tree hi_index = TREE_OPERAND (index, 1);
6253 rtx index_r, pos_rtx;
6254 HOST_WIDE_INT lo, hi, count;
6255 tree position;
6257 /* If the range is constant and "small", unroll the loop. */
6258 if (const_bounds_p
6259 && tree_fits_shwi_p (lo_index)
6260 && tree_fits_shwi_p (hi_index)
6261 && (lo = tree_to_shwi (lo_index),
6262 hi = tree_to_shwi (hi_index),
6263 count = hi - lo + 1,
6264 (!MEM_P (target)
6265 || count <= 2
6266 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6267 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6268 <= 40 * 8)))))
6270 lo -= minelt; hi -= minelt;
6271 for (; lo <= hi; lo++)
6273 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6275 if (MEM_P (target)
6276 && !MEM_KEEP_ALIAS_SET_P (target)
6277 && TREE_CODE (type) == ARRAY_TYPE
6278 && TYPE_NONALIASED_COMPONENT (type))
6280 target = copy_rtx (target);
6281 MEM_KEEP_ALIAS_SET_P (target) = 1;
6284 store_constructor_field
6285 (target, bitsize, bitpos, mode, value, cleared,
6286 get_alias_set (elttype));
6289 else
6291 rtx_code_label *loop_start = gen_label_rtx ();
6292 rtx_code_label *loop_end = gen_label_rtx ();
6293 tree exit_cond;
6295 expand_normal (hi_index);
6297 index = build_decl (EXPR_LOCATION (exp),
6298 VAR_DECL, NULL_TREE, domain);
6299 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6300 SET_DECL_RTL (index, index_r);
6301 store_expr (lo_index, index_r, 0, false);
6303 /* Build the head of the loop. */
6304 do_pending_stack_adjust ();
6305 emit_label (loop_start);
6307 /* Assign value to element index. */
6308 position =
6309 fold_convert (ssizetype,
6310 fold_build2 (MINUS_EXPR,
6311 TREE_TYPE (index),
6312 index,
6313 TYPE_MIN_VALUE (domain)));
6315 position =
6316 size_binop (MULT_EXPR, position,
6317 fold_convert (ssizetype,
6318 TYPE_SIZE_UNIT (elttype)));
6320 pos_rtx = expand_normal (position);
6321 xtarget = offset_address (target, pos_rtx,
6322 highest_pow2_factor (position));
6323 xtarget = adjust_address (xtarget, mode, 0);
6324 if (TREE_CODE (value) == CONSTRUCTOR)
6325 store_constructor (value, xtarget, cleared,
6326 bitsize / BITS_PER_UNIT);
6327 else
6328 store_expr (value, xtarget, 0, false);
6330 /* Generate a conditional jump to exit the loop. */
6331 exit_cond = build2 (LT_EXPR, integer_type_node,
6332 index, hi_index);
6333 jumpif (exit_cond, loop_end, -1);
6335 /* Update the loop counter, and jump to the head of
6336 the loop. */
6337 expand_assignment (index,
6338 build2 (PLUS_EXPR, TREE_TYPE (index),
6339 index, integer_one_node),
6340 false);
6342 emit_jump (loop_start);
6344 /* Build the end of the loop. */
6345 emit_label (loop_end);
6348 else if ((index != 0 && ! tree_fits_shwi_p (index))
6349 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6351 tree position;
6353 if (index == 0)
6354 index = ssize_int (1);
6356 if (minelt)
6357 index = fold_convert (ssizetype,
6358 fold_build2 (MINUS_EXPR,
6359 TREE_TYPE (index),
6360 index,
6361 TYPE_MIN_VALUE (domain)));
6363 position =
6364 size_binop (MULT_EXPR, index,
6365 fold_convert (ssizetype,
6366 TYPE_SIZE_UNIT (elttype)));
6367 xtarget = offset_address (target,
6368 expand_normal (position),
6369 highest_pow2_factor (position));
6370 xtarget = adjust_address (xtarget, mode, 0);
6371 store_expr (value, xtarget, 0, false);
6373 else
6375 if (index != 0)
6376 bitpos = ((tree_to_shwi (index) - minelt)
6377 * tree_to_uhwi (TYPE_SIZE (elttype)));
6378 else
6379 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6381 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6382 && TREE_CODE (type) == ARRAY_TYPE
6383 && TYPE_NONALIASED_COMPONENT (type))
6385 target = copy_rtx (target);
6386 MEM_KEEP_ALIAS_SET_P (target) = 1;
6388 store_constructor_field (target, bitsize, bitpos, mode, value,
6389 cleared, get_alias_set (elttype));
6392 break;
6395 case VECTOR_TYPE:
6397 unsigned HOST_WIDE_INT idx;
6398 constructor_elt *ce;
6399 int i;
6400 int need_to_clear;
6401 int icode = CODE_FOR_nothing;
6402 tree elttype = TREE_TYPE (type);
6403 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6404 machine_mode eltmode = TYPE_MODE (elttype);
6405 HOST_WIDE_INT bitsize;
6406 HOST_WIDE_INT bitpos;
6407 rtvec vector = NULL;
6408 unsigned n_elts;
6409 alias_set_type alias;
6411 gcc_assert (eltmode != BLKmode);
6413 n_elts = TYPE_VECTOR_SUBPARTS (type);
6414 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6416 machine_mode mode = GET_MODE (target);
6418 icode = (int) optab_handler (vec_init_optab, mode);
6419 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6420 if (icode != CODE_FOR_nothing)
6422 tree value;
6424 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6425 if (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE)
6427 icode = CODE_FOR_nothing;
6428 break;
6431 if (icode != CODE_FOR_nothing)
6433 unsigned int i;
6435 vector = rtvec_alloc (n_elts);
6436 for (i = 0; i < n_elts; i++)
6437 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
6441 /* If the constructor has fewer elements than the vector,
6442 clear the whole array first. Similarly if this is static
6443 constructor of a non-BLKmode object. */
6444 if (cleared)
6445 need_to_clear = 0;
6446 else if (REG_P (target) && TREE_STATIC (exp))
6447 need_to_clear = 1;
6448 else
6450 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6451 tree value;
6453 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6455 int n_elts_here = tree_to_uhwi
6456 (int_const_binop (TRUNC_DIV_EXPR,
6457 TYPE_SIZE (TREE_TYPE (value)),
6458 TYPE_SIZE (elttype)));
6460 count += n_elts_here;
6461 if (mostly_zeros_p (value))
6462 zero_count += n_elts_here;
6465 /* Clear the entire vector first if there are any missing elements,
6466 or if the incidence of zero elements is >= 75%. */
6467 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6470 if (need_to_clear && size > 0 && !vector)
6472 if (REG_P (target))
6473 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6474 else
6475 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6476 cleared = 1;
6479 /* Inform later passes that the old value is dead. */
6480 if (!cleared && !vector && REG_P (target))
6481 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6483 if (MEM_P (target))
6484 alias = MEM_ALIAS_SET (target);
6485 else
6486 alias = get_alias_set (elttype);
6488 /* Store each element of the constructor into the corresponding
6489 element of TARGET, determined by counting the elements. */
6490 for (idx = 0, i = 0;
6491 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6492 idx++, i += bitsize / elt_size)
6494 HOST_WIDE_INT eltpos;
6495 tree value = ce->value;
6497 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6498 if (cleared && initializer_zerop (value))
6499 continue;
6501 if (ce->index)
6502 eltpos = tree_to_uhwi (ce->index);
6503 else
6504 eltpos = i;
6506 if (vector)
6508 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6509 elements. */
6510 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6511 RTVEC_ELT (vector, eltpos)
6512 = expand_normal (value);
6514 else
6516 machine_mode value_mode =
6517 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6518 ? TYPE_MODE (TREE_TYPE (value))
6519 : eltmode;
6520 bitpos = eltpos * elt_size;
6521 store_constructor_field (target, bitsize, bitpos, value_mode,
6522 value, cleared, alias);
6526 if (vector)
6527 emit_insn (GEN_FCN (icode)
6528 (target,
6529 gen_rtx_PARALLEL (GET_MODE (target), vector)));
6530 break;
6533 default:
6534 gcc_unreachable ();
6538 /* Store the value of EXP (an expression tree)
6539 into a subfield of TARGET which has mode MODE and occupies
6540 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6541 If MODE is VOIDmode, it means that we are storing into a bit-field.
6543 BITREGION_START is bitpos of the first bitfield in this region.
6544 BITREGION_END is the bitpos of the ending bitfield in this region.
6545 These two fields are 0, if the C++ memory model does not apply,
6546 or we are not interested in keeping track of bitfield regions.
6548 Always return const0_rtx unless we have something particular to
6549 return.
6551 ALIAS_SET is the alias set for the destination. This value will
6552 (in general) be different from that for TARGET, since TARGET is a
6553 reference to the containing structure.
6555 If NONTEMPORAL is true, try generating a nontemporal store. */
6557 static rtx
6558 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6559 unsigned HOST_WIDE_INT bitregion_start,
6560 unsigned HOST_WIDE_INT bitregion_end,
6561 machine_mode mode, tree exp,
6562 alias_set_type alias_set, bool nontemporal)
6564 if (TREE_CODE (exp) == ERROR_MARK)
6565 return const0_rtx;
6567 /* If we have nothing to store, do nothing unless the expression has
6568 side-effects. */
6569 if (bitsize == 0)
6570 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6572 if (GET_CODE (target) == CONCAT)
6574 /* We're storing into a struct containing a single __complex. */
6576 gcc_assert (!bitpos);
6577 return store_expr (exp, target, 0, nontemporal);
6580 /* If the structure is in a register or if the component
6581 is a bit field, we cannot use addressing to access it.
6582 Use bit-field techniques or SUBREG to store in it. */
6584 if (mode == VOIDmode
6585 || (mode != BLKmode && ! direct_store[(int) mode]
6586 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6587 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6588 || REG_P (target)
6589 || GET_CODE (target) == SUBREG
6590 /* If the field isn't aligned enough to store as an ordinary memref,
6591 store it as a bit field. */
6592 || (mode != BLKmode
6593 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6594 || bitpos % GET_MODE_ALIGNMENT (mode))
6595 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6596 || (bitpos % BITS_PER_UNIT != 0)))
6597 || (bitsize >= 0 && mode != BLKmode
6598 && GET_MODE_BITSIZE (mode) > bitsize)
6599 /* If the RHS and field are a constant size and the size of the
6600 RHS isn't the same size as the bitfield, we must use bitfield
6601 operations. */
6602 || (bitsize >= 0
6603 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6604 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
6605 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6606 decl we must use bitfield operations. */
6607 || (bitsize >= 0
6608 && TREE_CODE (exp) == MEM_REF
6609 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6610 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6611 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
6612 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6614 rtx temp;
6615 gimple nop_def;
6617 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6618 implies a mask operation. If the precision is the same size as
6619 the field we're storing into, that mask is redundant. This is
6620 particularly common with bit field assignments generated by the
6621 C front end. */
6622 nop_def = get_def_for_expr (exp, NOP_EXPR);
6623 if (nop_def)
6625 tree type = TREE_TYPE (exp);
6626 if (INTEGRAL_TYPE_P (type)
6627 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6628 && bitsize == TYPE_PRECISION (type))
6630 tree op = gimple_assign_rhs1 (nop_def);
6631 type = TREE_TYPE (op);
6632 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6633 exp = op;
6637 temp = expand_normal (exp);
6639 /* If BITSIZE is narrower than the size of the type of EXP
6640 we will be narrowing TEMP. Normally, what's wanted are the
6641 low-order bits. However, if EXP's type is a record and this is
6642 big-endian machine, we want the upper BITSIZE bits. */
6643 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
6644 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
6645 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
6646 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6647 GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
6648 NULL_RTX, 1);
6650 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6651 if (mode != VOIDmode && mode != BLKmode
6652 && mode != TYPE_MODE (TREE_TYPE (exp)))
6653 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6655 /* If TEMP is not a PARALLEL (see below) and its mode and that of TARGET
6656 are both BLKmode, both must be in memory and BITPOS must be aligned
6657 on a byte boundary. If so, we simply do a block copy. Likewise for
6658 a BLKmode-like TARGET. */
6659 if (GET_CODE (temp) != PARALLEL
6660 && GET_MODE (temp) == BLKmode
6661 && (GET_MODE (target) == BLKmode
6662 || (MEM_P (target)
6663 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6664 && (bitpos % BITS_PER_UNIT) == 0
6665 && (bitsize % BITS_PER_UNIT) == 0)))
6667 gcc_assert (MEM_P (target) && MEM_P (temp)
6668 && (bitpos % BITS_PER_UNIT) == 0);
6670 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6671 emit_block_move (target, temp,
6672 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6673 / BITS_PER_UNIT),
6674 BLOCK_OP_NORMAL);
6676 return const0_rtx;
6679 /* Handle calls that return values in multiple non-contiguous locations.
6680 The Irix 6 ABI has examples of this. */
6681 if (GET_CODE (temp) == PARALLEL)
6683 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6684 rtx temp_target;
6685 if (mode == BLKmode || mode == VOIDmode)
6686 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6687 temp_target = gen_reg_rtx (mode);
6688 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6689 temp = temp_target;
6691 else if (mode == BLKmode)
6693 /* Handle calls that return BLKmode values in registers. */
6694 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6696 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6697 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6698 temp = temp_target;
6700 else
6702 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6703 rtx temp_target;
6704 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6705 temp_target = gen_reg_rtx (mode);
6706 temp_target
6707 = extract_bit_field (temp, size * BITS_PER_UNIT, 0, 1,
6708 temp_target, mode, mode);
6709 temp = temp_target;
6713 /* Store the value in the bitfield. */
6714 store_bit_field (target, bitsize, bitpos,
6715 bitregion_start, bitregion_end,
6716 mode, temp);
6718 return const0_rtx;
6720 else
6722 /* Now build a reference to just the desired component. */
6723 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6725 if (to_rtx == target)
6726 to_rtx = copy_rtx (to_rtx);
6728 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6729 set_mem_alias_set (to_rtx, alias_set);
6731 return store_expr (exp, to_rtx, 0, nontemporal);
6735 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6736 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6737 codes and find the ultimate containing object, which we return.
6739 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6740 bit position, and *PUNSIGNEDP to the signedness of the field.
6741 If the position of the field is variable, we store a tree
6742 giving the variable offset (in units) in *POFFSET.
6743 This offset is in addition to the bit position.
6744 If the position is not variable, we store 0 in *POFFSET.
6746 If any of the extraction expressions is volatile,
6747 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6749 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6750 Otherwise, it is a mode that can be used to access the field.
6752 If the field describes a variable-sized object, *PMODE is set to
6753 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6754 this case, but the address of the object can be found.
6756 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6757 look through nodes that serve as markers of a greater alignment than
6758 the one that can be deduced from the expression. These nodes make it
6759 possible for front-ends to prevent temporaries from being created by
6760 the middle-end on alignment considerations. For that purpose, the
6761 normal operating mode at high-level is to always pass FALSE so that
6762 the ultimate containing object is really returned; moreover, the
6763 associated predicate handled_component_p will always return TRUE
6764 on these nodes, thus indicating that they are essentially handled
6765 by get_inner_reference. TRUE should only be passed when the caller
6766 is scanning the expression in order to build another representation
6767 and specifically knows how to handle these nodes; as such, this is
6768 the normal operating mode in the RTL expanders. */
6770 tree
6771 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6772 HOST_WIDE_INT *pbitpos, tree *poffset,
6773 machine_mode *pmode, int *punsignedp,
6774 int *pvolatilep, bool keep_aligning)
6776 tree size_tree = 0;
6777 machine_mode mode = VOIDmode;
6778 bool blkmode_bitfield = false;
6779 tree offset = size_zero_node;
6780 offset_int bit_offset = 0;
6782 /* First get the mode, signedness, and size. We do this from just the
6783 outermost expression. */
6784 *pbitsize = -1;
6785 if (TREE_CODE (exp) == COMPONENT_REF)
6787 tree field = TREE_OPERAND (exp, 1);
6788 size_tree = DECL_SIZE (field);
6789 if (flag_strict_volatile_bitfields > 0
6790 && TREE_THIS_VOLATILE (exp)
6791 && DECL_BIT_FIELD_TYPE (field)
6792 && DECL_MODE (field) != BLKmode)
6793 /* Volatile bitfields should be accessed in the mode of the
6794 field's type, not the mode computed based on the bit
6795 size. */
6796 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6797 else if (!DECL_BIT_FIELD (field))
6798 mode = DECL_MODE (field);
6799 else if (DECL_MODE (field) == BLKmode)
6800 blkmode_bitfield = true;
6802 *punsignedp = DECL_UNSIGNED (field);
6804 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6806 size_tree = TREE_OPERAND (exp, 1);
6807 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6808 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6810 /* For vector types, with the correct size of access, use the mode of
6811 inner type. */
6812 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6813 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6814 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6815 mode = TYPE_MODE (TREE_TYPE (exp));
6817 else
6819 mode = TYPE_MODE (TREE_TYPE (exp));
6820 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6822 if (mode == BLKmode)
6823 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6824 else
6825 *pbitsize = GET_MODE_BITSIZE (mode);
6828 if (size_tree != 0)
6830 if (! tree_fits_uhwi_p (size_tree))
6831 mode = BLKmode, *pbitsize = -1;
6832 else
6833 *pbitsize = tree_to_uhwi (size_tree);
6836 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6837 and find the ultimate containing object. */
6838 while (1)
6840 switch (TREE_CODE (exp))
6842 case BIT_FIELD_REF:
6843 bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
6844 break;
6846 case COMPONENT_REF:
6848 tree field = TREE_OPERAND (exp, 1);
6849 tree this_offset = component_ref_field_offset (exp);
6851 /* If this field hasn't been filled in yet, don't go past it.
6852 This should only happen when folding expressions made during
6853 type construction. */
6854 if (this_offset == 0)
6855 break;
6857 offset = size_binop (PLUS_EXPR, offset, this_offset);
6858 bit_offset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
6860 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6862 break;
6864 case ARRAY_REF:
6865 case ARRAY_RANGE_REF:
6867 tree index = TREE_OPERAND (exp, 1);
6868 tree low_bound = array_ref_low_bound (exp);
6869 tree unit_size = array_ref_element_size (exp);
6871 /* We assume all arrays have sizes that are a multiple of a byte.
6872 First subtract the lower bound, if any, in the type of the
6873 index, then convert to sizetype and multiply by the size of
6874 the array element. */
6875 if (! integer_zerop (low_bound))
6876 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6877 index, low_bound);
6879 offset = size_binop (PLUS_EXPR, offset,
6880 size_binop (MULT_EXPR,
6881 fold_convert (sizetype, index),
6882 unit_size));
6884 break;
6886 case REALPART_EXPR:
6887 break;
6889 case IMAGPART_EXPR:
6890 bit_offset += *pbitsize;
6891 break;
6893 case VIEW_CONVERT_EXPR:
6894 if (keep_aligning && STRICT_ALIGNMENT
6895 && (TYPE_ALIGN (TREE_TYPE (exp))
6896 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6897 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6898 < BIGGEST_ALIGNMENT)
6899 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6900 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6901 goto done;
6902 break;
6904 case MEM_REF:
6905 /* Hand back the decl for MEM[&decl, off]. */
6906 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6908 tree off = TREE_OPERAND (exp, 1);
6909 if (!integer_zerop (off))
6911 offset_int boff, coff = mem_ref_offset (exp);
6912 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
6913 bit_offset += boff;
6915 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6917 goto done;
6919 default:
6920 goto done;
6923 /* If any reference in the chain is volatile, the effect is volatile. */
6924 if (TREE_THIS_VOLATILE (exp))
6925 *pvolatilep = 1;
6927 exp = TREE_OPERAND (exp, 0);
6929 done:
6931 /* If OFFSET is constant, see if we can return the whole thing as a
6932 constant bit position. Make sure to handle overflow during
6933 this conversion. */
6934 if (TREE_CODE (offset) == INTEGER_CST)
6936 offset_int tem = wi::sext (wi::to_offset (offset),
6937 TYPE_PRECISION (sizetype));
6938 tem = wi::lshift (tem, LOG2_BITS_PER_UNIT);
6939 tem += bit_offset;
6940 if (wi::fits_shwi_p (tem))
6942 *pbitpos = tem.to_shwi ();
6943 *poffset = offset = NULL_TREE;
6947 /* Otherwise, split it up. */
6948 if (offset)
6950 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6951 if (wi::neg_p (bit_offset) || !wi::fits_shwi_p (bit_offset))
6953 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
6954 offset_int tem = bit_offset.and_not (mask);
6955 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6956 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6957 bit_offset -= tem;
6958 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
6959 offset = size_binop (PLUS_EXPR, offset,
6960 wide_int_to_tree (sizetype, tem));
6963 *pbitpos = bit_offset.to_shwi ();
6964 *poffset = offset;
6967 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6968 if (mode == VOIDmode
6969 && blkmode_bitfield
6970 && (*pbitpos % BITS_PER_UNIT) == 0
6971 && (*pbitsize % BITS_PER_UNIT) == 0)
6972 *pmode = BLKmode;
6973 else
6974 *pmode = mode;
6976 return exp;
6979 /* Return a tree of sizetype representing the size, in bytes, of the element
6980 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6982 tree
6983 array_ref_element_size (tree exp)
6985 tree aligned_size = TREE_OPERAND (exp, 3);
6986 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6987 location_t loc = EXPR_LOCATION (exp);
6989 /* If a size was specified in the ARRAY_REF, it's the size measured
6990 in alignment units of the element type. So multiply by that value. */
6991 if (aligned_size)
6993 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6994 sizetype from another type of the same width and signedness. */
6995 if (TREE_TYPE (aligned_size) != sizetype)
6996 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6997 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6998 size_int (TYPE_ALIGN_UNIT (elmt_type)));
7001 /* Otherwise, take the size from that of the element type. Substitute
7002 any PLACEHOLDER_EXPR that we have. */
7003 else
7004 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
7007 /* Return a tree representing the lower bound of the array mentioned in
7008 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
7010 tree
7011 array_ref_low_bound (tree exp)
7013 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
7015 /* If a lower bound is specified in EXP, use it. */
7016 if (TREE_OPERAND (exp, 2))
7017 return TREE_OPERAND (exp, 2);
7019 /* Otherwise, if there is a domain type and it has a lower bound, use it,
7020 substituting for a PLACEHOLDER_EXPR as needed. */
7021 if (domain_type && TYPE_MIN_VALUE (domain_type))
7022 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
7024 /* Otherwise, return a zero of the appropriate type. */
7025 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
7028 /* Returns true if REF is an array reference to an array at the end of
7029 a structure. If this is the case, the array may be allocated larger
7030 than its upper bound implies. */
7032 bool
7033 array_at_struct_end_p (tree ref)
7035 if (TREE_CODE (ref) != ARRAY_REF
7036 && TREE_CODE (ref) != ARRAY_RANGE_REF)
7037 return false;
7039 while (handled_component_p (ref))
7041 /* If the reference chain contains a component reference to a
7042 non-union type and there follows another field the reference
7043 is not at the end of a structure. */
7044 if (TREE_CODE (ref) == COMPONENT_REF
7045 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
7047 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
7048 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
7049 nextf = DECL_CHAIN (nextf);
7050 if (nextf)
7051 return false;
7054 ref = TREE_OPERAND (ref, 0);
7057 /* If the reference is based on a declared entity, the size of the array
7058 is constrained by its given domain. */
7059 if (DECL_P (ref))
7060 return false;
7062 return true;
7065 /* Return a tree representing the upper bound of the array mentioned in
7066 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
7068 tree
7069 array_ref_up_bound (tree exp)
7071 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
7073 /* If there is a domain type and it has an upper bound, use it, substituting
7074 for a PLACEHOLDER_EXPR as needed. */
7075 if (domain_type && TYPE_MAX_VALUE (domain_type))
7076 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
7078 /* Otherwise fail. */
7079 return NULL_TREE;
7082 /* Return a tree representing the offset, in bytes, of the field referenced
7083 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
7085 tree
7086 component_ref_field_offset (tree exp)
7088 tree aligned_offset = TREE_OPERAND (exp, 2);
7089 tree field = TREE_OPERAND (exp, 1);
7090 location_t loc = EXPR_LOCATION (exp);
7092 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
7093 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7094 value. */
7095 if (aligned_offset)
7097 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7098 sizetype from another type of the same width and signedness. */
7099 if (TREE_TYPE (aligned_offset) != sizetype)
7100 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
7101 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
7102 size_int (DECL_OFFSET_ALIGN (field)
7103 / BITS_PER_UNIT));
7106 /* Otherwise, take the offset from that of the field. Substitute
7107 any PLACEHOLDER_EXPR that we have. */
7108 else
7109 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
7112 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7114 static unsigned HOST_WIDE_INT
7115 target_align (const_tree target)
7117 /* We might have a chain of nested references with intermediate misaligning
7118 bitfields components, so need to recurse to find out. */
7120 unsigned HOST_WIDE_INT this_align, outer_align;
7122 switch (TREE_CODE (target))
7124 case BIT_FIELD_REF:
7125 return 1;
7127 case COMPONENT_REF:
7128 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7129 outer_align = target_align (TREE_OPERAND (target, 0));
7130 return MIN (this_align, outer_align);
7132 case ARRAY_REF:
7133 case ARRAY_RANGE_REF:
7134 this_align = TYPE_ALIGN (TREE_TYPE (target));
7135 outer_align = target_align (TREE_OPERAND (target, 0));
7136 return MIN (this_align, outer_align);
7138 CASE_CONVERT:
7139 case NON_LVALUE_EXPR:
7140 case VIEW_CONVERT_EXPR:
7141 this_align = TYPE_ALIGN (TREE_TYPE (target));
7142 outer_align = target_align (TREE_OPERAND (target, 0));
7143 return MAX (this_align, outer_align);
7145 default:
7146 return TYPE_ALIGN (TREE_TYPE (target));
7151 /* Given an rtx VALUE that may contain additions and multiplications, return
7152 an equivalent value that just refers to a register, memory, or constant.
7153 This is done by generating instructions to perform the arithmetic and
7154 returning a pseudo-register containing the value.
7156 The returned value may be a REG, SUBREG, MEM or constant. */
7159 force_operand (rtx value, rtx target)
7161 rtx op1, op2;
7162 /* Use subtarget as the target for operand 0 of a binary operation. */
7163 rtx subtarget = get_subtarget (target);
7164 enum rtx_code code = GET_CODE (value);
7166 /* Check for subreg applied to an expression produced by loop optimizer. */
7167 if (code == SUBREG
7168 && !REG_P (SUBREG_REG (value))
7169 && !MEM_P (SUBREG_REG (value)))
7171 value
7172 = simplify_gen_subreg (GET_MODE (value),
7173 force_reg (GET_MODE (SUBREG_REG (value)),
7174 force_operand (SUBREG_REG (value),
7175 NULL_RTX)),
7176 GET_MODE (SUBREG_REG (value)),
7177 SUBREG_BYTE (value));
7178 code = GET_CODE (value);
7181 /* Check for a PIC address load. */
7182 if ((code == PLUS || code == MINUS)
7183 && XEXP (value, 0) == pic_offset_table_rtx
7184 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7185 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7186 || GET_CODE (XEXP (value, 1)) == CONST))
7188 if (!subtarget)
7189 subtarget = gen_reg_rtx (GET_MODE (value));
7190 emit_move_insn (subtarget, value);
7191 return subtarget;
7194 if (ARITHMETIC_P (value))
7196 op2 = XEXP (value, 1);
7197 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7198 subtarget = 0;
7199 if (code == MINUS && CONST_INT_P (op2))
7201 code = PLUS;
7202 op2 = negate_rtx (GET_MODE (value), op2);
7205 /* Check for an addition with OP2 a constant integer and our first
7206 operand a PLUS of a virtual register and something else. In that
7207 case, we want to emit the sum of the virtual register and the
7208 constant first and then add the other value. This allows virtual
7209 register instantiation to simply modify the constant rather than
7210 creating another one around this addition. */
7211 if (code == PLUS && CONST_INT_P (op2)
7212 && GET_CODE (XEXP (value, 0)) == PLUS
7213 && REG_P (XEXP (XEXP (value, 0), 0))
7214 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7215 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7217 rtx temp = expand_simple_binop (GET_MODE (value), code,
7218 XEXP (XEXP (value, 0), 0), op2,
7219 subtarget, 0, OPTAB_LIB_WIDEN);
7220 return expand_simple_binop (GET_MODE (value), code, temp,
7221 force_operand (XEXP (XEXP (value,
7222 0), 1), 0),
7223 target, 0, OPTAB_LIB_WIDEN);
7226 op1 = force_operand (XEXP (value, 0), subtarget);
7227 op2 = force_operand (op2, NULL_RTX);
7228 switch (code)
7230 case MULT:
7231 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7232 case DIV:
7233 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7234 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7235 target, 1, OPTAB_LIB_WIDEN);
7236 else
7237 return expand_divmod (0,
7238 FLOAT_MODE_P (GET_MODE (value))
7239 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7240 GET_MODE (value), op1, op2, target, 0);
7241 case MOD:
7242 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7243 target, 0);
7244 case UDIV:
7245 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7246 target, 1);
7247 case UMOD:
7248 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7249 target, 1);
7250 case ASHIFTRT:
7251 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7252 target, 0, OPTAB_LIB_WIDEN);
7253 default:
7254 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7255 target, 1, OPTAB_LIB_WIDEN);
7258 if (UNARY_P (value))
7260 if (!target)
7261 target = gen_reg_rtx (GET_MODE (value));
7262 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7263 switch (code)
7265 case ZERO_EXTEND:
7266 case SIGN_EXTEND:
7267 case TRUNCATE:
7268 case FLOAT_EXTEND:
7269 case FLOAT_TRUNCATE:
7270 convert_move (target, op1, code == ZERO_EXTEND);
7271 return target;
7273 case FIX:
7274 case UNSIGNED_FIX:
7275 expand_fix (target, op1, code == UNSIGNED_FIX);
7276 return target;
7278 case FLOAT:
7279 case UNSIGNED_FLOAT:
7280 expand_float (target, op1, code == UNSIGNED_FLOAT);
7281 return target;
7283 default:
7284 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7288 #ifdef INSN_SCHEDULING
7289 /* On machines that have insn scheduling, we want all memory reference to be
7290 explicit, so we need to deal with such paradoxical SUBREGs. */
7291 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7292 value
7293 = simplify_gen_subreg (GET_MODE (value),
7294 force_reg (GET_MODE (SUBREG_REG (value)),
7295 force_operand (SUBREG_REG (value),
7296 NULL_RTX)),
7297 GET_MODE (SUBREG_REG (value)),
7298 SUBREG_BYTE (value));
7299 #endif
7301 return value;
7304 /* Subroutine of expand_expr: return nonzero iff there is no way that
7305 EXP can reference X, which is being modified. TOP_P is nonzero if this
7306 call is going to be used to determine whether we need a temporary
7307 for EXP, as opposed to a recursive call to this function.
7309 It is always safe for this routine to return zero since it merely
7310 searches for optimization opportunities. */
7313 safe_from_p (const_rtx x, tree exp, int top_p)
7315 rtx exp_rtl = 0;
7316 int i, nops;
7318 if (x == 0
7319 /* If EXP has varying size, we MUST use a target since we currently
7320 have no way of allocating temporaries of variable size
7321 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7322 So we assume here that something at a higher level has prevented a
7323 clash. This is somewhat bogus, but the best we can do. Only
7324 do this when X is BLKmode and when we are at the top level. */
7325 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7326 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7327 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7328 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7329 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7330 != INTEGER_CST)
7331 && GET_MODE (x) == BLKmode)
7332 /* If X is in the outgoing argument area, it is always safe. */
7333 || (MEM_P (x)
7334 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7335 || (GET_CODE (XEXP (x, 0)) == PLUS
7336 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7337 return 1;
7339 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7340 find the underlying pseudo. */
7341 if (GET_CODE (x) == SUBREG)
7343 x = SUBREG_REG (x);
7344 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7345 return 0;
7348 /* Now look at our tree code and possibly recurse. */
7349 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7351 case tcc_declaration:
7352 exp_rtl = DECL_RTL_IF_SET (exp);
7353 break;
7355 case tcc_constant:
7356 return 1;
7358 case tcc_exceptional:
7359 if (TREE_CODE (exp) == TREE_LIST)
7361 while (1)
7363 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7364 return 0;
7365 exp = TREE_CHAIN (exp);
7366 if (!exp)
7367 return 1;
7368 if (TREE_CODE (exp) != TREE_LIST)
7369 return safe_from_p (x, exp, 0);
7372 else if (TREE_CODE (exp) == CONSTRUCTOR)
7374 constructor_elt *ce;
7375 unsigned HOST_WIDE_INT idx;
7377 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7378 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7379 || !safe_from_p (x, ce->value, 0))
7380 return 0;
7381 return 1;
7383 else if (TREE_CODE (exp) == ERROR_MARK)
7384 return 1; /* An already-visited SAVE_EXPR? */
7385 else
7386 return 0;
7388 case tcc_statement:
7389 /* The only case we look at here is the DECL_INITIAL inside a
7390 DECL_EXPR. */
7391 return (TREE_CODE (exp) != DECL_EXPR
7392 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7393 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7394 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7396 case tcc_binary:
7397 case tcc_comparison:
7398 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7399 return 0;
7400 /* Fall through. */
7402 case tcc_unary:
7403 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7405 case tcc_expression:
7406 case tcc_reference:
7407 case tcc_vl_exp:
7408 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7409 the expression. If it is set, we conflict iff we are that rtx or
7410 both are in memory. Otherwise, we check all operands of the
7411 expression recursively. */
7413 switch (TREE_CODE (exp))
7415 case ADDR_EXPR:
7416 /* If the operand is static or we are static, we can't conflict.
7417 Likewise if we don't conflict with the operand at all. */
7418 if (staticp (TREE_OPERAND (exp, 0))
7419 || TREE_STATIC (exp)
7420 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7421 return 1;
7423 /* Otherwise, the only way this can conflict is if we are taking
7424 the address of a DECL a that address if part of X, which is
7425 very rare. */
7426 exp = TREE_OPERAND (exp, 0);
7427 if (DECL_P (exp))
7429 if (!DECL_RTL_SET_P (exp)
7430 || !MEM_P (DECL_RTL (exp)))
7431 return 0;
7432 else
7433 exp_rtl = XEXP (DECL_RTL (exp), 0);
7435 break;
7437 case MEM_REF:
7438 if (MEM_P (x)
7439 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7440 get_alias_set (exp)))
7441 return 0;
7442 break;
7444 case CALL_EXPR:
7445 /* Assume that the call will clobber all hard registers and
7446 all of memory. */
7447 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7448 || MEM_P (x))
7449 return 0;
7450 break;
7452 case WITH_CLEANUP_EXPR:
7453 case CLEANUP_POINT_EXPR:
7454 /* Lowered by gimplify.c. */
7455 gcc_unreachable ();
7457 case SAVE_EXPR:
7458 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7460 default:
7461 break;
7464 /* If we have an rtx, we do not need to scan our operands. */
7465 if (exp_rtl)
7466 break;
7468 nops = TREE_OPERAND_LENGTH (exp);
7469 for (i = 0; i < nops; i++)
7470 if (TREE_OPERAND (exp, i) != 0
7471 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7472 return 0;
7474 break;
7476 case tcc_type:
7477 /* Should never get a type here. */
7478 gcc_unreachable ();
7481 /* If we have an rtl, find any enclosed object. Then see if we conflict
7482 with it. */
7483 if (exp_rtl)
7485 if (GET_CODE (exp_rtl) == SUBREG)
7487 exp_rtl = SUBREG_REG (exp_rtl);
7488 if (REG_P (exp_rtl)
7489 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7490 return 0;
7493 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7494 are memory and they conflict. */
7495 return ! (rtx_equal_p (x, exp_rtl)
7496 || (MEM_P (x) && MEM_P (exp_rtl)
7497 && true_dependence (exp_rtl, VOIDmode, x)));
7500 /* If we reach here, it is safe. */
7501 return 1;
7505 /* Return the highest power of two that EXP is known to be a multiple of.
7506 This is used in updating alignment of MEMs in array references. */
7508 unsigned HOST_WIDE_INT
7509 highest_pow2_factor (const_tree exp)
7511 unsigned HOST_WIDE_INT ret;
7512 int trailing_zeros = tree_ctz (exp);
7513 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7514 return BIGGEST_ALIGNMENT;
7515 ret = (unsigned HOST_WIDE_INT) 1 << trailing_zeros;
7516 if (ret > BIGGEST_ALIGNMENT)
7517 return BIGGEST_ALIGNMENT;
7518 return ret;
7521 /* Similar, except that the alignment requirements of TARGET are
7522 taken into account. Assume it is at least as aligned as its
7523 type, unless it is a COMPONENT_REF in which case the layout of
7524 the structure gives the alignment. */
7526 static unsigned HOST_WIDE_INT
7527 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7529 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7530 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7532 return MAX (factor, talign);
7535 #ifdef HAVE_conditional_move
7536 /* Convert the tree comparison code TCODE to the rtl one where the
7537 signedness is UNSIGNEDP. */
7539 static enum rtx_code
7540 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7542 enum rtx_code code;
7543 switch (tcode)
7545 case EQ_EXPR:
7546 code = EQ;
7547 break;
7548 case NE_EXPR:
7549 code = NE;
7550 break;
7551 case LT_EXPR:
7552 code = unsignedp ? LTU : LT;
7553 break;
7554 case LE_EXPR:
7555 code = unsignedp ? LEU : LE;
7556 break;
7557 case GT_EXPR:
7558 code = unsignedp ? GTU : GT;
7559 break;
7560 case GE_EXPR:
7561 code = unsignedp ? GEU : GE;
7562 break;
7563 case UNORDERED_EXPR:
7564 code = UNORDERED;
7565 break;
7566 case ORDERED_EXPR:
7567 code = ORDERED;
7568 break;
7569 case UNLT_EXPR:
7570 code = UNLT;
7571 break;
7572 case UNLE_EXPR:
7573 code = UNLE;
7574 break;
7575 case UNGT_EXPR:
7576 code = UNGT;
7577 break;
7578 case UNGE_EXPR:
7579 code = UNGE;
7580 break;
7581 case UNEQ_EXPR:
7582 code = UNEQ;
7583 break;
7584 case LTGT_EXPR:
7585 code = LTGT;
7586 break;
7588 default:
7589 gcc_unreachable ();
7591 return code;
7593 #endif
7595 /* Subroutine of expand_expr. Expand the two operands of a binary
7596 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7597 The value may be stored in TARGET if TARGET is nonzero. The
7598 MODIFIER argument is as documented by expand_expr. */
7600 void
7601 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7602 enum expand_modifier modifier)
7604 if (! safe_from_p (target, exp1, 1))
7605 target = 0;
7606 if (operand_equal_p (exp0, exp1, 0))
7608 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7609 *op1 = copy_rtx (*op0);
7611 else
7613 /* If we need to preserve evaluation order, copy exp0 into its own
7614 temporary variable so that it can't be clobbered by exp1. */
7615 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
7616 exp0 = save_expr (exp0);
7617 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7618 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7623 /* Return a MEM that contains constant EXP. DEFER is as for
7624 output_constant_def and MODIFIER is as for expand_expr. */
7626 static rtx
7627 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7629 rtx mem;
7631 mem = output_constant_def (exp, defer);
7632 if (modifier != EXPAND_INITIALIZER)
7633 mem = use_anchored_address (mem);
7634 return mem;
7637 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7638 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7640 static rtx
7641 expand_expr_addr_expr_1 (tree exp, rtx target, machine_mode tmode,
7642 enum expand_modifier modifier, addr_space_t as)
7644 rtx result, subtarget;
7645 tree inner, offset;
7646 HOST_WIDE_INT bitsize, bitpos;
7647 int volatilep, unsignedp;
7648 machine_mode mode1;
7650 /* If we are taking the address of a constant and are at the top level,
7651 we have to use output_constant_def since we can't call force_const_mem
7652 at top level. */
7653 /* ??? This should be considered a front-end bug. We should not be
7654 generating ADDR_EXPR of something that isn't an LVALUE. The only
7655 exception here is STRING_CST. */
7656 if (CONSTANT_CLASS_P (exp))
7658 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7659 if (modifier < EXPAND_SUM)
7660 result = force_operand (result, target);
7661 return result;
7664 /* Everything must be something allowed by is_gimple_addressable. */
7665 switch (TREE_CODE (exp))
7667 case INDIRECT_REF:
7668 /* This case will happen via recursion for &a->b. */
7669 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7671 case MEM_REF:
7673 tree tem = TREE_OPERAND (exp, 0);
7674 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7675 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7676 return expand_expr (tem, target, tmode, modifier);
7679 case CONST_DECL:
7680 /* Expand the initializer like constants above. */
7681 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7682 0, modifier), 0);
7683 if (modifier < EXPAND_SUM)
7684 result = force_operand (result, target);
7685 return result;
7687 case REALPART_EXPR:
7688 /* The real part of the complex number is always first, therefore
7689 the address is the same as the address of the parent object. */
7690 offset = 0;
7691 bitpos = 0;
7692 inner = TREE_OPERAND (exp, 0);
7693 break;
7695 case IMAGPART_EXPR:
7696 /* The imaginary part of the complex number is always second.
7697 The expression is therefore always offset by the size of the
7698 scalar type. */
7699 offset = 0;
7700 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7701 inner = TREE_OPERAND (exp, 0);
7702 break;
7704 case COMPOUND_LITERAL_EXPR:
7705 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7706 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7707 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7708 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7709 the initializers aren't gimplified. */
7710 if (COMPOUND_LITERAL_EXPR_DECL (exp)
7711 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
7712 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7713 target, tmode, modifier, as);
7714 /* FALLTHRU */
7715 default:
7716 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7717 expand_expr, as that can have various side effects; LABEL_DECLs for
7718 example, may not have their DECL_RTL set yet. Expand the rtl of
7719 CONSTRUCTORs too, which should yield a memory reference for the
7720 constructor's contents. Assume language specific tree nodes can
7721 be expanded in some interesting way. */
7722 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7723 if (DECL_P (exp)
7724 || TREE_CODE (exp) == CONSTRUCTOR
7725 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7727 result = expand_expr (exp, target, tmode,
7728 modifier == EXPAND_INITIALIZER
7729 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7731 /* If the DECL isn't in memory, then the DECL wasn't properly
7732 marked TREE_ADDRESSABLE, which will be either a front-end
7733 or a tree optimizer bug. */
7735 if (TREE_ADDRESSABLE (exp)
7736 && ! MEM_P (result)
7737 && ! targetm.calls.allocate_stack_slots_for_args ())
7739 error ("local frame unavailable (naked function?)");
7740 return result;
7742 else
7743 gcc_assert (MEM_P (result));
7744 result = XEXP (result, 0);
7746 /* ??? Is this needed anymore? */
7747 if (DECL_P (exp))
7748 TREE_USED (exp) = 1;
7750 if (modifier != EXPAND_INITIALIZER
7751 && modifier != EXPAND_CONST_ADDRESS
7752 && modifier != EXPAND_SUM)
7753 result = force_operand (result, target);
7754 return result;
7757 /* Pass FALSE as the last argument to get_inner_reference although
7758 we are expanding to RTL. The rationale is that we know how to
7759 handle "aligning nodes" here: we can just bypass them because
7760 they won't change the final object whose address will be returned
7761 (they actually exist only for that purpose). */
7762 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7763 &mode1, &unsignedp, &volatilep, false);
7764 break;
7767 /* We must have made progress. */
7768 gcc_assert (inner != exp);
7770 subtarget = offset || bitpos ? NULL_RTX : target;
7771 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7772 inner alignment, force the inner to be sufficiently aligned. */
7773 if (CONSTANT_CLASS_P (inner)
7774 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7776 inner = copy_node (inner);
7777 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7778 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7779 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7781 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7783 if (offset)
7785 rtx tmp;
7787 if (modifier != EXPAND_NORMAL)
7788 result = force_operand (result, NULL);
7789 tmp = expand_expr (offset, NULL_RTX, tmode,
7790 modifier == EXPAND_INITIALIZER
7791 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7793 /* expand_expr is allowed to return an object in a mode other
7794 than TMODE. If it did, we need to convert. */
7795 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
7796 tmp = convert_modes (tmode, GET_MODE (tmp),
7797 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
7798 result = convert_memory_address_addr_space (tmode, result, as);
7799 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7801 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7802 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7803 else
7805 subtarget = bitpos ? NULL_RTX : target;
7806 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7807 1, OPTAB_LIB_WIDEN);
7811 if (bitpos)
7813 /* Someone beforehand should have rejected taking the address
7814 of such an object. */
7815 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7817 result = convert_memory_address_addr_space (tmode, result, as);
7818 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7819 if (modifier < EXPAND_SUM)
7820 result = force_operand (result, target);
7823 return result;
7826 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7827 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7829 static rtx
7830 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
7831 enum expand_modifier modifier)
7833 addr_space_t as = ADDR_SPACE_GENERIC;
7834 machine_mode address_mode = Pmode;
7835 machine_mode pointer_mode = ptr_mode;
7836 machine_mode rmode;
7837 rtx result;
7839 /* Target mode of VOIDmode says "whatever's natural". */
7840 if (tmode == VOIDmode)
7841 tmode = TYPE_MODE (TREE_TYPE (exp));
7843 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7845 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7846 address_mode = targetm.addr_space.address_mode (as);
7847 pointer_mode = targetm.addr_space.pointer_mode (as);
7850 /* We can get called with some Weird Things if the user does silliness
7851 like "(short) &a". In that case, convert_memory_address won't do
7852 the right thing, so ignore the given target mode. */
7853 if (tmode != address_mode && tmode != pointer_mode)
7854 tmode = address_mode;
7856 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7857 tmode, modifier, as);
7859 /* Despite expand_expr claims concerning ignoring TMODE when not
7860 strictly convenient, stuff breaks if we don't honor it. Note
7861 that combined with the above, we only do this for pointer modes. */
7862 rmode = GET_MODE (result);
7863 if (rmode == VOIDmode)
7864 rmode = tmode;
7865 if (rmode != tmode)
7866 result = convert_memory_address_addr_space (tmode, result, as);
7868 return result;
7871 /* Generate code for computing CONSTRUCTOR EXP.
7872 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7873 is TRUE, instead of creating a temporary variable in memory
7874 NULL is returned and the caller needs to handle it differently. */
7876 static rtx
7877 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7878 bool avoid_temp_mem)
7880 tree type = TREE_TYPE (exp);
7881 machine_mode mode = TYPE_MODE (type);
7883 /* Try to avoid creating a temporary at all. This is possible
7884 if all of the initializer is zero.
7885 FIXME: try to handle all [0..255] initializers we can handle
7886 with memset. */
7887 if (TREE_STATIC (exp)
7888 && !TREE_ADDRESSABLE (exp)
7889 && target != 0 && mode == BLKmode
7890 && all_zeros_p (exp))
7892 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7893 return target;
7896 /* All elts simple constants => refer to a constant in memory. But
7897 if this is a non-BLKmode mode, let it store a field at a time
7898 since that should make a CONST_INT, CONST_WIDE_INT or
7899 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7900 use, it is best to store directly into the target unless the type
7901 is large enough that memcpy will be used. If we are making an
7902 initializer and all operands are constant, put it in memory as
7903 well.
7905 FIXME: Avoid trying to fill vector constructors piece-meal.
7906 Output them with output_constant_def below unless we're sure
7907 they're zeros. This should go away when vector initializers
7908 are treated like VECTOR_CST instead of arrays. */
7909 if ((TREE_STATIC (exp)
7910 && ((mode == BLKmode
7911 && ! (target != 0 && safe_from_p (target, exp, 1)))
7912 || TREE_ADDRESSABLE (exp)
7913 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
7914 && (! can_move_by_pieces
7915 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
7916 TYPE_ALIGN (type)))
7917 && ! mostly_zeros_p (exp))))
7918 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7919 && TREE_CONSTANT (exp)))
7921 rtx constructor;
7923 if (avoid_temp_mem)
7924 return NULL_RTX;
7926 constructor = expand_expr_constant (exp, 1, modifier);
7928 if (modifier != EXPAND_CONST_ADDRESS
7929 && modifier != EXPAND_INITIALIZER
7930 && modifier != EXPAND_SUM)
7931 constructor = validize_mem (constructor);
7933 return constructor;
7936 /* Handle calls that pass values in multiple non-contiguous
7937 locations. The Irix 6 ABI has examples of this. */
7938 if (target == 0 || ! safe_from_p (target, exp, 1)
7939 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7941 if (avoid_temp_mem)
7942 return NULL_RTX;
7944 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
7947 store_constructor (exp, target, 0, int_expr_size (exp));
7948 return target;
7952 /* expand_expr: generate code for computing expression EXP.
7953 An rtx for the computed value is returned. The value is never null.
7954 In the case of a void EXP, const0_rtx is returned.
7956 The value may be stored in TARGET if TARGET is nonzero.
7957 TARGET is just a suggestion; callers must assume that
7958 the rtx returned may not be the same as TARGET.
7960 If TARGET is CONST0_RTX, it means that the value will be ignored.
7962 If TMODE is not VOIDmode, it suggests generating the
7963 result in mode TMODE. But this is done only when convenient.
7964 Otherwise, TMODE is ignored and the value generated in its natural mode.
7965 TMODE is just a suggestion; callers must assume that
7966 the rtx returned may not have mode TMODE.
7968 Note that TARGET may have neither TMODE nor MODE. In that case, it
7969 probably will not be used.
7971 If MODIFIER is EXPAND_SUM then when EXP is an addition
7972 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7973 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7974 products as above, or REG or MEM, or constant.
7975 Ordinarily in such cases we would output mul or add instructions
7976 and then return a pseudo reg containing the sum.
7978 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7979 it also marks a label as absolutely required (it can't be dead).
7980 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7981 This is used for outputting expressions used in initializers.
7983 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7984 with a constant address even if that address is not normally legitimate.
7985 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7987 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7988 a call parameter. Such targets require special care as we haven't yet
7989 marked TARGET so that it's safe from being trashed by libcalls. We
7990 don't want to use TARGET for anything but the final result;
7991 Intermediate values must go elsewhere. Additionally, calls to
7992 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7994 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7995 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7996 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7997 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7998 recursively.
8000 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8001 In this case, we don't adjust a returned MEM rtx that wouldn't be
8002 sufficiently aligned for its mode; instead, it's up to the caller
8003 to deal with it afterwards. This is used to make sure that unaligned
8004 base objects for which out-of-bounds accesses are supported, for
8005 example record types with trailing arrays, aren't realigned behind
8006 the back of the caller.
8007 The normal operating mode is to pass FALSE for this parameter. */
8010 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8011 enum expand_modifier modifier, rtx *alt_rtl,
8012 bool inner_reference_p)
8014 rtx ret;
8016 /* Handle ERROR_MARK before anybody tries to access its type. */
8017 if (TREE_CODE (exp) == ERROR_MARK
8018 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8020 ret = CONST0_RTX (tmode);
8021 return ret ? ret : const0_rtx;
8024 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8025 inner_reference_p);
8026 return ret;
8029 /* Try to expand the conditional expression which is represented by
8030 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
8031 return the rtl reg which repsents the result. Otherwise return
8032 NULL_RTL. */
8034 static rtx
8035 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8036 tree treeop1 ATTRIBUTE_UNUSED,
8037 tree treeop2 ATTRIBUTE_UNUSED)
8039 #ifdef HAVE_conditional_move
8040 rtx insn;
8041 rtx op00, op01, op1, op2;
8042 enum rtx_code comparison_code;
8043 machine_mode comparison_mode;
8044 gimple srcstmt;
8045 rtx temp;
8046 tree type = TREE_TYPE (treeop1);
8047 int unsignedp = TYPE_UNSIGNED (type);
8048 machine_mode mode = TYPE_MODE (type);
8049 machine_mode orig_mode = mode;
8051 /* If we cannot do a conditional move on the mode, try doing it
8052 with the promoted mode. */
8053 if (!can_conditionally_move_p (mode))
8055 mode = promote_mode (type, mode, &unsignedp);
8056 if (!can_conditionally_move_p (mode))
8057 return NULL_RTX;
8058 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8060 else
8061 temp = assign_temp (type, 0, 1);
8063 start_sequence ();
8064 expand_operands (treeop1, treeop2,
8065 temp, &op1, &op2, EXPAND_NORMAL);
8067 if (TREE_CODE (treeop0) == SSA_NAME
8068 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8070 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8071 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8072 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8073 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8074 comparison_mode = TYPE_MODE (type);
8075 unsignedp = TYPE_UNSIGNED (type);
8076 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8078 else if (TREE_CODE_CLASS (TREE_CODE (treeop0)) == tcc_comparison)
8080 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8081 enum tree_code cmpcode = TREE_CODE (treeop0);
8082 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8083 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8084 unsignedp = TYPE_UNSIGNED (type);
8085 comparison_mode = TYPE_MODE (type);
8086 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8088 else
8090 op00 = expand_normal (treeop0);
8091 op01 = const0_rtx;
8092 comparison_code = NE;
8093 comparison_mode = GET_MODE (op00);
8094 if (comparison_mode == VOIDmode)
8095 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8098 if (GET_MODE (op1) != mode)
8099 op1 = gen_lowpart (mode, op1);
8101 if (GET_MODE (op2) != mode)
8102 op2 = gen_lowpart (mode, op2);
8104 /* Try to emit the conditional move. */
8105 insn = emit_conditional_move (temp, comparison_code,
8106 op00, op01, comparison_mode,
8107 op1, op2, mode,
8108 unsignedp);
8110 /* If we could do the conditional move, emit the sequence,
8111 and return. */
8112 if (insn)
8114 rtx_insn *seq = get_insns ();
8115 end_sequence ();
8116 emit_insn (seq);
8117 return convert_modes (orig_mode, mode, temp, 0);
8120 /* Otherwise discard the sequence and fall back to code with
8121 branches. */
8122 end_sequence ();
8123 #endif
8124 return NULL_RTX;
8128 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8129 enum expand_modifier modifier)
8131 rtx op0, op1, op2, temp;
8132 tree type;
8133 int unsignedp;
8134 machine_mode mode;
8135 enum tree_code code = ops->code;
8136 optab this_optab;
8137 rtx subtarget, original_target;
8138 int ignore;
8139 bool reduce_bit_field;
8140 location_t loc = ops->location;
8141 tree treeop0, treeop1, treeop2;
8142 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8143 ? reduce_to_bit_field_precision ((expr), \
8144 target, \
8145 type) \
8146 : (expr))
8148 type = ops->type;
8149 mode = TYPE_MODE (type);
8150 unsignedp = TYPE_UNSIGNED (type);
8152 treeop0 = ops->op0;
8153 treeop1 = ops->op1;
8154 treeop2 = ops->op2;
8156 /* We should be called only on simple (binary or unary) expressions,
8157 exactly those that are valid in gimple expressions that aren't
8158 GIMPLE_SINGLE_RHS (or invalid). */
8159 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8160 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8161 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8163 ignore = (target == const0_rtx
8164 || ((CONVERT_EXPR_CODE_P (code)
8165 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8166 && TREE_CODE (type) == VOID_TYPE));
8168 /* We should be called only if we need the result. */
8169 gcc_assert (!ignore);
8171 /* An operation in what may be a bit-field type needs the
8172 result to be reduced to the precision of the bit-field type,
8173 which is narrower than that of the type's mode. */
8174 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8175 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8177 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8178 target = 0;
8180 /* Use subtarget as the target for operand 0 of a binary operation. */
8181 subtarget = get_subtarget (target);
8182 original_target = target;
8184 switch (code)
8186 case NON_LVALUE_EXPR:
8187 case PAREN_EXPR:
8188 CASE_CONVERT:
8189 if (treeop0 == error_mark_node)
8190 return const0_rtx;
8192 if (TREE_CODE (type) == UNION_TYPE)
8194 tree valtype = TREE_TYPE (treeop0);
8196 /* If both input and output are BLKmode, this conversion isn't doing
8197 anything except possibly changing memory attribute. */
8198 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8200 rtx result = expand_expr (treeop0, target, tmode,
8201 modifier);
8203 result = copy_rtx (result);
8204 set_mem_attributes (result, type, 0);
8205 return result;
8208 if (target == 0)
8210 if (TYPE_MODE (type) != BLKmode)
8211 target = gen_reg_rtx (TYPE_MODE (type));
8212 else
8213 target = assign_temp (type, 1, 1);
8216 if (MEM_P (target))
8217 /* Store data into beginning of memory target. */
8218 store_expr (treeop0,
8219 adjust_address (target, TYPE_MODE (valtype), 0),
8220 modifier == EXPAND_STACK_PARM,
8221 false);
8223 else
8225 gcc_assert (REG_P (target));
8227 /* Store this field into a union of the proper type. */
8228 store_field (target,
8229 MIN ((int_size_in_bytes (TREE_TYPE
8230 (treeop0))
8231 * BITS_PER_UNIT),
8232 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8233 0, 0, 0, TYPE_MODE (valtype), treeop0, 0, false);
8236 /* Return the entire union. */
8237 return target;
8240 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8242 op0 = expand_expr (treeop0, target, VOIDmode,
8243 modifier);
8245 /* If the signedness of the conversion differs and OP0 is
8246 a promoted SUBREG, clear that indication since we now
8247 have to do the proper extension. */
8248 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8249 && GET_CODE (op0) == SUBREG)
8250 SUBREG_PROMOTED_VAR_P (op0) = 0;
8252 return REDUCE_BIT_FIELD (op0);
8255 op0 = expand_expr (treeop0, NULL_RTX, mode,
8256 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8257 if (GET_MODE (op0) == mode)
8260 /* If OP0 is a constant, just convert it into the proper mode. */
8261 else if (CONSTANT_P (op0))
8263 tree inner_type = TREE_TYPE (treeop0);
8264 machine_mode inner_mode = GET_MODE (op0);
8266 if (inner_mode == VOIDmode)
8267 inner_mode = TYPE_MODE (inner_type);
8269 if (modifier == EXPAND_INITIALIZER)
8270 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8271 subreg_lowpart_offset (mode,
8272 inner_mode));
8273 else
8274 op0= convert_modes (mode, inner_mode, op0,
8275 TYPE_UNSIGNED (inner_type));
8278 else if (modifier == EXPAND_INITIALIZER)
8279 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8281 else if (target == 0)
8282 op0 = convert_to_mode (mode, op0,
8283 TYPE_UNSIGNED (TREE_TYPE
8284 (treeop0)));
8285 else
8287 convert_move (target, op0,
8288 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8289 op0 = target;
8292 return REDUCE_BIT_FIELD (op0);
8294 case ADDR_SPACE_CONVERT_EXPR:
8296 tree treeop0_type = TREE_TYPE (treeop0);
8297 addr_space_t as_to;
8298 addr_space_t as_from;
8300 gcc_assert (POINTER_TYPE_P (type));
8301 gcc_assert (POINTER_TYPE_P (treeop0_type));
8303 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8304 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8306 /* Conversions between pointers to the same address space should
8307 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8308 gcc_assert (as_to != as_from);
8310 /* Ask target code to handle conversion between pointers
8311 to overlapping address spaces. */
8312 if (targetm.addr_space.subset_p (as_to, as_from)
8313 || targetm.addr_space.subset_p (as_from, as_to))
8315 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8316 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8317 gcc_assert (op0);
8318 return op0;
8321 /* For disjoint address spaces, converting anything but
8322 a null pointer invokes undefined behaviour. We simply
8323 always return a null pointer here. */
8324 return CONST0_RTX (mode);
8327 case POINTER_PLUS_EXPR:
8328 /* Even though the sizetype mode and the pointer's mode can be different
8329 expand is able to handle this correctly and get the correct result out
8330 of the PLUS_EXPR code. */
8331 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8332 if sizetype precision is smaller than pointer precision. */
8333 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8334 treeop1 = fold_convert_loc (loc, type,
8335 fold_convert_loc (loc, ssizetype,
8336 treeop1));
8337 /* If sizetype precision is larger than pointer precision, truncate the
8338 offset to have matching modes. */
8339 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8340 treeop1 = fold_convert_loc (loc, type, treeop1);
8342 case PLUS_EXPR:
8343 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8344 something else, make sure we add the register to the constant and
8345 then to the other thing. This case can occur during strength
8346 reduction and doing it this way will produce better code if the
8347 frame pointer or argument pointer is eliminated.
8349 fold-const.c will ensure that the constant is always in the inner
8350 PLUS_EXPR, so the only case we need to do anything about is if
8351 sp, ap, or fp is our second argument, in which case we must swap
8352 the innermost first argument and our second argument. */
8354 if (TREE_CODE (treeop0) == PLUS_EXPR
8355 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8356 && TREE_CODE (treeop1) == VAR_DECL
8357 && (DECL_RTL (treeop1) == frame_pointer_rtx
8358 || DECL_RTL (treeop1) == stack_pointer_rtx
8359 || DECL_RTL (treeop1) == arg_pointer_rtx))
8361 gcc_unreachable ();
8364 /* If the result is to be ptr_mode and we are adding an integer to
8365 something, we might be forming a constant. So try to use
8366 plus_constant. If it produces a sum and we can't accept it,
8367 use force_operand. This allows P = &ARR[const] to generate
8368 efficient code on machines where a SYMBOL_REF is not a valid
8369 address.
8371 If this is an EXPAND_SUM call, always return the sum. */
8372 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8373 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8375 if (modifier == EXPAND_STACK_PARM)
8376 target = 0;
8377 if (TREE_CODE (treeop0) == INTEGER_CST
8378 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8379 && TREE_CONSTANT (treeop1))
8381 rtx constant_part;
8382 HOST_WIDE_INT wc;
8383 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8385 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8386 EXPAND_SUM);
8387 /* Use wi::shwi to ensure that the constant is
8388 truncated according to the mode of OP1, then sign extended
8389 to a HOST_WIDE_INT. Using the constant directly can result
8390 in non-canonical RTL in a 64x32 cross compile. */
8391 wc = TREE_INT_CST_LOW (treeop0);
8392 constant_part =
8393 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8394 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8395 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8396 op1 = force_operand (op1, target);
8397 return REDUCE_BIT_FIELD (op1);
8400 else if (TREE_CODE (treeop1) == INTEGER_CST
8401 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8402 && TREE_CONSTANT (treeop0))
8404 rtx constant_part;
8405 HOST_WIDE_INT wc;
8406 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8408 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8409 (modifier == EXPAND_INITIALIZER
8410 ? EXPAND_INITIALIZER : EXPAND_SUM));
8411 if (! CONSTANT_P (op0))
8413 op1 = expand_expr (treeop1, NULL_RTX,
8414 VOIDmode, modifier);
8415 /* Return a PLUS if modifier says it's OK. */
8416 if (modifier == EXPAND_SUM
8417 || modifier == EXPAND_INITIALIZER)
8418 return simplify_gen_binary (PLUS, mode, op0, op1);
8419 goto binop2;
8421 /* Use wi::shwi to ensure that the constant is
8422 truncated according to the mode of OP1, then sign extended
8423 to a HOST_WIDE_INT. Using the constant directly can result
8424 in non-canonical RTL in a 64x32 cross compile. */
8425 wc = TREE_INT_CST_LOW (treeop1);
8426 constant_part
8427 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8428 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8429 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8430 op0 = force_operand (op0, target);
8431 return REDUCE_BIT_FIELD (op0);
8435 /* Use TER to expand pointer addition of a negated value
8436 as pointer subtraction. */
8437 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8438 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8439 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8440 && TREE_CODE (treeop1) == SSA_NAME
8441 && TYPE_MODE (TREE_TYPE (treeop0))
8442 == TYPE_MODE (TREE_TYPE (treeop1)))
8444 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
8445 if (def)
8447 treeop1 = gimple_assign_rhs1 (def);
8448 code = MINUS_EXPR;
8449 goto do_minus;
8453 /* No sense saving up arithmetic to be done
8454 if it's all in the wrong mode to form part of an address.
8455 And force_operand won't know whether to sign-extend or
8456 zero-extend. */
8457 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8458 || mode != ptr_mode)
8460 expand_operands (treeop0, treeop1,
8461 subtarget, &op0, &op1, EXPAND_NORMAL);
8462 if (op0 == const0_rtx)
8463 return op1;
8464 if (op1 == const0_rtx)
8465 return op0;
8466 goto binop2;
8469 expand_operands (treeop0, treeop1,
8470 subtarget, &op0, &op1, modifier);
8471 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8473 case MINUS_EXPR:
8474 do_minus:
8475 /* For initializers, we are allowed to return a MINUS of two
8476 symbolic constants. Here we handle all cases when both operands
8477 are constant. */
8478 /* Handle difference of two symbolic constants,
8479 for the sake of an initializer. */
8480 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8481 && really_constant_p (treeop0)
8482 && really_constant_p (treeop1))
8484 expand_operands (treeop0, treeop1,
8485 NULL_RTX, &op0, &op1, modifier);
8487 /* If the last operand is a CONST_INT, use plus_constant of
8488 the negated constant. Else make the MINUS. */
8489 if (CONST_INT_P (op1))
8490 return REDUCE_BIT_FIELD (plus_constant (mode, op0,
8491 -INTVAL (op1)));
8492 else
8493 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8496 /* No sense saving up arithmetic to be done
8497 if it's all in the wrong mode to form part of an address.
8498 And force_operand won't know whether to sign-extend or
8499 zero-extend. */
8500 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8501 || mode != ptr_mode)
8502 goto binop;
8504 expand_operands (treeop0, treeop1,
8505 subtarget, &op0, &op1, modifier);
8507 /* Convert A - const to A + (-const). */
8508 if (CONST_INT_P (op1))
8510 op1 = negate_rtx (mode, op1);
8511 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8514 goto binop2;
8516 case WIDEN_MULT_PLUS_EXPR:
8517 case WIDEN_MULT_MINUS_EXPR:
8518 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8519 op2 = expand_normal (treeop2);
8520 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8521 target, unsignedp);
8522 return target;
8524 case WIDEN_MULT_EXPR:
8525 /* If first operand is constant, swap them.
8526 Thus the following special case checks need only
8527 check the second operand. */
8528 if (TREE_CODE (treeop0) == INTEGER_CST)
8530 tree t1 = treeop0;
8531 treeop0 = treeop1;
8532 treeop1 = t1;
8535 /* First, check if we have a multiplication of one signed and one
8536 unsigned operand. */
8537 if (TREE_CODE (treeop1) != INTEGER_CST
8538 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8539 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8541 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8542 this_optab = usmul_widen_optab;
8543 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8544 != CODE_FOR_nothing)
8546 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8547 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8548 EXPAND_NORMAL);
8549 else
8550 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8551 EXPAND_NORMAL);
8552 /* op0 and op1 might still be constant, despite the above
8553 != INTEGER_CST check. Handle it. */
8554 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8556 op0 = convert_modes (innermode, mode, op0, true);
8557 op1 = convert_modes (innermode, mode, op1, false);
8558 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8559 target, unsignedp));
8561 goto binop3;
8564 /* Check for a multiplication with matching signedness. */
8565 else if ((TREE_CODE (treeop1) == INTEGER_CST
8566 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8567 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8568 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8570 tree op0type = TREE_TYPE (treeop0);
8571 machine_mode innermode = TYPE_MODE (op0type);
8572 bool zextend_p = TYPE_UNSIGNED (op0type);
8573 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8574 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8576 if (TREE_CODE (treeop0) != INTEGER_CST)
8578 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8579 != CODE_FOR_nothing)
8581 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8582 EXPAND_NORMAL);
8583 /* op0 and op1 might still be constant, despite the above
8584 != INTEGER_CST check. Handle it. */
8585 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8587 widen_mult_const:
8588 op0 = convert_modes (innermode, mode, op0, zextend_p);
8590 = convert_modes (innermode, mode, op1,
8591 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8592 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8593 target,
8594 unsignedp));
8596 temp = expand_widening_mult (mode, op0, op1, target,
8597 unsignedp, this_optab);
8598 return REDUCE_BIT_FIELD (temp);
8600 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8601 != CODE_FOR_nothing
8602 && innermode == word_mode)
8604 rtx htem, hipart;
8605 op0 = expand_normal (treeop0);
8606 if (TREE_CODE (treeop1) == INTEGER_CST)
8607 op1 = convert_modes (innermode, mode,
8608 expand_normal (treeop1),
8609 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8610 else
8611 op1 = expand_normal (treeop1);
8612 /* op0 and op1 might still be constant, despite the above
8613 != INTEGER_CST check. Handle it. */
8614 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8615 goto widen_mult_const;
8616 temp = expand_binop (mode, other_optab, op0, op1, target,
8617 unsignedp, OPTAB_LIB_WIDEN);
8618 hipart = gen_highpart (innermode, temp);
8619 htem = expand_mult_highpart_adjust (innermode, hipart,
8620 op0, op1, hipart,
8621 zextend_p);
8622 if (htem != hipart)
8623 emit_move_insn (hipart, htem);
8624 return REDUCE_BIT_FIELD (temp);
8628 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8629 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8630 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8631 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8633 case FMA_EXPR:
8635 optab opt = fma_optab;
8636 gimple def0, def2;
8638 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8639 call. */
8640 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8642 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8643 tree call_expr;
8645 gcc_assert (fn != NULL_TREE);
8646 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8647 return expand_builtin (call_expr, target, subtarget, mode, false);
8650 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8651 /* The multiplication is commutative - look at its 2nd operand
8652 if the first isn't fed by a negate. */
8653 if (!def0)
8655 def0 = get_def_for_expr (treeop1, NEGATE_EXPR);
8656 /* Swap operands if the 2nd operand is fed by a negate. */
8657 if (def0)
8659 tree tem = treeop0;
8660 treeop0 = treeop1;
8661 treeop1 = tem;
8664 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8666 op0 = op2 = NULL;
8668 if (def0 && def2
8669 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8671 opt = fnms_optab;
8672 op0 = expand_normal (gimple_assign_rhs1 (def0));
8673 op2 = expand_normal (gimple_assign_rhs1 (def2));
8675 else if (def0
8676 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8678 opt = fnma_optab;
8679 op0 = expand_normal (gimple_assign_rhs1 (def0));
8681 else if (def2
8682 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8684 opt = fms_optab;
8685 op2 = expand_normal (gimple_assign_rhs1 (def2));
8688 if (op0 == NULL)
8689 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8690 if (op2 == NULL)
8691 op2 = expand_normal (treeop2);
8692 op1 = expand_normal (treeop1);
8694 return expand_ternary_op (TYPE_MODE (type), opt,
8695 op0, op1, op2, target, 0);
8698 case MULT_EXPR:
8699 /* If this is a fixed-point operation, then we cannot use the code
8700 below because "expand_mult" doesn't support sat/no-sat fixed-point
8701 multiplications. */
8702 if (ALL_FIXED_POINT_MODE_P (mode))
8703 goto binop;
8705 /* If first operand is constant, swap them.
8706 Thus the following special case checks need only
8707 check the second operand. */
8708 if (TREE_CODE (treeop0) == INTEGER_CST)
8710 tree t1 = treeop0;
8711 treeop0 = treeop1;
8712 treeop1 = t1;
8715 /* Attempt to return something suitable for generating an
8716 indexed address, for machines that support that. */
8718 if (modifier == EXPAND_SUM && mode == ptr_mode
8719 && tree_fits_shwi_p (treeop1))
8721 tree exp1 = treeop1;
8723 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8724 EXPAND_SUM);
8726 if (!REG_P (op0))
8727 op0 = force_operand (op0, NULL_RTX);
8728 if (!REG_P (op0))
8729 op0 = copy_to_mode_reg (mode, op0);
8731 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8732 gen_int_mode (tree_to_shwi (exp1),
8733 TYPE_MODE (TREE_TYPE (exp1)))));
8736 if (modifier == EXPAND_STACK_PARM)
8737 target = 0;
8739 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8740 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8742 case TRUNC_DIV_EXPR:
8743 case FLOOR_DIV_EXPR:
8744 case CEIL_DIV_EXPR:
8745 case ROUND_DIV_EXPR:
8746 case EXACT_DIV_EXPR:
8747 /* If this is a fixed-point operation, then we cannot use the code
8748 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8749 divisions. */
8750 if (ALL_FIXED_POINT_MODE_P (mode))
8751 goto binop;
8753 if (modifier == EXPAND_STACK_PARM)
8754 target = 0;
8755 /* Possible optimization: compute the dividend with EXPAND_SUM
8756 then if the divisor is constant can optimize the case
8757 where some terms of the dividend have coeffs divisible by it. */
8758 expand_operands (treeop0, treeop1,
8759 subtarget, &op0, &op1, EXPAND_NORMAL);
8760 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8762 case RDIV_EXPR:
8763 goto binop;
8765 case MULT_HIGHPART_EXPR:
8766 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8767 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8768 gcc_assert (temp);
8769 return temp;
8771 case TRUNC_MOD_EXPR:
8772 case FLOOR_MOD_EXPR:
8773 case CEIL_MOD_EXPR:
8774 case ROUND_MOD_EXPR:
8775 if (modifier == EXPAND_STACK_PARM)
8776 target = 0;
8777 expand_operands (treeop0, treeop1,
8778 subtarget, &op0, &op1, EXPAND_NORMAL);
8779 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8781 case FIXED_CONVERT_EXPR:
8782 op0 = expand_normal (treeop0);
8783 if (target == 0 || modifier == EXPAND_STACK_PARM)
8784 target = gen_reg_rtx (mode);
8786 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8787 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8788 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8789 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8790 else
8791 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8792 return target;
8794 case FIX_TRUNC_EXPR:
8795 op0 = expand_normal (treeop0);
8796 if (target == 0 || modifier == EXPAND_STACK_PARM)
8797 target = gen_reg_rtx (mode);
8798 expand_fix (target, op0, unsignedp);
8799 return target;
8801 case FLOAT_EXPR:
8802 op0 = expand_normal (treeop0);
8803 if (target == 0 || modifier == EXPAND_STACK_PARM)
8804 target = gen_reg_rtx (mode);
8805 /* expand_float can't figure out what to do if FROM has VOIDmode.
8806 So give it the correct mode. With -O, cse will optimize this. */
8807 if (GET_MODE (op0) == VOIDmode)
8808 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8809 op0);
8810 expand_float (target, op0,
8811 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8812 return target;
8814 case NEGATE_EXPR:
8815 op0 = expand_expr (treeop0, subtarget,
8816 VOIDmode, EXPAND_NORMAL);
8817 if (modifier == EXPAND_STACK_PARM)
8818 target = 0;
8819 temp = expand_unop (mode,
8820 optab_for_tree_code (NEGATE_EXPR, type,
8821 optab_default),
8822 op0, target, 0);
8823 gcc_assert (temp);
8824 return REDUCE_BIT_FIELD (temp);
8826 case ABS_EXPR:
8827 op0 = expand_expr (treeop0, subtarget,
8828 VOIDmode, EXPAND_NORMAL);
8829 if (modifier == EXPAND_STACK_PARM)
8830 target = 0;
8832 /* ABS_EXPR is not valid for complex arguments. */
8833 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8834 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8836 /* Unsigned abs is simply the operand. Testing here means we don't
8837 risk generating incorrect code below. */
8838 if (TYPE_UNSIGNED (type))
8839 return op0;
8841 return expand_abs (mode, op0, target, unsignedp,
8842 safe_from_p (target, treeop0, 1));
8844 case MAX_EXPR:
8845 case MIN_EXPR:
8846 target = original_target;
8847 if (target == 0
8848 || modifier == EXPAND_STACK_PARM
8849 || (MEM_P (target) && MEM_VOLATILE_P (target))
8850 || GET_MODE (target) != mode
8851 || (REG_P (target)
8852 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8853 target = gen_reg_rtx (mode);
8854 expand_operands (treeop0, treeop1,
8855 target, &op0, &op1, EXPAND_NORMAL);
8857 /* First try to do it with a special MIN or MAX instruction.
8858 If that does not win, use a conditional jump to select the proper
8859 value. */
8860 this_optab = optab_for_tree_code (code, type, optab_default);
8861 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8862 OPTAB_WIDEN);
8863 if (temp != 0)
8864 return temp;
8866 /* At this point, a MEM target is no longer useful; we will get better
8867 code without it. */
8869 if (! REG_P (target))
8870 target = gen_reg_rtx (mode);
8872 /* If op1 was placed in target, swap op0 and op1. */
8873 if (target != op0 && target == op1)
8875 temp = op0;
8876 op0 = op1;
8877 op1 = temp;
8880 /* We generate better code and avoid problems with op1 mentioning
8881 target by forcing op1 into a pseudo if it isn't a constant. */
8882 if (! CONSTANT_P (op1))
8883 op1 = force_reg (mode, op1);
8886 enum rtx_code comparison_code;
8887 rtx cmpop1 = op1;
8889 if (code == MAX_EXPR)
8890 comparison_code = unsignedp ? GEU : GE;
8891 else
8892 comparison_code = unsignedp ? LEU : LE;
8894 /* Canonicalize to comparisons against 0. */
8895 if (op1 == const1_rtx)
8897 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8898 or (a != 0 ? a : 1) for unsigned.
8899 For MIN we are safe converting (a <= 1 ? a : 1)
8900 into (a <= 0 ? a : 1) */
8901 cmpop1 = const0_rtx;
8902 if (code == MAX_EXPR)
8903 comparison_code = unsignedp ? NE : GT;
8905 if (op1 == constm1_rtx && !unsignedp)
8907 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8908 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8909 cmpop1 = const0_rtx;
8910 if (code == MIN_EXPR)
8911 comparison_code = LT;
8913 #ifdef HAVE_conditional_move
8914 /* Use a conditional move if possible. */
8915 if (can_conditionally_move_p (mode))
8917 rtx insn;
8919 start_sequence ();
8921 /* Try to emit the conditional move. */
8922 insn = emit_conditional_move (target, comparison_code,
8923 op0, cmpop1, mode,
8924 op0, op1, mode,
8925 unsignedp);
8927 /* If we could do the conditional move, emit the sequence,
8928 and return. */
8929 if (insn)
8931 rtx_insn *seq = get_insns ();
8932 end_sequence ();
8933 emit_insn (seq);
8934 return target;
8937 /* Otherwise discard the sequence and fall back to code with
8938 branches. */
8939 end_sequence ();
8941 #endif
8942 if (target != op0)
8943 emit_move_insn (target, op0);
8945 temp = gen_label_rtx ();
8946 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8947 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8948 -1);
8950 emit_move_insn (target, op1);
8951 emit_label (temp);
8952 return target;
8954 case BIT_NOT_EXPR:
8955 op0 = expand_expr (treeop0, subtarget,
8956 VOIDmode, EXPAND_NORMAL);
8957 if (modifier == EXPAND_STACK_PARM)
8958 target = 0;
8959 /* In case we have to reduce the result to bitfield precision
8960 for unsigned bitfield expand this as XOR with a proper constant
8961 instead. */
8962 if (reduce_bit_field && TYPE_UNSIGNED (type))
8964 wide_int mask = wi::mask (TYPE_PRECISION (type),
8965 false, GET_MODE_PRECISION (mode));
8967 temp = expand_binop (mode, xor_optab, op0,
8968 immed_wide_int_const (mask, mode),
8969 target, 1, OPTAB_LIB_WIDEN);
8971 else
8972 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8973 gcc_assert (temp);
8974 return temp;
8976 /* ??? Can optimize bitwise operations with one arg constant.
8977 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8978 and (a bitwise1 b) bitwise2 b (etc)
8979 but that is probably not worth while. */
8981 case BIT_AND_EXPR:
8982 case BIT_IOR_EXPR:
8983 case BIT_XOR_EXPR:
8984 goto binop;
8986 case LROTATE_EXPR:
8987 case RROTATE_EXPR:
8988 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8989 || (GET_MODE_PRECISION (TYPE_MODE (type))
8990 == TYPE_PRECISION (type)));
8991 /* fall through */
8993 case LSHIFT_EXPR:
8994 case RSHIFT_EXPR:
8995 /* If this is a fixed-point operation, then we cannot use the code
8996 below because "expand_shift" doesn't support sat/no-sat fixed-point
8997 shifts. */
8998 if (ALL_FIXED_POINT_MODE_P (mode))
8999 goto binop;
9001 if (! safe_from_p (subtarget, treeop1, 1))
9002 subtarget = 0;
9003 if (modifier == EXPAND_STACK_PARM)
9004 target = 0;
9005 op0 = expand_expr (treeop0, subtarget,
9006 VOIDmode, EXPAND_NORMAL);
9007 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9008 unsignedp);
9009 if (code == LSHIFT_EXPR)
9010 temp = REDUCE_BIT_FIELD (temp);
9011 return temp;
9013 /* Could determine the answer when only additive constants differ. Also,
9014 the addition of one can be handled by changing the condition. */
9015 case LT_EXPR:
9016 case LE_EXPR:
9017 case GT_EXPR:
9018 case GE_EXPR:
9019 case EQ_EXPR:
9020 case NE_EXPR:
9021 case UNORDERED_EXPR:
9022 case ORDERED_EXPR:
9023 case UNLT_EXPR:
9024 case UNLE_EXPR:
9025 case UNGT_EXPR:
9026 case UNGE_EXPR:
9027 case UNEQ_EXPR:
9028 case LTGT_EXPR:
9029 temp = do_store_flag (ops,
9030 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9031 tmode != VOIDmode ? tmode : mode);
9032 if (temp)
9033 return temp;
9035 /* Use a compare and a jump for BLKmode comparisons, or for function
9036 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9038 if ((target == 0
9039 || modifier == EXPAND_STACK_PARM
9040 || ! safe_from_p (target, treeop0, 1)
9041 || ! safe_from_p (target, treeop1, 1)
9042 /* Make sure we don't have a hard reg (such as function's return
9043 value) live across basic blocks, if not optimizing. */
9044 || (!optimize && REG_P (target)
9045 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9046 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9048 emit_move_insn (target, const0_rtx);
9050 op1 = gen_label_rtx ();
9051 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9053 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9054 emit_move_insn (target, constm1_rtx);
9055 else
9056 emit_move_insn (target, const1_rtx);
9058 emit_label (op1);
9059 return target;
9061 case COMPLEX_EXPR:
9062 /* Get the rtx code of the operands. */
9063 op0 = expand_normal (treeop0);
9064 op1 = expand_normal (treeop1);
9066 if (!target)
9067 target = gen_reg_rtx (TYPE_MODE (type));
9068 else
9069 /* If target overlaps with op1, then either we need to force
9070 op1 into a pseudo (if target also overlaps with op0),
9071 or write the complex parts in reverse order. */
9072 switch (GET_CODE (target))
9074 case CONCAT:
9075 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9077 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9079 complex_expr_force_op1:
9080 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9081 emit_move_insn (temp, op1);
9082 op1 = temp;
9083 break;
9085 complex_expr_swap_order:
9086 /* Move the imaginary (op1) and real (op0) parts to their
9087 location. */
9088 write_complex_part (target, op1, true);
9089 write_complex_part (target, op0, false);
9091 return target;
9093 break;
9094 case MEM:
9095 temp = adjust_address_nv (target,
9096 GET_MODE_INNER (GET_MODE (target)), 0);
9097 if (reg_overlap_mentioned_p (temp, op1))
9099 machine_mode imode = GET_MODE_INNER (GET_MODE (target));
9100 temp = adjust_address_nv (target, imode,
9101 GET_MODE_SIZE (imode));
9102 if (reg_overlap_mentioned_p (temp, op0))
9103 goto complex_expr_force_op1;
9104 goto complex_expr_swap_order;
9106 break;
9107 default:
9108 if (reg_overlap_mentioned_p (target, op1))
9110 if (reg_overlap_mentioned_p (target, op0))
9111 goto complex_expr_force_op1;
9112 goto complex_expr_swap_order;
9114 break;
9117 /* Move the real (op0) and imaginary (op1) parts to their location. */
9118 write_complex_part (target, op0, false);
9119 write_complex_part (target, op1, true);
9121 return target;
9123 case WIDEN_SUM_EXPR:
9125 tree oprnd0 = treeop0;
9126 tree oprnd1 = treeop1;
9128 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9129 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9130 target, unsignedp);
9131 return target;
9134 case REDUC_MAX_EXPR:
9135 case REDUC_MIN_EXPR:
9136 case REDUC_PLUS_EXPR:
9138 op0 = expand_normal (treeop0);
9139 this_optab = optab_for_tree_code (code, type, optab_default);
9140 machine_mode vec_mode = TYPE_MODE (TREE_TYPE (treeop0));
9142 if (optab_handler (this_optab, vec_mode) != CODE_FOR_nothing)
9144 struct expand_operand ops[2];
9145 enum insn_code icode = optab_handler (this_optab, vec_mode);
9147 create_output_operand (&ops[0], target, mode);
9148 create_input_operand (&ops[1], op0, vec_mode);
9149 if (maybe_expand_insn (icode, 2, ops))
9151 target = ops[0].value;
9152 if (GET_MODE (target) != mode)
9153 return gen_lowpart (tmode, target);
9154 return target;
9157 /* Fall back to optab with vector result, and then extract scalar. */
9158 this_optab = scalar_reduc_to_vector (this_optab, type);
9159 temp = expand_unop (vec_mode, this_optab, op0, NULL_RTX, unsignedp);
9160 gcc_assert (temp);
9161 /* The tree code produces a scalar result, but (somewhat by convention)
9162 the optab produces a vector with the result in element 0 if
9163 little-endian, or element N-1 if big-endian. So pull the scalar
9164 result out of that element. */
9165 int index = BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (vec_mode) - 1 : 0;
9166 int bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (vec_mode));
9167 temp = extract_bit_field (temp, bitsize, bitsize * index, unsignedp,
9168 target, mode, mode);
9169 gcc_assert (temp);
9170 return temp;
9173 case VEC_UNPACK_HI_EXPR:
9174 case VEC_UNPACK_LO_EXPR:
9176 op0 = expand_normal (treeop0);
9177 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9178 target, unsignedp);
9179 gcc_assert (temp);
9180 return temp;
9183 case VEC_UNPACK_FLOAT_HI_EXPR:
9184 case VEC_UNPACK_FLOAT_LO_EXPR:
9186 op0 = expand_normal (treeop0);
9187 /* The signedness is determined from input operand. */
9188 temp = expand_widen_pattern_expr
9189 (ops, op0, NULL_RTX, NULL_RTX,
9190 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9192 gcc_assert (temp);
9193 return temp;
9196 case VEC_WIDEN_MULT_HI_EXPR:
9197 case VEC_WIDEN_MULT_LO_EXPR:
9198 case VEC_WIDEN_MULT_EVEN_EXPR:
9199 case VEC_WIDEN_MULT_ODD_EXPR:
9200 case VEC_WIDEN_LSHIFT_HI_EXPR:
9201 case VEC_WIDEN_LSHIFT_LO_EXPR:
9202 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9203 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9204 target, unsignedp);
9205 gcc_assert (target);
9206 return target;
9208 case VEC_PACK_TRUNC_EXPR:
9209 case VEC_PACK_SAT_EXPR:
9210 case VEC_PACK_FIX_TRUNC_EXPR:
9211 mode = TYPE_MODE (TREE_TYPE (treeop0));
9212 goto binop;
9214 case VEC_PERM_EXPR:
9215 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9216 op2 = expand_normal (treeop2);
9218 /* Careful here: if the target doesn't support integral vector modes,
9219 a constant selection vector could wind up smooshed into a normal
9220 integral constant. */
9221 if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
9223 tree sel_type = TREE_TYPE (treeop2);
9224 machine_mode vmode
9225 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)),
9226 TYPE_VECTOR_SUBPARTS (sel_type));
9227 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
9228 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
9229 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
9231 else
9232 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
9234 temp = expand_vec_perm (mode, op0, op1, op2, target);
9235 gcc_assert (temp);
9236 return temp;
9238 case DOT_PROD_EXPR:
9240 tree oprnd0 = treeop0;
9241 tree oprnd1 = treeop1;
9242 tree oprnd2 = treeop2;
9243 rtx op2;
9245 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9246 op2 = expand_normal (oprnd2);
9247 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9248 target, unsignedp);
9249 return target;
9252 case SAD_EXPR:
9254 tree oprnd0 = treeop0;
9255 tree oprnd1 = treeop1;
9256 tree oprnd2 = treeop2;
9257 rtx op2;
9259 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9260 op2 = expand_normal (oprnd2);
9261 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9262 target, unsignedp);
9263 return target;
9266 case REALIGN_LOAD_EXPR:
9268 tree oprnd0 = treeop0;
9269 tree oprnd1 = treeop1;
9270 tree oprnd2 = treeop2;
9271 rtx op2;
9273 this_optab = optab_for_tree_code (code, type, optab_default);
9274 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9275 op2 = expand_normal (oprnd2);
9276 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9277 target, unsignedp);
9278 gcc_assert (temp);
9279 return temp;
9282 case COND_EXPR:
9283 /* A COND_EXPR with its type being VOID_TYPE represents a
9284 conditional jump and is handled in
9285 expand_gimple_cond_expr. */
9286 gcc_assert (!VOID_TYPE_P (type));
9288 /* Note that COND_EXPRs whose type is a structure or union
9289 are required to be constructed to contain assignments of
9290 a temporary variable, so that we can evaluate them here
9291 for side effect only. If type is void, we must do likewise. */
9293 gcc_assert (!TREE_ADDRESSABLE (type)
9294 && !ignore
9295 && TREE_TYPE (treeop1) != void_type_node
9296 && TREE_TYPE (treeop2) != void_type_node);
9298 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9299 if (temp)
9300 return temp;
9302 /* If we are not to produce a result, we have no target. Otherwise,
9303 if a target was specified use it; it will not be used as an
9304 intermediate target unless it is safe. If no target, use a
9305 temporary. */
9307 if (modifier != EXPAND_STACK_PARM
9308 && original_target
9309 && safe_from_p (original_target, treeop0, 1)
9310 && GET_MODE (original_target) == mode
9311 && !MEM_P (original_target))
9312 temp = original_target;
9313 else
9314 temp = assign_temp (type, 0, 1);
9316 do_pending_stack_adjust ();
9317 NO_DEFER_POP;
9318 op0 = gen_label_rtx ();
9319 op1 = gen_label_rtx ();
9320 jumpifnot (treeop0, op0, -1);
9321 store_expr (treeop1, temp,
9322 modifier == EXPAND_STACK_PARM,
9323 false);
9325 emit_jump_insn (gen_jump (op1));
9326 emit_barrier ();
9327 emit_label (op0);
9328 store_expr (treeop2, temp,
9329 modifier == EXPAND_STACK_PARM,
9330 false);
9332 emit_label (op1);
9333 OK_DEFER_POP;
9334 return temp;
9336 case VEC_COND_EXPR:
9337 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9338 return target;
9340 default:
9341 gcc_unreachable ();
9344 /* Here to do an ordinary binary operator. */
9345 binop:
9346 expand_operands (treeop0, treeop1,
9347 subtarget, &op0, &op1, EXPAND_NORMAL);
9348 binop2:
9349 this_optab = optab_for_tree_code (code, type, optab_default);
9350 binop3:
9351 if (modifier == EXPAND_STACK_PARM)
9352 target = 0;
9353 temp = expand_binop (mode, this_optab, op0, op1, target,
9354 unsignedp, OPTAB_LIB_WIDEN);
9355 gcc_assert (temp);
9356 /* Bitwise operations do not need bitfield reduction as we expect their
9357 operands being properly truncated. */
9358 if (code == BIT_XOR_EXPR
9359 || code == BIT_AND_EXPR
9360 || code == BIT_IOR_EXPR)
9361 return temp;
9362 return REDUCE_BIT_FIELD (temp);
9364 #undef REDUCE_BIT_FIELD
9367 /* Return TRUE if expression STMT is suitable for replacement.
9368 Never consider memory loads as replaceable, because those don't ever lead
9369 into constant expressions. */
9371 static bool
9372 stmt_is_replaceable_p (gimple stmt)
9374 if (ssa_is_replaceable_p (stmt))
9376 /* Don't move around loads. */
9377 if (!gimple_assign_single_p (stmt)
9378 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9379 return true;
9381 return false;
9385 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9386 enum expand_modifier modifier, rtx *alt_rtl,
9387 bool inner_reference_p)
9389 rtx op0, op1, temp, decl_rtl;
9390 tree type;
9391 int unsignedp;
9392 machine_mode mode;
9393 enum tree_code code = TREE_CODE (exp);
9394 rtx subtarget, original_target;
9395 int ignore;
9396 tree context;
9397 bool reduce_bit_field;
9398 location_t loc = EXPR_LOCATION (exp);
9399 struct separate_ops ops;
9400 tree treeop0, treeop1, treeop2;
9401 tree ssa_name = NULL_TREE;
9402 gimple g;
9404 type = TREE_TYPE (exp);
9405 mode = TYPE_MODE (type);
9406 unsignedp = TYPE_UNSIGNED (type);
9408 treeop0 = treeop1 = treeop2 = NULL_TREE;
9409 if (!VL_EXP_CLASS_P (exp))
9410 switch (TREE_CODE_LENGTH (code))
9412 default:
9413 case 3: treeop2 = TREE_OPERAND (exp, 2);
9414 case 2: treeop1 = TREE_OPERAND (exp, 1);
9415 case 1: treeop0 = TREE_OPERAND (exp, 0);
9416 case 0: break;
9418 ops.code = code;
9419 ops.type = type;
9420 ops.op0 = treeop0;
9421 ops.op1 = treeop1;
9422 ops.op2 = treeop2;
9423 ops.location = loc;
9425 ignore = (target == const0_rtx
9426 || ((CONVERT_EXPR_CODE_P (code)
9427 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9428 && TREE_CODE (type) == VOID_TYPE));
9430 /* An operation in what may be a bit-field type needs the
9431 result to be reduced to the precision of the bit-field type,
9432 which is narrower than that of the type's mode. */
9433 reduce_bit_field = (!ignore
9434 && INTEGRAL_TYPE_P (type)
9435 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
9437 /* If we are going to ignore this result, we need only do something
9438 if there is a side-effect somewhere in the expression. If there
9439 is, short-circuit the most common cases here. Note that we must
9440 not call expand_expr with anything but const0_rtx in case this
9441 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9443 if (ignore)
9445 if (! TREE_SIDE_EFFECTS (exp))
9446 return const0_rtx;
9448 /* Ensure we reference a volatile object even if value is ignored, but
9449 don't do this if all we are doing is taking its address. */
9450 if (TREE_THIS_VOLATILE (exp)
9451 && TREE_CODE (exp) != FUNCTION_DECL
9452 && mode != VOIDmode && mode != BLKmode
9453 && modifier != EXPAND_CONST_ADDRESS)
9455 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9456 if (MEM_P (temp))
9457 copy_to_reg (temp);
9458 return const0_rtx;
9461 if (TREE_CODE_CLASS (code) == tcc_unary
9462 || code == BIT_FIELD_REF
9463 || code == COMPONENT_REF
9464 || code == INDIRECT_REF)
9465 return expand_expr (treeop0, const0_rtx, VOIDmode,
9466 modifier);
9468 else if (TREE_CODE_CLASS (code) == tcc_binary
9469 || TREE_CODE_CLASS (code) == tcc_comparison
9470 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9472 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9473 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9474 return const0_rtx;
9477 target = 0;
9480 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9481 target = 0;
9483 /* Use subtarget as the target for operand 0 of a binary operation. */
9484 subtarget = get_subtarget (target);
9485 original_target = target;
9487 switch (code)
9489 case LABEL_DECL:
9491 tree function = decl_function_context (exp);
9493 temp = label_rtx (exp);
9494 temp = gen_rtx_LABEL_REF (Pmode, temp);
9496 if (function != current_function_decl
9497 && function != 0)
9498 LABEL_REF_NONLOCAL_P (temp) = 1;
9500 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9501 return temp;
9504 case SSA_NAME:
9505 /* ??? ivopts calls expander, without any preparation from
9506 out-of-ssa. So fake instructions as if this was an access to the
9507 base variable. This unnecessarily allocates a pseudo, see how we can
9508 reuse it, if partition base vars have it set already. */
9509 if (!currently_expanding_to_rtl)
9511 tree var = SSA_NAME_VAR (exp);
9512 if (var && DECL_RTL_SET_P (var))
9513 return DECL_RTL (var);
9514 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9515 LAST_VIRTUAL_REGISTER + 1);
9518 g = get_gimple_for_ssa_name (exp);
9519 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9520 if (g == NULL
9521 && modifier == EXPAND_INITIALIZER
9522 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9523 && (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9524 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9525 g = SSA_NAME_DEF_STMT (exp);
9526 if (g)
9528 rtx r;
9529 ops.code = gimple_assign_rhs_code (g);
9530 switch (get_gimple_rhs_class (ops.code))
9532 case GIMPLE_TERNARY_RHS:
9533 ops.op2 = gimple_assign_rhs3 (g);
9534 /* Fallthru */
9535 case GIMPLE_BINARY_RHS:
9536 ops.op1 = gimple_assign_rhs2 (g);
9538 /* Try to expand conditonal compare. */
9539 if (targetm.gen_ccmp_first)
9541 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
9542 r = expand_ccmp_expr (g);
9543 if (r)
9544 break;
9546 /* Fallthru */
9547 case GIMPLE_UNARY_RHS:
9548 ops.op0 = gimple_assign_rhs1 (g);
9549 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9550 ops.location = gimple_location (g);
9551 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9552 break;
9553 case GIMPLE_SINGLE_RHS:
9555 location_t saved_loc = curr_insn_location ();
9556 set_curr_insn_location (gimple_location (g));
9557 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9558 tmode, modifier, NULL, inner_reference_p);
9559 set_curr_insn_location (saved_loc);
9560 break;
9562 default:
9563 gcc_unreachable ();
9565 if (REG_P (r) && !REG_EXPR (r))
9566 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9567 return r;
9570 ssa_name = exp;
9571 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9572 exp = SSA_NAME_VAR (ssa_name);
9573 goto expand_decl_rtl;
9575 case PARM_DECL:
9576 case VAR_DECL:
9577 /* If a static var's type was incomplete when the decl was written,
9578 but the type is complete now, lay out the decl now. */
9579 if (DECL_SIZE (exp) == 0
9580 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9581 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9582 layout_decl (exp, 0);
9584 /* ... fall through ... */
9586 case FUNCTION_DECL:
9587 case RESULT_DECL:
9588 decl_rtl = DECL_RTL (exp);
9589 expand_decl_rtl:
9590 gcc_assert (decl_rtl);
9591 decl_rtl = copy_rtx (decl_rtl);
9592 /* Record writes to register variables. */
9593 if (modifier == EXPAND_WRITE
9594 && REG_P (decl_rtl)
9595 && HARD_REGISTER_P (decl_rtl))
9596 add_to_hard_reg_set (&crtl->asm_clobbers,
9597 GET_MODE (decl_rtl), REGNO (decl_rtl));
9599 /* Ensure variable marked as used even if it doesn't go through
9600 a parser. If it hasn't be used yet, write out an external
9601 definition. */
9602 TREE_USED (exp) = 1;
9604 /* Show we haven't gotten RTL for this yet. */
9605 temp = 0;
9607 /* Variables inherited from containing functions should have
9608 been lowered by this point. */
9609 context = decl_function_context (exp);
9610 gcc_assert (SCOPE_FILE_SCOPE_P (context)
9611 || context == current_function_decl
9612 || TREE_STATIC (exp)
9613 || DECL_EXTERNAL (exp)
9614 /* ??? C++ creates functions that are not TREE_STATIC. */
9615 || TREE_CODE (exp) == FUNCTION_DECL);
9617 /* This is the case of an array whose size is to be determined
9618 from its initializer, while the initializer is still being parsed.
9619 ??? We aren't parsing while expanding anymore. */
9621 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9622 temp = validize_mem (decl_rtl);
9624 /* If DECL_RTL is memory, we are in the normal case and the
9625 address is not valid, get the address into a register. */
9627 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9629 if (alt_rtl)
9630 *alt_rtl = decl_rtl;
9631 decl_rtl = use_anchored_address (decl_rtl);
9632 if (modifier != EXPAND_CONST_ADDRESS
9633 && modifier != EXPAND_SUM
9634 && !memory_address_addr_space_p (DECL_MODE (exp),
9635 XEXP (decl_rtl, 0),
9636 MEM_ADDR_SPACE (decl_rtl)))
9637 temp = replace_equiv_address (decl_rtl,
9638 copy_rtx (XEXP (decl_rtl, 0)));
9641 /* If we got something, return it. But first, set the alignment
9642 if the address is a register. */
9643 if (temp != 0)
9645 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
9646 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9648 return temp;
9651 /* If the mode of DECL_RTL does not match that of the decl,
9652 there are two cases: we are dealing with a BLKmode value
9653 that is returned in a register, or we are dealing with
9654 a promoted value. In the latter case, return a SUBREG
9655 of the wanted mode, but mark it so that we know that it
9656 was already extended. */
9657 if (REG_P (decl_rtl)
9658 && DECL_MODE (exp) != BLKmode
9659 && GET_MODE (decl_rtl) != DECL_MODE (exp))
9661 machine_mode pmode;
9663 /* Get the signedness to be used for this variable. Ensure we get
9664 the same mode we got when the variable was declared. */
9665 if (code == SSA_NAME
9666 && (g = SSA_NAME_DEF_STMT (ssa_name))
9667 && gimple_code (g) == GIMPLE_CALL
9668 && !gimple_call_internal_p (g))
9669 pmode = promote_function_mode (type, mode, &unsignedp,
9670 gimple_call_fntype (g),
9672 else
9673 pmode = promote_decl_mode (exp, &unsignedp);
9674 gcc_assert (GET_MODE (decl_rtl) == pmode);
9676 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9677 SUBREG_PROMOTED_VAR_P (temp) = 1;
9678 SUBREG_PROMOTED_SET (temp, unsignedp);
9679 return temp;
9682 return decl_rtl;
9684 case INTEGER_CST:
9685 /* Given that TYPE_PRECISION (type) is not always equal to
9686 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9687 the former to the latter according to the signedness of the
9688 type. */
9689 temp = immed_wide_int_const (wide_int::from
9690 (exp,
9691 GET_MODE_PRECISION (TYPE_MODE (type)),
9692 TYPE_SIGN (type)),
9693 TYPE_MODE (type));
9694 return temp;
9696 case VECTOR_CST:
9698 tree tmp = NULL_TREE;
9699 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9700 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9701 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9702 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9703 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9704 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9705 return const_vector_from_tree (exp);
9706 if (GET_MODE_CLASS (mode) == MODE_INT)
9708 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
9709 if (type_for_mode)
9710 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
9712 if (!tmp)
9714 vec<constructor_elt, va_gc> *v;
9715 unsigned i;
9716 vec_alloc (v, VECTOR_CST_NELTS (exp));
9717 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9718 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9719 tmp = build_constructor (type, v);
9721 return expand_expr (tmp, ignore ? const0_rtx : target,
9722 tmode, modifier);
9725 case CONST_DECL:
9726 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
9728 case REAL_CST:
9729 /* If optimized, generate immediate CONST_DOUBLE
9730 which will be turned into memory by reload if necessary.
9732 We used to force a register so that loop.c could see it. But
9733 this does not allow gen_* patterns to perform optimizations with
9734 the constants. It also produces two insns in cases like "x = 1.0;".
9735 On most machines, floating-point constants are not permitted in
9736 many insns, so we'd end up copying it to a register in any case.
9738 Now, we do the copying in expand_binop, if appropriate. */
9739 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
9740 TYPE_MODE (TREE_TYPE (exp)));
9742 case FIXED_CST:
9743 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
9744 TYPE_MODE (TREE_TYPE (exp)));
9746 case COMPLEX_CST:
9747 /* Handle evaluating a complex constant in a CONCAT target. */
9748 if (original_target && GET_CODE (original_target) == CONCAT)
9750 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
9751 rtx rtarg, itarg;
9753 rtarg = XEXP (original_target, 0);
9754 itarg = XEXP (original_target, 1);
9756 /* Move the real and imaginary parts separately. */
9757 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
9758 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
9760 if (op0 != rtarg)
9761 emit_move_insn (rtarg, op0);
9762 if (op1 != itarg)
9763 emit_move_insn (itarg, op1);
9765 return original_target;
9768 /* ... fall through ... */
9770 case STRING_CST:
9771 temp = expand_expr_constant (exp, 1, modifier);
9773 /* temp contains a constant address.
9774 On RISC machines where a constant address isn't valid,
9775 make some insns to get that address into a register. */
9776 if (modifier != EXPAND_CONST_ADDRESS
9777 && modifier != EXPAND_INITIALIZER
9778 && modifier != EXPAND_SUM
9779 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
9780 MEM_ADDR_SPACE (temp)))
9781 return replace_equiv_address (temp,
9782 copy_rtx (XEXP (temp, 0)));
9783 return temp;
9785 case SAVE_EXPR:
9787 tree val = treeop0;
9788 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
9789 inner_reference_p);
9791 if (!SAVE_EXPR_RESOLVED_P (exp))
9793 /* We can indeed still hit this case, typically via builtin
9794 expanders calling save_expr immediately before expanding
9795 something. Assume this means that we only have to deal
9796 with non-BLKmode values. */
9797 gcc_assert (GET_MODE (ret) != BLKmode);
9799 val = build_decl (curr_insn_location (),
9800 VAR_DECL, NULL, TREE_TYPE (exp));
9801 DECL_ARTIFICIAL (val) = 1;
9802 DECL_IGNORED_P (val) = 1;
9803 treeop0 = val;
9804 TREE_OPERAND (exp, 0) = treeop0;
9805 SAVE_EXPR_RESOLVED_P (exp) = 1;
9807 if (!CONSTANT_P (ret))
9808 ret = copy_to_reg (ret);
9809 SET_DECL_RTL (val, ret);
9812 return ret;
9816 case CONSTRUCTOR:
9817 /* If we don't need the result, just ensure we evaluate any
9818 subexpressions. */
9819 if (ignore)
9821 unsigned HOST_WIDE_INT idx;
9822 tree value;
9824 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
9825 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
9827 return const0_rtx;
9830 return expand_constructor (exp, target, modifier, false);
9832 case TARGET_MEM_REF:
9834 addr_space_t as
9835 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9836 enum insn_code icode;
9837 unsigned int align;
9839 op0 = addr_for_mem_ref (exp, as, true);
9840 op0 = memory_address_addr_space (mode, op0, as);
9841 temp = gen_rtx_MEM (mode, op0);
9842 set_mem_attributes (temp, exp, 0);
9843 set_mem_addr_space (temp, as);
9844 align = get_object_alignment (exp);
9845 if (modifier != EXPAND_WRITE
9846 && modifier != EXPAND_MEMORY
9847 && mode != BLKmode
9848 && align < GET_MODE_ALIGNMENT (mode)
9849 /* If the target does not have special handling for unaligned
9850 loads of mode then it can use regular moves for them. */
9851 && ((icode = optab_handler (movmisalign_optab, mode))
9852 != CODE_FOR_nothing))
9854 struct expand_operand ops[2];
9856 /* We've already validated the memory, and we're creating a
9857 new pseudo destination. The predicates really can't fail,
9858 nor can the generator. */
9859 create_output_operand (&ops[0], NULL_RTX, mode);
9860 create_fixed_operand (&ops[1], temp);
9861 expand_insn (icode, 2, ops);
9862 temp = ops[0].value;
9864 return temp;
9867 case MEM_REF:
9869 addr_space_t as
9870 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9871 machine_mode address_mode;
9872 tree base = TREE_OPERAND (exp, 0);
9873 gimple def_stmt;
9874 enum insn_code icode;
9875 unsigned align;
9876 /* Handle expansion of non-aliased memory with non-BLKmode. That
9877 might end up in a register. */
9878 if (mem_ref_refers_to_non_mem_p (exp))
9880 HOST_WIDE_INT offset = mem_ref_offset (exp).to_short_addr ();
9881 base = TREE_OPERAND (base, 0);
9882 if (offset == 0
9883 && tree_fits_uhwi_p (TYPE_SIZE (type))
9884 && (GET_MODE_BITSIZE (DECL_MODE (base))
9885 == tree_to_uhwi (TYPE_SIZE (type))))
9886 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
9887 target, tmode, modifier);
9888 if (TYPE_MODE (type) == BLKmode)
9890 temp = assign_stack_temp (DECL_MODE (base),
9891 GET_MODE_SIZE (DECL_MODE (base)));
9892 store_expr (base, temp, 0, false);
9893 temp = adjust_address (temp, BLKmode, offset);
9894 set_mem_size (temp, int_size_in_bytes (type));
9895 return temp;
9897 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
9898 bitsize_int (offset * BITS_PER_UNIT));
9899 return expand_expr (exp, target, tmode, modifier);
9901 address_mode = targetm.addr_space.address_mode (as);
9902 base = TREE_OPERAND (exp, 0);
9903 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
9905 tree mask = gimple_assign_rhs2 (def_stmt);
9906 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
9907 gimple_assign_rhs1 (def_stmt), mask);
9908 TREE_OPERAND (exp, 0) = base;
9910 align = get_object_alignment (exp);
9911 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
9912 op0 = memory_address_addr_space (mode, op0, as);
9913 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9915 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
9916 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
9917 op0 = memory_address_addr_space (mode, op0, as);
9919 temp = gen_rtx_MEM (mode, op0);
9920 set_mem_attributes (temp, exp, 0);
9921 set_mem_addr_space (temp, as);
9922 if (TREE_THIS_VOLATILE (exp))
9923 MEM_VOLATILE_P (temp) = 1;
9924 if (modifier != EXPAND_WRITE
9925 && modifier != EXPAND_MEMORY
9926 && !inner_reference_p
9927 && mode != BLKmode
9928 && align < GET_MODE_ALIGNMENT (mode))
9930 if ((icode = optab_handler (movmisalign_optab, mode))
9931 != CODE_FOR_nothing)
9933 struct expand_operand ops[2];
9935 /* We've already validated the memory, and we're creating a
9936 new pseudo destination. The predicates really can't fail,
9937 nor can the generator. */
9938 create_output_operand (&ops[0], NULL_RTX, mode);
9939 create_fixed_operand (&ops[1], temp);
9940 expand_insn (icode, 2, ops);
9941 temp = ops[0].value;
9943 else if (SLOW_UNALIGNED_ACCESS (mode, align))
9944 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
9945 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
9946 (modifier == EXPAND_STACK_PARM
9947 ? NULL_RTX : target),
9948 mode, mode);
9950 return temp;
9953 case ARRAY_REF:
9956 tree array = treeop0;
9957 tree index = treeop1;
9958 tree init;
9960 /* Fold an expression like: "foo"[2].
9961 This is not done in fold so it won't happen inside &.
9962 Don't fold if this is for wide characters since it's too
9963 difficult to do correctly and this is a very rare case. */
9965 if (modifier != EXPAND_CONST_ADDRESS
9966 && modifier != EXPAND_INITIALIZER
9967 && modifier != EXPAND_MEMORY)
9969 tree t = fold_read_from_constant_string (exp);
9971 if (t)
9972 return expand_expr (t, target, tmode, modifier);
9975 /* If this is a constant index into a constant array,
9976 just get the value from the array. Handle both the cases when
9977 we have an explicit constructor and when our operand is a variable
9978 that was declared const. */
9980 if (modifier != EXPAND_CONST_ADDRESS
9981 && modifier != EXPAND_INITIALIZER
9982 && modifier != EXPAND_MEMORY
9983 && TREE_CODE (array) == CONSTRUCTOR
9984 && ! TREE_SIDE_EFFECTS (array)
9985 && TREE_CODE (index) == INTEGER_CST)
9987 unsigned HOST_WIDE_INT ix;
9988 tree field, value;
9990 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
9991 field, value)
9992 if (tree_int_cst_equal (field, index))
9994 if (!TREE_SIDE_EFFECTS (value))
9995 return expand_expr (fold (value), target, tmode, modifier);
9996 break;
10000 else if (optimize >= 1
10001 && modifier != EXPAND_CONST_ADDRESS
10002 && modifier != EXPAND_INITIALIZER
10003 && modifier != EXPAND_MEMORY
10004 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10005 && TREE_CODE (index) == INTEGER_CST
10006 && (TREE_CODE (array) == VAR_DECL
10007 || TREE_CODE (array) == CONST_DECL)
10008 && (init = ctor_for_folding (array)) != error_mark_node)
10010 if (init == NULL_TREE)
10012 tree value = build_zero_cst (type);
10013 if (TREE_CODE (value) == CONSTRUCTOR)
10015 /* If VALUE is a CONSTRUCTOR, this optimization is only
10016 useful if this doesn't store the CONSTRUCTOR into
10017 memory. If it does, it is more efficient to just
10018 load the data from the array directly. */
10019 rtx ret = expand_constructor (value, target,
10020 modifier, true);
10021 if (ret == NULL_RTX)
10022 value = NULL_TREE;
10025 if (value)
10026 return expand_expr (value, target, tmode, modifier);
10028 else if (TREE_CODE (init) == CONSTRUCTOR)
10030 unsigned HOST_WIDE_INT ix;
10031 tree field, value;
10033 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10034 field, value)
10035 if (tree_int_cst_equal (field, index))
10037 if (TREE_SIDE_EFFECTS (value))
10038 break;
10040 if (TREE_CODE (value) == CONSTRUCTOR)
10042 /* If VALUE is a CONSTRUCTOR, this
10043 optimization is only useful if
10044 this doesn't store the CONSTRUCTOR
10045 into memory. If it does, it is more
10046 efficient to just load the data from
10047 the array directly. */
10048 rtx ret = expand_constructor (value, target,
10049 modifier, true);
10050 if (ret == NULL_RTX)
10051 break;
10054 return
10055 expand_expr (fold (value), target, tmode, modifier);
10058 else if (TREE_CODE (init) == STRING_CST)
10060 tree low_bound = array_ref_low_bound (exp);
10061 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10063 /* Optimize the special case of a zero lower bound.
10065 We convert the lower bound to sizetype to avoid problems
10066 with constant folding. E.g. suppose the lower bound is
10067 1 and its mode is QI. Without the conversion
10068 (ARRAY + (INDEX - (unsigned char)1))
10069 becomes
10070 (ARRAY + (-(unsigned char)1) + INDEX)
10071 which becomes
10072 (ARRAY + 255 + INDEX). Oops! */
10073 if (!integer_zerop (low_bound))
10074 index1 = size_diffop_loc (loc, index1,
10075 fold_convert_loc (loc, sizetype,
10076 low_bound));
10078 if (compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10080 tree type = TREE_TYPE (TREE_TYPE (init));
10081 machine_mode mode = TYPE_MODE (type);
10083 if (GET_MODE_CLASS (mode) == MODE_INT
10084 && GET_MODE_SIZE (mode) == 1)
10085 return gen_int_mode (TREE_STRING_POINTER (init)
10086 [TREE_INT_CST_LOW (index1)],
10087 mode);
10092 goto normal_inner_ref;
10094 case COMPONENT_REF:
10095 /* If the operand is a CONSTRUCTOR, we can just extract the
10096 appropriate field if it is present. */
10097 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10099 unsigned HOST_WIDE_INT idx;
10100 tree field, value;
10102 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10103 idx, field, value)
10104 if (field == treeop1
10105 /* We can normally use the value of the field in the
10106 CONSTRUCTOR. However, if this is a bitfield in
10107 an integral mode that we can fit in a HOST_WIDE_INT,
10108 we must mask only the number of bits in the bitfield,
10109 since this is done implicitly by the constructor. If
10110 the bitfield does not meet either of those conditions,
10111 we can't do this optimization. */
10112 && (! DECL_BIT_FIELD (field)
10113 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
10114 && (GET_MODE_PRECISION (DECL_MODE (field))
10115 <= HOST_BITS_PER_WIDE_INT))))
10117 if (DECL_BIT_FIELD (field)
10118 && modifier == EXPAND_STACK_PARM)
10119 target = 0;
10120 op0 = expand_expr (value, target, tmode, modifier);
10121 if (DECL_BIT_FIELD (field))
10123 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10124 machine_mode imode = TYPE_MODE (TREE_TYPE (field));
10126 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10128 op1 = gen_int_mode (((HOST_WIDE_INT) 1 << bitsize) - 1,
10129 imode);
10130 op0 = expand_and (imode, op0, op1, target);
10132 else
10134 int count = GET_MODE_PRECISION (imode) - bitsize;
10136 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10137 target, 0);
10138 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10139 target, 0);
10143 return op0;
10146 goto normal_inner_ref;
10148 case BIT_FIELD_REF:
10149 case ARRAY_RANGE_REF:
10150 normal_inner_ref:
10152 machine_mode mode1, mode2;
10153 HOST_WIDE_INT bitsize, bitpos;
10154 tree offset;
10155 int volatilep = 0, must_force_mem;
10156 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
10157 &mode1, &unsignedp, &volatilep, true);
10158 rtx orig_op0, memloc;
10159 bool clear_mem_expr = false;
10161 /* If we got back the original object, something is wrong. Perhaps
10162 we are evaluating an expression too early. In any event, don't
10163 infinitely recurse. */
10164 gcc_assert (tem != exp);
10166 /* If TEM's type is a union of variable size, pass TARGET to the inner
10167 computation, since it will need a temporary and TARGET is known
10168 to have to do. This occurs in unchecked conversion in Ada. */
10169 orig_op0 = op0
10170 = expand_expr_real (tem,
10171 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10172 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10173 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10174 != INTEGER_CST)
10175 && modifier != EXPAND_STACK_PARM
10176 ? target : NULL_RTX),
10177 VOIDmode,
10178 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10179 NULL, true);
10181 /* If the field has a mode, we want to access it in the
10182 field's mode, not the computed mode.
10183 If a MEM has VOIDmode (external with incomplete type),
10184 use BLKmode for it instead. */
10185 if (MEM_P (op0))
10187 if (mode1 != VOIDmode)
10188 op0 = adjust_address (op0, mode1, 0);
10189 else if (GET_MODE (op0) == VOIDmode)
10190 op0 = adjust_address (op0, BLKmode, 0);
10193 mode2
10194 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10196 /* If we have either an offset, a BLKmode result, or a reference
10197 outside the underlying object, we must force it to memory.
10198 Such a case can occur in Ada if we have unchecked conversion
10199 of an expression from a scalar type to an aggregate type or
10200 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10201 passed a partially uninitialized object or a view-conversion
10202 to a larger size. */
10203 must_force_mem = (offset
10204 || mode1 == BLKmode
10205 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
10207 /* Handle CONCAT first. */
10208 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10210 if (bitpos == 0
10211 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
10212 return op0;
10213 if (bitpos == 0
10214 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10215 && bitsize)
10217 op0 = XEXP (op0, 0);
10218 mode2 = GET_MODE (op0);
10220 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10221 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
10222 && bitpos
10223 && bitsize)
10225 op0 = XEXP (op0, 1);
10226 bitpos = 0;
10227 mode2 = GET_MODE (op0);
10229 else
10230 /* Otherwise force into memory. */
10231 must_force_mem = 1;
10234 /* If this is a constant, put it in a register if it is a legitimate
10235 constant and we don't need a memory reference. */
10236 if (CONSTANT_P (op0)
10237 && mode2 != BLKmode
10238 && targetm.legitimate_constant_p (mode2, op0)
10239 && !must_force_mem)
10240 op0 = force_reg (mode2, op0);
10242 /* Otherwise, if this is a constant, try to force it to the constant
10243 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10244 is a legitimate constant. */
10245 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10246 op0 = validize_mem (memloc);
10248 /* Otherwise, if this is a constant or the object is not in memory
10249 and need be, put it there. */
10250 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10252 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10253 emit_move_insn (memloc, op0);
10254 op0 = memloc;
10255 clear_mem_expr = true;
10258 if (offset)
10260 machine_mode address_mode;
10261 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10262 EXPAND_SUM);
10264 gcc_assert (MEM_P (op0));
10266 address_mode = get_address_mode (op0);
10267 if (GET_MODE (offset_rtx) != address_mode)
10268 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10270 /* See the comment in expand_assignment for the rationale. */
10271 if (mode1 != VOIDmode
10272 && bitpos != 0
10273 && bitsize > 0
10274 && (bitpos % bitsize) == 0
10275 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
10276 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10278 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10279 bitpos = 0;
10282 op0 = offset_address (op0, offset_rtx,
10283 highest_pow2_factor (offset));
10286 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10287 record its alignment as BIGGEST_ALIGNMENT. */
10288 if (MEM_P (op0) && bitpos == 0 && offset != 0
10289 && is_aligning_offset (offset, tem))
10290 set_mem_align (op0, BIGGEST_ALIGNMENT);
10292 /* Don't forget about volatility even if this is a bitfield. */
10293 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10295 if (op0 == orig_op0)
10296 op0 = copy_rtx (op0);
10298 MEM_VOLATILE_P (op0) = 1;
10301 /* In cases where an aligned union has an unaligned object
10302 as a field, we might be extracting a BLKmode value from
10303 an integer-mode (e.g., SImode) object. Handle this case
10304 by doing the extract into an object as wide as the field
10305 (which we know to be the width of a basic mode), then
10306 storing into memory, and changing the mode to BLKmode. */
10307 if (mode1 == VOIDmode
10308 || REG_P (op0) || GET_CODE (op0) == SUBREG
10309 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10310 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10311 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10312 && modifier != EXPAND_CONST_ADDRESS
10313 && modifier != EXPAND_INITIALIZER
10314 && modifier != EXPAND_MEMORY)
10315 /* If the bitfield is volatile and the bitsize
10316 is narrower than the access size of the bitfield,
10317 we need to extract bitfields from the access. */
10318 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10319 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10320 && mode1 != BLKmode
10321 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
10322 /* If the field isn't aligned enough to fetch as a memref,
10323 fetch it as a bit field. */
10324 || (mode1 != BLKmode
10325 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10326 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
10327 || (MEM_P (op0)
10328 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10329 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
10330 && modifier != EXPAND_MEMORY
10331 && ((modifier == EXPAND_CONST_ADDRESS
10332 || modifier == EXPAND_INITIALIZER)
10333 ? STRICT_ALIGNMENT
10334 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
10335 || (bitpos % BITS_PER_UNIT != 0)))
10336 /* If the type and the field are a constant size and the
10337 size of the type isn't the same size as the bitfield,
10338 we must use bitfield operations. */
10339 || (bitsize >= 0
10340 && TYPE_SIZE (TREE_TYPE (exp))
10341 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10342 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10343 bitsize)))
10345 machine_mode ext_mode = mode;
10347 if (ext_mode == BLKmode
10348 && ! (target != 0 && MEM_P (op0)
10349 && MEM_P (target)
10350 && bitpos % BITS_PER_UNIT == 0))
10351 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
10353 if (ext_mode == BLKmode)
10355 if (target == 0)
10356 target = assign_temp (type, 1, 1);
10358 /* ??? Unlike the similar test a few lines below, this one is
10359 very likely obsolete. */
10360 if (bitsize == 0)
10361 return target;
10363 /* In this case, BITPOS must start at a byte boundary and
10364 TARGET, if specified, must be a MEM. */
10365 gcc_assert (MEM_P (op0)
10366 && (!target || MEM_P (target))
10367 && !(bitpos % BITS_PER_UNIT));
10369 emit_block_move (target,
10370 adjust_address (op0, VOIDmode,
10371 bitpos / BITS_PER_UNIT),
10372 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10373 / BITS_PER_UNIT),
10374 (modifier == EXPAND_STACK_PARM
10375 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10377 return target;
10380 /* If we have nothing to extract, the result will be 0 for targets
10381 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10382 return 0 for the sake of consistency, as reading a zero-sized
10383 bitfield is valid in Ada and the value is fully specified. */
10384 if (bitsize == 0)
10385 return const0_rtx;
10387 op0 = validize_mem (op0);
10389 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10390 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10392 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10393 (modifier == EXPAND_STACK_PARM
10394 ? NULL_RTX : target),
10395 ext_mode, ext_mode);
10397 /* If the result is a record type and BITSIZE is narrower than
10398 the mode of OP0, an integral mode, and this is a big endian
10399 machine, we must put the field into the high-order bits. */
10400 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
10401 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10402 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
10403 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
10404 GET_MODE_BITSIZE (GET_MODE (op0))
10405 - bitsize, op0, 1);
10407 /* If the result type is BLKmode, store the data into a temporary
10408 of the appropriate type, but with the mode corresponding to the
10409 mode for the data we have (op0's mode). */
10410 if (mode == BLKmode)
10412 rtx new_rtx
10413 = assign_stack_temp_for_type (ext_mode,
10414 GET_MODE_BITSIZE (ext_mode),
10415 type);
10416 emit_move_insn (new_rtx, op0);
10417 op0 = copy_rtx (new_rtx);
10418 PUT_MODE (op0, BLKmode);
10421 return op0;
10424 /* If the result is BLKmode, use that to access the object
10425 now as well. */
10426 if (mode == BLKmode)
10427 mode1 = BLKmode;
10429 /* Get a reference to just this component. */
10430 if (modifier == EXPAND_CONST_ADDRESS
10431 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10432 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10433 else
10434 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10436 if (op0 == orig_op0)
10437 op0 = copy_rtx (op0);
10439 set_mem_attributes (op0, exp, 0);
10441 if (REG_P (XEXP (op0, 0)))
10442 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10444 /* If op0 is a temporary because the original expressions was forced
10445 to memory, clear MEM_EXPR so that the original expression cannot
10446 be marked as addressable through MEM_EXPR of the temporary. */
10447 if (clear_mem_expr)
10448 set_mem_expr (op0, NULL_TREE);
10450 MEM_VOLATILE_P (op0) |= volatilep;
10451 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10452 || modifier == EXPAND_CONST_ADDRESS
10453 || modifier == EXPAND_INITIALIZER)
10454 return op0;
10456 if (target == 0)
10457 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10459 convert_move (target, op0, unsignedp);
10460 return target;
10463 case OBJ_TYPE_REF:
10464 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10466 case CALL_EXPR:
10467 /* All valid uses of __builtin_va_arg_pack () are removed during
10468 inlining. */
10469 if (CALL_EXPR_VA_ARG_PACK (exp))
10470 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10472 tree fndecl = get_callee_fndecl (exp), attr;
10474 if (fndecl
10475 && (attr = lookup_attribute ("error",
10476 DECL_ATTRIBUTES (fndecl))) != NULL)
10477 error ("%Kcall to %qs declared with attribute error: %s",
10478 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10479 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10480 if (fndecl
10481 && (attr = lookup_attribute ("warning",
10482 DECL_ATTRIBUTES (fndecl))) != NULL)
10483 warning_at (tree_nonartificial_location (exp),
10484 0, "%Kcall to %qs declared with attribute warning: %s",
10485 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10486 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10488 /* Check for a built-in function. */
10489 if (fndecl && DECL_BUILT_IN (fndecl))
10491 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10492 if (CALL_WITH_BOUNDS_P (exp))
10493 return expand_builtin_with_bounds (exp, target, subtarget,
10494 tmode, ignore);
10495 else
10496 return expand_builtin (exp, target, subtarget, tmode, ignore);
10499 return expand_call (exp, target, ignore);
10501 case VIEW_CONVERT_EXPR:
10502 op0 = NULL_RTX;
10504 /* If we are converting to BLKmode, try to avoid an intermediate
10505 temporary by fetching an inner memory reference. */
10506 if (mode == BLKmode
10507 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
10508 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10509 && handled_component_p (treeop0))
10511 machine_mode mode1;
10512 HOST_WIDE_INT bitsize, bitpos;
10513 tree offset;
10514 int unsignedp;
10515 int volatilep = 0;
10516 tree tem
10517 = get_inner_reference (treeop0, &bitsize, &bitpos,
10518 &offset, &mode1, &unsignedp, &volatilep,
10519 true);
10520 rtx orig_op0;
10522 /* ??? We should work harder and deal with non-zero offsets. */
10523 if (!offset
10524 && (bitpos % BITS_PER_UNIT) == 0
10525 && bitsize >= 0
10526 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
10528 /* See the normal_inner_ref case for the rationale. */
10529 orig_op0
10530 = expand_expr_real (tem,
10531 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10532 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10533 != INTEGER_CST)
10534 && modifier != EXPAND_STACK_PARM
10535 ? target : NULL_RTX),
10536 VOIDmode,
10537 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10538 NULL, true);
10540 if (MEM_P (orig_op0))
10542 op0 = orig_op0;
10544 /* Get a reference to just this component. */
10545 if (modifier == EXPAND_CONST_ADDRESS
10546 || modifier == EXPAND_SUM
10547 || modifier == EXPAND_INITIALIZER)
10548 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10549 else
10550 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10552 if (op0 == orig_op0)
10553 op0 = copy_rtx (op0);
10555 set_mem_attributes (op0, treeop0, 0);
10556 if (REG_P (XEXP (op0, 0)))
10557 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10559 MEM_VOLATILE_P (op0) |= volatilep;
10564 if (!op0)
10565 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
10566 NULL, inner_reference_p);
10568 /* If the input and output modes are both the same, we are done. */
10569 if (mode == GET_MODE (op0))
10571 /* If neither mode is BLKmode, and both modes are the same size
10572 then we can use gen_lowpart. */
10573 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10574 && (GET_MODE_PRECISION (mode)
10575 == GET_MODE_PRECISION (GET_MODE (op0)))
10576 && !COMPLEX_MODE_P (GET_MODE (op0)))
10578 if (GET_CODE (op0) == SUBREG)
10579 op0 = force_reg (GET_MODE (op0), op0);
10580 temp = gen_lowpart_common (mode, op0);
10581 if (temp)
10582 op0 = temp;
10583 else
10585 if (!REG_P (op0) && !MEM_P (op0))
10586 op0 = force_reg (GET_MODE (op0), op0);
10587 op0 = gen_lowpart (mode, op0);
10590 /* If both types are integral, convert from one mode to the other. */
10591 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10592 op0 = convert_modes (mode, GET_MODE (op0), op0,
10593 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10594 /* If the output type is a bit-field type, do an extraction. */
10595 else if (reduce_bit_field)
10596 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
10597 TYPE_UNSIGNED (type), NULL_RTX,
10598 mode, mode);
10599 /* As a last resort, spill op0 to memory, and reload it in a
10600 different mode. */
10601 else if (!MEM_P (op0))
10603 /* If the operand is not a MEM, force it into memory. Since we
10604 are going to be changing the mode of the MEM, don't call
10605 force_const_mem for constants because we don't allow pool
10606 constants to change mode. */
10607 tree inner_type = TREE_TYPE (treeop0);
10609 gcc_assert (!TREE_ADDRESSABLE (exp));
10611 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10612 target
10613 = assign_stack_temp_for_type
10614 (TYPE_MODE (inner_type),
10615 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10617 emit_move_insn (target, op0);
10618 op0 = target;
10621 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10622 output type is such that the operand is known to be aligned, indicate
10623 that it is. Otherwise, we need only be concerned about alignment for
10624 non-BLKmode results. */
10625 if (MEM_P (op0))
10627 enum insn_code icode;
10629 if (TYPE_ALIGN_OK (type))
10631 /* ??? Copying the MEM without substantially changing it might
10632 run afoul of the code handling volatile memory references in
10633 store_expr, which assumes that TARGET is returned unmodified
10634 if it has been used. */
10635 op0 = copy_rtx (op0);
10636 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
10638 else if (modifier != EXPAND_WRITE
10639 && modifier != EXPAND_MEMORY
10640 && !inner_reference_p
10641 && mode != BLKmode
10642 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10644 /* If the target does have special handling for unaligned
10645 loads of mode then use them. */
10646 if ((icode = optab_handler (movmisalign_optab, mode))
10647 != CODE_FOR_nothing)
10649 rtx reg, insn;
10651 op0 = adjust_address (op0, mode, 0);
10652 /* We've already validated the memory, and we're creating a
10653 new pseudo destination. The predicates really can't
10654 fail. */
10655 reg = gen_reg_rtx (mode);
10657 /* Nor can the insn generator. */
10658 insn = GEN_FCN (icode) (reg, op0);
10659 emit_insn (insn);
10660 return reg;
10662 else if (STRICT_ALIGNMENT)
10664 tree inner_type = TREE_TYPE (treeop0);
10665 HOST_WIDE_INT temp_size
10666 = MAX (int_size_in_bytes (inner_type),
10667 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
10668 rtx new_rtx
10669 = assign_stack_temp_for_type (mode, temp_size, type);
10670 rtx new_with_op0_mode
10671 = adjust_address (new_rtx, GET_MODE (op0), 0);
10673 gcc_assert (!TREE_ADDRESSABLE (exp));
10675 if (GET_MODE (op0) == BLKmode)
10676 emit_block_move (new_with_op0_mode, op0,
10677 GEN_INT (GET_MODE_SIZE (mode)),
10678 (modifier == EXPAND_STACK_PARM
10679 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10680 else
10681 emit_move_insn (new_with_op0_mode, op0);
10683 op0 = new_rtx;
10687 op0 = adjust_address (op0, mode, 0);
10690 return op0;
10692 case MODIFY_EXPR:
10694 tree lhs = treeop0;
10695 tree rhs = treeop1;
10696 gcc_assert (ignore);
10698 /* Check for |= or &= of a bitfield of size one into another bitfield
10699 of size 1. In this case, (unless we need the result of the
10700 assignment) we can do this more efficiently with a
10701 test followed by an assignment, if necessary.
10703 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10704 things change so we do, this code should be enhanced to
10705 support it. */
10706 if (TREE_CODE (lhs) == COMPONENT_REF
10707 && (TREE_CODE (rhs) == BIT_IOR_EXPR
10708 || TREE_CODE (rhs) == BIT_AND_EXPR)
10709 && TREE_OPERAND (rhs, 0) == lhs
10710 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
10711 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
10712 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
10714 rtx_code_label *label = gen_label_rtx ();
10715 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
10716 do_jump (TREE_OPERAND (rhs, 1),
10717 value ? label : 0,
10718 value ? 0 : label, -1);
10719 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
10720 false);
10721 do_pending_stack_adjust ();
10722 emit_label (label);
10723 return const0_rtx;
10726 expand_assignment (lhs, rhs, false);
10727 return const0_rtx;
10730 case ADDR_EXPR:
10731 return expand_expr_addr_expr (exp, target, tmode, modifier);
10733 case REALPART_EXPR:
10734 op0 = expand_normal (treeop0);
10735 return read_complex_part (op0, false);
10737 case IMAGPART_EXPR:
10738 op0 = expand_normal (treeop0);
10739 return read_complex_part (op0, true);
10741 case RETURN_EXPR:
10742 case LABEL_EXPR:
10743 case GOTO_EXPR:
10744 case SWITCH_EXPR:
10745 case ASM_EXPR:
10746 /* Expanded in cfgexpand.c. */
10747 gcc_unreachable ();
10749 case TRY_CATCH_EXPR:
10750 case CATCH_EXPR:
10751 case EH_FILTER_EXPR:
10752 case TRY_FINALLY_EXPR:
10753 /* Lowered by tree-eh.c. */
10754 gcc_unreachable ();
10756 case WITH_CLEANUP_EXPR:
10757 case CLEANUP_POINT_EXPR:
10758 case TARGET_EXPR:
10759 case CASE_LABEL_EXPR:
10760 case VA_ARG_EXPR:
10761 case BIND_EXPR:
10762 case INIT_EXPR:
10763 case CONJ_EXPR:
10764 case COMPOUND_EXPR:
10765 case PREINCREMENT_EXPR:
10766 case PREDECREMENT_EXPR:
10767 case POSTINCREMENT_EXPR:
10768 case POSTDECREMENT_EXPR:
10769 case LOOP_EXPR:
10770 case EXIT_EXPR:
10771 case COMPOUND_LITERAL_EXPR:
10772 /* Lowered by gimplify.c. */
10773 gcc_unreachable ();
10775 case FDESC_EXPR:
10776 /* Function descriptors are not valid except for as
10777 initialization constants, and should not be expanded. */
10778 gcc_unreachable ();
10780 case WITH_SIZE_EXPR:
10781 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10782 have pulled out the size to use in whatever context it needed. */
10783 return expand_expr_real (treeop0, original_target, tmode,
10784 modifier, alt_rtl, inner_reference_p);
10786 default:
10787 return expand_expr_real_2 (&ops, target, tmode, modifier);
10791 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10792 signedness of TYPE), possibly returning the result in TARGET. */
10793 static rtx
10794 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
10796 HOST_WIDE_INT prec = TYPE_PRECISION (type);
10797 if (target && GET_MODE (target) != GET_MODE (exp))
10798 target = 0;
10799 /* For constant values, reduce using build_int_cst_type. */
10800 if (CONST_INT_P (exp))
10802 HOST_WIDE_INT value = INTVAL (exp);
10803 tree t = build_int_cst_type (type, value);
10804 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
10806 else if (TYPE_UNSIGNED (type))
10808 machine_mode mode = GET_MODE (exp);
10809 rtx mask = immed_wide_int_const
10810 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
10811 return expand_and (mode, exp, mask, target);
10813 else
10815 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
10816 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
10817 exp, count, target, 0);
10818 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
10819 exp, count, target, 0);
10823 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10824 when applied to the address of EXP produces an address known to be
10825 aligned more than BIGGEST_ALIGNMENT. */
10827 static int
10828 is_aligning_offset (const_tree offset, const_tree exp)
10830 /* Strip off any conversions. */
10831 while (CONVERT_EXPR_P (offset))
10832 offset = TREE_OPERAND (offset, 0);
10834 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10835 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10836 if (TREE_CODE (offset) != BIT_AND_EXPR
10837 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
10838 || compare_tree_int (TREE_OPERAND (offset, 1),
10839 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
10840 || exact_log2 (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1) < 0)
10841 return 0;
10843 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10844 It must be NEGATE_EXPR. Then strip any more conversions. */
10845 offset = TREE_OPERAND (offset, 0);
10846 while (CONVERT_EXPR_P (offset))
10847 offset = TREE_OPERAND (offset, 0);
10849 if (TREE_CODE (offset) != NEGATE_EXPR)
10850 return 0;
10852 offset = TREE_OPERAND (offset, 0);
10853 while (CONVERT_EXPR_P (offset))
10854 offset = TREE_OPERAND (offset, 0);
10856 /* This must now be the address of EXP. */
10857 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
10860 /* Return the tree node if an ARG corresponds to a string constant or zero
10861 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10862 in bytes within the string that ARG is accessing. The type of the
10863 offset will be `sizetype'. */
10865 tree
10866 string_constant (tree arg, tree *ptr_offset)
10868 tree array, offset, lower_bound;
10869 STRIP_NOPS (arg);
10871 if (TREE_CODE (arg) == ADDR_EXPR)
10873 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
10875 *ptr_offset = size_zero_node;
10876 return TREE_OPERAND (arg, 0);
10878 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
10880 array = TREE_OPERAND (arg, 0);
10881 offset = size_zero_node;
10883 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
10885 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10886 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10887 if (TREE_CODE (array) != STRING_CST
10888 && TREE_CODE (array) != VAR_DECL)
10889 return 0;
10891 /* Check if the array has a nonzero lower bound. */
10892 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
10893 if (!integer_zerop (lower_bound))
10895 /* If the offset and base aren't both constants, return 0. */
10896 if (TREE_CODE (lower_bound) != INTEGER_CST)
10897 return 0;
10898 if (TREE_CODE (offset) != INTEGER_CST)
10899 return 0;
10900 /* Adjust offset by the lower bound. */
10901 offset = size_diffop (fold_convert (sizetype, offset),
10902 fold_convert (sizetype, lower_bound));
10905 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
10907 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10908 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10909 if (TREE_CODE (array) != ADDR_EXPR)
10910 return 0;
10911 array = TREE_OPERAND (array, 0);
10912 if (TREE_CODE (array) != STRING_CST
10913 && TREE_CODE (array) != VAR_DECL)
10914 return 0;
10916 else
10917 return 0;
10919 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
10921 tree arg0 = TREE_OPERAND (arg, 0);
10922 tree arg1 = TREE_OPERAND (arg, 1);
10924 STRIP_NOPS (arg0);
10925 STRIP_NOPS (arg1);
10927 if (TREE_CODE (arg0) == ADDR_EXPR
10928 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
10929 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
10931 array = TREE_OPERAND (arg0, 0);
10932 offset = arg1;
10934 else if (TREE_CODE (arg1) == ADDR_EXPR
10935 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
10936 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
10938 array = TREE_OPERAND (arg1, 0);
10939 offset = arg0;
10941 else
10942 return 0;
10944 else
10945 return 0;
10947 if (TREE_CODE (array) == STRING_CST)
10949 *ptr_offset = fold_convert (sizetype, offset);
10950 return array;
10952 else if (TREE_CODE (array) == VAR_DECL
10953 || TREE_CODE (array) == CONST_DECL)
10955 int length;
10956 tree init = ctor_for_folding (array);
10958 /* Variables initialized to string literals can be handled too. */
10959 if (init == error_mark_node
10960 || !init
10961 || TREE_CODE (init) != STRING_CST)
10962 return 0;
10964 /* Avoid const char foo[4] = "abcde"; */
10965 if (DECL_SIZE_UNIT (array) == NULL_TREE
10966 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
10967 || (length = TREE_STRING_LENGTH (init)) <= 0
10968 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
10969 return 0;
10971 /* If variable is bigger than the string literal, OFFSET must be constant
10972 and inside of the bounds of the string literal. */
10973 offset = fold_convert (sizetype, offset);
10974 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
10975 && (! tree_fits_uhwi_p (offset)
10976 || compare_tree_int (offset, length) >= 0))
10977 return 0;
10979 *ptr_offset = offset;
10980 return init;
10983 return 0;
10986 /* Generate code to calculate OPS, and exploded expression
10987 using a store-flag instruction and return an rtx for the result.
10988 OPS reflects a comparison.
10990 If TARGET is nonzero, store the result there if convenient.
10992 Return zero if there is no suitable set-flag instruction
10993 available on this machine.
10995 Once expand_expr has been called on the arguments of the comparison,
10996 we are committed to doing the store flag, since it is not safe to
10997 re-evaluate the expression. We emit the store-flag insn by calling
10998 emit_store_flag, but only expand the arguments if we have a reason
10999 to believe that emit_store_flag will be successful. If we think that
11000 it will, but it isn't, we have to simulate the store-flag with a
11001 set/jump/set sequence. */
11003 static rtx
11004 do_store_flag (sepops ops, rtx target, machine_mode mode)
11006 enum rtx_code code;
11007 tree arg0, arg1, type;
11008 tree tem;
11009 machine_mode operand_mode;
11010 int unsignedp;
11011 rtx op0, op1;
11012 rtx subtarget = target;
11013 location_t loc = ops->location;
11015 arg0 = ops->op0;
11016 arg1 = ops->op1;
11018 /* Don't crash if the comparison was erroneous. */
11019 if (arg0 == error_mark_node || arg1 == error_mark_node)
11020 return const0_rtx;
11022 type = TREE_TYPE (arg0);
11023 operand_mode = TYPE_MODE (type);
11024 unsignedp = TYPE_UNSIGNED (type);
11026 /* We won't bother with BLKmode store-flag operations because it would mean
11027 passing a lot of information to emit_store_flag. */
11028 if (operand_mode == BLKmode)
11029 return 0;
11031 /* We won't bother with store-flag operations involving function pointers
11032 when function pointers must be canonicalized before comparisons. */
11033 #ifdef HAVE_canonicalize_funcptr_for_compare
11034 if (HAVE_canonicalize_funcptr_for_compare
11035 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
11036 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
11037 == FUNCTION_TYPE))
11038 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
11039 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
11040 == FUNCTION_TYPE))))
11041 return 0;
11042 #endif
11044 STRIP_NOPS (arg0);
11045 STRIP_NOPS (arg1);
11047 /* For vector typed comparisons emit code to generate the desired
11048 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11049 expander for this. */
11050 if (TREE_CODE (ops->type) == VECTOR_TYPE)
11052 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
11053 tree if_true = constant_boolean_node (true, ops->type);
11054 tree if_false = constant_boolean_node (false, ops->type);
11055 return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target);
11058 /* Get the rtx comparison code to use. We know that EXP is a comparison
11059 operation of some type. Some comparisons against 1 and -1 can be
11060 converted to comparisons with zero. Do so here so that the tests
11061 below will be aware that we have a comparison with zero. These
11062 tests will not catch constants in the first operand, but constants
11063 are rarely passed as the first operand. */
11065 switch (ops->code)
11067 case EQ_EXPR:
11068 code = EQ;
11069 break;
11070 case NE_EXPR:
11071 code = NE;
11072 break;
11073 case LT_EXPR:
11074 if (integer_onep (arg1))
11075 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
11076 else
11077 code = unsignedp ? LTU : LT;
11078 break;
11079 case LE_EXPR:
11080 if (! unsignedp && integer_all_onesp (arg1))
11081 arg1 = integer_zero_node, code = LT;
11082 else
11083 code = unsignedp ? LEU : LE;
11084 break;
11085 case GT_EXPR:
11086 if (! unsignedp && integer_all_onesp (arg1))
11087 arg1 = integer_zero_node, code = GE;
11088 else
11089 code = unsignedp ? GTU : GT;
11090 break;
11091 case GE_EXPR:
11092 if (integer_onep (arg1))
11093 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
11094 else
11095 code = unsignedp ? GEU : GE;
11096 break;
11098 case UNORDERED_EXPR:
11099 code = UNORDERED;
11100 break;
11101 case ORDERED_EXPR:
11102 code = ORDERED;
11103 break;
11104 case UNLT_EXPR:
11105 code = UNLT;
11106 break;
11107 case UNLE_EXPR:
11108 code = UNLE;
11109 break;
11110 case UNGT_EXPR:
11111 code = UNGT;
11112 break;
11113 case UNGE_EXPR:
11114 code = UNGE;
11115 break;
11116 case UNEQ_EXPR:
11117 code = UNEQ;
11118 break;
11119 case LTGT_EXPR:
11120 code = LTGT;
11121 break;
11123 default:
11124 gcc_unreachable ();
11127 /* Put a constant second. */
11128 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
11129 || TREE_CODE (arg0) == FIXED_CST)
11131 tem = arg0; arg0 = arg1; arg1 = tem;
11132 code = swap_condition (code);
11135 /* If this is an equality or inequality test of a single bit, we can
11136 do this by shifting the bit being tested to the low-order bit and
11137 masking the result with the constant 1. If the condition was EQ,
11138 we xor it with 1. This does not require an scc insn and is faster
11139 than an scc insn even if we have it.
11141 The code to make this transformation was moved into fold_single_bit_test,
11142 so we just call into the folder and expand its result. */
11144 if ((code == NE || code == EQ)
11145 && integer_zerop (arg1)
11146 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
11148 gimple srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
11149 if (srcstmt
11150 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
11152 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
11153 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11154 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
11155 gimple_assign_rhs1 (srcstmt),
11156 gimple_assign_rhs2 (srcstmt));
11157 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
11158 if (temp)
11159 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
11163 if (! get_subtarget (target)
11164 || GET_MODE (subtarget) != operand_mode)
11165 subtarget = 0;
11167 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
11169 if (target == 0)
11170 target = gen_reg_rtx (mode);
11172 /* Try a cstore if possible. */
11173 return emit_store_flag_force (target, code, op0, op1,
11174 operand_mode, unsignedp,
11175 (TYPE_PRECISION (ops->type) == 1
11176 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
11180 /* Stubs in case we haven't got a casesi insn. */
11181 #ifndef HAVE_casesi
11182 # define HAVE_casesi 0
11183 # define gen_casesi(a, b, c, d, e) (0)
11184 # define CODE_FOR_casesi CODE_FOR_nothing
11185 #endif
11187 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11188 0 otherwise (i.e. if there is no casesi instruction).
11190 DEFAULT_PROBABILITY is the probability of jumping to the default
11191 label. */
11193 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
11194 rtx table_label, rtx default_label, rtx fallback_label,
11195 int default_probability)
11197 struct expand_operand ops[5];
11198 machine_mode index_mode = SImode;
11199 rtx op1, op2, index;
11201 if (! HAVE_casesi)
11202 return 0;
11204 /* Convert the index to SImode. */
11205 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
11207 machine_mode omode = TYPE_MODE (index_type);
11208 rtx rangertx = expand_normal (range);
11210 /* We must handle the endpoints in the original mode. */
11211 index_expr = build2 (MINUS_EXPR, index_type,
11212 index_expr, minval);
11213 minval = integer_zero_node;
11214 index = expand_normal (index_expr);
11215 if (default_label)
11216 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11217 omode, 1, default_label,
11218 default_probability);
11219 /* Now we can safely truncate. */
11220 index = convert_to_mode (index_mode, index, 0);
11222 else
11224 if (TYPE_MODE (index_type) != index_mode)
11226 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11227 index_expr = fold_convert (index_type, index_expr);
11230 index = expand_normal (index_expr);
11233 do_pending_stack_adjust ();
11235 op1 = expand_normal (minval);
11236 op2 = expand_normal (range);
11238 create_input_operand (&ops[0], index, index_mode);
11239 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11240 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11241 create_fixed_operand (&ops[3], table_label);
11242 create_fixed_operand (&ops[4], (default_label
11243 ? default_label
11244 : fallback_label));
11245 expand_jump_insn (CODE_FOR_casesi, 5, ops);
11246 return 1;
11249 /* Attempt to generate a tablejump instruction; same concept. */
11250 #ifndef HAVE_tablejump
11251 #define HAVE_tablejump 0
11252 #define gen_tablejump(x, y) (0)
11253 #endif
11255 /* Subroutine of the next function.
11257 INDEX is the value being switched on, with the lowest value
11258 in the table already subtracted.
11259 MODE is its expected mode (needed if INDEX is constant).
11260 RANGE is the length of the jump table.
11261 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11263 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11264 index value is out of range.
11265 DEFAULT_PROBABILITY is the probability of jumping to
11266 the default label. */
11268 static void
11269 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
11270 rtx default_label, int default_probability)
11272 rtx temp, vector;
11274 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11275 cfun->cfg->max_jumptable_ents = INTVAL (range);
11277 /* Do an unsigned comparison (in the proper mode) between the index
11278 expression and the value which represents the length of the range.
11279 Since we just finished subtracting the lower bound of the range
11280 from the index expression, this comparison allows us to simultaneously
11281 check that the original index expression value is both greater than
11282 or equal to the minimum value of the range and less than or equal to
11283 the maximum value of the range. */
11285 if (default_label)
11286 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11287 default_label, default_probability);
11290 /* If index is in range, it must fit in Pmode.
11291 Convert to Pmode so we can index with it. */
11292 if (mode != Pmode)
11293 index = convert_to_mode (Pmode, index, 1);
11295 /* Don't let a MEM slip through, because then INDEX that comes
11296 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11297 and break_out_memory_refs will go to work on it and mess it up. */
11298 #ifdef PIC_CASE_VECTOR_ADDRESS
11299 if (flag_pic && !REG_P (index))
11300 index = copy_to_mode_reg (Pmode, index);
11301 #endif
11303 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11304 GET_MODE_SIZE, because this indicates how large insns are. The other
11305 uses should all be Pmode, because they are addresses. This code
11306 could fail if addresses and insns are not the same size. */
11307 index = simplify_gen_binary (MULT, Pmode, index,
11308 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
11309 Pmode));
11310 index = simplify_gen_binary (PLUS, Pmode, index,
11311 gen_rtx_LABEL_REF (Pmode, table_label));
11313 #ifdef PIC_CASE_VECTOR_ADDRESS
11314 if (flag_pic)
11315 index = PIC_CASE_VECTOR_ADDRESS (index);
11316 else
11317 #endif
11318 index = memory_address (CASE_VECTOR_MODE, index);
11319 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11320 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11321 convert_move (temp, vector, 0);
11323 emit_jump_insn (gen_tablejump (temp, table_label));
11325 /* If we are generating PIC code or if the table is PC-relative, the
11326 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11327 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11328 emit_barrier ();
11332 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11333 rtx table_label, rtx default_label, int default_probability)
11335 rtx index;
11337 if (! HAVE_tablejump)
11338 return 0;
11340 index_expr = fold_build2 (MINUS_EXPR, index_type,
11341 fold_convert (index_type, index_expr),
11342 fold_convert (index_type, minval));
11343 index = expand_normal (index_expr);
11344 do_pending_stack_adjust ();
11346 do_tablejump (index, TYPE_MODE (index_type),
11347 convert_modes (TYPE_MODE (index_type),
11348 TYPE_MODE (TREE_TYPE (range)),
11349 expand_normal (range),
11350 TYPE_UNSIGNED (TREE_TYPE (range))),
11351 table_label, default_label, default_probability);
11352 return 1;
11355 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11356 static rtx
11357 const_vector_from_tree (tree exp)
11359 rtvec v;
11360 unsigned i;
11361 int units;
11362 tree elt;
11363 machine_mode inner, mode;
11365 mode = TYPE_MODE (TREE_TYPE (exp));
11367 if (initializer_zerop (exp))
11368 return CONST0_RTX (mode);
11370 units = GET_MODE_NUNITS (mode);
11371 inner = GET_MODE_INNER (mode);
11373 v = rtvec_alloc (units);
11375 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11377 elt = VECTOR_CST_ELT (exp, i);
11379 if (TREE_CODE (elt) == REAL_CST)
11380 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
11381 inner);
11382 else if (TREE_CODE (elt) == FIXED_CST)
11383 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11384 inner);
11385 else
11386 RTVEC_ELT (v, i) = immed_wide_int_const (elt, inner);
11389 return gen_rtx_CONST_VECTOR (mode, v);
11392 /* Build a decl for a personality function given a language prefix. */
11394 tree
11395 build_personality_function (const char *lang)
11397 const char *unwind_and_version;
11398 tree decl, type;
11399 char *name;
11401 switch (targetm_common.except_unwind_info (&global_options))
11403 case UI_NONE:
11404 return NULL;
11405 case UI_SJLJ:
11406 unwind_and_version = "_sj0";
11407 break;
11408 case UI_DWARF2:
11409 case UI_TARGET:
11410 unwind_and_version = "_v0";
11411 break;
11412 case UI_SEH:
11413 unwind_and_version = "_seh0";
11414 break;
11415 default:
11416 gcc_unreachable ();
11419 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11421 type = build_function_type_list (integer_type_node, integer_type_node,
11422 long_long_unsigned_type_node,
11423 ptr_type_node, ptr_type_node, NULL_TREE);
11424 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11425 get_identifier (name), type);
11426 DECL_ARTIFICIAL (decl) = 1;
11427 DECL_EXTERNAL (decl) = 1;
11428 TREE_PUBLIC (decl) = 1;
11430 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11431 are the flags assigned by targetm.encode_section_info. */
11432 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11434 return decl;
11437 /* Extracts the personality function of DECL and returns the corresponding
11438 libfunc. */
11441 get_personality_function (tree decl)
11443 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11444 enum eh_personality_kind pk;
11446 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11447 if (pk == eh_personality_none)
11448 return NULL;
11450 if (!personality
11451 && pk == eh_personality_any)
11452 personality = lang_hooks.eh_personality ();
11454 if (pk == eh_personality_lang)
11455 gcc_assert (personality != NULL_TREE);
11457 return XEXP (DECL_RTL (personality), 0);
11460 /* Returns a tree for the size of EXP in bytes. */
11462 static tree
11463 tree_expr_size (const_tree exp)
11465 if (DECL_P (exp)
11466 && DECL_SIZE_UNIT (exp) != 0)
11467 return DECL_SIZE_UNIT (exp);
11468 else
11469 return size_in_bytes (TREE_TYPE (exp));
11472 /* Return an rtx for the size in bytes of the value of EXP. */
11475 expr_size (tree exp)
11477 tree size;
11479 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11480 size = TREE_OPERAND (exp, 1);
11481 else
11483 size = tree_expr_size (exp);
11484 gcc_assert (size);
11485 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
11488 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
11491 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11492 if the size can vary or is larger than an integer. */
11494 static HOST_WIDE_INT
11495 int_expr_size (tree exp)
11497 tree size;
11499 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11500 size = TREE_OPERAND (exp, 1);
11501 else
11503 size = tree_expr_size (exp);
11504 gcc_assert (size);
11507 if (size == 0 || !tree_fits_shwi_p (size))
11508 return -1;
11510 return tree_to_shwi (size);
11513 #include "gt-expr.h"