kernel: Remove kernel profiling bits.
[dragonfly.git] / sys / kern / vfs_subr.c
blob24c01d1c23e0f39445f4120d0b08cf8699b49262
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
35 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
39 * External virtual filesystem routines
41 #include "opt_ddb.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/buf.h>
48 #include <sys/conf.h>
49 #include <sys/dirent.h>
50 #include <sys/eventhandler.h>
51 #include <sys/fcntl.h>
52 #include <sys/file.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/mount.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/reboot.h>
61 #include <sys/socket.h>
62 #include <sys/stat.h>
63 #include <sys/sysctl.h>
64 #include <sys/syslog.h>
65 #include <sys/unistd.h>
66 #include <sys/vmmeter.h>
67 #include <sys/vnode.h>
69 #include <machine/limits.h>
71 #include <vm/vm.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_extern.h>
74 #include <vm/vm_kern.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_pager.h>
79 #include <vm/vnode_pager.h>
80 #include <vm/vm_zone.h>
82 #include <sys/buf2.h>
83 #include <sys/thread2.h>
84 #include <sys/mplock2.h>
85 #include <vm/vm_page2.h>
87 #include <netinet/in.h>
89 static MALLOC_DEFINE(M_NETCRED, "Export Host", "Export host address structure");
91 int numvnodes;
92 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
93 "Number of vnodes allocated");
94 int verbose_reclaims;
95 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
96 "Output filename of reclaimed vnode(s)");
98 enum vtype iftovt_tab[16] = {
99 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
100 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
102 int vttoif_tab[9] = {
103 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
104 S_IFSOCK, S_IFIFO, S_IFMT,
107 static int reassignbufcalls;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
109 0, "Number of times buffers have been reassigned to the proper list");
111 static int check_buf_overlap = 2; /* invasive check */
112 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
113 0, "Enable overlapping buffer checks");
115 int nfs_mount_type = -1;
116 static struct lwkt_token spechash_token;
117 struct nfs_public nfs_pub; /* publicly exported FS */
119 int maxvnodes;
120 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
121 &maxvnodes, 0, "Maximum number of vnodes");
123 static struct radix_node_head *vfs_create_addrlist_af(int af,
124 struct netexport *nep);
125 static void vfs_free_addrlist (struct netexport *nep);
126 static int vfs_free_netcred (struct radix_node *rn, void *w);
127 static void vfs_free_addrlist_af (struct radix_node_head **prnh);
128 static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
129 const struct export_args *argp);
131 int prtactive = 0; /* 1 => print out reclaim of active vnodes */
134 * Red black tree functions
136 static int rb_buf_compare(struct buf *b1, struct buf *b2);
137 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
138 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
140 static int
141 rb_buf_compare(struct buf *b1, struct buf *b2)
143 if (b1->b_loffset < b2->b_loffset)
144 return(-1);
145 if (b1->b_loffset > b2->b_loffset)
146 return(1);
147 return(0);
151 * Initialize the vnode management data structures.
153 * Called from vfsinit()
155 void
156 vfs_subr_init(void)
158 int factor1;
159 int factor2;
162 * Desiredvnodes is kern.maxvnodes. We want to scale it
163 * according to available system memory but we may also have
164 * to limit it based on available KVM.
166 * WARNING! For machines with 64-256M of ram we have to be sure
167 * that the default limit scales down well due to HAMMER
168 * taking up significantly more memory per-vnode vs UFS.
169 * We want around ~5800 on a 128M machine.
171 * WARNING! Now that KVM is substantially larger (e.g. 8TB+),
172 * also limit maxvnodes based on a 128GB metric. This
173 * gives us something like ~3 millon vnodes. sysctl
174 * can be used to increase it further if desired.
176 * For disk cachhing purposes, filesystems like HAMMER1
177 * and HAMMER2 will or can be told to cache file data
178 * via the block device instead of excessively in vnodes.
180 factor1 = 25 * (sizeof(struct vm_object) + sizeof(struct vnode));
181 factor2 = 30 * (sizeof(struct vm_object) + sizeof(struct vnode));
182 maxvnodes = imin((int64_t)vmstats.v_page_count * PAGE_SIZE / factor1,
183 KvaSize / factor2);
184 maxvnodes = imax(maxvnodes, maxproc * 8);
185 maxvnodes = imin(maxvnodes, 64LL*1024*1024*1024 / factor2);
187 lwkt_token_init(&spechash_token, "spechash");
191 * Knob to control the precision of file timestamps:
193 * 0 = seconds only; nanoseconds zeroed.
194 * 1 = seconds and nanoseconds, accurate within 1/HZ.
195 * 2 = seconds and nanoseconds, truncated to microseconds.
196 * >=3 = seconds and nanoseconds, maximum precision.
198 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
200 static int timestamp_precision = TSP_SEC;
201 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
202 &timestamp_precision, 0, "Precision of file timestamps");
205 * Get a current timestamp.
207 * MPSAFE
209 void
210 vfs_timestamp(struct timespec *tsp)
212 struct timeval tv;
214 switch (timestamp_precision) {
215 case TSP_SEC:
216 tsp->tv_sec = time_second;
217 tsp->tv_nsec = 0;
218 break;
219 case TSP_HZ:
220 getnanotime(tsp);
221 break;
222 case TSP_USEC:
223 microtime(&tv);
224 TIMEVAL_TO_TIMESPEC(&tv, tsp);
225 break;
226 case TSP_NSEC:
227 default:
228 nanotime(tsp);
229 break;
234 * Set vnode attributes to VNOVAL
236 void
237 vattr_null(struct vattr *vap)
239 vap->va_type = VNON;
240 vap->va_size = VNOVAL;
241 vap->va_bytes = VNOVAL;
242 vap->va_mode = VNOVAL;
243 vap->va_nlink = VNOVAL;
244 vap->va_uid = VNOVAL;
245 vap->va_gid = VNOVAL;
246 vap->va_fsid = VNOVAL;
247 vap->va_fileid = VNOVAL;
248 vap->va_blocksize = VNOVAL;
249 vap->va_rmajor = VNOVAL;
250 vap->va_rminor = VNOVAL;
251 vap->va_atime.tv_sec = VNOVAL;
252 vap->va_atime.tv_nsec = VNOVAL;
253 vap->va_mtime.tv_sec = VNOVAL;
254 vap->va_mtime.tv_nsec = VNOVAL;
255 vap->va_ctime.tv_sec = VNOVAL;
256 vap->va_ctime.tv_nsec = VNOVAL;
257 vap->va_flags = VNOVAL;
258 vap->va_gen = VNOVAL;
259 vap->va_vaflags = 0;
260 /* va_*_uuid fields are only valid if related flags are set */
264 * Flush out and invalidate all buffers associated with a vnode.
266 * vp must be locked.
268 static int vinvalbuf_bp(struct buf *bp, void *data);
270 struct vinvalbuf_bp_info {
271 struct vnode *vp;
272 int slptimeo;
273 int lkflags;
274 int flags;
275 int clean;
279 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
281 struct vinvalbuf_bp_info info;
282 vm_object_t object;
283 int error;
285 lwkt_gettoken(&vp->v_token);
288 * If we are being asked to save, call fsync to ensure that the inode
289 * is updated.
291 if (flags & V_SAVE) {
292 error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
293 if (error)
294 goto done;
295 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
296 if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
297 goto done;
298 #if 0
300 * Dirty bufs may be left or generated via races
301 * in circumstances where vinvalbuf() is called on
302 * a vnode not undergoing reclamation. Only
303 * panic if we are trying to reclaim the vnode.
305 if ((vp->v_flag & VRECLAIMED) &&
306 (bio_track_active(&vp->v_track_write) ||
307 !RB_EMPTY(&vp->v_rbdirty_tree))) {
308 panic("vinvalbuf: dirty bufs");
310 #endif
313 info.slptimeo = slptimeo;
314 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
315 if (slpflag & PCATCH)
316 info.lkflags |= LK_PCATCH;
317 info.flags = flags;
318 info.vp = vp;
321 * Flush the buffer cache until nothing is left, wait for all I/O
322 * to complete. At least one pass is required. We might block
323 * in the pip code so we have to re-check. Order is important.
325 do {
327 * Flush buffer cache
329 if (!RB_EMPTY(&vp->v_rbclean_tree)) {
330 info.clean = 1;
331 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
332 NULL, vinvalbuf_bp, &info);
334 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
335 info.clean = 0;
336 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
337 NULL, vinvalbuf_bp, &info);
341 * Wait for I/O completion.
343 bio_track_wait(&vp->v_track_write, 0, 0);
344 if ((object = vp->v_object) != NULL)
345 refcount_wait(&object->paging_in_progress, "vnvlbx");
346 } while (bio_track_active(&vp->v_track_write) ||
347 !RB_EMPTY(&vp->v_rbclean_tree) ||
348 !RB_EMPTY(&vp->v_rbdirty_tree));
351 * Destroy the copy in the VM cache, too.
353 if ((object = vp->v_object) != NULL) {
354 vm_object_page_remove(object, 0, 0,
355 (flags & V_SAVE) ? TRUE : FALSE);
358 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
359 panic("vinvalbuf: flush failed");
360 if (!RB_EMPTY(&vp->v_rbhash_tree))
361 panic("vinvalbuf: flush failed, buffers still present");
362 error = 0;
363 done:
364 lwkt_reltoken(&vp->v_token);
365 return (error);
368 static int
369 vinvalbuf_bp(struct buf *bp, void *data)
371 struct vinvalbuf_bp_info *info = data;
372 int error;
374 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
375 atomic_add_int(&bp->b_refs, 1);
376 error = BUF_TIMELOCK(bp, info->lkflags,
377 "vinvalbuf", info->slptimeo);
378 atomic_subtract_int(&bp->b_refs, 1);
379 if (error == 0) {
380 BUF_UNLOCK(bp);
381 error = ENOLCK;
383 if (error == ENOLCK)
384 return(0);
385 return (-error);
387 KKASSERT(bp->b_vp == info->vp);
390 * Must check clean/dirty status after successfully locking as
391 * it may race.
393 if ((info->clean && (bp->b_flags & B_DELWRI)) ||
394 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
395 BUF_UNLOCK(bp);
396 return(0);
400 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite()
401 * check. This code will write out the buffer, period.
403 bremfree(bp);
404 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
405 (info->flags & V_SAVE)) {
406 cluster_awrite(bp);
407 } else if (info->flags & V_SAVE) {
409 * Cannot set B_NOCACHE on a clean buffer as this will
410 * destroy the VM backing store which might actually
411 * be dirty (and unsynchronized).
413 bp->b_flags |= (B_INVAL | B_RELBUF);
414 brelse(bp);
415 } else {
416 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
417 brelse(bp);
419 return(0);
423 * Truncate a file's buffer and pages to a specified length. This
424 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
425 * sync activity.
427 * The vnode must be locked.
429 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
430 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
431 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
432 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
434 struct vtruncbuf_info {
435 struct vnode *vp;
436 off_t truncloffset;
437 int clean;
441 vtruncbuf(struct vnode *vp, off_t length, int blksize)
443 struct vtruncbuf_info info;
444 const char *filename;
445 int count;
448 * Round up to the *next* block, then destroy the buffers in question.
449 * Since we are only removing some of the buffers we must rely on the
450 * scan count to determine whether a loop is necessary.
452 if ((count = (int)(length % blksize)) != 0)
453 info.truncloffset = length + (blksize - count);
454 else
455 info.truncloffset = length;
456 info.vp = vp;
458 lwkt_gettoken(&vp->v_token);
459 do {
460 info.clean = 1;
461 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
462 vtruncbuf_bp_trunc_cmp,
463 vtruncbuf_bp_trunc, &info);
464 info.clean = 0;
465 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
466 vtruncbuf_bp_trunc_cmp,
467 vtruncbuf_bp_trunc, &info);
468 } while(count);
471 * For safety, fsync any remaining metadata if the file is not being
472 * truncated to 0. Since the metadata does not represent the entire
473 * dirty list we have to rely on the hit count to ensure that we get
474 * all of it.
476 if (length > 0) {
477 do {
478 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
479 vtruncbuf_bp_metasync_cmp,
480 vtruncbuf_bp_metasync, &info);
481 } while (count);
485 * Clean out any left over VM backing store.
487 * It is possible to have in-progress I/O from buffers that were
488 * not part of the truncation. This should not happen if we
489 * are truncating to 0-length.
491 vnode_pager_setsize(vp, length);
492 bio_track_wait(&vp->v_track_write, 0, 0);
495 * Debugging only
497 spin_lock(&vp->v_spin);
498 filename = TAILQ_FIRST(&vp->v_namecache) ?
499 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
500 spin_unlock(&vp->v_spin);
503 * Make sure no buffers were instantiated while we were trying
504 * to clean out the remaining VM pages. This could occur due
505 * to busy dirty VM pages being flushed out to disk.
507 do {
508 info.clean = 1;
509 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
510 vtruncbuf_bp_trunc_cmp,
511 vtruncbuf_bp_trunc, &info);
512 info.clean = 0;
513 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
514 vtruncbuf_bp_trunc_cmp,
515 vtruncbuf_bp_trunc, &info);
516 if (count) {
517 kprintf("Warning: vtruncbuf(): Had to re-clean %d "
518 "left over buffers in %s\n", count, filename);
520 } while(count);
522 lwkt_reltoken(&vp->v_token);
524 return (0);
528 * The callback buffer is beyond the new file EOF and must be destroyed.
529 * Note that the compare function must conform to the RB_SCAN's requirements.
531 static
533 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
535 struct vtruncbuf_info *info = data;
537 if (bp->b_loffset >= info->truncloffset)
538 return(0);
539 return(-1);
542 static
543 int
544 vtruncbuf_bp_trunc(struct buf *bp, void *data)
546 struct vtruncbuf_info *info = data;
549 * Do not try to use a buffer we cannot immediately lock, but sleep
550 * anyway to prevent a livelock. The code will loop until all buffers
551 * can be acted upon.
553 * We must always revalidate the buffer after locking it to deal
554 * with MP races.
556 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
557 atomic_add_int(&bp->b_refs, 1);
558 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
559 BUF_UNLOCK(bp);
560 atomic_subtract_int(&bp->b_refs, 1);
561 } else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
562 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
563 bp->b_vp != info->vp ||
564 vtruncbuf_bp_trunc_cmp(bp, data)) {
565 BUF_UNLOCK(bp);
566 } else {
567 bremfree(bp);
568 bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
569 brelse(bp);
571 return(1);
575 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
576 * blocks (with a negative loffset) are scanned.
577 * Note that the compare function must conform to the RB_SCAN's requirements.
579 static int
580 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
582 if (bp->b_loffset < 0)
583 return(0);
584 return(1);
587 static int
588 vtruncbuf_bp_metasync(struct buf *bp, void *data)
590 struct vtruncbuf_info *info = data;
592 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
593 atomic_add_int(&bp->b_refs, 1);
594 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
595 BUF_UNLOCK(bp);
596 atomic_subtract_int(&bp->b_refs, 1);
597 } else if ((bp->b_flags & B_DELWRI) == 0 ||
598 bp->b_vp != info->vp ||
599 vtruncbuf_bp_metasync_cmp(bp, data)) {
600 BUF_UNLOCK(bp);
601 } else {
602 bremfree(bp);
603 if (bp->b_vp == info->vp)
604 bawrite(bp);
605 else
606 bwrite(bp);
608 return(1);
612 * vfsync - implements a multipass fsync on a file which understands
613 * dependancies and meta-data. The passed vnode must be locked. The
614 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
616 * When fsyncing data asynchronously just do one consolidated pass starting
617 * with the most negative block number. This may not get all the data due
618 * to dependancies.
620 * When fsyncing data synchronously do a data pass, then a metadata pass,
621 * then do additional data+metadata passes to try to get all the data out.
623 * Caller must ref the vnode but does not have to lock it.
625 static int vfsync_wait_output(struct vnode *vp,
626 int (*waitoutput)(struct vnode *, struct thread *));
627 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
628 static int vfsync_data_only_cmp(struct buf *bp, void *data);
629 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
630 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
631 static int vfsync_bp(struct buf *bp, void *data);
633 struct vfsync_info {
634 struct vnode *vp;
635 int fastpass;
636 int synchronous;
637 int syncdeps;
638 int lazycount;
639 int lazylimit;
640 int skippedbufs;
641 int (*checkdef)(struct buf *);
642 int (*cmpfunc)(struct buf *, void *);
646 vfsync(struct vnode *vp, int waitfor, int passes,
647 int (*checkdef)(struct buf *),
648 int (*waitoutput)(struct vnode *, struct thread *))
650 struct vfsync_info info;
651 int error;
653 bzero(&info, sizeof(info));
654 info.vp = vp;
655 if ((info.checkdef = checkdef) == NULL)
656 info.syncdeps = 1;
658 lwkt_gettoken(&vp->v_token);
660 switch(waitfor) {
661 case MNT_LAZY | MNT_NOWAIT:
662 case MNT_LAZY:
664 * Lazy (filesystem syncer typ) Asynchronous plus limit the
665 * number of data (not meta) pages we try to flush to 1MB.
666 * A non-zero return means that lazy limit was reached.
668 info.lazylimit = 1024 * 1024;
669 info.syncdeps = 1;
670 info.cmpfunc = vfsync_lazy_range_cmp;
671 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
672 vfsync_lazy_range_cmp, vfsync_bp, &info);
673 info.cmpfunc = vfsync_meta_only_cmp;
674 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
675 vfsync_meta_only_cmp, vfsync_bp, &info);
676 if (error == 0)
677 vp->v_lazyw = 0;
678 else if (!RB_EMPTY(&vp->v_rbdirty_tree))
679 vn_syncer_add(vp, 1);
680 error = 0;
681 break;
682 case MNT_NOWAIT:
684 * Asynchronous. Do a data-only pass and a meta-only pass.
686 info.syncdeps = 1;
687 info.cmpfunc = vfsync_data_only_cmp;
688 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
689 vfsync_bp, &info);
690 info.cmpfunc = vfsync_meta_only_cmp;
691 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
692 vfsync_bp, &info);
693 error = 0;
694 break;
695 default:
697 * Synchronous. Do a data-only pass, then a meta-data+data
698 * pass, then additional integrated passes to try to get
699 * all the dependancies flushed.
701 info.cmpfunc = vfsync_data_only_cmp;
702 info.fastpass = 1;
703 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
704 vfsync_bp, &info);
705 info.fastpass = 0;
706 error = vfsync_wait_output(vp, waitoutput);
707 if (error == 0) {
708 info.skippedbufs = 0;
709 info.cmpfunc = vfsync_dummy_cmp;
710 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
711 vfsync_bp, &info);
712 error = vfsync_wait_output(vp, waitoutput);
713 if (info.skippedbufs) {
714 kprintf("Warning: vfsync skipped %d dirty "
715 "buf%s in pass2!\n",
716 info.skippedbufs,
717 ((info.skippedbufs > 1) ? "s" : ""));
720 while (error == 0 && passes > 0 &&
721 !RB_EMPTY(&vp->v_rbdirty_tree)
723 info.skippedbufs = 0;
724 if (--passes == 0) {
725 info.synchronous = 1;
726 info.syncdeps = 1;
728 info.cmpfunc = vfsync_dummy_cmp;
729 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
730 vfsync_bp, &info);
731 if (error < 0)
732 error = -error;
733 info.syncdeps = 1;
734 if (error == 0)
735 error = vfsync_wait_output(vp, waitoutput);
736 if (info.skippedbufs && passes == 0) {
737 kprintf("Warning: vfsync skipped %d dirty "
738 "buf%s in final pass!\n",
739 info.skippedbufs,
740 ((info.skippedbufs > 1) ? "s" : ""));
743 #if 0
745 * This case can occur normally because vnode lock might
746 * not be held.
748 if (!RB_EMPTY(&vp->v_rbdirty_tree))
749 kprintf("dirty bufs left after final pass\n");
750 #endif
751 break;
753 lwkt_reltoken(&vp->v_token);
755 return(error);
758 static int
759 vfsync_wait_output(struct vnode *vp,
760 int (*waitoutput)(struct vnode *, struct thread *))
762 int error;
764 error = bio_track_wait(&vp->v_track_write, 0, 0);
765 if (waitoutput)
766 error = waitoutput(vp, curthread);
767 return(error);
770 static int
771 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
773 return(0);
776 static int
777 vfsync_data_only_cmp(struct buf *bp, void *data)
779 if (bp->b_loffset < 0)
780 return(-1);
781 return(0);
784 static int
785 vfsync_meta_only_cmp(struct buf *bp, void *data)
787 if (bp->b_loffset < 0)
788 return(0);
789 return(1);
792 static int
793 vfsync_lazy_range_cmp(struct buf *bp, void *data)
795 struct vfsync_info *info = data;
797 if (bp->b_loffset < info->vp->v_lazyw)
798 return(-1);
799 return(0);
802 static int
803 vfsync_bp(struct buf *bp, void *data)
805 struct vfsync_info *info = data;
806 struct vnode *vp = info->vp;
807 int error;
809 if (info->fastpass) {
811 * Ignore buffers that we cannot immediately lock.
813 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
815 * Removed BUF_TIMELOCK(..., 1), even a 1-tick
816 * delay can mess up performance
818 * Another reason is that during a dirty-buffer
819 * scan a clustered write can start I/O on buffers
820 * ahead of the scan, causing the scan to not
821 * get a lock here. Usually this means the write
822 * is already in progress so, in fact, we *want*
823 * to skip the buffer.
825 ++info->skippedbufs;
826 return(0);
828 } else if (info->synchronous == 0) {
830 * Normal pass, give the buffer a little time to become
831 * available to us.
833 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst2", hz / 10)) {
834 ++info->skippedbufs;
835 return(0);
837 } else {
839 * Synchronous pass, give the buffer a lot of time before
840 * giving up.
842 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst3", hz * 10)) {
843 ++info->skippedbufs;
844 return(0);
849 * We must revalidate the buffer after locking.
851 if ((bp->b_flags & B_DELWRI) == 0 ||
852 bp->b_vp != info->vp ||
853 info->cmpfunc(bp, data)) {
854 BUF_UNLOCK(bp);
855 return(0);
859 * If syncdeps is not set we do not try to write buffers which have
860 * dependancies.
862 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
863 BUF_UNLOCK(bp);
864 return(0);
868 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
869 * has been written but an additional handshake with the device
870 * is required before we can dispose of the buffer. We have no idea
871 * how to do this so we have to skip these buffers.
873 if (bp->b_flags & B_NEEDCOMMIT) {
874 BUF_UNLOCK(bp);
875 return(0);
879 * Ask bioops if it is ok to sync. If not the VFS may have
880 * set B_LOCKED so we have to cycle the buffer.
882 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
883 bremfree(bp);
884 brelse(bp);
885 return(0);
888 if (info->synchronous) {
890 * Synchronous flush. An error may be returned and will
891 * stop the scan.
893 bremfree(bp);
894 error = bwrite(bp);
895 } else {
897 * Asynchronous flush. We use the error return to support
898 * MNT_LAZY flushes.
900 * In low-memory situations we revert to synchronous
901 * operation. This should theoretically prevent the I/O
902 * path from exhausting memory in a non-recoverable way.
904 vp->v_lazyw = bp->b_loffset;
905 bremfree(bp);
906 if (vm_page_count_min(0)) {
907 /* low memory */
908 info->lazycount += bp->b_bufsize;
909 bwrite(bp);
910 } else {
911 /* normal */
912 info->lazycount += cluster_awrite(bp);
913 waitrunningbufspace();
914 /*vm_wait_nominal();*/
916 if (info->lazylimit && info->lazycount >= info->lazylimit)
917 error = 1;
918 else
919 error = 0;
921 return(-error);
925 * Associate a buffer with a vnode.
927 * MPSAFE
930 bgetvp(struct vnode *vp, struct buf *bp, int testsize)
932 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
933 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
936 * Insert onto list for new vnode.
938 lwkt_gettoken(&vp->v_token);
940 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
941 lwkt_reltoken(&vp->v_token);
942 return (EEXIST);
946 * Diagnostics (mainly for HAMMER debugging). Check for
947 * overlapping buffers.
949 if (check_buf_overlap) {
950 struct buf *bx;
951 bx = buf_rb_hash_RB_PREV(bp);
952 if (bx) {
953 if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
954 kprintf("bgetvp: overlapl %016jx/%d %016jx "
955 "bx %p bp %p\n",
956 (intmax_t)bx->b_loffset,
957 bx->b_bufsize,
958 (intmax_t)bp->b_loffset,
959 bx, bp);
960 if (check_buf_overlap > 1)
961 panic("bgetvp - overlapping buffer");
964 bx = buf_rb_hash_RB_NEXT(bp);
965 if (bx) {
966 if (bp->b_loffset + testsize > bx->b_loffset) {
967 kprintf("bgetvp: overlapr %016jx/%d %016jx "
968 "bp %p bx %p\n",
969 (intmax_t)bp->b_loffset,
970 testsize,
971 (intmax_t)bx->b_loffset,
972 bp, bx);
973 if (check_buf_overlap > 1)
974 panic("bgetvp - overlapping buffer");
978 bp->b_vp = vp;
979 bp->b_flags |= B_HASHED;
980 bp->b_flags |= B_VNCLEAN;
981 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
982 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
983 /*vhold(vp);*/
984 lwkt_reltoken(&vp->v_token);
985 return(0);
989 * Disassociate a buffer from a vnode.
991 * MPSAFE
993 void
994 brelvp(struct buf *bp)
996 struct vnode *vp;
998 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1001 * Delete from old vnode list, if on one.
1003 vp = bp->b_vp;
1004 lwkt_gettoken(&vp->v_token);
1005 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
1006 if (bp->b_flags & B_VNDIRTY)
1007 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1008 else
1009 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1010 bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
1012 if (bp->b_flags & B_HASHED) {
1013 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
1014 bp->b_flags &= ~B_HASHED;
1018 * Only remove from synclist when no dirty buffers are left AND
1019 * the VFS has not flagged the vnode's inode as being dirty.
1021 if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST &&
1022 RB_EMPTY(&vp->v_rbdirty_tree)) {
1023 vn_syncer_remove(vp, 0);
1025 bp->b_vp = NULL;
1027 lwkt_reltoken(&vp->v_token);
1029 /*vdrop(vp);*/
1033 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
1034 * This routine is called when the state of the B_DELWRI bit is changed.
1036 * Must be called with vp->v_token held.
1037 * MPSAFE
1039 void
1040 reassignbuf(struct buf *bp)
1042 struct vnode *vp = bp->b_vp;
1043 int delay;
1045 ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
1046 ++reassignbufcalls;
1049 * B_PAGING flagged buffers cannot be reassigned because their vp
1050 * is not fully linked in.
1052 if (bp->b_flags & B_PAGING)
1053 panic("cannot reassign paging buffer");
1055 if (bp->b_flags & B_DELWRI) {
1057 * Move to the dirty list, add the vnode to the worklist
1059 if (bp->b_flags & B_VNCLEAN) {
1060 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1061 bp->b_flags &= ~B_VNCLEAN;
1063 if ((bp->b_flags & B_VNDIRTY) == 0) {
1064 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
1065 panic("reassignbuf: dup lblk vp %p bp %p",
1066 vp, bp);
1068 bp->b_flags |= B_VNDIRTY;
1070 if ((vp->v_flag & VONWORKLST) == 0) {
1071 switch (vp->v_type) {
1072 case VDIR:
1073 delay = dirdelay;
1074 break;
1075 case VCHR:
1076 case VBLK:
1077 if (vp->v_rdev &&
1078 vp->v_rdev->si_mountpoint != NULL) {
1079 delay = metadelay;
1080 break;
1082 /* fall through */
1083 default:
1084 delay = filedelay;
1086 vn_syncer_add(vp, delay);
1088 } else {
1090 * Move to the clean list, remove the vnode from the worklist
1091 * if no dirty blocks remain.
1093 if (bp->b_flags & B_VNDIRTY) {
1094 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1095 bp->b_flags &= ~B_VNDIRTY;
1097 if ((bp->b_flags & B_VNCLEAN) == 0) {
1098 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1099 panic("reassignbuf: dup lblk vp %p bp %p",
1100 vp, bp);
1102 bp->b_flags |= B_VNCLEAN;
1106 * Only remove from synclist when no dirty buffers are left
1107 * AND the VFS has not flagged the vnode's inode as being
1108 * dirty.
1110 if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) ==
1111 VONWORKLST &&
1112 RB_EMPTY(&vp->v_rbdirty_tree)) {
1113 vn_syncer_remove(vp, 0);
1119 * Create a vnode for a block device. Used for mounting the root file
1120 * system.
1122 * A vref()'d vnode is returned.
1124 extern struct vop_ops *devfs_vnode_dev_vops_p;
1126 bdevvp(cdev_t dev, struct vnode **vpp)
1128 struct vnode *vp;
1129 struct vnode *nvp;
1130 int error;
1132 if (dev == NULL) {
1133 *vpp = NULLVP;
1134 return (ENXIO);
1136 error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1137 &nvp, 0, 0);
1138 if (error) {
1139 *vpp = NULLVP;
1140 return (error);
1142 vp = nvp;
1143 vp->v_type = VCHR;
1144 #if 0
1145 vp->v_rdev = dev;
1146 #endif
1147 v_associate_rdev(vp, dev);
1148 vp->v_umajor = dev->si_umajor;
1149 vp->v_uminor = dev->si_uminor;
1150 vx_unlock(vp);
1151 *vpp = vp;
1152 return (0);
1156 v_associate_rdev(struct vnode *vp, cdev_t dev)
1158 if (dev == NULL)
1159 return(ENXIO);
1160 if (dev_is_good(dev) == 0)
1161 return(ENXIO);
1162 KKASSERT(vp->v_rdev == NULL);
1163 vp->v_rdev = reference_dev(dev);
1164 lwkt_gettoken(&spechash_token);
1165 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1166 lwkt_reltoken(&spechash_token);
1167 return(0);
1170 void
1171 v_release_rdev(struct vnode *vp)
1173 cdev_t dev;
1175 if ((dev = vp->v_rdev) != NULL) {
1176 lwkt_gettoken(&spechash_token);
1177 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1178 vp->v_rdev = NULL;
1179 release_dev(dev);
1180 lwkt_reltoken(&spechash_token);
1185 * Add a vnode to the alias list hung off the cdev_t. We only associate
1186 * the device number with the vnode. The actual device is not associated
1187 * until the vnode is opened (usually in spec_open()), and will be
1188 * disassociated on last close.
1190 void
1191 addaliasu(struct vnode *nvp, int x, int y)
1193 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1194 panic("addaliasu on non-special vnode");
1195 nvp->v_umajor = x;
1196 nvp->v_uminor = y;
1200 * Simple call that a filesystem can make to try to get rid of a
1201 * vnode. It will fail if anyone is referencing the vnode (including
1202 * the caller).
1204 * The filesystem can check whether its in-memory inode structure still
1205 * references the vp on return.
1207 * May only be called if the vnode is in a known state (i.e. being prevented
1208 * from being deallocated by some other condition such as a vfs inode hold).
1210 void
1211 vclean_unlocked(struct vnode *vp)
1213 vx_get(vp);
1214 if (VREFCNT(vp) <= 1)
1215 vgone_vxlocked(vp);
1216 vx_put(vp);
1220 * Disassociate a vnode from its underlying filesystem.
1222 * The vnode must be VX locked and referenced. In all normal situations
1223 * there are no active references. If vclean_vxlocked() is called while
1224 * there are active references, the vnode is being ripped out and we have
1225 * to call VOP_CLOSE() as appropriate before we can reclaim it.
1227 void
1228 vclean_vxlocked(struct vnode *vp, int flags)
1230 int active;
1231 int n;
1232 vm_object_t object;
1233 struct namecache *ncp;
1236 * If the vnode has already been reclaimed we have nothing to do.
1238 if (vp->v_flag & VRECLAIMED)
1239 return;
1242 * Set flag to interlock operation, flag finalization to ensure
1243 * that the vnode winds up on the inactive list, and set v_act to 0.
1245 vsetflags(vp, VRECLAIMED);
1246 atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1247 vp->v_act = 0;
1249 if (verbose_reclaims) {
1250 if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1251 kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1255 * Scrap the vfs cache
1257 while (cache_inval_vp(vp, 0) != 0) {
1258 kprintf("Warning: vnode %p clean/cache_resolution "
1259 "race detected\n", vp);
1260 tsleep(vp, 0, "vclninv", 2);
1264 * Check to see if the vnode is in use. If so we have to reference it
1265 * before we clean it out so that its count cannot fall to zero and
1266 * generate a race against ourselves to recycle it.
1268 active = (VREFCNT(vp) > 0);
1271 * Clean out any buffers associated with the vnode and destroy its
1272 * object, if it has one.
1274 vinvalbuf(vp, V_SAVE, 0, 0);
1277 * If purging an active vnode (typically during a forced unmount
1278 * or reboot), it must be closed and deactivated before being
1279 * reclaimed. This isn't really all that safe, but what can
1280 * we do? XXX.
1282 * Note that neither of these routines unlocks the vnode.
1284 if (active && (flags & DOCLOSE)) {
1285 while ((n = vp->v_opencount) != 0) {
1286 if (vp->v_writecount)
1287 VOP_CLOSE(vp, FWRITE|FNONBLOCK, NULL);
1288 else
1289 VOP_CLOSE(vp, FNONBLOCK, NULL);
1290 if (vp->v_opencount == n) {
1291 kprintf("Warning: unable to force-close"
1292 " vnode %p\n", vp);
1293 break;
1299 * If the vnode has not been deactivated, deactivated it. Deactivation
1300 * can create new buffers and VM pages so we have to call vinvalbuf()
1301 * again to make sure they all get flushed.
1303 * This can occur if a file with a link count of 0 needs to be
1304 * truncated.
1306 * If the vnode is already dead don't try to deactivate it.
1308 if ((vp->v_flag & VINACTIVE) == 0) {
1309 vsetflags(vp, VINACTIVE);
1310 if (vp->v_mount)
1311 VOP_INACTIVE(vp);
1312 vinvalbuf(vp, V_SAVE, 0, 0);
1316 * If the vnode has an object, destroy it.
1318 while ((object = vp->v_object) != NULL) {
1319 vm_object_hold(object);
1320 if (object == vp->v_object)
1321 break;
1322 vm_object_drop(object);
1325 if (object != NULL) {
1326 if (object->ref_count == 0) {
1327 if ((object->flags & OBJ_DEAD) == 0)
1328 vm_object_terminate(object);
1329 vm_object_drop(object);
1330 vclrflags(vp, VOBJBUF);
1331 } else {
1332 vm_pager_deallocate(object);
1333 vclrflags(vp, VOBJBUF);
1334 vm_object_drop(object);
1337 KKASSERT((vp->v_flag & VOBJBUF) == 0);
1339 if (vp->v_flag & VOBJDIRTY)
1340 vclrobjdirty(vp);
1343 * Reclaim the vnode if not already dead.
1345 if (vp->v_mount && VOP_RECLAIM(vp))
1346 panic("vclean: cannot reclaim");
1349 * Done with purge, notify sleepers of the grim news.
1351 vp->v_ops = &dead_vnode_vops_p;
1352 vn_gone(vp);
1353 vp->v_tag = VT_NON;
1356 * If we are destroying an active vnode, reactivate it now that
1357 * we have reassociated it with deadfs. This prevents the system
1358 * from crashing on the vnode due to it being unexpectedly marked
1359 * as inactive or reclaimed.
1361 if (active && (flags & DOCLOSE)) {
1362 vclrflags(vp, VINACTIVE | VRECLAIMED);
1367 * Eliminate all activity associated with the requested vnode
1368 * and with all vnodes aliased to the requested vnode.
1370 * The vnode must be referenced but should not be locked.
1373 vrevoke(struct vnode *vp, struct ucred *cred)
1375 struct vnode *vq;
1376 struct vnode *vqn;
1377 cdev_t dev;
1378 int error;
1381 * If the vnode has a device association, scrap all vnodes associated
1382 * with the device. Don't let the device disappear on us while we
1383 * are scrapping the vnodes.
1385 * The passed vp will probably show up in the list, do not VX lock
1386 * it twice!
1388 * Releasing the vnode's rdev here can mess up specfs's call to
1389 * device close, so don't do it. The vnode has been disassociated
1390 * and the device will be closed after the last ref on the related
1391 * fp goes away (if not still open by e.g. the kernel).
1393 if (vp->v_type != VCHR) {
1394 error = fdrevoke(vp, DTYPE_VNODE, cred);
1395 return (error);
1397 if ((dev = vp->v_rdev) == NULL) {
1398 return(0);
1400 reference_dev(dev);
1401 lwkt_gettoken(&spechash_token);
1403 restart:
1404 vqn = SLIST_FIRST(&dev->si_hlist);
1405 if (vqn)
1406 vhold(vqn);
1407 while ((vq = vqn) != NULL) {
1408 if (VREFCNT(vq) > 0) {
1409 vref(vq);
1410 fdrevoke(vq, DTYPE_VNODE, cred);
1411 /*v_release_rdev(vq);*/
1412 vrele(vq);
1413 if (vq->v_rdev != dev) {
1414 vdrop(vq);
1415 goto restart;
1418 vqn = SLIST_NEXT(vq, v_cdevnext);
1419 if (vqn)
1420 vhold(vqn);
1421 vdrop(vq);
1423 lwkt_reltoken(&spechash_token);
1424 dev_drevoke(dev);
1425 release_dev(dev);
1426 return (0);
1430 * This is called when the object underlying a vnode is being destroyed,
1431 * such as in a remove(). Try to recycle the vnode immediately if the
1432 * only active reference is our reference.
1434 * Directory vnodes in the namecache with children cannot be immediately
1435 * recycled because numerous VOP_N*() ops require them to be stable.
1437 * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1438 * function is a NOP if VRECLAIMED is already set.
1441 vrecycle(struct vnode *vp)
1443 if (VREFCNT(vp) <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1444 if (cache_inval_vp_nonblock(vp))
1445 return(0);
1446 vgone_vxlocked(vp);
1447 return (1);
1449 return (0);
1453 * Return the maximum I/O size allowed for strategy calls on VP.
1455 * If vp is VCHR or VBLK we dive the device, otherwise we use
1456 * the vp's mount info.
1458 * The returned value is clamped at MAXPHYS as most callers cannot use
1459 * buffers larger than that size.
1462 vmaxiosize(struct vnode *vp)
1464 int maxiosize;
1466 if (vp->v_type == VBLK || vp->v_type == VCHR)
1467 maxiosize = vp->v_rdev->si_iosize_max;
1468 else
1469 maxiosize = vp->v_mount->mnt_iosize_max;
1471 if (maxiosize > MAXPHYS)
1472 maxiosize = MAXPHYS;
1473 return (maxiosize);
1477 * Eliminate all activity associated with a vnode in preparation for
1478 * destruction.
1480 * The vnode must be VX locked and refd and will remain VX locked and refd
1481 * on return. This routine may be called with the vnode in any state, as
1482 * long as it is VX locked. The vnode will be cleaned out and marked
1483 * VRECLAIMED but will not actually be reused until all existing refs and
1484 * holds go away.
1486 * NOTE: This routine may be called on a vnode which has not yet been
1487 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1488 * already been reclaimed.
1490 * This routine is not responsible for placing us back on the freelist.
1491 * Instead, it happens automatically when the caller releases the VX lock
1492 * (assuming there aren't any other references).
1494 void
1495 vgone_vxlocked(struct vnode *vp)
1498 * assert that the VX lock is held. This is an absolute requirement
1499 * now for vgone_vxlocked() to be called.
1501 KKASSERT(lockinuse(&vp->v_lock));
1504 * Clean out the filesystem specific data and set the VRECLAIMED
1505 * bit. Also deactivate the vnode if necessary.
1507 * The vnode should have automatically been removed from the syncer
1508 * list as syncer/dirty flags cleared during the cleaning.
1510 vclean_vxlocked(vp, DOCLOSE);
1513 * Normally panic if the vnode is still dirty, unless we are doing
1514 * a forced unmount (tmpfs typically).
1516 if (vp->v_flag & VONWORKLST) {
1517 if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1518 /* force removal */
1519 vn_syncer_remove(vp, 1);
1520 } else {
1521 panic("vp %p still dirty in vgone after flush", vp);
1526 * Delete from old mount point vnode list, if on one.
1528 if (vp->v_mount != NULL) {
1529 KKASSERT(vp->v_data == NULL);
1530 insmntque(vp, NULL);
1534 * If special device, remove it from special device alias list
1535 * if it is on one. This should normally only occur if a vnode is
1536 * being revoked as the device should otherwise have been released
1537 * naturally.
1539 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1540 v_release_rdev(vp);
1544 * Set us to VBAD
1546 vp->v_type = VBAD;
1550 * Lookup a vnode by device number.
1552 * Returns non-zero and *vpp set to a vref'd vnode on success.
1553 * Returns zero on failure.
1556 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1558 struct vnode *vp;
1560 lwkt_gettoken(&spechash_token);
1561 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1562 if (type == vp->v_type) {
1563 *vpp = vp;
1564 vref(vp);
1565 lwkt_reltoken(&spechash_token);
1566 return (1);
1569 lwkt_reltoken(&spechash_token);
1570 return (0);
1574 * Calculate the total number of references to a special device. This
1575 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1576 * an overloaded field. Since udev2dev can now return NULL, we have
1577 * to check for a NULL v_rdev.
1580 count_dev(cdev_t dev)
1582 struct vnode *vp;
1583 int count = 0;
1585 if (SLIST_FIRST(&dev->si_hlist)) {
1586 lwkt_gettoken(&spechash_token);
1587 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1588 count += vp->v_opencount;
1590 lwkt_reltoken(&spechash_token);
1592 return(count);
1596 vcount(struct vnode *vp)
1598 if (vp->v_rdev == NULL)
1599 return(0);
1600 return(count_dev(vp->v_rdev));
1604 * Initialize VMIO for a vnode. This routine MUST be called before a
1605 * VFS can issue buffer cache ops on a vnode. It is typically called
1606 * when a vnode is initialized from its inode.
1609 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1611 vm_object_t object;
1612 int error = 0;
1614 object = vp->v_object;
1615 if (object) {
1616 vm_object_hold(object);
1617 KKASSERT(vp->v_object == object);
1620 if (object == NULL) {
1621 object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1624 * Dereference the reference we just created. This assumes
1625 * that the object is associated with the vp. Allow it to
1626 * have zero refs. It cannot be destroyed as long as it
1627 * is associated with the vnode.
1629 vm_object_hold(object);
1630 atomic_add_int(&object->ref_count, -1);
1631 vrele(vp);
1632 } else {
1633 KKASSERT((object->flags & OBJ_DEAD) == 0);
1635 KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1636 vsetflags(vp, VOBJBUF);
1637 vm_object_drop(object);
1639 return (error);
1644 * Print out a description of a vnode.
1646 static char *typename[] =
1647 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1649 void
1650 vprint(char *label, struct vnode *vp)
1652 char buf[96];
1654 if (label != NULL)
1655 kprintf("%s: %p: ", label, (void *)vp);
1656 else
1657 kprintf("%p: ", (void *)vp);
1658 kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,",
1659 typename[vp->v_type],
1660 vp->v_refcnt, vp->v_writecount, vp->v_auxrefs);
1661 buf[0] = '\0';
1662 if (vp->v_flag & VROOT)
1663 strcat(buf, "|VROOT");
1664 if (vp->v_flag & VPFSROOT)
1665 strcat(buf, "|VPFSROOT");
1666 if (vp->v_flag & VTEXT)
1667 strcat(buf, "|VTEXT");
1668 if (vp->v_flag & VSYSTEM)
1669 strcat(buf, "|VSYSTEM");
1670 if (vp->v_flag & VOBJBUF)
1671 strcat(buf, "|VOBJBUF");
1672 if (buf[0] != '\0')
1673 kprintf(" flags (%s)", &buf[1]);
1674 if (vp->v_data == NULL) {
1675 kprintf("\n");
1676 } else {
1677 kprintf("\n\t");
1678 VOP_PRINT(vp);
1683 * Do the usual access checking.
1684 * file_mode, uid and gid are from the vnode in question,
1685 * while acc_mode and cred are from the VOP_ACCESS parameter list
1688 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1689 mode_t acc_mode, struct ucred *cred)
1691 mode_t mask;
1692 int ismember;
1695 * Super-user always gets read/write access, but execute access depends
1696 * on at least one execute bit being set.
1698 if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1699 if ((acc_mode & VEXEC) && type != VDIR &&
1700 (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1701 return (EACCES);
1702 return (0);
1705 mask = 0;
1707 /* Otherwise, check the owner. */
1708 if (cred->cr_uid == uid) {
1709 if (acc_mode & VEXEC)
1710 mask |= S_IXUSR;
1711 if (acc_mode & VREAD)
1712 mask |= S_IRUSR;
1713 if (acc_mode & VWRITE)
1714 mask |= S_IWUSR;
1715 return ((file_mode & mask) == mask ? 0 : EACCES);
1718 /* Otherwise, check the groups. */
1719 ismember = groupmember(gid, cred);
1720 if (cred->cr_svgid == gid || ismember) {
1721 if (acc_mode & VEXEC)
1722 mask |= S_IXGRP;
1723 if (acc_mode & VREAD)
1724 mask |= S_IRGRP;
1725 if (acc_mode & VWRITE)
1726 mask |= S_IWGRP;
1727 return ((file_mode & mask) == mask ? 0 : EACCES);
1730 /* Otherwise, check everyone else. */
1731 if (acc_mode & VEXEC)
1732 mask |= S_IXOTH;
1733 if (acc_mode & VREAD)
1734 mask |= S_IROTH;
1735 if (acc_mode & VWRITE)
1736 mask |= S_IWOTH;
1737 return ((file_mode & mask) == mask ? 0 : EACCES);
1740 #ifdef DDB
1741 #include <ddb/ddb.h>
1743 static int db_show_locked_vnodes(struct mount *mp, void *data);
1746 * List all of the locked vnodes in the system.
1747 * Called when debugging the kernel.
1749 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1751 kprintf("Locked vnodes\n");
1752 mountlist_scan(db_show_locked_vnodes, NULL,
1753 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1756 static int
1757 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1759 struct vnode *vp;
1761 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1762 if (vn_islocked(vp))
1763 vprint(NULL, vp);
1765 return(0);
1767 #endif
1770 * Top level filesystem related information gathering.
1772 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1774 static int
1775 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1777 int *name = (int *)arg1 - 1; /* XXX */
1778 u_int namelen = arg2 + 1; /* XXX */
1779 struct vfsconf *vfsp;
1780 int maxtypenum;
1782 #if 1 || defined(COMPAT_PRELITE2)
1783 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1784 if (namelen == 1)
1785 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1786 #endif
1788 #ifdef notyet
1789 /* all sysctl names at this level are at least name and field */
1790 if (namelen < 2)
1791 return (ENOTDIR); /* overloaded */
1792 if (name[0] != VFS_GENERIC) {
1793 vfsp = vfsconf_find_by_typenum(name[0]);
1794 if (vfsp == NULL)
1795 return (EOPNOTSUPP);
1796 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1797 oldp, oldlenp, newp, newlen, p));
1799 #endif
1800 switch (name[1]) {
1801 case VFS_MAXTYPENUM:
1802 if (namelen != 2)
1803 return (ENOTDIR);
1804 maxtypenum = vfsconf_get_maxtypenum();
1805 return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1806 case VFS_CONF:
1807 if (namelen != 3)
1808 return (ENOTDIR); /* overloaded */
1809 vfsp = vfsconf_find_by_typenum(name[2]);
1810 if (vfsp == NULL)
1811 return (EOPNOTSUPP);
1812 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1814 return (EOPNOTSUPP);
1817 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1818 "Generic filesystem");
1820 #if 1 || defined(COMPAT_PRELITE2)
1822 static int
1823 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1825 int error;
1826 struct ovfsconf ovfs;
1827 struct sysctl_req *req = (struct sysctl_req*) data;
1829 bzero(&ovfs, sizeof(ovfs));
1830 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1831 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1832 ovfs.vfc_index = vfsp->vfc_typenum;
1833 ovfs.vfc_refcount = vfsp->vfc_refcount;
1834 ovfs.vfc_flags = vfsp->vfc_flags;
1835 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1836 if (error)
1837 return error; /* abort iteration with error code */
1838 else
1839 return 0; /* continue iterating with next element */
1842 static int
1843 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1845 return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1848 #endif /* 1 || COMPAT_PRELITE2 */
1851 * Check to see if a filesystem is mounted on a block device.
1854 vfs_mountedon(struct vnode *vp)
1856 cdev_t dev;
1858 if ((dev = vp->v_rdev) == NULL) {
1859 /* if (vp->v_type != VBLK)
1860 dev = get_dev(vp->v_uminor, vp->v_umajor); */
1862 if (dev != NULL && dev->si_mountpoint)
1863 return (EBUSY);
1864 return (0);
1868 * Unmount all filesystems. The list is traversed in reverse order
1869 * of mounting to avoid dependencies.
1871 * We want the umountall to be able to break out of its loop if a
1872 * failure occurs, after scanning all possible mounts, so the callback
1873 * returns 0 on error.
1875 * NOTE: Do not call mountlist_remove(mp) on error any more, this will
1876 * confuse mountlist_scan()'s unbusy check.
1878 static int vfs_umountall_callback(struct mount *mp, void *data);
1880 void
1881 vfs_unmountall(int halting)
1883 int count;
1885 do {
1886 count = mountlist_scan(vfs_umountall_callback, &halting,
1887 MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1888 } while (count);
1891 static
1893 vfs_umountall_callback(struct mount *mp, void *data)
1895 int error;
1896 int halting = *(int *)data;
1899 * NOTE: When halting, dounmount will disconnect but leave
1900 * certain mount points intact. e.g. devfs.
1902 error = dounmount(mp, MNT_FORCE, halting);
1903 if (error) {
1904 kprintf("unmount of filesystem mounted from %s failed (",
1905 mp->mnt_stat.f_mntfromname);
1906 if (error == EBUSY)
1907 kprintf("BUSY)\n");
1908 else
1909 kprintf("%d)\n", error);
1910 return 0;
1911 } else {
1912 return 1;
1917 * Checks the mount flags for parameter mp and put the names comma-separated
1918 * into a string buffer buf with a size limit specified by len.
1920 * It returns the number of bytes written into buf, and (*errorp) will be
1921 * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1922 * not large enough). The buffer will be 0-terminated if len was not 0.
1924 size_t
1925 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1926 char *buf, size_t len, int *errorp)
1928 static const struct mountctl_opt optnames[] = {
1929 { MNT_RDONLY, "read-only" },
1930 { MNT_SYNCHRONOUS, "synchronous" },
1931 { MNT_NOEXEC, "noexec" },
1932 { MNT_NOSUID, "nosuid" },
1933 { MNT_NODEV, "nodev" },
1934 { MNT_AUTOMOUNTED, "automounted" },
1935 { MNT_ASYNC, "asynchronous" },
1936 { MNT_SUIDDIR, "suiddir" },
1937 { MNT_SOFTDEP, "soft-updates" },
1938 { MNT_NOSYMFOLLOW, "nosymfollow" },
1939 { MNT_TRIM, "trim" },
1940 { MNT_NOATIME, "noatime" },
1941 { MNT_NOCLUSTERR, "noclusterr" },
1942 { MNT_NOCLUSTERW, "noclusterw" },
1943 { MNT_EXRDONLY, "NFS read-only" },
1944 { MNT_EXPORTED, "NFS exported" },
1945 /* Remaining NFS flags could come here */
1946 { MNT_LOCAL, "local" },
1947 { MNT_QUOTA, "with-quotas" },
1948 /* { MNT_ROOTFS, "rootfs" }, */
1949 /* { MNT_IGNORE, "ignore" }, */
1950 { 0, NULL}
1952 int bwritten;
1953 int bleft;
1954 int optlen;
1955 int actsize;
1957 *errorp = 0;
1958 bwritten = 0;
1959 bleft = len - 1; /* leave room for trailing \0 */
1962 * Checks the size of the string. If it contains
1963 * any data, then we will append the new flags to
1964 * it.
1966 actsize = strlen(buf);
1967 if (actsize > 0)
1968 buf += actsize;
1970 /* Default flags if no flags passed */
1971 if (optp == NULL)
1972 optp = optnames;
1974 if (bleft < 0) { /* degenerate case, 0-length buffer */
1975 *errorp = EINVAL;
1976 return(0);
1979 for (; flags && optp->o_opt; ++optp) {
1980 if ((flags & optp->o_opt) == 0)
1981 continue;
1982 optlen = strlen(optp->o_name);
1983 if (bwritten || actsize > 0) {
1984 if (bleft < 2) {
1985 *errorp = ENOSPC;
1986 break;
1988 buf[bwritten++] = ',';
1989 buf[bwritten++] = ' ';
1990 bleft -= 2;
1992 if (bleft < optlen) {
1993 *errorp = ENOSPC;
1994 break;
1996 bcopy(optp->o_name, buf + bwritten, optlen);
1997 bwritten += optlen;
1998 bleft -= optlen;
1999 flags &= ~optp->o_opt;
2003 * Space already reserved for trailing \0
2005 buf[bwritten] = 0;
2006 return (bwritten);
2010 * Build hash lists of net addresses and hang them off the mount point.
2011 * Called by ufs_mount() to set up the lists of export addresses.
2013 static int
2014 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
2015 const struct export_args *argp)
2017 struct netcred *np;
2018 struct radix_node_head *rnh;
2019 int i;
2020 struct radix_node *rn;
2021 struct sockaddr *saddr, *smask = NULL;
2022 int error;
2024 if (argp->ex_addrlen == 0) {
2025 if (mp->mnt_flag & MNT_DEFEXPORTED)
2026 return (EPERM);
2027 np = &nep->ne_defexported;
2028 np->netc_exflags = argp->ex_flags;
2029 np->netc_anon = argp->ex_anon;
2030 np->netc_anon.cr_ref = 1;
2031 mp->mnt_flag |= MNT_DEFEXPORTED;
2032 return (0);
2035 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2036 return (EINVAL);
2037 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2038 return (EINVAL);
2040 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2041 np = (struct netcred *)kmalloc(i, M_NETCRED, M_WAITOK | M_ZERO);
2042 saddr = (struct sockaddr *) (np + 1);
2043 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2044 goto out;
2045 if (saddr->sa_len > argp->ex_addrlen)
2046 saddr->sa_len = argp->ex_addrlen;
2047 if (argp->ex_masklen) {
2048 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2049 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
2050 if (error)
2051 goto out;
2052 if (smask->sa_len > argp->ex_masklen)
2053 smask->sa_len = argp->ex_masklen;
2055 NE_LOCK(nep);
2056 if (nep->ne_maskhead == NULL) {
2057 if (!rn_inithead((void **)&nep->ne_maskhead, NULL, 0)) {
2058 error = ENOBUFS;
2059 goto out;
2062 if ((rnh = vfs_create_addrlist_af(saddr->sa_family, nep)) == NULL) {
2063 error = ENOBUFS;
2064 goto out;
2066 rn = (*rnh->rnh_addaddr)((char *)saddr, (char *)smask, rnh,
2067 np->netc_rnodes);
2068 NE_UNLOCK(nep);
2069 if (rn == NULL || np != (struct netcred *)rn) { /* already exists */
2070 error = EPERM;
2071 goto out;
2073 np->netc_exflags = argp->ex_flags;
2074 np->netc_anon = argp->ex_anon;
2075 np->netc_anon.cr_ref = 1;
2076 return (0);
2078 out:
2079 kfree(np, M_NETCRED);
2080 return (error);
2084 * Free netcred structures installed in the netexport
2086 static int
2087 vfs_free_netcred(struct radix_node *rn, void *w)
2089 struct radix_node_head *rnh = (struct radix_node_head *)w;
2091 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2092 kfree(rn, M_NETCRED);
2094 return (0);
2098 * callback to free an element of the mask table installed in the
2099 * netexport. These may be created indirectly and are not netcred
2100 * structures.
2102 static int
2103 vfs_free_netcred_mask(struct radix_node *rn, void *w)
2105 struct radix_node_head *rnh = (struct radix_node_head *)w;
2107 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2108 kfree(rn, M_RTABLE);
2110 return (0);
2113 static struct radix_node_head *
2114 vfs_create_addrlist_af(int af, struct netexport *nep)
2116 struct radix_node_head *rnh = NULL;
2117 #if defined(INET) || defined(INET6)
2118 struct radix_node_head *maskhead = nep->ne_maskhead;
2119 int off;
2120 #endif
2122 NE_ASSERT_LOCKED(nep);
2123 #if defined(INET) || defined(INET6)
2124 KKASSERT(maskhead != NULL);
2125 #endif
2126 switch (af) {
2127 #ifdef INET
2128 case AF_INET:
2129 if ((rnh = nep->ne_inethead) == NULL) {
2130 off = offsetof(struct sockaddr_in, sin_addr) << 3;
2131 if (!rn_inithead((void **)&rnh, maskhead, off))
2132 return (NULL);
2133 nep->ne_inethead = rnh;
2135 break;
2136 #endif
2137 #ifdef INET6
2138 case AF_INET6:
2139 if ((rnh = nep->ne_inet6head) == NULL) {
2140 off = offsetof(struct sockaddr_in6, sin6_addr) << 3;
2141 if (!rn_inithead((void **)&rnh, maskhead, off))
2142 return (NULL);
2143 nep->ne_inet6head = rnh;
2145 break;
2146 #endif
2148 return (rnh);
2152 * helper function for freeing netcred elements
2154 static void
2155 vfs_free_addrlist_af(struct radix_node_head **prnh)
2157 struct radix_node_head *rnh = *prnh;
2159 (*rnh->rnh_walktree) (rnh, vfs_free_netcred, rnh);
2160 kfree(rnh, M_RTABLE);
2161 *prnh = NULL;
2165 * helper function for freeing mask elements
2167 static void
2168 vfs_free_addrlist_masks(struct radix_node_head **prnh)
2170 struct radix_node_head *rnh = *prnh;
2172 (*rnh->rnh_walktree) (rnh, vfs_free_netcred_mask, rnh);
2173 kfree(rnh, M_RTABLE);
2174 *prnh = NULL;
2178 * Free the net address hash lists that are hanging off the mount points.
2180 static void
2181 vfs_free_addrlist(struct netexport *nep)
2183 NE_LOCK(nep);
2184 if (nep->ne_inethead != NULL)
2185 vfs_free_addrlist_af(&nep->ne_inethead);
2186 if (nep->ne_inet6head != NULL)
2187 vfs_free_addrlist_af(&nep->ne_inet6head);
2188 if (nep->ne_maskhead)
2189 vfs_free_addrlist_masks(&nep->ne_maskhead);
2190 NE_UNLOCK(nep);
2194 vfs_export(struct mount *mp, struct netexport *nep,
2195 const struct export_args *argp)
2197 int error;
2199 if (argp->ex_flags & MNT_DELEXPORT) {
2200 if (mp->mnt_flag & MNT_EXPUBLIC) {
2201 vfs_setpublicfs(NULL, NULL, NULL);
2202 mp->mnt_flag &= ~MNT_EXPUBLIC;
2204 vfs_free_addrlist(nep);
2205 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2207 if (argp->ex_flags & MNT_EXPORTED) {
2208 if (argp->ex_flags & MNT_EXPUBLIC) {
2209 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2210 return (error);
2211 mp->mnt_flag |= MNT_EXPUBLIC;
2213 if ((error = vfs_hang_addrlist(mp, nep, argp)))
2214 return (error);
2215 mp->mnt_flag |= MNT_EXPORTED;
2217 return (0);
2222 * Set the publicly exported filesystem (WebNFS). Currently, only
2223 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2226 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2227 const struct export_args *argp)
2229 int error;
2230 struct vnode *rvp;
2231 char *cp;
2234 * mp == NULL -> invalidate the current info, the FS is
2235 * no longer exported. May be called from either vfs_export
2236 * or unmount, so check if it hasn't already been done.
2238 if (mp == NULL) {
2239 if (nfs_pub.np_valid) {
2240 nfs_pub.np_valid = 0;
2241 if (nfs_pub.np_index != NULL) {
2242 kfree(nfs_pub.np_index, M_TEMP);
2243 nfs_pub.np_index = NULL;
2246 return (0);
2250 * Only one allowed at a time.
2252 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2253 return (EBUSY);
2256 * Get real filehandle for root of exported FS.
2258 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2259 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2261 if ((error = VFS_ROOT(mp, &rvp)))
2262 return (error);
2264 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2265 return (error);
2267 vput(rvp);
2270 * If an indexfile was specified, pull it in.
2272 if (argp->ex_indexfile != NULL) {
2273 int namelen;
2275 error = vn_get_namelen(rvp, &namelen);
2276 if (error)
2277 return (error);
2278 nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
2279 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2280 namelen, NULL);
2281 if (!error) {
2283 * Check for illegal filenames.
2285 for (cp = nfs_pub.np_index; *cp; cp++) {
2286 if (*cp == '/') {
2287 error = EINVAL;
2288 break;
2292 if (error) {
2293 kfree(nfs_pub.np_index, M_TEMP);
2294 return (error);
2298 nfs_pub.np_mount = mp;
2299 nfs_pub.np_valid = 1;
2300 return (0);
2303 struct netcred *
2304 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2305 struct sockaddr *nam)
2307 struct netcred *np;
2308 struct radix_node_head *rnh;
2309 struct sockaddr *saddr;
2311 np = NULL;
2312 if (mp->mnt_flag & MNT_EXPORTED) {
2314 * Lookup in the export list first.
2316 NE_LOCK(nep);
2317 if (nam != NULL) {
2318 saddr = nam;
2319 switch (saddr->sa_family) {
2320 #ifdef INET
2321 case AF_INET:
2322 rnh = nep->ne_inethead;
2323 break;
2324 #endif
2325 #ifdef INET6
2326 case AF_INET6:
2327 rnh = nep->ne_inet6head;
2328 break;
2329 #endif
2330 default:
2331 rnh = NULL;
2333 if (rnh != NULL) {
2334 np = (struct netcred *)
2335 (*rnh->rnh_matchaddr)((char *)saddr,
2336 rnh);
2337 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2338 np = NULL;
2341 NE_UNLOCK(nep);
2343 * If no address match, use the default if it exists.
2345 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2346 np = &nep->ne_defexported;
2348 return (np);
2352 * perform msync on all vnodes under a mount point. The mount point must
2353 * be locked. This code is also responsible for lazy-freeing unreferenced
2354 * vnodes whos VM objects no longer contain pages.
2356 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2358 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2359 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
2360 * way up in this high level function.
2362 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2363 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2365 void
2366 vfs_msync(struct mount *mp, int flags)
2368 int vmsc_flags;
2371 * tmpfs sets this flag to prevent msync(), sync, and the
2372 * filesystem periodic syncer from trying to flush VM pages
2373 * to swap. Only pure memory pressure flushes tmpfs VM pages
2374 * to swap.
2376 if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2377 return;
2380 * Ok, scan the vnodes for work. If the filesystem is using the
2381 * syncer thread feature we can use vsyncscan() instead of
2382 * vmntvnodescan(), which is much faster.
2384 vmsc_flags = VMSC_GETVP;
2385 if (flags != MNT_WAIT)
2386 vmsc_flags |= VMSC_NOWAIT;
2388 if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
2389 vsyncscan(mp, vmsc_flags, vfs_msync_scan2,
2390 (void *)(intptr_t)flags);
2391 } else {
2392 vmntvnodescan(mp, vmsc_flags,
2393 vfs_msync_scan1, vfs_msync_scan2,
2394 (void *)(intptr_t)flags);
2399 * scan1 is a fast pre-check. There could be hundreds of thousands of
2400 * vnodes, we cannot afford to do anything heavy weight until we have a
2401 * fairly good indication that there is work to do.
2403 static
2405 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2407 int flags = (int)(intptr_t)data;
2409 if ((vp->v_flag & VRECLAIMED) == 0) {
2410 if (vp->v_auxrefs == 0 && VREFCNT(vp) <= 0 &&
2411 vp->v_object) {
2412 return(0); /* call scan2 */
2414 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2415 (vp->v_flag & VOBJDIRTY) &&
2416 (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2417 return(0); /* call scan2 */
2422 * do not call scan2, continue the loop
2424 return(-1);
2428 * This callback is handed a locked vnode.
2430 static
2432 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2434 vm_object_t obj;
2435 int flags = (int)(intptr_t)data;
2437 if (vp->v_flag & VRECLAIMED)
2438 return(0);
2440 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2441 if ((obj = vp->v_object) != NULL) {
2442 vm_object_page_clean(obj, 0, 0,
2443 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2446 return(0);
2450 * Wake up anyone interested in vp because it is being revoked.
2452 void
2453 vn_gone(struct vnode *vp)
2455 lwkt_gettoken(&vp->v_token);
2456 KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2457 lwkt_reltoken(&vp->v_token);
2461 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened
2462 * (or v_rdev might be NULL).
2464 cdev_t
2465 vn_todev(struct vnode *vp)
2467 if (vp->v_type != VBLK && vp->v_type != VCHR)
2468 return (NULL);
2469 KKASSERT(vp->v_rdev != NULL);
2470 return (vp->v_rdev);
2474 * Check if vnode represents a disk device. The vnode does not need to be
2475 * opened.
2477 * MPALMOSTSAFE
2480 vn_isdisk(struct vnode *vp, int *errp)
2482 cdev_t dev;
2484 if (vp->v_type != VCHR) {
2485 if (errp != NULL)
2486 *errp = ENOTBLK;
2487 return (0);
2490 dev = vp->v_rdev;
2492 if (dev == NULL) {
2493 if (errp != NULL)
2494 *errp = ENXIO;
2495 return (0);
2497 if (dev_is_good(dev) == 0) {
2498 if (errp != NULL)
2499 *errp = ENXIO;
2500 return (0);
2502 if ((dev_dflags(dev) & D_DISK) == 0) {
2503 if (errp != NULL)
2504 *errp = ENOTBLK;
2505 return (0);
2507 if (errp != NULL)
2508 *errp = 0;
2509 return (1);
2513 vn_get_namelen(struct vnode *vp, int *namelen)
2515 int error;
2516 register_t retval[2];
2518 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2519 if (error)
2520 return (error);
2521 *namelen = (int)retval[0];
2522 return (0);
2526 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2527 uint16_t d_namlen, const char *d_name)
2529 struct dirent *dp;
2530 size_t len;
2532 len = _DIRENT_RECLEN(d_namlen);
2533 if (len > uio->uio_resid)
2534 return(1);
2536 dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2538 dp->d_ino = d_ino;
2539 dp->d_namlen = d_namlen;
2540 dp->d_type = d_type;
2541 bcopy(d_name, dp->d_name, d_namlen);
2543 *error = uiomove((caddr_t)dp, len, uio);
2545 kfree(dp, M_TEMP);
2547 return(0);
2550 void
2551 vn_mark_atime(struct vnode *vp, struct thread *td)
2553 struct proc *p = td->td_proc;
2554 struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2556 if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2557 VOP_MARKATIME(vp, cred);
2562 * Calculate the number of entries in an inode-related chained hash table.
2563 * With today's memory sizes, maxvnodes can wind up being a very large
2564 * number. There is no reason to waste memory, so tolerate some stacking.
2567 vfs_inodehashsize(void)
2569 int hsize;
2571 hsize = 32;
2572 while (hsize < maxvnodes)
2573 hsize <<= 1;
2574 while (hsize > maxvnodes * 2)
2575 hsize >>= 1; /* nominal 2x stacking */
2577 if (maxvnodes > 1024 * 1024)
2578 hsize >>= 1; /* nominal 8x stacking */
2580 if (maxvnodes > 128 * 1024)
2581 hsize >>= 1; /* nominal 4x stacking */
2583 if (hsize < 16)
2584 hsize = 16;
2586 return hsize;