Fix malloc->kmalloc leftover to fix kernel without VGA_NO_MODE_CHANGE
[dragonfly.git] / sys / vm / vm_object.c
blobe14b7ba9acb9871055f3a9a099b5e6f49051c4f3
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
64 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65 * $DragonFly: src/sys/vm/vm_object.c,v 1.25 2006/05/25 07:36:37 dillon Exp $
69 * Virtual memory object module.
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h> /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
95 #define EASY_SCAN_FACTOR 8
97 #define MSYNC_FLUSH_HARDSEQ 0x01
98 #define MSYNC_FLUSH_SOFTSEQ 0x02
100 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
101 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
102 CTLFLAG_RW, &msync_flush_flags, 0, "");
104 static void vm_object_qcollapse (vm_object_t object);
105 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
108 * Virtual memory objects maintain the actual data
109 * associated with allocated virtual memory. A given
110 * page of memory exists within exactly one object.
112 * An object is only deallocated when all "references"
113 * are given up. Only one "reference" to a given
114 * region of an object should be writeable.
116 * Associated with each object is a list of all resident
117 * memory pages belonging to that object; this list is
118 * maintained by the "vm_page" module, and locked by the object's
119 * lock.
121 * Each object also records a "pager" routine which is
122 * used to retrieve (and store) pages to the proper backing
123 * storage. In addition, objects may be backed by other
124 * objects from which they were virtual-copied.
126 * The only items within the object structure which are
127 * modified after time of creation are:
128 * reference count locked by object's lock
129 * pager routine locked by object's lock
133 struct object_q vm_object_list;
134 static long vm_object_count; /* count of all objects */
135 vm_object_t kernel_object;
136 vm_object_t kmem_object;
137 static struct vm_object kernel_object_store;
138 static struct vm_object kmem_object_store;
139 extern int vm_pageout_page_count;
141 static long object_collapses;
142 static long object_bypasses;
143 static int next_index;
144 static vm_zone_t obj_zone;
145 static struct vm_zone obj_zone_store;
146 static int object_hash_rand;
147 #define VM_OBJECTS_INIT 256
148 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
150 void
151 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
153 int incr;
154 TAILQ_INIT(&object->memq);
155 LIST_INIT(&object->shadow_head);
157 object->type = type;
158 object->size = size;
159 object->ref_count = 1;
160 object->flags = 0;
161 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
162 vm_object_set_flag(object, OBJ_ONEMAPPING);
163 object->paging_in_progress = 0;
164 object->resident_page_count = 0;
165 object->shadow_count = 0;
166 object->pg_color = next_index;
167 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
168 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
169 else
170 incr = size;
171 next_index = (next_index + incr) & PQ_L2_MASK;
172 object->handle = NULL;
173 object->backing_object = NULL;
174 object->backing_object_offset = (vm_ooffset_t) 0;
176 * Try to generate a number that will spread objects out in the
177 * hash table. We 'wipe' new objects across the hash in 128 page
178 * increments plus 1 more to offset it a little more by the time
179 * it wraps around.
181 object->hash_rand = object_hash_rand - 129;
183 object->generation++;
185 crit_enter();
186 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
187 vm_object_count++;
188 object_hash_rand = object->hash_rand;
189 crit_exit();
193 * vm_object_init:
195 * Initialize the VM objects module.
197 void
198 vm_object_init(void)
200 TAILQ_INIT(&vm_object_list);
202 kernel_object = &kernel_object_store;
203 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
204 kernel_object);
206 kmem_object = &kmem_object_store;
207 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
208 kmem_object);
210 obj_zone = &obj_zone_store;
211 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
212 vm_objects_init, VM_OBJECTS_INIT);
215 void
216 vm_object_init2(void)
218 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
222 * vm_object_allocate:
224 * Returns a new object with the given size.
227 vm_object_t
228 vm_object_allocate(objtype_t type, vm_size_t size)
230 vm_object_t result;
232 result = (vm_object_t) zalloc(obj_zone);
234 _vm_object_allocate(type, size, result);
236 return (result);
241 * vm_object_reference:
243 * Gets another reference to the given object.
245 void
246 vm_object_reference(vm_object_t object)
248 if (object == NULL)
249 return;
251 object->ref_count++;
252 if (object->type == OBJT_VNODE) {
253 vref(object->handle);
254 /* XXX what if the vnode is being destroyed? */
258 static void
259 vm_object_vndeallocate(vm_object_t object)
261 struct vnode *vp = (struct vnode *) object->handle;
263 KASSERT(object->type == OBJT_VNODE,
264 ("vm_object_vndeallocate: not a vnode object"));
265 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
266 #ifdef INVARIANTS
267 if (object->ref_count == 0) {
268 vprint("vm_object_vndeallocate", vp);
269 panic("vm_object_vndeallocate: bad object reference count");
271 #endif
273 object->ref_count--;
274 if (object->ref_count == 0)
275 vp->v_flag &= ~VTEXT;
276 vrele(vp);
280 * vm_object_deallocate:
282 * Release a reference to the specified object,
283 * gained either through a vm_object_allocate
284 * or a vm_object_reference call. When all references
285 * are gone, storage associated with this object
286 * may be relinquished.
288 * No object may be locked.
290 void
291 vm_object_deallocate(vm_object_t object)
293 vm_object_t temp;
295 while (object != NULL) {
296 if (object->type == OBJT_VNODE) {
297 vm_object_vndeallocate(object);
298 return;
301 if (object->ref_count == 0) {
302 panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
303 } else if (object->ref_count > 2) {
304 object->ref_count--;
305 return;
309 * Here on ref_count of one or two, which are special cases for
310 * objects.
312 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
313 vm_object_set_flag(object, OBJ_ONEMAPPING);
314 object->ref_count--;
315 return;
316 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
317 object->ref_count--;
318 if ((object->handle == NULL) &&
319 (object->type == OBJT_DEFAULT ||
320 object->type == OBJT_SWAP)) {
321 vm_object_t robject;
323 robject = LIST_FIRST(&object->shadow_head);
324 KASSERT(robject != NULL,
325 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
326 object->ref_count,
327 object->shadow_count));
328 if ((robject->handle == NULL) &&
329 (robject->type == OBJT_DEFAULT ||
330 robject->type == OBJT_SWAP)) {
332 robject->ref_count++;
334 while (
335 robject->paging_in_progress ||
336 object->paging_in_progress
338 vm_object_pip_sleep(robject, "objde1");
339 vm_object_pip_sleep(object, "objde2");
342 if (robject->ref_count == 1) {
343 robject->ref_count--;
344 object = robject;
345 goto doterm;
348 object = robject;
349 vm_object_collapse(object);
350 continue;
354 return;
356 } else {
357 object->ref_count--;
358 if (object->ref_count != 0)
359 return;
362 doterm:
364 temp = object->backing_object;
365 if (temp) {
366 LIST_REMOVE(object, shadow_list);
367 temp->shadow_count--;
368 temp->generation++;
369 object->backing_object = NULL;
373 * Don't double-terminate, we could be in a termination
374 * recursion due to the terminate having to sync data
375 * to disk.
377 if ((object->flags & OBJ_DEAD) == 0)
378 vm_object_terminate(object);
379 object = temp;
384 * vm_object_terminate actually destroys the specified object, freeing
385 * up all previously used resources.
387 * The object must be locked.
388 * This routine may block.
390 void
391 vm_object_terminate(vm_object_t object)
393 vm_page_t p;
396 * Make sure no one uses us.
398 vm_object_set_flag(object, OBJ_DEAD);
401 * wait for the pageout daemon to be done with the object
403 vm_object_pip_wait(object, "objtrm");
405 KASSERT(!object->paging_in_progress,
406 ("vm_object_terminate: pageout in progress"));
409 * Clean and free the pages, as appropriate. All references to the
410 * object are gone, so we don't need to lock it.
412 if (object->type == OBJT_VNODE) {
413 struct vnode *vp;
416 * Clean pages and flush buffers.
418 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
420 vp = (struct vnode *) object->handle;
421 vinvalbuf(vp, V_SAVE, 0, 0);
425 * Wait for any I/O to complete, after which there had better not
426 * be any references left on the object.
428 vm_object_pip_wait(object, "objtrm");
430 if (object->ref_count != 0)
431 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
434 * Now free any remaining pages. For internal objects, this also
435 * removes them from paging queues. Don't free wired pages, just
436 * remove them from the object.
438 crit_enter();
439 while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
440 if (p->busy || (p->flags & PG_BUSY))
441 panic("vm_object_terminate: freeing busy page %p", p);
442 if (p->wire_count == 0) {
443 vm_page_busy(p);
444 vm_page_free(p);
445 mycpu->gd_cnt.v_pfree++;
446 } else {
447 vm_page_busy(p);
448 vm_page_remove(p);
449 vm_page_wakeup(p);
452 crit_exit();
455 * Let the pager know object is dead.
457 vm_pager_deallocate(object);
460 * Remove the object from the global object list.
462 crit_enter();
463 TAILQ_REMOVE(&vm_object_list, object, object_list);
464 vm_object_count--;
465 crit_exit();
467 wakeup(object);
468 if (object->ref_count != 0)
469 panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
472 * Free the space for the object.
474 zfree(obj_zone, object);
478 * vm_object_page_clean
480 * Clean all dirty pages in the specified range of object. Leaves page
481 * on whatever queue it is currently on. If NOSYNC is set then do not
482 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
483 * leaving the object dirty.
485 * When stuffing pages asynchronously, allow clustering. XXX we need a
486 * synchronous clustering mode implementation.
488 * Odd semantics: if start == end, we clean everything.
491 void
492 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
493 int flags)
495 vm_page_t p, np;
496 vm_offset_t tstart, tend;
497 vm_pindex_t pi;
498 struct vnode *vp;
499 int clearobjflags;
500 int pagerflags;
501 int curgeneration;
503 if (object->type != OBJT_VNODE ||
504 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
505 return;
507 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
508 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
510 vp = object->handle;
512 vm_object_set_flag(object, OBJ_CLEANING);
515 * Handle 'entire object' case
517 tstart = start;
518 if (end == 0) {
519 tend = object->size;
520 } else {
521 tend = end;
525 * If the caller is smart and only msync()s a range he knows is
526 * dirty, we may be able to avoid an object scan. This results in
527 * a phenominal improvement in performance. We cannot do this
528 * as a matter of course because the object may be huge - e.g.
529 * the size might be in the gigabytes or terrabytes.
531 if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
532 vm_offset_t tscan;
533 int scanlimit;
534 int scanreset;
536 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
537 if (scanreset < 16)
538 scanreset = 16;
539 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
541 scanlimit = scanreset;
542 tscan = tstart;
545 * spl protection is required despite the obj generation
546 * tracking because we cannot safely call vm_page_test_dirty()
547 * or avoid page field tests against an interrupt unbusy/free
548 * race that might occur prior to the busy check in
549 * vm_object_page_collect_flush().
551 crit_enter();
552 while (tscan < tend) {
553 curgeneration = object->generation;
554 p = vm_page_lookup(object, tscan);
555 if (p == NULL || p->valid == 0 ||
556 (p->queue - p->pc) == PQ_CACHE) {
557 if (--scanlimit == 0)
558 break;
559 ++tscan;
560 continue;
562 vm_page_test_dirty(p);
563 if ((p->dirty & p->valid) == 0) {
564 if (--scanlimit == 0)
565 break;
566 ++tscan;
567 continue;
570 * If we have been asked to skip nosync pages and
571 * this is a nosync page, we can't continue.
573 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
574 if (--scanlimit == 0)
575 break;
576 ++tscan;
577 continue;
579 scanlimit = scanreset;
582 * This returns 0 if it was unable to busy the first
583 * page (i.e. had to sleep).
585 tscan += vm_object_page_collect_flush(object, p,
586 curgeneration, pagerflags);
588 crit_exit();
591 * If everything was dirty and we flushed it successfully,
592 * and the requested range is not the entire object, we
593 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
594 * return immediately.
596 if (tscan >= tend && (tstart || tend < object->size)) {
597 vm_object_clear_flag(object, OBJ_CLEANING);
598 return;
600 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
604 * Generally set CLEANCHK interlock and make the page read-only so
605 * we can then clear the object flags.
607 * However, if this is a nosync mmap then the object is likely to
608 * stay dirty so do not mess with the page and do not clear the
609 * object flags.
611 * spl protection is required because an interrupt can remove page
612 * from the object.
614 clearobjflags = 1;
616 crit_enter();
617 for (p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
618 vm_page_flag_set(p, PG_CLEANCHK);
619 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
620 clearobjflags = 0;
621 else
622 vm_page_protect(p, VM_PROT_READ);
624 crit_exit();
626 if (clearobjflags && (tstart == 0) && (tend == object->size)) {
627 struct vnode *vp;
629 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
630 if (object->type == OBJT_VNODE &&
631 (vp = (struct vnode *)object->handle) != NULL) {
632 if (vp->v_flag & VOBJDIRTY)
633 vclrflags(vp, VOBJDIRTY);
638 * spl protection is required both to avoid an interrupt unbusy/free
639 * race against a vm_page_lookup(), and also to ensure that the
640 * memq is consistent. We do not want a busy page to be ripped out
641 * from under us.
643 crit_enter();
644 rescan:
645 crit_exit();
646 crit_enter();
647 curgeneration = object->generation;
649 for (p = TAILQ_FIRST(&object->memq); p; p = np) {
650 int n;
652 np = TAILQ_NEXT(p, listq);
654 again:
655 pi = p->pindex;
656 if (((p->flags & PG_CLEANCHK) == 0) ||
657 (pi < tstart) || (pi >= tend) ||
658 (p->valid == 0) ||
659 ((p->queue - p->pc) == PQ_CACHE)) {
660 vm_page_flag_clear(p, PG_CLEANCHK);
661 continue;
664 vm_page_test_dirty(p);
665 if ((p->dirty & p->valid) == 0) {
666 vm_page_flag_clear(p, PG_CLEANCHK);
667 continue;
671 * If we have been asked to skip nosync pages and this is a
672 * nosync page, skip it. Note that the object flags were
673 * not cleared in this case so we do not have to set them.
675 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
676 vm_page_flag_clear(p, PG_CLEANCHK);
677 continue;
680 n = vm_object_page_collect_flush(object, p,
681 curgeneration, pagerflags);
682 if (n == 0)
683 goto rescan;
684 if (object->generation != curgeneration)
685 goto rescan;
688 * Try to optimize the next page. If we can't we pick up
689 * our (random) scan where we left off.
691 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
692 if ((p = vm_page_lookup(object, pi + n)) != NULL)
693 goto again;
696 crit_exit();
698 vm_object_clear_flag(object, OBJ_CLEANING);
699 return;
703 * This routine must be called within a critical section to properly avoid
704 * an interrupt unbusy/free race that can occur prior to the busy check.
706 * Using the object generation number here to detect page ripout is not
707 * the best idea in the world. XXX
709 * NOTE: we operate under the assumption that a page found to not be busy
710 * will not be ripped out from under us by an interrupt. XXX we should
711 * recode this to explicitly busy the pages.
713 static int
714 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
716 int runlen;
717 int maxf;
718 int chkb;
719 int maxb;
720 int i;
721 vm_pindex_t pi;
722 vm_page_t maf[vm_pageout_page_count];
723 vm_page_t mab[vm_pageout_page_count];
724 vm_page_t ma[vm_pageout_page_count];
726 pi = p->pindex;
727 while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
728 if (object->generation != curgeneration) {
729 return(0);
733 maxf = 0;
734 for(i = 1; i < vm_pageout_page_count; i++) {
735 vm_page_t tp;
737 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
738 if ((tp->flags & PG_BUSY) ||
739 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
740 (tp->flags & PG_CLEANCHK) == 0) ||
741 (tp->busy != 0))
742 break;
743 if((tp->queue - tp->pc) == PQ_CACHE) {
744 vm_page_flag_clear(tp, PG_CLEANCHK);
745 break;
747 vm_page_test_dirty(tp);
748 if ((tp->dirty & tp->valid) == 0) {
749 vm_page_flag_clear(tp, PG_CLEANCHK);
750 break;
752 maf[ i - 1 ] = tp;
753 maxf++;
754 continue;
756 break;
759 maxb = 0;
760 chkb = vm_pageout_page_count - maxf;
761 if (chkb) {
762 for(i = 1; i < chkb;i++) {
763 vm_page_t tp;
765 if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
766 if ((tp->flags & PG_BUSY) ||
767 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
768 (tp->flags & PG_CLEANCHK) == 0) ||
769 (tp->busy != 0))
770 break;
771 if((tp->queue - tp->pc) == PQ_CACHE) {
772 vm_page_flag_clear(tp, PG_CLEANCHK);
773 break;
775 vm_page_test_dirty(tp);
776 if ((tp->dirty & tp->valid) == 0) {
777 vm_page_flag_clear(tp, PG_CLEANCHK);
778 break;
780 mab[ i - 1 ] = tp;
781 maxb++;
782 continue;
784 break;
788 for(i = 0; i < maxb; i++) {
789 int index = (maxb - i) - 1;
790 ma[index] = mab[i];
791 vm_page_flag_clear(ma[index], PG_CLEANCHK);
793 vm_page_flag_clear(p, PG_CLEANCHK);
794 ma[maxb] = p;
795 for(i = 0; i < maxf; i++) {
796 int index = (maxb + i) + 1;
797 ma[index] = maf[i];
798 vm_page_flag_clear(ma[index], PG_CLEANCHK);
800 runlen = maxb + maxf + 1;
802 vm_pageout_flush(ma, runlen, pagerflags);
803 for (i = 0; i < runlen; i++) {
804 if (ma[i]->valid & ma[i]->dirty) {
805 vm_page_protect(ma[i], VM_PROT_READ);
806 vm_page_flag_set(ma[i], PG_CLEANCHK);
809 * maxf will end up being the actual number of pages
810 * we wrote out contiguously, non-inclusive of the
811 * first page. We do not count look-behind pages.
813 if (i >= maxb + 1 && (maxf > i - maxb - 1))
814 maxf = i - maxb - 1;
817 return(maxf + 1);
820 #ifdef not_used
821 /* XXX I cannot tell if this should be an exported symbol */
823 * vm_object_deactivate_pages
825 * Deactivate all pages in the specified object. (Keep its pages
826 * in memory even though it is no longer referenced.)
828 * The object must be locked.
830 static void
831 vm_object_deactivate_pages(vm_object_t object)
833 vm_page_t p, next;
835 crit_enter();
836 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
837 next = TAILQ_NEXT(p, listq);
838 vm_page_deactivate(p);
840 crit_exit();
842 #endif
845 * Same as vm_object_pmap_copy, except range checking really
846 * works, and is meant for small sections of an object.
848 * This code protects resident pages by making them read-only
849 * and is typically called on a fork or split when a page
850 * is converted to copy-on-write.
852 * NOTE: If the page is already at VM_PROT_NONE, calling
853 * vm_page_protect will have no effect.
855 void
856 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
858 vm_pindex_t idx;
859 vm_page_t p;
861 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
862 return;
865 * spl protection needed to prevent races between the lookup,
866 * an interrupt unbusy/free, and our protect call.
868 crit_enter();
869 for (idx = start; idx < end; idx++) {
870 p = vm_page_lookup(object, idx);
871 if (p == NULL)
872 continue;
873 vm_page_protect(p, VM_PROT_READ);
875 crit_exit();
879 * vm_object_pmap_remove:
881 * Removes all physical pages in the specified
882 * object range from all physical maps.
884 * The object must *not* be locked.
886 void
887 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
889 vm_page_t p;
891 if (object == NULL)
892 return;
895 * spl protection is required because an interrupt can unbusy/free
896 * a page.
898 crit_enter();
899 for (p = TAILQ_FIRST(&object->memq);
900 p != NULL;
901 p = TAILQ_NEXT(p, listq)
903 if (p->pindex >= start && p->pindex < end)
904 vm_page_protect(p, VM_PROT_NONE);
906 crit_exit();
907 if ((start == 0) && (object->size == end))
908 vm_object_clear_flag(object, OBJ_WRITEABLE);
912 * vm_object_madvise:
914 * Implements the madvise function at the object/page level.
916 * MADV_WILLNEED (any object)
918 * Activate the specified pages if they are resident.
920 * MADV_DONTNEED (any object)
922 * Deactivate the specified pages if they are resident.
924 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
925 * OBJ_ONEMAPPING only)
927 * Deactivate and clean the specified pages if they are
928 * resident. This permits the process to reuse the pages
929 * without faulting or the kernel to reclaim the pages
930 * without I/O.
932 void
933 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
935 vm_pindex_t end, tpindex;
936 vm_object_t tobject;
937 vm_page_t m;
939 if (object == NULL)
940 return;
942 end = pindex + count;
945 * Locate and adjust resident pages
948 for (; pindex < end; pindex += 1) {
949 relookup:
950 tobject = object;
951 tpindex = pindex;
952 shadowlookup:
954 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
955 * and those pages must be OBJ_ONEMAPPING.
957 if (advise == MADV_FREE) {
958 if ((tobject->type != OBJT_DEFAULT &&
959 tobject->type != OBJT_SWAP) ||
960 (tobject->flags & OBJ_ONEMAPPING) == 0) {
961 continue;
966 * spl protection is required to avoid a race between the
967 * lookup, an interrupt unbusy/free, and our busy check.
970 crit_enter();
971 m = vm_page_lookup(tobject, tpindex);
973 if (m == NULL) {
975 * There may be swap even if there is no backing page
977 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
978 swap_pager_freespace(tobject, tpindex, 1);
981 * next object
983 crit_exit();
984 if (tobject->backing_object == NULL)
985 continue;
986 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
987 tobject = tobject->backing_object;
988 goto shadowlookup;
992 * If the page is busy or not in a normal active state,
993 * we skip it. If the page is not managed there are no
994 * page queues to mess with. Things can break if we mess
995 * with pages in any of the below states.
997 if (
998 m->hold_count ||
999 m->wire_count ||
1000 (m->flags & PG_UNMANAGED) ||
1001 m->valid != VM_PAGE_BITS_ALL
1003 crit_exit();
1004 continue;
1007 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1008 crit_exit();
1009 goto relookup;
1011 crit_exit();
1014 * Theoretically once a page is known not to be busy, an
1015 * interrupt cannot come along and rip it out from under us.
1018 if (advise == MADV_WILLNEED) {
1019 vm_page_activate(m);
1020 } else if (advise == MADV_DONTNEED) {
1021 vm_page_dontneed(m);
1022 } else if (advise == MADV_FREE) {
1024 * Mark the page clean. This will allow the page
1025 * to be freed up by the system. However, such pages
1026 * are often reused quickly by malloc()/free()
1027 * so we do not do anything that would cause
1028 * a page fault if we can help it.
1030 * Specifically, we do not try to actually free
1031 * the page now nor do we try to put it in the
1032 * cache (which would cause a page fault on reuse).
1034 * But we do make the page is freeable as we
1035 * can without actually taking the step of unmapping
1036 * it.
1038 pmap_clear_modify(m);
1039 m->dirty = 0;
1040 m->act_count = 0;
1041 vm_page_dontneed(m);
1042 if (tobject->type == OBJT_SWAP)
1043 swap_pager_freespace(tobject, tpindex, 1);
1049 * vm_object_shadow:
1051 * Create a new object which is backed by the
1052 * specified existing object range. The source
1053 * object reference is deallocated.
1055 * The new object and offset into that object
1056 * are returned in the source parameters.
1059 void
1060 vm_object_shadow(vm_object_t *object, /* IN/OUT */
1061 vm_ooffset_t *offset, /* IN/OUT */
1062 vm_size_t length)
1064 vm_object_t source;
1065 vm_object_t result;
1067 source = *object;
1070 * Don't create the new object if the old object isn't shared.
1073 if (source != NULL &&
1074 source->ref_count == 1 &&
1075 source->handle == NULL &&
1076 (source->type == OBJT_DEFAULT ||
1077 source->type == OBJT_SWAP))
1078 return;
1081 * Allocate a new object with the given length
1084 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1085 panic("vm_object_shadow: no object for shadowing");
1088 * The new object shadows the source object, adding a reference to it.
1089 * Our caller changes his reference to point to the new object,
1090 * removing a reference to the source object. Net result: no change
1091 * of reference count.
1093 * Try to optimize the result object's page color when shadowing
1094 * in order to maintain page coloring consistency in the combined
1095 * shadowed object.
1097 result->backing_object = source;
1098 if (source) {
1099 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1100 source->shadow_count++;
1101 source->generation++;
1102 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1106 * Store the offset into the source object, and fix up the offset into
1107 * the new object.
1110 result->backing_object_offset = *offset;
1113 * Return the new things
1116 *offset = 0;
1117 *object = result;
1120 #define OBSC_TEST_ALL_SHADOWED 0x0001
1121 #define OBSC_COLLAPSE_NOWAIT 0x0002
1122 #define OBSC_COLLAPSE_WAIT 0x0004
1124 static __inline int
1125 vm_object_backing_scan(vm_object_t object, int op)
1127 int r = 1;
1128 vm_page_t p;
1129 vm_object_t backing_object;
1130 vm_pindex_t backing_offset_index;
1133 * spl protection is required to avoid races between the memq/lookup,
1134 * an interrupt doing an unbusy/free, and our busy check. Amoung
1135 * other things.
1137 crit_enter();
1139 backing_object = object->backing_object;
1140 backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1143 * Initial conditions
1146 if (op & OBSC_TEST_ALL_SHADOWED) {
1148 * We do not want to have to test for the existence of
1149 * swap pages in the backing object. XXX but with the
1150 * new swapper this would be pretty easy to do.
1152 * XXX what about anonymous MAP_SHARED memory that hasn't
1153 * been ZFOD faulted yet? If we do not test for this, the
1154 * shadow test may succeed! XXX
1156 if (backing_object->type != OBJT_DEFAULT) {
1157 crit_exit();
1158 return(0);
1161 if (op & OBSC_COLLAPSE_WAIT) {
1162 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1163 vm_object_set_flag(backing_object, OBJ_DEAD);
1167 * Our scan
1170 p = TAILQ_FIRST(&backing_object->memq);
1171 while (p) {
1172 vm_page_t next = TAILQ_NEXT(p, listq);
1173 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1175 if (op & OBSC_TEST_ALL_SHADOWED) {
1176 vm_page_t pp;
1179 * Ignore pages outside the parent object's range
1180 * and outside the parent object's mapping of the
1181 * backing object.
1183 * note that we do not busy the backing object's
1184 * page.
1187 if (
1188 p->pindex < backing_offset_index ||
1189 new_pindex >= object->size
1191 p = next;
1192 continue;
1196 * See if the parent has the page or if the parent's
1197 * object pager has the page. If the parent has the
1198 * page but the page is not valid, the parent's
1199 * object pager must have the page.
1201 * If this fails, the parent does not completely shadow
1202 * the object and we might as well give up now.
1205 pp = vm_page_lookup(object, new_pindex);
1206 if (
1207 (pp == NULL || pp->valid == 0) &&
1208 !vm_pager_has_page(object, new_pindex, NULL, NULL)
1210 r = 0;
1211 break;
1216 * Check for busy page
1219 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1220 vm_page_t pp;
1222 if (op & OBSC_COLLAPSE_NOWAIT) {
1223 if (
1224 (p->flags & PG_BUSY) ||
1225 !p->valid ||
1226 p->hold_count ||
1227 p->wire_count ||
1228 p->busy
1230 p = next;
1231 continue;
1233 } else if (op & OBSC_COLLAPSE_WAIT) {
1234 if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1236 * If we slept, anything could have
1237 * happened. Since the object is
1238 * marked dead, the backing offset
1239 * should not have changed so we
1240 * just restart our scan.
1242 p = TAILQ_FIRST(&backing_object->memq);
1243 continue;
1248 * Busy the page
1250 vm_page_busy(p);
1252 KASSERT(
1253 p->object == backing_object,
1254 ("vm_object_qcollapse(): object mismatch")
1258 * Destroy any associated swap
1260 if (backing_object->type == OBJT_SWAP) {
1261 swap_pager_freespace(
1262 backing_object,
1263 p->pindex,
1268 if (
1269 p->pindex < backing_offset_index ||
1270 new_pindex >= object->size
1273 * Page is out of the parent object's range, we
1274 * can simply destroy it.
1276 vm_page_protect(p, VM_PROT_NONE);
1277 vm_page_free(p);
1278 p = next;
1279 continue;
1282 pp = vm_page_lookup(object, new_pindex);
1283 if (
1284 pp != NULL ||
1285 vm_pager_has_page(object, new_pindex, NULL, NULL)
1288 * page already exists in parent OR swap exists
1289 * for this location in the parent. Destroy
1290 * the original page from the backing object.
1292 * Leave the parent's page alone
1294 vm_page_protect(p, VM_PROT_NONE);
1295 vm_page_free(p);
1296 p = next;
1297 continue;
1301 * Page does not exist in parent, rename the
1302 * page from the backing object to the main object.
1304 * If the page was mapped to a process, it can remain
1305 * mapped through the rename.
1307 if ((p->queue - p->pc) == PQ_CACHE)
1308 vm_page_deactivate(p);
1310 vm_page_rename(p, object, new_pindex);
1311 /* page automatically made dirty by rename */
1313 p = next;
1315 crit_exit();
1316 return(r);
1321 * this version of collapse allows the operation to occur earlier and
1322 * when paging_in_progress is true for an object... This is not a complete
1323 * operation, but should plug 99.9% of the rest of the leaks.
1325 static void
1326 vm_object_qcollapse(vm_object_t object)
1328 vm_object_t backing_object = object->backing_object;
1330 if (backing_object->ref_count != 1)
1331 return;
1333 backing_object->ref_count += 2;
1335 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1337 backing_object->ref_count -= 2;
1341 * vm_object_collapse:
1343 * Collapse an object with the object backing it.
1344 * Pages in the backing object are moved into the
1345 * parent, and the backing object is deallocated.
1347 void
1348 vm_object_collapse(vm_object_t object)
1350 while (TRUE) {
1351 vm_object_t backing_object;
1354 * Verify that the conditions are right for collapse:
1356 * The object exists and the backing object exists.
1358 if (object == NULL)
1359 break;
1361 if ((backing_object = object->backing_object) == NULL)
1362 break;
1365 * we check the backing object first, because it is most likely
1366 * not collapsable.
1368 if (backing_object->handle != NULL ||
1369 (backing_object->type != OBJT_DEFAULT &&
1370 backing_object->type != OBJT_SWAP) ||
1371 (backing_object->flags & OBJ_DEAD) ||
1372 object->handle != NULL ||
1373 (object->type != OBJT_DEFAULT &&
1374 object->type != OBJT_SWAP) ||
1375 (object->flags & OBJ_DEAD)) {
1376 break;
1379 if (
1380 object->paging_in_progress != 0 ||
1381 backing_object->paging_in_progress != 0
1383 vm_object_qcollapse(object);
1384 break;
1388 * We know that we can either collapse the backing object (if
1389 * the parent is the only reference to it) or (perhaps) have
1390 * the parent bypass the object if the parent happens to shadow
1391 * all the resident pages in the entire backing object.
1393 * This is ignoring pager-backed pages such as swap pages.
1394 * vm_object_backing_scan fails the shadowing test in this
1395 * case.
1398 if (backing_object->ref_count == 1) {
1400 * If there is exactly one reference to the backing
1401 * object, we can collapse it into the parent.
1403 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1406 * Move the pager from backing_object to object.
1409 if (backing_object->type == OBJT_SWAP) {
1410 vm_object_pip_add(backing_object, 1);
1413 * scrap the paging_offset junk and do a
1414 * discrete copy. This also removes major
1415 * assumptions about how the swap-pager
1416 * works from where it doesn't belong. The
1417 * new swapper is able to optimize the
1418 * destroy-source case.
1421 vm_object_pip_add(object, 1);
1422 swap_pager_copy(
1423 backing_object,
1424 object,
1425 OFF_TO_IDX(object->backing_object_offset), TRUE);
1426 vm_object_pip_wakeup(object);
1428 vm_object_pip_wakeup(backing_object);
1431 * Object now shadows whatever backing_object did.
1432 * Note that the reference to
1433 * backing_object->backing_object moves from within
1434 * backing_object to within object.
1437 LIST_REMOVE(object, shadow_list);
1438 object->backing_object->shadow_count--;
1439 object->backing_object->generation++;
1440 if (backing_object->backing_object) {
1441 LIST_REMOVE(backing_object, shadow_list);
1442 backing_object->backing_object->shadow_count--;
1443 backing_object->backing_object->generation++;
1445 object->backing_object = backing_object->backing_object;
1446 if (object->backing_object) {
1447 LIST_INSERT_HEAD(
1448 &object->backing_object->shadow_head,
1449 object,
1450 shadow_list
1452 object->backing_object->shadow_count++;
1453 object->backing_object->generation++;
1456 object->backing_object_offset +=
1457 backing_object->backing_object_offset;
1460 * Discard backing_object.
1462 * Since the backing object has no pages, no pager left,
1463 * and no object references within it, all that is
1464 * necessary is to dispose of it.
1467 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1468 KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1469 crit_enter();
1470 TAILQ_REMOVE(
1471 &vm_object_list,
1472 backing_object,
1473 object_list
1475 vm_object_count--;
1476 crit_exit();
1478 zfree(obj_zone, backing_object);
1480 object_collapses++;
1481 } else {
1482 vm_object_t new_backing_object;
1485 * If we do not entirely shadow the backing object,
1486 * there is nothing we can do so we give up.
1489 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1490 break;
1494 * Make the parent shadow the next object in the
1495 * chain. Deallocating backing_object will not remove
1496 * it, since its reference count is at least 2.
1499 LIST_REMOVE(object, shadow_list);
1500 backing_object->shadow_count--;
1501 backing_object->generation++;
1503 new_backing_object = backing_object->backing_object;
1504 if ((object->backing_object = new_backing_object) != NULL) {
1505 vm_object_reference(new_backing_object);
1506 LIST_INSERT_HEAD(
1507 &new_backing_object->shadow_head,
1508 object,
1509 shadow_list
1511 new_backing_object->shadow_count++;
1512 new_backing_object->generation++;
1513 object->backing_object_offset +=
1514 backing_object->backing_object_offset;
1518 * Drop the reference count on backing_object. Since
1519 * its ref_count was at least 2, it will not vanish;
1520 * so we don't need to call vm_object_deallocate, but
1521 * we do anyway.
1523 vm_object_deallocate(backing_object);
1524 object_bypasses++;
1528 * Try again with this object's new backing object.
1534 * vm_object_page_remove: [internal]
1536 * Removes all physical pages in the specified
1537 * object range from the object's list of pages.
1539 void
1540 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1541 boolean_t clean_only)
1543 vm_page_t p, next;
1544 unsigned int size;
1545 int all;
1547 if (object == NULL || object->resident_page_count == 0)
1548 return;
1550 all = ((end == 0) && (start == 0));
1553 * Since physically-backed objects do not use managed pages, we can't
1554 * remove pages from the object (we must instead remove the page
1555 * references, and then destroy the object).
1557 KASSERT(object->type != OBJT_PHYS,
1558 ("attempt to remove pages from a physical object"));
1561 * Indicating that the object is undergoing paging.
1563 * spl protection is required to avoid a race between the memq scan,
1564 * an interrupt unbusy/free, and the busy check.
1566 vm_object_pip_add(object, 1);
1567 crit_enter();
1568 again:
1569 size = end - start;
1570 if (all || size > object->resident_page_count / 4) {
1571 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1572 next = TAILQ_NEXT(p, listq);
1573 if (all || ((start <= p->pindex) && (p->pindex < end))) {
1574 if (p->wire_count != 0) {
1575 vm_page_protect(p, VM_PROT_NONE);
1576 if (!clean_only)
1577 p->valid = 0;
1578 continue;
1582 * The busy flags are only cleared at
1583 * interrupt -- minimize the spl transitions
1586 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1587 goto again;
1589 if (clean_only && p->valid) {
1590 vm_page_test_dirty(p);
1591 if (p->valid & p->dirty)
1592 continue;
1595 vm_page_busy(p);
1596 vm_page_protect(p, VM_PROT_NONE);
1597 vm_page_free(p);
1600 } else {
1601 while (size > 0) {
1602 if ((p = vm_page_lookup(object, start)) != 0) {
1603 if (p->wire_count != 0) {
1604 vm_page_protect(p, VM_PROT_NONE);
1605 if (!clean_only)
1606 p->valid = 0;
1607 start += 1;
1608 size -= 1;
1609 continue;
1613 * The busy flags are only cleared at
1614 * interrupt -- minimize the spl transitions
1616 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1617 goto again;
1619 if (clean_only && p->valid) {
1620 vm_page_test_dirty(p);
1621 if (p->valid & p->dirty) {
1622 start += 1;
1623 size -= 1;
1624 continue;
1628 vm_page_busy(p);
1629 vm_page_protect(p, VM_PROT_NONE);
1630 vm_page_free(p);
1632 start += 1;
1633 size -= 1;
1636 crit_exit();
1637 vm_object_pip_wakeup(object);
1641 * Routine: vm_object_coalesce
1642 * Function: Coalesces two objects backing up adjoining
1643 * regions of memory into a single object.
1645 * returns TRUE if objects were combined.
1647 * NOTE: Only works at the moment if the second object is NULL -
1648 * if it's not, which object do we lock first?
1650 * Parameters:
1651 * prev_object First object to coalesce
1652 * prev_offset Offset into prev_object
1653 * next_object Second object into coalesce
1654 * next_offset Offset into next_object
1656 * prev_size Size of reference to prev_object
1657 * next_size Size of reference to next_object
1659 * Conditions:
1660 * The object must *not* be locked.
1662 boolean_t
1663 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1664 vm_size_t prev_size, vm_size_t next_size)
1666 vm_pindex_t next_pindex;
1668 if (prev_object == NULL) {
1669 return (TRUE);
1672 if (prev_object->type != OBJT_DEFAULT &&
1673 prev_object->type != OBJT_SWAP) {
1674 return (FALSE);
1678 * Try to collapse the object first
1680 vm_object_collapse(prev_object);
1683 * Can't coalesce if: . more than one reference . paged out . shadows
1684 * another object . has a copy elsewhere (any of which mean that the
1685 * pages not mapped to prev_entry may be in use anyway)
1688 if (prev_object->backing_object != NULL) {
1689 return (FALSE);
1692 prev_size >>= PAGE_SHIFT;
1693 next_size >>= PAGE_SHIFT;
1694 next_pindex = prev_pindex + prev_size;
1696 if ((prev_object->ref_count > 1) &&
1697 (prev_object->size != next_pindex)) {
1698 return (FALSE);
1702 * Remove any pages that may still be in the object from a previous
1703 * deallocation.
1705 if (next_pindex < prev_object->size) {
1706 vm_object_page_remove(prev_object,
1707 next_pindex,
1708 next_pindex + next_size, FALSE);
1709 if (prev_object->type == OBJT_SWAP)
1710 swap_pager_freespace(prev_object,
1711 next_pindex, next_size);
1715 * Extend the object if necessary.
1717 if (next_pindex + next_size > prev_object->size)
1718 prev_object->size = next_pindex + next_size;
1720 return (TRUE);
1723 void
1724 vm_object_set_writeable_dirty(vm_object_t object)
1726 struct vnode *vp;
1728 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1729 if (object->type == OBJT_VNODE &&
1730 (vp = (struct vnode *)object->handle) != NULL) {
1731 if ((vp->v_flag & VOBJDIRTY) == 0) {
1732 vsetflags(vp, VOBJDIRTY);
1739 #include "opt_ddb.h"
1740 #ifdef DDB
1741 #include <sys/kernel.h>
1743 #include <sys/cons.h>
1745 #include <ddb/ddb.h>
1747 static int _vm_object_in_map (vm_map_t map, vm_object_t object,
1748 vm_map_entry_t entry);
1749 static int vm_object_in_map (vm_object_t object);
1751 static int
1752 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1754 vm_map_t tmpm;
1755 vm_map_entry_t tmpe;
1756 vm_object_t obj;
1757 int entcount;
1759 if (map == 0)
1760 return 0;
1762 if (entry == 0) {
1763 tmpe = map->header.next;
1764 entcount = map->nentries;
1765 while (entcount-- && (tmpe != &map->header)) {
1766 if( _vm_object_in_map(map, object, tmpe)) {
1767 return 1;
1769 tmpe = tmpe->next;
1771 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1772 tmpm = entry->object.sub_map;
1773 tmpe = tmpm->header.next;
1774 entcount = tmpm->nentries;
1775 while (entcount-- && tmpe != &tmpm->header) {
1776 if( _vm_object_in_map(tmpm, object, tmpe)) {
1777 return 1;
1779 tmpe = tmpe->next;
1781 } else if ((obj = entry->object.vm_object) != NULL) {
1782 for(; obj; obj=obj->backing_object)
1783 if( obj == object) {
1784 return 1;
1787 return 0;
1790 static int vm_object_in_map_callback(struct proc *p, void *data);
1792 struct vm_object_in_map_info {
1793 vm_object_t object;
1794 int rv;
1797 static int
1798 vm_object_in_map(vm_object_t object)
1800 struct vm_object_in_map_info info;
1802 info.rv = 0;
1803 info.object = object;
1805 allproc_scan(vm_object_in_map_callback, &info);
1806 if (info.rv)
1807 return 1;
1808 if( _vm_object_in_map( kernel_map, object, 0))
1809 return 1;
1810 if( _vm_object_in_map( pager_map, object, 0))
1811 return 1;
1812 if( _vm_object_in_map( buffer_map, object, 0))
1813 return 1;
1814 return 0;
1817 static int
1818 vm_object_in_map_callback(struct proc *p, void *data)
1820 struct vm_object_in_map_info *info = data;
1822 if (p->p_vmspace) {
1823 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1824 info->rv = 1;
1825 return -1;
1828 return (0);
1831 DB_SHOW_COMMAND(vmochk, vm_object_check)
1833 vm_object_t object;
1836 * make sure that internal objs are in a map somewhere
1837 * and none have zero ref counts.
1839 for (object = TAILQ_FIRST(&vm_object_list);
1840 object != NULL;
1841 object = TAILQ_NEXT(object, object_list)) {
1842 if (object->handle == NULL &&
1843 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1844 if (object->ref_count == 0) {
1845 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1846 (long)object->size);
1848 if (!vm_object_in_map(object)) {
1849 db_printf(
1850 "vmochk: internal obj is not in a map: "
1851 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1852 object->ref_count, (u_long)object->size,
1853 (u_long)object->size,
1854 (void *)object->backing_object);
1861 * vm_object_print: [ debug ]
1863 DB_SHOW_COMMAND(object, vm_object_print_static)
1865 /* XXX convert args. */
1866 vm_object_t object = (vm_object_t)addr;
1867 boolean_t full = have_addr;
1869 vm_page_t p;
1871 /* XXX count is an (unused) arg. Avoid shadowing it. */
1872 #define count was_count
1874 int count;
1876 if (object == NULL)
1877 return;
1879 db_iprintf(
1880 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1881 object, (int)object->type, (u_long)object->size,
1882 object->resident_page_count, object->ref_count, object->flags);
1884 * XXX no %qd in kernel. Truncate object->backing_object_offset.
1886 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1887 object->shadow_count,
1888 object->backing_object ? object->backing_object->ref_count : 0,
1889 object->backing_object, (long)object->backing_object_offset);
1891 if (!full)
1892 return;
1894 db_indent += 2;
1895 count = 0;
1896 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1897 if (count == 0)
1898 db_iprintf("memory:=");
1899 else if (count == 6) {
1900 db_printf("\n");
1901 db_iprintf(" ...");
1902 count = 0;
1903 } else
1904 db_printf(",");
1905 count++;
1907 db_printf("(off=0x%lx,page=0x%lx)",
1908 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1910 if (count != 0)
1911 db_printf("\n");
1912 db_indent -= 2;
1915 /* XXX. */
1916 #undef count
1918 /* XXX need this non-static entry for calling from vm_map_print. */
1919 void
1920 vm_object_print(/* db_expr_t */ long addr,
1921 boolean_t have_addr,
1922 /* db_expr_t */ long count,
1923 char *modif)
1925 vm_object_print_static(addr, have_addr, count, modif);
1928 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1930 vm_object_t object;
1931 int nl = 0;
1932 int c;
1933 for (object = TAILQ_FIRST(&vm_object_list);
1934 object != NULL;
1935 object = TAILQ_NEXT(object, object_list)) {
1936 vm_pindex_t idx, fidx;
1937 vm_pindex_t osize;
1938 vm_paddr_t pa = -1, padiff;
1939 int rcount;
1940 vm_page_t m;
1942 db_printf("new object: %p\n", (void *)object);
1943 if ( nl > 18) {
1944 c = cngetc();
1945 if (c != ' ')
1946 return;
1947 nl = 0;
1949 nl++;
1950 rcount = 0;
1951 fidx = 0;
1952 osize = object->size;
1953 if (osize > 128)
1954 osize = 128;
1955 for (idx = 0; idx < osize; idx++) {
1956 m = vm_page_lookup(object, idx);
1957 if (m == NULL) {
1958 if (rcount) {
1959 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1960 (long)fidx, rcount, (long)pa);
1961 if ( nl > 18) {
1962 c = cngetc();
1963 if (c != ' ')
1964 return;
1965 nl = 0;
1967 nl++;
1968 rcount = 0;
1970 continue;
1974 if (rcount &&
1975 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1976 ++rcount;
1977 continue;
1979 if (rcount) {
1980 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1981 padiff >>= PAGE_SHIFT;
1982 padiff &= PQ_L2_MASK;
1983 if (padiff == 0) {
1984 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1985 ++rcount;
1986 continue;
1988 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1989 (long)fidx, rcount, (long)pa);
1990 db_printf("pd(%ld)\n", (long)padiff);
1991 if ( nl > 18) {
1992 c = cngetc();
1993 if (c != ' ')
1994 return;
1995 nl = 0;
1997 nl++;
1999 fidx = idx;
2000 pa = VM_PAGE_TO_PHYS(m);
2001 rcount = 1;
2003 if (rcount) {
2004 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2005 (long)fidx, rcount, (long)pa);
2006 if ( nl > 18) {
2007 c = cngetc();
2008 if (c != ' ')
2009 return;
2010 nl = 0;
2012 nl++;
2016 #endif /* DDB */