if_iwm - Use chan list from ieee80211_scan_state for scan, not ic_channels.
[dragonfly.git] / sys / dev / disk / advansys / adwlib.c
blob9a16f29e7b22a21cf9a6af4c6e61c2daf84dd67b
1 /*
2 * Low level routines for Second Generation
3 * Advanced Systems Inc. SCSI controllers chips
5 * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
24 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * $FreeBSD: src/sys/dev/advansys/adwlib.c,v 1.6.2.1 2000/04/14 13:32:50 nyan Exp $
35 * Ported from:
36 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
38 * Copyright (c) 1995-1998 Advanced System Products, Inc.
39 * All Rights Reserved.
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that redistributions of source
43 * code retain the above copyright notice and this comment without
44 * modification.
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bus.h>
50 #include <sys/thread2.h>
52 #include <machine/clock.h>
54 #include <bus/cam/cam.h>
55 #include <bus/cam/cam_ccb.h>
56 #include <bus/cam/cam_sim.h>
57 #include <bus/cam/cam_xpt_sim.h>
58 #include <bus/cam/scsi/scsi_all.h>
60 #include "adwlib.h"
62 const struct adw_eeprom adw_asc3550_default_eeprom =
64 ADW_EEPROM_BIOS_ENABLE, /* cfg_lsw */
65 0x0000, /* cfg_msw */
66 0xFFFF, /* disc_enable */
67 0xFFFF, /* wdtr_able */
68 { 0xFFFF }, /* sdtr_able */
69 0xFFFF, /* start_motor */
70 0xFFFF, /* tagqng_able */
71 0xFFFF, /* bios_scan */
72 0, /* scam_tolerant */
73 7, /* adapter_scsi_id */
74 0, /* bios_boot_delay */
75 3, /* scsi_reset_delay */
76 0, /* bios_id_lun */
77 0, /* termination */
78 0, /* reserved1 */
79 0xFFE7, /* bios_ctrl */
80 { 0xFFFF }, /* ultra_able */
81 { 0 }, /* reserved2 */
82 ADW_DEF_MAX_HOST_QNG, /* max_host_qng */
83 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
84 0, /* dvc_cntl */
85 { 0 }, /* bug_fix */
86 { 0, 0, 0 }, /* serial_number */
87 0, /* check_sum */
88 { /* oem_name[16] */
89 0, 0, 0, 0, 0, 0, 0, 0,
90 0, 0, 0, 0, 0, 0, 0, 0
92 0, /* dvc_err_code */
93 0, /* adv_err_code */
94 0, /* adv_err_addr */
95 0, /* saved_dvc_err_code */
96 0, /* saved_adv_err_code */
97 0 /* saved_adv_err_addr */
100 const struct adw_eeprom adw_asc38C0800_default_eeprom =
102 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
103 0x0000, /* 01 cfg_msw */
104 0xFFFF, /* 02 disc_enable */
105 0xFFFF, /* 03 wdtr_able */
106 { 0x4444 }, /* 04 sdtr_speed1 */
107 0xFFFF, /* 05 start_motor */
108 0xFFFF, /* 06 tagqng_able */
109 0xFFFF, /* 07 bios_scan */
110 0, /* 08 scam_tolerant */
111 7, /* 09 adapter_scsi_id */
112 0, /* bios_boot_delay */
113 3, /* 10 scsi_reset_delay */
114 0, /* bios_id_lun */
115 0, /* 11 termination_se */
116 0, /* termination_lvd */
117 0xFFE7, /* 12 bios_ctrl */
118 { 0x4444 }, /* 13 sdtr_speed2 */
119 { 0x4444 }, /* 14 sdtr_speed3 */
120 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
121 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
122 0, /* 16 dvc_cntl */
123 { 0x4444 } , /* 17 sdtr_speed4 */
124 { 0, 0, 0 }, /* 18-20 serial_number */
125 0, /* 21 check_sum */
126 { /* 22-29 oem_name[16] */
127 0, 0, 0, 0, 0, 0, 0, 0,
128 0, 0, 0, 0, 0, 0, 0, 0
130 0, /* 30 dvc_err_code */
131 0, /* 31 adv_err_code */
132 0, /* 32 adv_err_addr */
133 0, /* 33 saved_dvc_err_code */
134 0, /* 34 saved_adv_err_code */
135 0, /* 35 saved_adv_err_addr */
136 { /* 36 - 55 reserved */
137 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
138 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
140 0, /* 56 cisptr_lsw */
141 0, /* 57 cisprt_msw */
142 /* 58-59 sub-id */
143 (PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
146 #define ADW_MC_SDTR_OFFSET_ULTRA2_DT 0
147 #define ADW_MC_SDTR_OFFSET_ULTRA2 1
148 #define ADW_MC_SDTR_OFFSET_ULTRA 2
149 const struct adw_syncrate adw_syncrates[] =
151 /* mc_sdtr period rate */
152 { ADW_MC_SDTR_80, 9, "80.0" },
153 { ADW_MC_SDTR_40, 10, "40.0" },
154 { ADW_MC_SDTR_20, 12, "20.0" },
155 { ADW_MC_SDTR_10, 25, "10.0" },
156 { ADW_MC_SDTR_5, 50, "5.0" },
157 { ADW_MC_SDTR_ASYNC, 0, "async" }
160 const int adw_num_syncrates = NELEM(adw_syncrates);
162 static u_int16_t adw_eeprom_read_16(struct adw_softc *adw, int addr);
163 static void adw_eeprom_write_16(struct adw_softc *adw, int addr,
164 u_int data);
165 static void adw_eeprom_wait(struct adw_softc *adw);
168 adw_find_signature(struct adw_softc *adw)
170 if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
171 && adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
172 return (1);
173 return (0);
177 * Reset Chip.
179 void
180 adw_reset_chip(struct adw_softc *adw)
182 adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
183 DELAY(1000 * 100);
184 adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
187 * Initialize Chip registers.
189 adw_outw(adw, ADW_SCSI_CFG1,
190 adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
194 * Reset the SCSI bus.
197 adw_reset_bus(struct adw_softc *adw)
199 adw_idle_cmd_status_t status;
201 status =
202 adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
203 if (status != ADW_IDLE_CMD_SUCCESS) {
204 xpt_print_path(adw->path);
205 kprintf("Bus Reset start attempt failed\n");
206 return (1);
208 DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
209 status =
210 adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
211 if (status != ADW_IDLE_CMD_SUCCESS) {
212 xpt_print_path(adw->path);
213 kprintf("Bus Reset end attempt failed\n");
214 return (1);
216 return (0);
220 * Read the specified EEPROM location
222 static u_int16_t
223 adw_eeprom_read_16(struct adw_softc *adw, int addr)
225 adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
226 adw_eeprom_wait(adw);
227 return (adw_inw(adw, ADW_EEP_DATA));
230 static void
231 adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
233 adw_outw(adw, ADW_EEP_DATA, data);
234 adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
235 adw_eeprom_wait(adw);
239 * Wait for and EEPROM command to complete
241 static void
242 adw_eeprom_wait(struct adw_softc *adw)
244 int i;
246 for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
247 if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
248 break;
249 DELAY(1000);
251 if (i == ADW_EEP_DELAY_MS)
252 panic("%s: Timedout Reading EEPROM", adw_name(adw));
256 * Read EEPROM configuration into the specified buffer.
258 * Return a checksum based on the EEPROM configuration read.
260 u_int16_t
261 adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
263 u_int16_t *wbuf;
264 u_int16_t wval;
265 u_int16_t chksum;
266 int eep_addr;
268 wbuf = (u_int16_t *)eep_buf;
269 chksum = 0;
271 for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
272 eep_addr < ADW_EEP_DVC_CFG_END;
273 eep_addr++, wbuf++) {
274 wval = adw_eeprom_read_16(adw, eep_addr);
275 chksum += wval;
276 *wbuf = wval;
279 /* checksum field is not counted in the checksum */
280 *wbuf = adw_eeprom_read_16(adw, eep_addr);
281 wbuf++;
283 /* Driver seeprom variables are not included in the checksum */
284 for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
285 eep_addr < ADW_EEP_MAX_WORD_ADDR;
286 eep_addr++, wbuf++)
287 *wbuf = adw_eeprom_read_16(adw, eep_addr);
289 return (chksum);
292 void
293 adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
295 u_int16_t *wbuf;
296 u_int16_t addr;
297 u_int16_t chksum;
299 wbuf = (u_int16_t *)eep_buf;
300 chksum = 0;
302 adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
303 adw_eeprom_wait(adw);
306 * Write EEPROM until checksum.
308 for (addr = ADW_EEP_DVC_CFG_BEGIN;
309 addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
310 chksum += *wbuf;
311 adw_eeprom_write_16(adw, addr, *wbuf);
315 * Write calculated EEPROM checksum
317 adw_eeprom_write_16(adw, addr, chksum);
319 /* skip over buffer's checksum */
320 wbuf++;
323 * Write the rest.
325 for (addr = ADW_EEP_DVC_CTL_BEGIN;
326 addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
327 adw_eeprom_write_16(adw, addr, *wbuf);
329 adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
330 adw_eeprom_wait(adw);
334 adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
336 u_int8_t biosmem[ADW_MC_BIOSLEN];
337 const u_int16_t *word_table;
338 const u_int8_t *byte_codes;
339 const u_int8_t *byte_codes_end;
340 u_int bios_sig;
341 u_int bytes_downloaded;
342 u_int addr;
343 u_int end_addr;
344 u_int checksum;
345 u_int scsicfg1;
346 u_int tid;
349 * Save the RISC memory BIOS region before writing the microcode.
350 * The BIOS may already be loaded and using its RISC LRAM region
351 * so its region must be saved and restored.
353 for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
354 biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
357 * Save current per TID negotiated values if the BIOS has been
358 * loaded (BIOS signature is present). These will be used if
359 * we cannot get information from the EEPROM.
361 addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
362 bios_sig = biosmem[addr]
363 | (biosmem[addr + 1] << 8);
364 if (bios_sig == 0x55AA
365 && (adw->flags & ADW_EEPROM_FAILED) != 0) {
366 u_int major_ver;
367 u_int minor_ver;
368 u_int sdtr_able;
370 addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
371 minor_ver = biosmem[addr + 1] & 0xF;
372 major_ver = (biosmem[addr + 1] >> 4) & 0xF;
373 if ((adw->chip == ADW_CHIP_ASC3550)
374 && (major_ver <= 3
375 || (major_ver == 3 && minor_ver == 1))) {
377 * BIOS 3.1 and earlier location of
378 * 'wdtr_able' variable.
380 adw->user_wdtr =
381 adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
382 } else {
383 adw->user_wdtr =
384 adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
386 sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
387 for (tid = 0; tid < ADW_MAX_TID; tid++) {
388 u_int tid_mask;
389 u_int mc_sdtr;
391 tid_mask = 0x1 << tid;
392 if ((sdtr_able & tid_mask) == 0)
393 mc_sdtr = ADW_MC_SDTR_ASYNC;
394 else if ((adw->features & ADW_DT) != 0)
395 mc_sdtr = ADW_MC_SDTR_80;
396 else if ((adw->features & ADW_ULTRA2) != 0)
397 mc_sdtr = ADW_MC_SDTR_40;
398 else
399 mc_sdtr = ADW_MC_SDTR_20;
400 adw_set_user_sdtr(adw, tid, mc_sdtr);
402 adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
406 * Load the Microcode.
408 * Assume the following compressed format of the microcode buffer:
410 * 253 word (506 byte) table indexed by byte code followed
411 * by the following byte codes:
413 * 1-Byte Code:
414 * 00: Emit word 0 in table.
415 * 01: Emit word 1 in table.
417 * FD: Emit word 253 in table.
419 * Multi-Byte Code:
420 * FD RESEVED
422 * FE WW WW: (3 byte code)
423 * Word to emit is the next word WW WW.
424 * FF BB WW WW: (4 byte code)
425 * Emit BB count times next word WW WW.
428 bytes_downloaded = 0;
429 word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
430 byte_codes = (const u_int8_t *)&word_table[253];
431 byte_codes_end = adw->mcode_data->mcode_buf
432 + adw->mcode_data->mcode_size;
433 adw_outw(adw, ADW_RAM_ADDR, 0);
434 while (byte_codes < byte_codes_end) {
435 if (*byte_codes == 0xFF) {
436 u_int16_t value;
438 value = byte_codes[2]
439 | byte_codes[3] << 8;
440 adw_set_multi_2(adw, ADW_RAM_DATA,
441 value, byte_codes[1]);
442 bytes_downloaded += byte_codes[1];
443 byte_codes += 4;
444 } else if (*byte_codes == 0xFE) {
445 u_int16_t value;
447 value = byte_codes[1]
448 | byte_codes[2] << 8;
449 adw_outw(adw, ADW_RAM_DATA, value);
450 bytes_downloaded++;
451 byte_codes += 3;
452 } else {
453 adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
454 bytes_downloaded++;
455 byte_codes++;
458 /* Convert from words to bytes */
459 bytes_downloaded *= 2;
462 * Clear the rest of LRAM.
464 for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
465 adw_outw(adw, ADW_RAM_DATA, 0);
468 * Verify the microcode checksum.
470 checksum = 0;
471 adw_outw(adw, ADW_RAM_ADDR, 0);
472 for (addr = 0; addr < bytes_downloaded; addr += 2)
473 checksum += adw_inw(adw, ADW_RAM_DATA);
475 if (checksum != adw->mcode_data->mcode_chksum) {
476 kprintf("%s: Firmware load failed!\n", adw_name(adw));
477 return (EIO);
481 * Restore the RISC memory BIOS region.
483 for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
484 adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
487 * Calculate and write the microcode code checksum to
488 * the microcode code checksum location.
490 addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
491 end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
492 checksum = 0;
493 adw_outw(adw, ADW_RAM_ADDR, addr);
494 for (; addr < end_addr; addr += 2)
495 checksum += adw_inw(adw, ADW_RAM_DATA);
496 adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
499 * Tell the microcode what kind of chip it's running on.
501 adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
504 * Leave WDTR and SDTR negotiation disabled until the XPT has
505 * informed us of device capabilities, but do set the desired
506 * user rates in case we receive an SDTR request from the target
507 * before we negotiate. We turn on tagged queuing at the microcode
508 * level for all devices, and modulate this on a per command basis.
510 adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
511 adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
512 adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
513 adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
514 adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
515 for (tid = 0; tid < ADW_MAX_TID; tid++) {
516 /* Cam limits the maximum number of commands for us */
517 adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
518 adw->max_acbs);
520 adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
523 * Set SCSI_CFG0 Microcode Default Value.
525 * The microcode will set the SCSI_CFG0 register using this value
526 * after it is started.
528 adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
529 ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
530 ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
533 * Tell the MC about the memory size that
534 * was setup by the probe code.
536 adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
537 adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
540 * Determine SCSI_CFG1 Microcode Default Value.
542 * The microcode will set the SCSI_CFG1 register using this value
543 * after it is started below.
545 scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
548 * If the internal narrow cable is reversed all of the SCSI_CTRL
549 * register signals will be set. Check for and return an error if
550 * this condition is found.
552 if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
553 kprintf("%s: Illegal Cable Config!\n", adw_name(adw));
554 kprintf("%s: Internal cable is reversed!\n", adw_name(adw));
555 return (EIO);
559 * If this is a differential board and a single-ended device
560 * is attached to one of the connectors, return an error.
562 if ((adw->features & ADW_ULTRA) != 0) {
563 if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
564 && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
565 kprintf("%s: A Single Ended Device is attached to our "
566 "differential bus!\n", adw_name(adw));
567 return (EIO);
569 } else {
570 if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
571 kprintf("%s: A High Voltage Differential Device "
572 "is attached to this controller.\n",
573 adw_name(adw));
574 kprintf("%s: HVD devices are not supported.\n",
575 adw_name(adw));
576 return (EIO);
581 * Perform automatic termination control if desired.
583 if ((adw->features & ADW_ULTRA2) != 0) {
584 u_int cable_det;
587 * Ultra2 Chips require termination disabled to
588 * detect cable presence.
590 adw_outw(adw, ADW_SCSI_CFG1,
591 scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
592 cable_det = adw_inw(adw, ADW_SCSI_CFG1);
593 adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
595 /* SE Termination first if auto-term has been specified */
596 if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
599 * For all SE cable configurations, high byte
600 * termination is enabled.
602 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
603 if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
604 || (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
606 * If either cable is not present, the
607 * low byte must be terminated as well.
609 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
613 /* LVD auto-term */
614 if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
615 && (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
617 * If both cables are installed, termination
618 * is disabled. Otherwise it is enabled.
620 if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
621 || (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
623 term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
626 term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
627 } else {
628 /* Ultra Controller Termination */
629 if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
630 int cable_count;
631 int wide_cable_count;
633 cable_count = 0;
634 wide_cable_count = 0;
635 if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
636 cable_count++;
637 wide_cable_count++;
639 if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
640 cable_count++;
642 /* There is only one external port */
643 if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
644 cable_count++;
645 wide_cable_count++;
646 } else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
647 cable_count++;
649 if (cable_count == 3) {
650 kprintf("%s: Illegal Cable Config!\n",
651 adw_name(adw));
652 kprintf("%s: Only Two Ports may be used at "
653 "a time!\n", adw_name(adw));
654 } else if (cable_count <= 1) {
656 * At least two out of three cables missing.
657 * Terminate both bytes.
659 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
660 | ADW_SCSI_CFG1_TERM_CTL_L;
661 } else if (wide_cable_count <= 1) {
662 /* No two 16bit cables present. High on. */
663 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
668 /* Tell the user about our decission */
669 switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
670 case ADW_SCSI_CFG1_TERM_CTL_MASK:
671 kprintf("High & Low SE Term Enabled, ");
672 break;
673 case ADW_SCSI_CFG1_TERM_CTL_H:
674 kprintf("High SE Termination Enabled, ");
675 break;
676 case ADW_SCSI_CFG1_TERM_CTL_L:
677 kprintf("Low SE Term Enabled, ");
678 break;
679 default:
680 break;
683 if ((adw->features & ADW_ULTRA2) != 0
684 && (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
685 kprintf("LVD Term Enabled, ");
688 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
689 * set 'scsicfg1'. The TERM_POL bit does not need to be
690 * referenced, because the hardware internally inverts
691 * the Termination High and Low bits if TERM_POL is set.
693 if ((adw->features & ADW_ULTRA2) != 0) {
694 term_scsicfg1 = ~term_scsicfg1;
695 term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
696 | ADW2_SCSI_CFG1_TERM_CTL_LVD;
697 scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
698 |ADW2_SCSI_CFG1_TERM_CTL_LVD
699 |ADW_SCSI_CFG1_BIG_ENDIAN
700 |ADW_SCSI_CFG1_TERM_POL
701 |ADW2_SCSI_CFG1_DEV_DETECT);
702 scsicfg1 |= term_scsicfg1;
703 } else {
704 term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
705 scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
706 scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
707 scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
711 * Set SCSI_CFG1 Microcode Default Value
713 * The microcode will set the SCSI_CFG1 register using this value
714 * after it is started below.
716 adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
719 * Only accept selections on our initiator target id.
720 * This may change in target mode scenarios...
722 adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
723 (0x01 << adw->initiator_id));
726 * Tell the microcode where it can find our
727 * Initiator Command Queue (ICQ). It is
728 * currently empty hence the "stopper" address.
730 adw->commandq = adw->free_carriers;
731 adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
732 adw->commandq->next_ba = ADW_CQ_STOPPER;
733 adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
736 * Tell the microcode where it can find our
737 * Initiator Response Queue (IRQ). It too
738 * is currently empty.
740 adw->responseq = adw->free_carriers;
741 adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
742 adw->responseq->next_ba = ADW_CQ_STOPPER;
743 adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
745 adw_outb(adw, ADW_INTR_ENABLES,
746 ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
748 adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
750 return (0);
753 void
754 adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
756 adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
757 adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
758 mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
761 u_int
762 adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
764 u_int mc_sdtr;
766 mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
767 mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
768 mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
769 return (mc_sdtr);
772 void
773 adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
775 u_int mc_sdtr_offset;
776 u_int mc_sdtr;
778 mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
779 mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
780 mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
781 mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
782 mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
783 adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
786 u_int
787 adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
789 u_int mc_sdtr_offset;
790 u_int mc_sdtr;
792 mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
793 mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
794 mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
795 mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
796 mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
797 return (mc_sdtr);
800 u_int
801 adw_find_sdtr(struct adw_softc *adw, u_int period)
803 int i;
805 i = 0;
806 if ((adw->features & ADW_DT) == 0)
807 i = ADW_MC_SDTR_OFFSET_ULTRA2;
808 if ((adw->features & ADW_ULTRA2) == 0)
809 i = ADW_MC_SDTR_OFFSET_ULTRA;
810 if (period == 0)
811 return ADW_MC_SDTR_ASYNC;
813 for (; i < adw_num_syncrates; i++) {
814 if (period <= adw_syncrates[i].period)
815 return (adw_syncrates[i].mc_sdtr);
817 return ADW_MC_SDTR_ASYNC;
820 u_int
821 adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
823 int i;
825 for (i = 0; i < adw_num_syncrates; i++) {
826 if (mc_sdtr == adw_syncrates[i].mc_sdtr)
827 break;
829 return (adw_syncrates[i].period);
832 u_int
833 adw_hshk_cfg_period_factor(u_int tinfo)
835 tinfo &= ADW_HSHK_CFG_RATE_MASK;
836 tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
837 if (tinfo == 0x11)
838 /* 80MHz/DT */
839 return (9);
840 else if (tinfo == 0x10)
841 /* 40MHz */
842 return (10);
843 else
844 return (((tinfo * 25) + 50) / 4);
848 * Send an idle command to the chip and wait for completion.
850 adw_idle_cmd_status_t
851 adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
853 u_int timeout;
854 adw_idle_cmd_status_t status;
856 crit_enter();
859 * Clear the idle command status which is set by the microcode
860 * to a non-zero value to indicate when the command is completed.
862 adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
865 * Write the idle command value after the idle command parameter
866 * has been written to avoid a race condition. If the order is not
867 * followed, the microcode may process the idle command before the
868 * parameters have been written to LRAM.
870 adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
871 adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
874 * Tickle the RISC to tell it to process the idle command.
876 adw_tickle_risc(adw, ADW_TICKLE_B);
878 /* Wait for up to 10 seconds for the command to complete */
879 timeout = 5000000;
880 while (--timeout) {
881 status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
882 if (status != 0)
883 break;
884 DELAY(20);
887 if (timeout == 0)
888 panic("%s: Idle Command Timed Out!", adw_name(adw));
889 crit_exit();
890 return (status);