CAM - Fix missing SIM lock in cam_periph_release()
[dragonfly.git] / sys / bus / cam / cam_periph.c
blob839902cf88a73d388a38e5a8db58e9d29c1eedc0
1 /*
2 * Common functions for CAM "type" (peripheral) drivers.
4 * Copyright (c) 1997, 1998 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $FreeBSD: src/sys/cam/cam_periph.c,v 1.70 2008/02/12 11:07:33 raj Exp $
30 * $DragonFly: src/sys/bus/cam/cam_periph.c,v 1.41 2008/07/18 00:07:21 dillon Exp $
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/devicestat.h>
42 #include <sys/bus.h>
43 #include <vm/vm.h>
44 #include <vm/vm_extern.h>
46 #include <sys/thread2.h>
48 #include "cam.h"
49 #include "cam_ccb.h"
50 #include "cam_xpt_periph.h"
51 #include "cam_periph.h"
52 #include "cam_debug.h"
53 #include "cam_sim.h"
55 #include <bus/cam/scsi/scsi_all.h>
56 #include <bus/cam/scsi/scsi_message.h>
57 #include <bus/cam/scsi/scsi_pass.h>
59 static u_int camperiphnextunit(struct periph_driver *p_drv,
60 u_int newunit, int wired,
61 path_id_t pathid, target_id_t target,
62 lun_id_t lun);
63 static u_int camperiphunit(struct periph_driver *p_drv,
64 struct cam_sim *sim, path_id_t pathid,
65 target_id_t target, lun_id_t lun);
66 static void camperiphdone(struct cam_periph *periph,
67 union ccb *done_ccb);
68 static void camperiphfree(struct cam_periph *periph);
69 static int camperiphscsistatuserror(union ccb *ccb,
70 cam_flags camflags,
71 u_int32_t sense_flags,
72 union ccb *save_ccb,
73 int *openings,
74 u_int32_t *relsim_flags,
75 u_int32_t *timeout);
76 static int camperiphscsisenseerror(union ccb *ccb,
77 cam_flags camflags,
78 u_int32_t sense_flags,
79 union ccb *save_ccb,
80 int *openings,
81 u_int32_t *relsim_flags,
82 u_int32_t *timeout);
83 static void cam_periph_unmapbufs(struct cam_periph_map_info *mapinfo,
84 u_int8_t ***data_ptrs, int numbufs);
86 static int nperiph_drivers;
87 struct periph_driver **periph_drivers;
89 MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
91 static int periph_selto_delay = 1000;
92 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
93 static int periph_noresrc_delay = 500;
94 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
95 static int periph_busy_delay = 500;
96 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
99 void
100 periphdriver_register(void *data)
102 struct periph_driver **newdrivers, **old;
103 int ndrivers;
105 ndrivers = nperiph_drivers + 2;
106 newdrivers = kmalloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
107 M_WAITOK);
108 if (periph_drivers)
109 bcopy(periph_drivers, newdrivers,
110 sizeof(*newdrivers) * nperiph_drivers);
111 newdrivers[nperiph_drivers] = (struct periph_driver *)data;
112 newdrivers[nperiph_drivers + 1] = NULL;
113 old = periph_drivers;
114 periph_drivers = newdrivers;
115 if (old)
116 kfree(old, M_CAMPERIPH);
117 nperiph_drivers++;
120 cam_status
121 cam_periph_alloc(periph_ctor_t *periph_ctor,
122 periph_oninv_t *periph_oninvalidate,
123 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
124 char *name, cam_periph_type type, struct cam_path *path,
125 ac_callback_t *ac_callback, ac_code code, void *arg)
127 struct periph_driver **p_drv;
128 struct cam_sim *sim;
129 struct cam_periph *periph;
130 struct cam_periph *cur_periph;
131 path_id_t path_id;
132 target_id_t target_id;
133 lun_id_t lun_id;
134 cam_status status;
135 u_int init_level;
137 init_level = 0;
139 * Handle Hot-Plug scenarios. If there is already a peripheral
140 * of our type assigned to this path, we are likely waiting for
141 * final close on an old, invalidated, peripheral. If this is
142 * the case, queue up a deferred call to the peripheral's async
143 * handler. If it looks like a mistaken re-allocation, complain.
145 if ((periph = cam_periph_find(path, name)) != NULL) {
147 if ((periph->flags & CAM_PERIPH_INVALID) != 0
148 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
149 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
150 periph->deferred_callback = ac_callback;
151 periph->deferred_ac = code;
152 return (CAM_REQ_INPROG);
153 } else {
154 kprintf("cam_periph_alloc: attempt to re-allocate "
155 "valid device %s%d rejected\n",
156 periph->periph_name, periph->unit_number);
158 return (CAM_REQ_INVALID);
161 periph = kmalloc(sizeof(*periph), M_CAMPERIPH, M_INTWAIT | M_ZERO);
163 init_level++;
165 xpt_lock_buses();
166 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
167 if (strcmp((*p_drv)->driver_name, name) == 0)
168 break;
170 xpt_unlock_buses();
172 sim = xpt_path_sim(path);
173 path_id = xpt_path_path_id(path);
174 target_id = xpt_path_target_id(path);
175 lun_id = xpt_path_lun_id(path);
176 cam_init_pinfo(&periph->pinfo);
177 periph->periph_start = periph_start;
178 periph->periph_dtor = periph_dtor;
179 periph->periph_oninval = periph_oninvalidate;
180 periph->type = type;
181 periph->periph_name = name;
182 periph->unit_number = camperiphunit(*p_drv, sim, path_id,
183 target_id, lun_id);
184 periph->immediate_priority = CAM_PRIORITY_NONE;
185 periph->refcount = 0;
186 periph->sim = sim;
187 SLIST_INIT(&periph->ccb_list);
188 status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
189 if (status != CAM_REQ_CMP)
190 goto failure;
192 periph->path = path;
193 init_level++;
195 status = xpt_add_periph(periph);
197 if (status != CAM_REQ_CMP)
198 goto failure;
200 cur_periph = TAILQ_FIRST(&(*p_drv)->units);
201 while (cur_periph != NULL
202 && cur_periph->unit_number < periph->unit_number)
203 cur_periph = TAILQ_NEXT(cur_periph, unit_links);
205 if (cur_periph != NULL)
206 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
207 else {
208 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
209 (*p_drv)->generation++;
212 init_level++;
214 status = periph_ctor(periph, arg);
216 if (status == CAM_REQ_CMP)
217 init_level++;
219 failure:
220 switch (init_level) {
221 case 4:
222 /* Initialized successfully */
223 break;
224 case 3:
225 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
226 xpt_remove_periph(periph);
227 /* FALLTHROUGH */
228 case 2:
229 xpt_free_path(periph->path);
230 /* FALLTHROUGH */
231 case 1:
232 kfree(periph, M_CAMPERIPH);
233 /* FALLTHROUGH */
234 case 0:
235 /* No cleanup to perform. */
236 break;
237 default:
238 panic("cam_periph_alloc: Unknown init level");
240 return(status);
244 * Find a peripheral structure with the specified path, target, lun,
245 * and (optionally) type. If the name is NULL, this function will return
246 * the first peripheral driver that matches the specified path.
248 struct cam_periph *
249 cam_periph_find(struct cam_path *path, char *name)
251 struct periph_driver **p_drv;
252 struct cam_periph *periph;
254 xpt_lock_buses();
255 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
256 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
257 continue;
259 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
260 if (xpt_path_comp(periph->path, path) == 0) {
261 xpt_unlock_buses();
262 return(periph);
265 if (name != NULL) {
266 xpt_unlock_buses();
267 return(NULL);
270 xpt_unlock_buses();
271 return(NULL);
274 cam_status
275 cam_periph_acquire(struct cam_periph *periph)
277 if (periph == NULL)
278 return(CAM_REQ_CMP_ERR);
280 xpt_lock_buses();
281 periph->refcount++;
282 xpt_unlock_buses();
284 return(CAM_REQ_CMP);
288 * Release the peripheral. The XPT is not locked and the SIM may or may
289 * not be locked on entry.
291 * The last release on a peripheral marked invalid frees it. In this
292 * case we must be sure to hold both the XPT lock and the SIM lock,
293 * requiring a bit of fancy footwork if the SIM lock already happens
294 * to be held.
296 void
297 cam_periph_release(struct cam_periph *periph)
299 struct cam_sim *sim;
300 int doun;
302 while (periph) {
304 * First try the critical path case
306 sim = periph->sim;
307 xpt_lock_buses();
308 if ((periph->flags & CAM_PERIPH_INVALID) == 0 ||
309 periph->refcount != 1) {
310 --periph->refcount;
311 xpt_unlock_buses();
312 break;
316 * Otherwise we also need to free the peripheral and must
317 * acquire the sim lock and xpt lock in the correct order
318 * to do so.
320 * The condition must be re-checked after the locks have
321 * been reacquired.
323 xpt_unlock_buses();
324 doun = CAM_SIM_COND_LOCK(sim);
325 xpt_lock_buses();
326 --periph->refcount;
327 if ((periph->flags & CAM_PERIPH_INVALID) &&
328 periph->refcount == 0) {
329 camperiphfree(periph);
331 xpt_unlock_buses();
332 CAM_SIM_COND_UNLOCK(sim, doun);
333 break;
338 cam_periph_hold(struct cam_periph *periph, int flags)
340 int error;
342 sim_lock_assert_owned(periph->sim->lock);
345 * Increment the reference count on the peripheral
346 * while we wait for our lock attempt to succeed
347 * to ensure the peripheral doesn't disappear out
348 * from user us while we sleep.
351 if (cam_periph_acquire(periph) != CAM_REQ_CMP)
352 return (ENXIO);
354 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
355 periph->flags |= CAM_PERIPH_LOCK_WANTED;
356 if ((error = sim_lock_sleep(periph, flags, "caplck", 0,
357 periph->sim->lock)) != 0) {
358 cam_periph_release(periph);
359 return (error);
363 periph->flags |= CAM_PERIPH_LOCKED;
364 return (0);
367 void
368 cam_periph_unhold(struct cam_periph *periph, int unlock)
370 struct cam_sim *sim;
372 sim_lock_assert_owned(periph->sim->lock);
373 periph->flags &= ~CAM_PERIPH_LOCKED;
374 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
375 periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
376 wakeup(periph);
378 if (unlock) {
379 sim = periph->sim;
380 cam_periph_release(periph);
381 /* periph may be garbage now */
382 CAM_SIM_UNLOCK(sim);
383 } else {
384 cam_periph_release(periph);
389 * Look for the next unit number that is not currently in use for this
390 * peripheral type starting at "newunit". Also exclude unit numbers that
391 * are reserved by for future "hardwiring" unless we already know that this
392 * is a potential wired device. Only assume that the device is "wired" the
393 * first time through the loop since after that we'll be looking at unit
394 * numbers that did not match a wiring entry.
396 static u_int
397 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
398 path_id_t pathid, target_id_t target, lun_id_t lun)
400 struct cam_periph *periph;
401 char *periph_name, *strval;
402 int i, val, dunit;
403 const char *dname;
405 periph_name = p_drv->driver_name;
406 for (;;newunit++) {
408 for (periph = TAILQ_FIRST(&p_drv->units);
409 periph != NULL && periph->unit_number != newunit;
410 periph = TAILQ_NEXT(periph, unit_links))
413 if (periph != NULL && periph->unit_number == newunit) {
414 if (wired != 0) {
415 xpt_print(periph->path, "Duplicate Wired "
416 "Device entry!\n");
417 xpt_print(periph->path, "Second device (%s "
418 "device at scbus%d target %d lun %d) will "
419 "not be wired\n", periph_name, pathid,
420 target, lun);
421 wired = 0;
423 continue;
425 if (wired)
426 break;
429 * Don't match entries like "da 4" as a wired down
430 * device, but do match entries like "da 4 target 5"
431 * or even "da 4 scbus 1".
433 i = -1;
434 while ((i = resource_locate(i, periph_name)) != -1) {
435 dname = resource_query_name(i);
436 dunit = resource_query_unit(i);
437 /* if no "target" and no specific scbus, skip */
438 if (resource_int_value(dname, dunit, "target", &val) &&
439 (resource_string_value(dname, dunit, "at",&strval)||
440 strcmp(strval, "scbus") == 0))
441 continue;
442 if (newunit == dunit)
443 break;
445 if (i == -1)
446 break;
448 return (newunit);
451 static u_int
452 camperiphunit(struct periph_driver *p_drv,
453 struct cam_sim *sim, path_id_t pathid,
454 target_id_t target, lun_id_t lun)
456 u_int unit;
457 int hit, i, val, dunit;
458 const char *dname;
459 char pathbuf[32], *strval, *periph_name;
461 unit = 0;
463 periph_name = p_drv->driver_name;
464 ksnprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
465 i = -1;
466 for (hit = 0; (i = resource_locate(i, periph_name)) != -1; hit = 0) {
467 dname = resource_query_name(i);
468 dunit = resource_query_unit(i);
469 if (resource_string_value(dname, dunit, "at", &strval) == 0) {
470 if (strcmp(strval, pathbuf) != 0)
471 continue;
472 hit++;
474 if (resource_int_value(dname, dunit, "target", &val) == 0) {
475 if (val != target)
476 continue;
477 hit++;
479 if (resource_int_value(dname, dunit, "lun", &val) == 0) {
480 if (val != lun)
481 continue;
482 hit++;
484 if (hit != 0) {
485 unit = dunit;
486 break;
491 * If no wired units are in the kernel config do an auto unit
492 * start selection. We want usb mass storage out of the way
493 * so it doesn't steal low numbered da%d slots from ahci, sili,
494 * or other scsi attachments.
496 if (hit == 0 && sim) {
497 if (strncmp(sim->sim_name, "umass", 4) == 0 && unit < 8)
498 unit = 8;
502 * Either start from 0 looking for the next unit or from
503 * the unit number given in the resource config. This way,
504 * if we have wildcard matches, we don't return the same
505 * unit number twice.
507 unit = camperiphnextunit(p_drv, unit, /*wired*/hit, pathid,
508 target, lun);
510 return (unit);
513 void
514 cam_periph_invalidate(struct cam_periph *periph)
517 * We only call this routine the first time a peripheral is
518 * invalidated.
520 if (((periph->flags & CAM_PERIPH_INVALID) == 0)
521 && (periph->periph_oninval != NULL))
522 periph->periph_oninval(periph);
524 periph->flags |= CAM_PERIPH_INVALID;
525 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
527 xpt_lock_buses();
528 if (periph->refcount == 0)
529 camperiphfree(periph);
530 else if (periph->refcount < 0)
531 kprintf("cam_invalidate_periph: refcount < 0!!\n");
532 xpt_unlock_buses();
535 static void
536 camperiphfree(struct cam_periph *periph)
538 struct periph_driver **p_drv;
540 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
541 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
542 break;
545 if (*p_drv == NULL) {
546 kprintf("camperiphfree: attempt to free non-existent periph\n");
547 return;
550 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
551 (*p_drv)->generation++;
552 xpt_unlock_buses();
554 if (periph->periph_dtor != NULL)
555 periph->periph_dtor(periph);
556 xpt_remove_periph(periph);
558 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
559 union ccb ccb;
560 void *arg;
562 switch (periph->deferred_ac) {
563 case AC_FOUND_DEVICE:
564 ccb.ccb_h.func_code = XPT_GDEV_TYPE;
565 xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
566 xpt_action(&ccb);
567 arg = &ccb;
568 break;
569 case AC_PATH_REGISTERED:
570 ccb.ccb_h.func_code = XPT_PATH_INQ;
571 xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
572 xpt_action(&ccb);
573 arg = &ccb;
574 break;
575 default:
576 arg = NULL;
577 break;
579 periph->deferred_callback(NULL, periph->deferred_ac,
580 periph->path, arg);
582 xpt_free_path(periph->path);
583 kfree(periph, M_CAMPERIPH);
584 xpt_lock_buses();
588 * Map user virtual pointers into kernel virtual address space, so we can
589 * access the memory. This won't work on physical pointers, for now it's
590 * up to the caller to check for that. (XXX KDM -- should we do that here
591 * instead?) This also only works for up to MAXPHYS memory. Since we use
592 * buffers to map stuff in and out, we're limited to the buffer size.
595 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
597 buf_cmd_t cmd[CAM_PERIPH_MAXMAPS];
598 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
599 u_int32_t lengths[CAM_PERIPH_MAXMAPS];
600 int numbufs;
601 int error;
602 int i;
603 struct buf *bp;
605 switch(ccb->ccb_h.func_code) {
606 case XPT_DEV_MATCH:
607 if (ccb->cdm.match_buf_len == 0) {
608 kprintf("cam_periph_mapmem: invalid match buffer "
609 "length 0\n");
610 return(EINVAL);
612 if (ccb->cdm.pattern_buf_len > 0) {
613 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
614 lengths[0] = ccb->cdm.pattern_buf_len;
615 mapinfo->dirs[0] = CAM_DIR_OUT;
616 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
617 lengths[1] = ccb->cdm.match_buf_len;
618 mapinfo->dirs[1] = CAM_DIR_IN;
619 numbufs = 2;
620 } else {
621 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
622 lengths[0] = ccb->cdm.match_buf_len;
623 mapinfo->dirs[0] = CAM_DIR_IN;
624 numbufs = 1;
626 break;
627 case XPT_SCSI_IO:
628 case XPT_CONT_TARGET_IO:
629 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
630 return(0);
632 data_ptrs[0] = &ccb->csio.data_ptr;
633 lengths[0] = ccb->csio.dxfer_len;
634 mapinfo->dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
635 numbufs = 1;
636 break;
637 default:
638 return(EINVAL);
639 break; /* NOTREACHED */
643 * Check the transfer length and permissions first, so we don't
644 * have to unmap any previously mapped buffers.
646 for (i = 0; i < numbufs; i++) {
648 * Its kinda bogus, we need a R+W command. For now the
649 * buffer needs some sort of command. Use BUF_CMD_WRITE
650 * to indicate a write and BUF_CMD_READ to indicate R+W.
652 cmd[i] = BUF_CMD_WRITE;
655 * The userland data pointer passed in may not be page
656 * aligned. vmapbuf() truncates the address to a page
657 * boundary, so if the address isn't page aligned, we'll
658 * need enough space for the given transfer length, plus
659 * whatever extra space is necessary to make it to the page
660 * boundary.
662 if ((lengths[i] +
663 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > DFLTPHYS){
664 kprintf("cam_periph_mapmem: attempt to map %lu bytes, "
665 "which is greater than DFLTPHYS(%d)\n",
666 (long)(lengths[i] +
667 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
668 DFLTPHYS);
669 return(E2BIG);
672 if (mapinfo->dirs[i] & CAM_DIR_OUT) {
673 if (!useracc(*data_ptrs[i], lengths[i],
674 VM_PROT_READ)) {
675 kprintf("cam_periph_mapmem: error, "
676 "address %p, length %lu isn't "
677 "user accessible for READ\n",
678 (void *)*data_ptrs[i],
679 (u_long)lengths[i]);
680 return(EACCES);
684 if (mapinfo->dirs[i] & CAM_DIR_IN) {
685 cmd[i] = BUF_CMD_READ;
686 if (!useracc(*data_ptrs[i], lengths[i],
687 VM_PROT_WRITE)) {
688 kprintf("cam_periph_mapmem: error, "
689 "address %p, length %lu isn't "
690 "user accessible for WRITE\n",
691 (void *)*data_ptrs[i],
692 (u_long)lengths[i]);
694 return(EACCES);
700 for (i = 0; i < numbufs; i++) {
702 * Get the buffer.
704 bp = getpbuf(NULL);
706 /* save the original user pointer */
707 mapinfo->saved_ptrs[i] = *data_ptrs[i];
709 /* set the flags */
710 bp->b_cmd = cmd[i];
713 * Require 16-byte alignment and bounce if we don't get it.
714 * (NATA does not realign buffers for DMA).
716 if ((intptr_t)*data_ptrs[i] & 15)
717 mapinfo->bounce[i] = 1;
718 else
719 mapinfo->bounce[i] = 0;
722 * Map the user buffer into kernel memory. If the user
723 * buffer is not aligned we have to allocate a bounce buffer
724 * and copy.
726 if (mapinfo->bounce[i]) {
727 bp->b_data = bp->b_kvabase;
728 bp->b_bcount = lengths[i];
729 vm_hold_load_pages(bp, (vm_offset_t)bp->b_data,
730 (vm_offset_t)bp->b_data + bp->b_bcount);
731 if (mapinfo->dirs[i] & CAM_DIR_OUT) {
732 error = copyin(*data_ptrs[i], bp->b_data, bp->b_bcount);
733 if (error) {
734 vm_hold_free_pages(bp, (vm_offset_t)bp->b_data, (vm_offset_t)bp->b_data + bp->b_bcount);
736 } else {
737 error = 0;
739 } else if (vmapbuf(bp, *data_ptrs[i], lengths[i]) < 0) {
740 kprintf("cam_periph_mapmem: error, "
741 "address %p, length %lu isn't "
742 "user accessible any more\n",
743 (void *)*data_ptrs[i],
744 (u_long)lengths[i]);
745 error = EACCES;
746 } else {
747 error = 0;
749 if (error) {
750 relpbuf(bp, NULL);
751 cam_periph_unmapbufs(mapinfo, data_ptrs, i);
752 mapinfo->num_bufs_used -= i;
753 return(error);
756 /* set our pointer to the new mapped area */
757 *data_ptrs[i] = bp->b_data;
759 mapinfo->bp[i] = bp;
760 mapinfo->num_bufs_used++;
763 return(0);
767 * Unmap memory segments mapped into kernel virtual address space by
768 * cam_periph_mapmem().
770 void
771 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
773 int numbufs;
774 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
776 if (mapinfo->num_bufs_used <= 0) {
777 /* allow ourselves to be swapped once again */
778 return;
781 switch (ccb->ccb_h.func_code) {
782 case XPT_DEV_MATCH:
783 numbufs = min(mapinfo->num_bufs_used, 2);
785 if (numbufs == 1) {
786 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
787 } else {
788 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
789 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
791 break;
792 case XPT_SCSI_IO:
793 case XPT_CONT_TARGET_IO:
794 data_ptrs[0] = &ccb->csio.data_ptr;
795 numbufs = min(mapinfo->num_bufs_used, 1);
796 break;
797 default:
798 /* allow ourselves to be swapped once again */
799 return;
800 break; /* NOTREACHED */
802 cam_periph_unmapbufs(mapinfo, data_ptrs, numbufs);
805 static void
806 cam_periph_unmapbufs(struct cam_periph_map_info *mapinfo,
807 u_int8_t ***data_ptrs, int numbufs)
809 struct buf *bp;
810 int i;
812 for (i = 0; i < numbufs; i++) {
813 bp = mapinfo->bp[i];
815 /* Set the user's pointer back to the original value */
816 *data_ptrs[i] = mapinfo->saved_ptrs[i];
818 /* unmap the buffer */
819 if (mapinfo->bounce[i]) {
820 if (mapinfo->dirs[i] & CAM_DIR_IN) {
821 /* XXX return error */
822 copyout(bp->b_data, *data_ptrs[i],
823 bp->b_bcount);
825 vm_hold_free_pages(bp, (vm_offset_t)bp->b_data,
826 (vm_offset_t)bp->b_data + bp->b_bcount);
827 } else {
828 vunmapbuf(bp);
830 relpbuf(bp, NULL);
831 mapinfo->bp[i] = NULL;
835 union ccb *
836 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
838 struct ccb_hdr *ccb_h;
840 sim_lock_assert_owned(periph->sim->lock);
841 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
843 while (SLIST_FIRST(&periph->ccb_list) == NULL) {
844 if (periph->immediate_priority > priority)
845 periph->immediate_priority = priority;
846 xpt_schedule(periph, priority);
847 if ((SLIST_FIRST(&periph->ccb_list) != NULL)
848 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
849 break;
850 sim_lock_sleep(&periph->ccb_list, 0, "cgticb", 0,
851 periph->sim->lock);
854 ccb_h = SLIST_FIRST(&periph->ccb_list);
855 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
856 return ((union ccb *)ccb_h);
859 void
860 cam_periph_ccbwait(union ccb *ccb)
862 struct cam_sim *sim;
864 sim = xpt_path_sim(ccb->ccb_h.path);
865 while ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
866 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) {
867 sim_lock_sleep(&ccb->ccb_h.cbfcnp, 0, "cbwait", 0, sim->lock);
872 cam_periph_ioctl(struct cam_periph *periph, int cmd, caddr_t addr,
873 int (*error_routine)(union ccb *ccb,
874 cam_flags camflags,
875 u_int32_t sense_flags))
877 union ccb *ccb;
878 int error;
879 int found;
881 error = found = 0;
883 switch(cmd){
884 case CAMGETPASSTHRU:
885 ccb = cam_periph_getccb(periph, /* priority */ 1);
886 xpt_setup_ccb(&ccb->ccb_h,
887 ccb->ccb_h.path,
888 /*priority*/1);
889 ccb->ccb_h.func_code = XPT_GDEVLIST;
892 * Basically, the point of this is that we go through
893 * getting the list of devices, until we find a passthrough
894 * device. In the current version of the CAM code, the
895 * only way to determine what type of device we're dealing
896 * with is by its name.
898 while (found == 0) {
899 ccb->cgdl.index = 0;
900 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
901 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
903 /* we want the next device in the list */
904 xpt_action(ccb);
905 if (strncmp(ccb->cgdl.periph_name,
906 "pass", 4) == 0){
907 found = 1;
908 break;
911 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
912 (found == 0)) {
913 ccb->cgdl.periph_name[0] = '\0';
914 ccb->cgdl.unit_number = 0;
915 break;
919 /* copy the result back out */
920 bcopy(ccb, addr, sizeof(union ccb));
922 /* and release the ccb */
923 xpt_release_ccb(ccb);
925 break;
926 default:
927 error = ENOTTY;
928 break;
930 return(error);
934 cam_periph_runccb(union ccb *ccb,
935 int (*error_routine)(union ccb *ccb,
936 cam_flags camflags,
937 u_int32_t sense_flags),
938 cam_flags camflags, u_int32_t sense_flags,
939 struct devstat *ds)
941 struct cam_sim *sim;
942 int error;
944 error = 0;
945 sim = xpt_path_sim(ccb->ccb_h.path);
946 sim_lock_assert_owned(sim->lock);
949 * If the user has supplied a stats structure, and if we understand
950 * this particular type of ccb, record the transaction start.
952 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
953 devstat_start_transaction(ds);
955 xpt_action(ccb);
957 do {
958 cam_periph_ccbwait(ccb);
959 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
960 error = 0;
961 else if (error_routine != NULL)
962 error = (*error_routine)(ccb, camflags, sense_flags);
963 else
964 error = 0;
966 } while (error == ERESTART);
968 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
969 cam_release_devq(ccb->ccb_h.path,
970 /* relsim_flags */0,
971 /* openings */0,
972 /* timeout */0,
973 /* getcount_only */ FALSE);
975 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
976 devstat_end_transaction(ds,
977 ccb->csio.dxfer_len,
978 ccb->csio.tag_action & 0xf,
979 ((ccb->ccb_h.flags & CAM_DIR_MASK) ==
980 CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
981 (ccb->ccb_h.flags & CAM_DIR_OUT) ?
982 DEVSTAT_WRITE :
983 DEVSTAT_READ);
985 return(error);
988 void
989 cam_freeze_devq(struct cam_path *path)
991 struct ccb_hdr ccb_h;
993 xpt_setup_ccb(&ccb_h, path, /*priority*/1);
994 ccb_h.func_code = XPT_NOOP;
995 ccb_h.flags = CAM_DEV_QFREEZE;
996 xpt_action((union ccb *)&ccb_h);
999 u_int32_t
1000 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
1001 u_int32_t openings, u_int32_t timeout,
1002 int getcount_only)
1004 struct ccb_relsim crs;
1006 xpt_setup_ccb(&crs.ccb_h, path,
1007 /*priority*/1);
1008 crs.ccb_h.func_code = XPT_REL_SIMQ;
1009 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
1010 crs.release_flags = relsim_flags;
1011 crs.openings = openings;
1012 crs.release_timeout = timeout;
1013 xpt_action((union ccb *)&crs);
1014 return (crs.qfrozen_cnt);
1017 #define saved_ccb_ptr ppriv_ptr0
1018 static void
1019 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
1021 union ccb *saved_ccb;
1022 cam_status status;
1023 int frozen;
1024 int sense;
1025 struct scsi_start_stop_unit *scsi_cmd;
1026 u_int32_t relsim_flags, timeout;
1027 u_int32_t qfrozen_cnt;
1028 int xpt_done_ccb;
1030 xpt_done_ccb = FALSE;
1031 status = done_ccb->ccb_h.status;
1032 frozen = (status & CAM_DEV_QFRZN) != 0;
1033 sense = (status & CAM_AUTOSNS_VALID) != 0;
1034 status &= CAM_STATUS_MASK;
1036 timeout = 0;
1037 relsim_flags = 0;
1038 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1041 * Unfreeze the queue once if it is already frozen..
1043 if (frozen != 0) {
1044 qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1045 /*relsim_flags*/0,
1046 /*openings*/0,
1047 /*timeout*/0,
1048 /*getcount_only*/0);
1051 switch (status) {
1052 case CAM_REQ_CMP:
1055 * If we have successfully taken a device from the not
1056 * ready to ready state, re-scan the device and re-get
1057 * the inquiry information. Many devices (mostly disks)
1058 * don't properly report their inquiry information unless
1059 * they are spun up.
1061 * If we manually retrieved sense into a CCB and got
1062 * something other than "NO SENSE" send the updated CCB
1063 * back to the client via xpt_done() to be processed via
1064 * the error recovery code again.
1066 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) {
1067 scsi_cmd = (struct scsi_start_stop_unit *)
1068 &done_ccb->csio.cdb_io.cdb_bytes;
1070 if (scsi_cmd->opcode == START_STOP_UNIT)
1071 xpt_async(AC_INQ_CHANGED,
1072 done_ccb->ccb_h.path, NULL);
1073 if (scsi_cmd->opcode == REQUEST_SENSE) {
1074 u_int sense_key;
1076 sense_key = saved_ccb->csio.sense_data.flags;
1077 sense_key &= SSD_KEY;
1078 if (sense_key != SSD_KEY_NO_SENSE) {
1079 saved_ccb->ccb_h.status |=
1080 CAM_AUTOSNS_VALID;
1081 #if 0
1082 xpt_print(saved_ccb->ccb_h.path,
1083 "Recovered Sense\n");
1084 scsi_sense_print(&saved_ccb->csio);
1085 cam_error_print(saved_ccb, CAM_ESF_ALL,
1086 CAM_EPF_ALL);
1087 #endif
1088 xpt_done_ccb = TRUE;
1092 bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1093 sizeof(union ccb));
1095 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1097 if (xpt_done_ccb == FALSE)
1098 xpt_action(done_ccb);
1100 break;
1102 case CAM_SCSI_STATUS_ERROR:
1103 scsi_cmd = (struct scsi_start_stop_unit *)
1104 &done_ccb->csio.cdb_io.cdb_bytes;
1105 if (sense != 0) {
1106 struct ccb_getdev cgd;
1107 struct scsi_sense_data *sense;
1108 int error_code, sense_key, asc, ascq;
1109 scsi_sense_action err_action;
1111 sense = &done_ccb->csio.sense_data;
1112 scsi_extract_sense(sense, &error_code,
1113 &sense_key, &asc, &ascq);
1116 * Grab the inquiry data for this device.
1118 xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
1119 /*priority*/ 1);
1120 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1121 xpt_action((union ccb *)&cgd);
1122 err_action = scsi_error_action(&done_ccb->csio,
1123 &cgd.inq_data, 0);
1126 * If the error is "invalid field in CDB",
1127 * and the load/eject flag is set, turn the
1128 * flag off and try again. This is just in
1129 * case the drive in question barfs on the
1130 * load eject flag. The CAM code should set
1131 * the load/eject flag by default for
1132 * removable media.
1135 /* XXX KDM
1136 * Should we check to see what the specific
1137 * scsi status is?? Or does it not matter
1138 * since we already know that there was an
1139 * error, and we know what the specific
1140 * error code was, and we know what the
1141 * opcode is..
1143 if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1144 ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1145 (asc == 0x24) && (ascq == 0x00) &&
1146 (done_ccb->ccb_h.retry_count > 0)) {
1148 scsi_cmd->how &= ~SSS_LOEJ;
1150 xpt_action(done_ccb);
1152 } else if ((done_ccb->ccb_h.retry_count > 1)
1153 && ((err_action & SS_MASK) != SS_FAIL)) {
1156 * In this case, the error recovery
1157 * command failed, but we've got
1158 * some retries left on it. Give
1159 * it another try unless this is an
1160 * unretryable error.
1163 /* set the timeout to .5 sec */
1164 relsim_flags =
1165 RELSIM_RELEASE_AFTER_TIMEOUT;
1166 timeout = 500;
1168 xpt_action(done_ccb);
1170 break;
1172 } else {
1174 * Perform the final retry with the original
1175 * CCB so that final error processing is
1176 * performed by the owner of the CCB.
1178 bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1179 done_ccb, sizeof(union ccb));
1181 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1183 xpt_action(done_ccb);
1185 } else {
1187 * Eh?? The command failed, but we don't
1188 * have any sense. What's up with that?
1189 * Fire the CCB again to return it to the
1190 * caller.
1192 bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1193 done_ccb, sizeof(union ccb));
1195 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1197 xpt_action(done_ccb);
1200 break;
1201 default:
1202 bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1203 sizeof(union ccb));
1205 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1207 xpt_action(done_ccb);
1209 break;
1212 /* decrement the retry count */
1214 * XXX This isn't appropriate in all cases. Restructure,
1215 * so that the retry count is only decremented on an
1216 * actual retry. Remeber that the orignal ccb had its
1217 * retry count dropped before entering recovery, so
1218 * doing it again is a bug.
1220 if (done_ccb->ccb_h.retry_count > 0)
1221 done_ccb->ccb_h.retry_count--;
1223 qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1224 /*relsim_flags*/relsim_flags,
1225 /*openings*/0,
1226 /*timeout*/timeout,
1227 /*getcount_only*/0);
1228 if (xpt_done_ccb == TRUE)
1229 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
1233 * Generic Async Event handler. Peripheral drivers usually
1234 * filter out the events that require personal attention,
1235 * and leave the rest to this function.
1237 void
1238 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1239 struct cam_path *path, void *arg)
1241 switch (code) {
1242 case AC_LOST_DEVICE:
1243 cam_periph_invalidate(periph);
1244 break;
1245 case AC_SENT_BDR:
1246 case AC_BUS_RESET:
1248 cam_periph_bus_settle(periph, scsi_delay);
1249 break;
1251 default:
1252 break;
1256 void
1257 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1259 struct ccb_getdevstats cgds;
1261 xpt_setup_ccb(&cgds.ccb_h, periph->path, /*priority*/1);
1262 cgds.ccb_h.func_code = XPT_GDEV_STATS;
1263 xpt_action((union ccb *)&cgds);
1264 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1267 void
1268 cam_periph_freeze_after_event(struct cam_periph *periph,
1269 struct timeval* event_time, u_int duration_ms)
1271 struct timeval delta;
1272 struct timeval duration_tv;
1274 microuptime(&delta);
1275 timevalsub(&delta, event_time);
1276 duration_tv.tv_sec = duration_ms / 1000;
1277 duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1278 if (timevalcmp(&delta, &duration_tv, <)) {
1279 timevalsub(&duration_tv, &delta);
1281 duration_ms = duration_tv.tv_sec * 1000;
1282 duration_ms += duration_tv.tv_usec / 1000;
1283 cam_freeze_devq(periph->path);
1284 cam_release_devq(periph->path,
1285 RELSIM_RELEASE_AFTER_TIMEOUT,
1286 /*reduction*/0,
1287 /*timeout*/duration_ms,
1288 /*getcount_only*/0);
1293 static int
1294 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
1295 u_int32_t sense_flags, union ccb *save_ccb,
1296 int *openings, u_int32_t *relsim_flags,
1297 u_int32_t *timeout)
1299 int error;
1301 switch (ccb->csio.scsi_status) {
1302 case SCSI_STATUS_OK:
1303 case SCSI_STATUS_COND_MET:
1304 case SCSI_STATUS_INTERMED:
1305 case SCSI_STATUS_INTERMED_COND_MET:
1306 error = 0;
1307 break;
1308 case SCSI_STATUS_CMD_TERMINATED:
1309 case SCSI_STATUS_CHECK_COND:
1310 error = camperiphscsisenseerror(ccb,
1311 camflags,
1312 sense_flags,
1313 save_ccb,
1314 openings,
1315 relsim_flags,
1316 timeout);
1317 break;
1318 case SCSI_STATUS_QUEUE_FULL:
1320 /* no decrement */
1321 struct ccb_getdevstats cgds;
1324 * First off, find out what the current
1325 * transaction counts are.
1327 xpt_setup_ccb(&cgds.ccb_h,
1328 ccb->ccb_h.path,
1329 /*priority*/1);
1330 cgds.ccb_h.func_code = XPT_GDEV_STATS;
1331 xpt_action((union ccb *)&cgds);
1334 * If we were the only transaction active, treat
1335 * the QUEUE FULL as if it were a BUSY condition.
1337 if (cgds.dev_active != 0) {
1338 int total_openings;
1341 * Reduce the number of openings to
1342 * be 1 less than the amount it took
1343 * to get a queue full bounded by the
1344 * minimum allowed tag count for this
1345 * device.
1347 total_openings = cgds.dev_active + cgds.dev_openings;
1348 *openings = cgds.dev_active;
1349 if (*openings < cgds.mintags)
1350 *openings = cgds.mintags;
1351 if (*openings < total_openings)
1352 *relsim_flags = RELSIM_ADJUST_OPENINGS;
1353 else {
1355 * Some devices report queue full for
1356 * temporary resource shortages. For
1357 * this reason, we allow a minimum
1358 * tag count to be entered via a
1359 * quirk entry to prevent the queue
1360 * count on these devices from falling
1361 * to a pessimisticly low value. We
1362 * still wait for the next successful
1363 * completion, however, before queueing
1364 * more transactions to the device.
1366 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1368 *timeout = 0;
1369 error = ERESTART;
1370 if (bootverbose) {
1371 xpt_print(ccb->ccb_h.path, "Queue Full\n");
1373 break;
1375 /* FALLTHROUGH */
1377 case SCSI_STATUS_BUSY:
1379 * Restart the queue after either another
1380 * command completes or a 1 second timeout.
1382 if (bootverbose) {
1383 xpt_print(ccb->ccb_h.path, "Device Busy\n");
1385 if (ccb->ccb_h.retry_count > 0) {
1386 ccb->ccb_h.retry_count--;
1387 error = ERESTART;
1388 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1389 | RELSIM_RELEASE_AFTER_CMDCMPLT;
1390 *timeout = 1000;
1391 } else {
1392 error = EIO;
1394 break;
1395 case SCSI_STATUS_RESERV_CONFLICT:
1396 xpt_print(ccb->ccb_h.path, "Reservation Conflict\n");
1397 error = EIO;
1398 break;
1399 default:
1400 xpt_print(ccb->ccb_h.path, "SCSI Status 0x%x\n",
1401 ccb->csio.scsi_status);
1402 error = EIO;
1403 break;
1405 return (error);
1408 static int
1409 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
1410 u_int32_t sense_flags, union ccb *save_ccb,
1411 int *openings, u_int32_t *relsim_flags,
1412 u_int32_t *timeout)
1414 struct cam_periph *periph;
1415 int error;
1417 periph = xpt_path_periph(ccb->ccb_h.path);
1418 if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) {
1421 * If error recovery is already in progress, don't attempt
1422 * to process this error, but requeue it unconditionally
1423 * and attempt to process it once error recovery has
1424 * completed. This failed command is probably related to
1425 * the error that caused the currently active error recovery
1426 * action so our current recovery efforts should also
1427 * address this command. Be aware that the error recovery
1428 * code assumes that only one recovery action is in progress
1429 * on a particular peripheral instance at any given time
1430 * (e.g. only one saved CCB for error recovery) so it is
1431 * imperitive that we don't violate this assumption.
1433 error = ERESTART;
1434 } else {
1435 scsi_sense_action err_action;
1436 struct ccb_getdev cgd;
1437 const char *action_string;
1438 union ccb* print_ccb;
1440 /* A description of the error recovery action performed */
1441 action_string = NULL;
1444 * The location of the orignal ccb
1445 * for sense printing purposes.
1447 print_ccb = ccb;
1450 * Grab the inquiry data for this device.
1452 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, /*priority*/ 1);
1453 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1454 xpt_action((union ccb *)&cgd);
1456 if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1457 err_action = scsi_error_action(&ccb->csio,
1458 &cgd.inq_data,
1459 sense_flags);
1460 else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
1461 err_action = SS_REQSENSE;
1462 else
1463 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1465 error = err_action & SS_ERRMASK;
1468 * If the recovery action will consume a retry,
1469 * make sure we actually have retries available.
1471 if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1472 if (ccb->ccb_h.retry_count > 0)
1473 ccb->ccb_h.retry_count--;
1474 else {
1475 action_string = "Retries Exhausted";
1476 goto sense_error_done;
1480 if ((err_action & SS_MASK) >= SS_START) {
1482 * Do common portions of commands that
1483 * use recovery CCBs.
1485 if (save_ccb == NULL) {
1486 action_string = "No recovery CCB supplied";
1487 goto sense_error_done;
1489 bcopy(ccb, save_ccb, sizeof(*save_ccb));
1490 print_ccb = save_ccb;
1491 periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1494 switch (err_action & SS_MASK) {
1495 case SS_NOP:
1496 action_string = "No Recovery Action Needed";
1497 error = 0;
1498 break;
1499 case SS_RETRY:
1500 action_string = "Retrying Command (per Sense Data)";
1501 error = ERESTART;
1502 break;
1503 case SS_FAIL:
1504 action_string = "Unretryable error";
1505 break;
1506 case SS_START:
1508 int le;
1511 * Send a start unit command to the device, and
1512 * then retry the command.
1514 action_string = "Attempting to Start Unit";
1517 * Check for removable media and set
1518 * load/eject flag appropriately.
1520 if (SID_IS_REMOVABLE(&cgd.inq_data))
1521 le = TRUE;
1522 else
1523 le = FALSE;
1525 scsi_start_stop(&ccb->csio,
1526 /*retries*/1,
1527 camperiphdone,
1528 MSG_SIMPLE_Q_TAG,
1529 /*start*/TRUE,
1530 /*load/eject*/le,
1531 /*immediate*/FALSE,
1532 SSD_FULL_SIZE,
1533 /*timeout*/50000);
1534 break;
1536 case SS_TUR:
1539 * Send a Test Unit Ready to the device.
1540 * If the 'many' flag is set, we send 120
1541 * test unit ready commands, one every half
1542 * second. Otherwise, we just send one TUR.
1543 * We only want to do this if the retry
1544 * count has not been exhausted.
1546 int retries;
1548 if ((err_action & SSQ_MANY) != 0) {
1549 action_string = "Polling device for readiness";
1550 retries = 120;
1551 } else {
1552 action_string = "Testing device for readiness";
1553 retries = 1;
1555 scsi_test_unit_ready(&ccb->csio,
1556 retries,
1557 camperiphdone,
1558 MSG_SIMPLE_Q_TAG,
1559 SSD_FULL_SIZE,
1560 /*timeout*/5000);
1563 * Accomplish our 500ms delay by deferring
1564 * the release of our device queue appropriately.
1566 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1567 *timeout = 500;
1568 break;
1570 case SS_REQSENSE:
1573 * Send a Request Sense to the device. We
1574 * assume that we are in a contingent allegiance
1575 * condition so we do not tag this request.
1577 scsi_request_sense(&ccb->csio, /*retries*/1,
1578 camperiphdone,
1579 &save_ccb->csio.sense_data,
1580 sizeof(save_ccb->csio.sense_data),
1581 CAM_TAG_ACTION_NONE,
1582 /*sense_len*/SSD_FULL_SIZE,
1583 /*timeout*/5000);
1584 break;
1586 default:
1587 panic("Unhandled error action %x", err_action);
1590 if ((err_action & SS_MASK) >= SS_START) {
1592 * Drop the priority to 0 so that the recovery
1593 * CCB is the first to execute. Freeze the queue
1594 * after this command is sent so that we can
1595 * restore the old csio and have it queued in
1596 * the proper order before we release normal
1597 * transactions to the device.
1599 ccb->ccb_h.pinfo.priority = 0;
1600 ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1601 ccb->ccb_h.saved_ccb_ptr = save_ccb;
1602 error = ERESTART;
1605 sense_error_done:
1606 if ((err_action & SSQ_PRINT_SENSE) != 0
1607 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) {
1608 cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1609 xpt_print_path(ccb->ccb_h.path);
1610 if (bootverbose)
1611 scsi_sense_print(&print_ccb->csio);
1612 kprintf("%s\n", action_string);
1615 return (error);
1619 * Generic error handler. Peripheral drivers usually filter
1620 * out the errors that they handle in a unique mannor, then
1621 * call this function.
1624 cam_periph_error(union ccb *ccb, cam_flags camflags,
1625 u_int32_t sense_flags, union ccb *save_ccb)
1627 const char *action_string;
1628 cam_status status;
1629 int frozen;
1630 int error, printed = 0;
1631 int openings;
1632 u_int32_t relsim_flags;
1633 u_int32_t timeout = 0;
1635 action_string = NULL;
1636 status = ccb->ccb_h.status;
1637 frozen = (status & CAM_DEV_QFRZN) != 0;
1638 status &= CAM_STATUS_MASK;
1639 openings = relsim_flags = 0;
1641 switch (status) {
1642 case CAM_REQ_CMP:
1643 error = 0;
1644 break;
1645 case CAM_SCSI_STATUS_ERROR:
1646 error = camperiphscsistatuserror(ccb,
1647 camflags,
1648 sense_flags,
1649 save_ccb,
1650 &openings,
1651 &relsim_flags,
1652 &timeout);
1653 break;
1654 case CAM_AUTOSENSE_FAIL:
1655 xpt_print(ccb->ccb_h.path, "AutoSense Failed\n");
1656 error = EIO; /* we have to kill the command */
1657 break;
1658 case CAM_REQ_CMP_ERR:
1659 if (bootverbose && printed == 0) {
1660 xpt_print(ccb->ccb_h.path,
1661 "Request completed with CAM_REQ_CMP_ERR\n");
1662 printed++;
1664 /* FALLTHROUGH */
1665 case CAM_CMD_TIMEOUT:
1666 if (bootverbose && printed == 0) {
1667 xpt_print(ccb->ccb_h.path, "Command timed out\n");
1668 printed++;
1670 /* FALLTHROUGH */
1671 case CAM_UNEXP_BUSFREE:
1672 if (bootverbose && printed == 0) {
1673 xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
1674 printed++;
1676 /* FALLTHROUGH */
1677 case CAM_UNCOR_PARITY:
1678 if (bootverbose && printed == 0) {
1679 xpt_print(ccb->ccb_h.path,
1680 "Uncorrected Parity Error\n");
1681 printed++;
1683 /* FALLTHROUGH */
1684 case CAM_DATA_RUN_ERR:
1685 if (bootverbose && printed == 0) {
1686 xpt_print(ccb->ccb_h.path, "Data Overrun\n");
1687 printed++;
1689 error = EIO; /* we have to kill the command */
1690 /* decrement the number of retries */
1691 if (ccb->ccb_h.retry_count > 0) {
1692 ccb->ccb_h.retry_count--;
1693 error = ERESTART;
1694 } else {
1695 action_string = "Retries Exhausted";
1696 error = EIO;
1698 break;
1699 case CAM_UA_ABORT:
1700 case CAM_UA_TERMIO:
1701 case CAM_MSG_REJECT_REC:
1702 /* XXX Don't know that these are correct */
1703 error = EIO;
1704 break;
1705 case CAM_SEL_TIMEOUT:
1707 struct cam_path *newpath;
1709 if ((camflags & CAM_RETRY_SELTO) != 0) {
1710 if (ccb->ccb_h.retry_count > 0) {
1712 ccb->ccb_h.retry_count--;
1713 error = ERESTART;
1714 if (bootverbose && printed == 0) {
1715 xpt_print(ccb->ccb_h.path,
1716 "Selection Timeout\n");
1717 printed++;
1721 * Wait a bit to give the device
1722 * time to recover before we try again.
1724 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1725 timeout = periph_selto_delay;
1726 break;
1729 error = ENXIO;
1730 /* Should we do more if we can't create the path?? */
1731 if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
1732 xpt_path_path_id(ccb->ccb_h.path),
1733 xpt_path_target_id(ccb->ccb_h.path),
1734 CAM_LUN_WILDCARD) != CAM_REQ_CMP)
1735 break;
1738 * Let peripheral drivers know that this device has gone
1739 * away.
1741 xpt_async(AC_LOST_DEVICE, newpath, NULL);
1742 xpt_free_path(newpath);
1743 break;
1745 case CAM_REQ_INVALID:
1746 case CAM_PATH_INVALID:
1747 case CAM_DEV_NOT_THERE:
1748 case CAM_NO_HBA:
1749 case CAM_PROVIDE_FAIL:
1750 case CAM_REQ_TOO_BIG:
1751 case CAM_LUN_INVALID:
1752 case CAM_TID_INVALID:
1753 error = EINVAL;
1754 break;
1755 case CAM_SCSI_BUS_RESET:
1756 case CAM_BDR_SENT:
1758 * Commands that repeatedly timeout and cause these
1759 * kinds of error recovery actions, should return
1760 * CAM_CMD_TIMEOUT, which allows us to safely assume
1761 * that this command was an innocent bystander to
1762 * these events and should be unconditionally
1763 * retried.
1765 if (bootverbose && printed == 0) {
1766 xpt_print_path(ccb->ccb_h.path);
1767 if (status == CAM_BDR_SENT)
1768 kprintf("Bus Device Reset sent\n");
1769 else
1770 kprintf("Bus Reset issued\n");
1771 printed++;
1773 /* FALLTHROUGH */
1774 case CAM_REQUEUE_REQ:
1775 /* Unconditional requeue */
1776 error = ERESTART;
1777 if (bootverbose && printed == 0) {
1778 xpt_print(ccb->ccb_h.path, "Request Requeued\n");
1779 printed++;
1781 break;
1782 case CAM_RESRC_UNAVAIL:
1783 /* Wait a bit for the resource shortage to abate. */
1784 timeout = periph_noresrc_delay;
1785 /* FALLTHROUGH */
1786 case CAM_BUSY:
1787 if (timeout == 0) {
1788 /* Wait a bit for the busy condition to abate. */
1789 timeout = periph_busy_delay;
1791 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1792 /* FALLTHROUGH */
1793 default:
1794 /* decrement the number of retries */
1795 if (ccb->ccb_h.retry_count > 0) {
1796 ccb->ccb_h.retry_count--;
1797 error = ERESTART;
1798 if (bootverbose && printed == 0) {
1799 xpt_print(ccb->ccb_h.path, "CAM Status 0x%x\n",
1800 status);
1801 printed++;
1803 } else {
1804 error = EIO;
1805 action_string = "Retries Exhausted";
1807 break;
1810 /* Attempt a retry */
1811 if (error == ERESTART || error == 0) {
1812 if (frozen != 0)
1813 ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1815 if (error == ERESTART) {
1816 action_string = "Retrying Command";
1817 xpt_action(ccb);
1820 if (frozen != 0)
1821 cam_release_devq(ccb->ccb_h.path,
1822 relsim_flags,
1823 openings,
1824 timeout,
1825 /*getcount_only*/0);
1829 * If we have an error and are booting verbosely, whine
1830 * *unless* this was a non-retryable selection timeout.
1832 if (error != 0 && bootverbose &&
1833 !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
1836 if (action_string == NULL)
1837 action_string = "Unretryable Error";
1838 if (error != ERESTART) {
1839 xpt_print(ccb->ccb_h.path, "error %d\n", error);
1841 xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1844 return (error);