Fix malloc->kmalloc leftover to fix kernel without VGA_NO_MODE_CHANGE
[dragonfly.git] / sys / vm / vm_glue.c
blobbaf9bf00b812acd882625037918000e6c434ea0f
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 * Carnegie Mellon requests users of this software to return to
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
62 * $FreeBSD: src/sys/vm/vm_glue.c,v 1.94.2.4 2003/01/13 22:51:17 dillon Exp $
63 * $DragonFly: src/sys/vm/vm_glue.c,v 1.42 2006/06/27 16:38:42 dillon Exp $
66 #include "opt_vm.h"
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/resourcevar.h>
72 #include <sys/buf.h>
73 #include <sys/shm.h>
74 #include <sys/vmmeter.h>
75 #include <sys/sysctl.h>
77 #include <sys/kernel.h>
78 #include <sys/unistd.h>
80 #include <machine/limits.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
92 #include <sys/user.h>
93 #include <vm/vm_page2.h>
94 #include <sys/thread2.h>
97 * System initialization
99 * Note: proc0 from proc.h
102 static void vm_init_limits (void *);
103 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
106 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108 * Note: run scheduling should be divorced from the vm system.
110 static void scheduler (void *);
111 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
113 #ifdef INVARIANTS
115 static int swap_debug = 0;
116 SYSCTL_INT(_vm, OID_AUTO, swap_debug,
117 CTLFLAG_RW, &swap_debug, 0, "");
119 #endif
121 static int scheduler_notify;
123 static void swapout (struct proc *);
126 kernacc(c_caddr_t addr, int len, int rw)
128 boolean_t rv;
129 vm_offset_t saddr, eaddr;
130 vm_prot_t prot;
132 KASSERT((rw & (~VM_PROT_ALL)) == 0,
133 ("illegal ``rw'' argument to kernacc (%x)\n", rw));
136 * The globaldata space is not part of the kernel_map proper,
137 * check access separately.
139 if (is_globaldata_space((vm_offset_t)addr, (vm_offset_t)(addr + len)))
140 return (TRUE);
143 * Nominal kernel memory access - check access via kernel_map.
145 if ((vm_offset_t)addr + len > kernel_map->max_offset ||
146 (vm_offset_t)addr + len < (vm_offset_t)addr) {
147 return (FALSE);
149 prot = rw;
150 saddr = trunc_page((vm_offset_t)addr);
151 eaddr = round_page((vm_offset_t)addr + len);
152 vm_map_lock_read(kernel_map);
153 rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
154 vm_map_unlock_read(kernel_map);
155 return (rv == TRUE);
159 useracc(c_caddr_t addr, int len, int rw)
161 boolean_t rv;
162 vm_prot_t prot;
163 vm_map_t map;
164 vm_map_entry_t save_hint;
166 KASSERT((rw & (~VM_PROT_ALL)) == 0,
167 ("illegal ``rw'' argument to useracc (%x)\n", rw));
168 prot = rw;
170 * XXX - check separately to disallow access to user area and user
171 * page tables - they are in the map.
173 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max. It was once
174 * only used (as an end address) in trap.c. Use it as an end address
175 * here too. This bogusness has spread. I just fixed where it was
176 * used as a max in vm_mmap.c.
178 if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
179 || (vm_offset_t) addr + len < (vm_offset_t) addr) {
180 return (FALSE);
182 map = &curproc->p_vmspace->vm_map;
183 vm_map_lock_read(map);
185 * We save the map hint, and restore it. Useracc appears to distort
186 * the map hint unnecessarily.
188 save_hint = map->hint;
189 rv = vm_map_check_protection(map,
190 trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len), prot);
191 map->hint = save_hint;
192 vm_map_unlock_read(map);
194 return (rv == TRUE);
197 void
198 vslock(caddr_t addr, u_int len)
200 vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
201 round_page((vm_offset_t)addr + len), 0);
204 void
205 vsunlock(caddr_t addr, u_int len)
207 vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
208 round_page((vm_offset_t)addr + len), KM_PAGEABLE);
212 * Implement fork's actions on an address space.
213 * Here we arrange for the address space to be copied or referenced,
214 * allocate a user struct (pcb and kernel stack), then call the
215 * machine-dependent layer to fill those in and make the new process
216 * ready to run. The new process is set up so that it returns directly
217 * to user mode to avoid stack copying and relocation problems.
219 void
220 vm_fork(struct proc *p1, struct proc *p2, int flags)
222 struct user *up;
223 struct thread *td2;
225 if ((flags & RFPROC) == 0) {
227 * Divorce the memory, if it is shared, essentially
228 * this changes shared memory amongst threads, into
229 * COW locally.
231 if ((flags & RFMEM) == 0) {
232 if (p1->p_vmspace->vm_refcnt > 1) {
233 vmspace_unshare(p1);
236 cpu_fork(p1, p2, flags);
237 return;
240 if (flags & RFMEM) {
241 p2->p_vmspace = p1->p_vmspace;
242 p1->p_vmspace->vm_refcnt++;
245 while (vm_page_count_severe()) {
246 vm_wait();
249 if ((flags & RFMEM) == 0) {
250 p2->p_vmspace = vmspace_fork(p1->p_vmspace);
252 pmap_pinit2(vmspace_pmap(p2->p_vmspace));
254 if (p1->p_vmspace->vm_shm)
255 shmfork(p1, p2);
258 td2 = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, -1, 0);
259 pmap_init_proc(p2, td2);
260 lwkt_setpri(td2, TDPRI_KERN_USER);
261 lwkt_set_comm(td2, "%s", p1->p_comm);
263 up = p2->p_addr;
266 * p_stats currently points at fields in the user struct
267 * but not at &u, instead at p_addr. Copy parts of
268 * p_stats; zero the rest of p_stats (statistics).
270 * If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
271 * to share sigacts, so we use the up->u_sigacts.
273 p2->p_stats = &up->u_stats;
274 if (p2->p_sigacts == NULL) {
275 if (p2->p_procsig->ps_refcnt != 1)
276 printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
277 p2->p_sigacts = &up->u_sigacts;
278 up->u_sigacts = *p1->p_sigacts;
281 bzero(&up->u_stats, sizeof(struct pstats));
284 * cpu_fork will copy and update the pcb, set up the kernel stack,
285 * and make the child ready to run.
287 cpu_fork(p1, p2, flags);
291 * Called after process has been wait(2)'ed apon and is being reaped.
292 * The idea is to reclaim resources that we could not reclaim while
293 * the process was still executing.
295 void
296 vm_waitproc(struct proc *p)
298 p->p_stats = NULL;
299 cpu_proc_wait(p);
300 vmspace_exitfree(p); /* and clean-out the vmspace */
304 * Set default limits for VM system.
305 * Called for proc 0, and then inherited by all others.
307 * XXX should probably act directly on proc0.
309 static void
310 vm_init_limits(void *udata)
312 struct proc *p = udata;
313 int rss_limit;
316 * Set up the initial limits on process VM. Set the maximum resident
317 * set size to be half of (reasonably) available memory. Since this
318 * is a soft limit, it comes into effect only when the system is out
319 * of memory - half of main memory helps to favor smaller processes,
320 * and reduces thrashing of the object cache.
322 p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
323 p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
324 p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
325 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
326 /* limit the limit to no less than 2MB */
327 rss_limit = max(vmstats.v_free_count, 512);
328 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
329 p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
333 * Faultin the specified process. Note that the process can be in any
334 * state. Just clear P_SWAPPEDOUT and call wakeup in case the process is
335 * sleeping.
337 void
338 faultin(struct proc *p)
340 if (p->p_flag & P_SWAPPEDOUT) {
342 * The process is waiting in the kernel to return to user
343 * mode but cannot until P_SWAPPEDOUT gets cleared.
345 crit_enter();
346 p->p_flag &= ~(P_SWAPPEDOUT | P_SWAPWAIT);
347 #ifdef INVARIANTS
348 if (swap_debug)
349 printf("swapping in %d (%s)\n", p->p_pid, p->p_comm);
350 #endif
351 wakeup(p);
353 crit_exit();
358 * Kernel initialization eventually falls through to this function,
359 * which is process 0.
361 * This swapin algorithm attempts to swap-in processes only if there
362 * is enough space for them. Of course, if a process waits for a long
363 * time, it will be swapped in anyway.
366 struct scheduler_info {
367 struct proc *pp;
368 int ppri;
371 static int scheduler_callback(struct proc *p, void *data);
373 static void
374 scheduler(void *dummy)
376 struct scheduler_info info;
377 struct proc *p;
379 KKASSERT(!IN_CRITICAL_SECT(curthread));
380 loop:
381 scheduler_notify = 0;
383 * Don't try to swap anything in if we are low on memory.
385 if (vm_page_count_min()) {
386 vm_wait();
387 goto loop;
391 * Look for a good candidate to wake up
393 info.pp = NULL;
394 info.ppri = INT_MIN;
395 allproc_scan(scheduler_callback, &info);
398 * Nothing to do, back to sleep for at least 1/10 of a second. If
399 * we are woken up, immediately process the next request. If
400 * multiple requests have built up the first is processed
401 * immediately and the rest are staggered.
403 if ((p = info.pp) == NULL) {
404 tsleep(&proc0, 0, "nowork", hz / 10);
405 if (scheduler_notify == 0)
406 tsleep(&scheduler_notify, 0, "nowork", 0);
407 goto loop;
411 * Fault the selected process in, then wait for a short period of
412 * time and loop up.
414 * XXX we need a heuristic to get a measure of system stress and
415 * then adjust our stagger wakeup delay accordingly.
417 faultin(p);
418 p->p_swtime = 0;
419 PRELE(p);
420 tsleep(&proc0, 0, "swapin", hz / 10);
421 goto loop;
424 static int
425 scheduler_callback(struct proc *p, void *data)
427 struct scheduler_info *info = data;
428 segsz_t pgs;
429 int pri;
431 if (p->p_flag & P_SWAPWAIT) {
432 pri = p->p_swtime + p->p_slptime - p->p_nice * 8;
435 * The more pages paged out while we were swapped,
436 * the more work we have to do to get up and running
437 * again and the lower our wakeup priority.
439 * Each second of sleep time is worth ~1MB
441 pgs = vmspace_resident_count(p->p_vmspace);
442 if (pgs < p->p_vmspace->vm_swrss) {
443 pri -= (p->p_vmspace->vm_swrss - pgs) /
444 (1024 * 1024 / PAGE_SIZE);
448 * If this process is higher priority and there is
449 * enough space, then select this process instead of
450 * the previous selection.
452 if (pri > info->ppri) {
453 if (info->pp)
454 PRELE(info->pp);
455 PHOLD(p);
456 info->pp = p;
457 info->ppri = pri;
460 return(0);
463 void
464 swapin_request(void)
466 if (scheduler_notify == 0) {
467 scheduler_notify = 1;
468 wakeup(&scheduler_notify);
472 #ifndef NO_SWAPPING
474 #define swappable(p) \
475 (((p)->p_lock == 0) && \
476 ((p)->p_flag & (P_TRACED|P_SYSTEM|P_SWAPPEDOUT|P_WEXIT)) == 0)
480 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
482 static int swap_idle_threshold1 = 15;
483 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
484 CTLFLAG_RW, &swap_idle_threshold1, 0, "");
487 * Swap_idle_threshold2 is the time that a process can be idle before
488 * it will be swapped out, if idle swapping is enabled. Default is
489 * one minute.
491 static int swap_idle_threshold2 = 60;
492 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
493 CTLFLAG_RW, &swap_idle_threshold2, 0, "");
496 * Swapout is driven by the pageout daemon. Very simple, we find eligible
497 * procs and mark them as being swapped out. This will cause the kernel
498 * to prefer to pageout those proc's pages first and the procs in question
499 * will not return to user mode until the swapper tells them they can.
501 * If any procs have been sleeping/stopped for at least maxslp seconds,
502 * they are swapped. Else, we swap the longest-sleeping or stopped process,
503 * if any, otherwise the longest-resident process.
506 static int swapout_procs_callback(struct proc *p, void *data);
508 void
509 swapout_procs(int action)
511 allproc_scan(swapout_procs_callback, &action);
514 static int
515 swapout_procs_callback(struct proc *p, void *data)
517 struct vmspace *vm;
518 int action = *(int *)data;
520 if (!swappable(p))
521 return(0);
523 vm = p->p_vmspace;
525 if (p->p_stat == SSLEEP || p->p_stat == SRUN) {
527 * do not swap out a realtime process
529 if (RTP_PRIO_IS_REALTIME(p->p_lwp.lwp_rtprio.type))
530 return(0);
533 * Guarentee swap_idle_threshold time in memory
535 if (p->p_slptime < swap_idle_threshold1)
536 return(0);
539 * If the system is under memory stress, or if we
540 * are swapping idle processes >= swap_idle_threshold2,
541 * then swap the process out.
543 if (((action & VM_SWAP_NORMAL) == 0) &&
544 (((action & VM_SWAP_IDLE) == 0) ||
545 (p->p_slptime < swap_idle_threshold2))) {
546 return(0);
549 ++vm->vm_refcnt;
552 * If the process has been asleep for awhile, swap
553 * it out.
555 if ((action & VM_SWAP_NORMAL) ||
556 ((action & VM_SWAP_IDLE) &&
557 (p->p_slptime > swap_idle_threshold2))) {
558 swapout(p);
562 * cleanup our reference
564 vmspace_free(vm);
566 return(0);
569 static void
570 swapout(struct proc *p)
572 #ifdef INVARIANTS
573 if (swap_debug)
574 printf("swapping out %d (%s)\n", p->p_pid, p->p_comm);
575 #endif
576 ++p->p_stats->p_ru.ru_nswap;
578 * remember the process resident count
580 p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
581 p->p_flag |= P_SWAPPEDOUT;
582 p->p_swtime = 0;
585 #endif /* !NO_SWAPPING */