sbin/hammer: Redo e4323571 partly (after reverted by 03d5db37)
[dragonfly.git] / sbin / hammer / ondisk.c
blob597cecdaa10c53de126961c8b2c425a1d491f7fa
1 /*
2 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
35 #include <sys/diskslice.h>
36 #include <sys/diskmbr.h>
38 #include "hammer_util.h"
40 static void check_volume(struct volume_info *vol);
41 static void get_buffer_readahead(struct buffer_info *base);
42 static __inline int readhammervol(struct volume_info *vol);
43 static __inline int readhammerbuf(struct buffer_info *buf);
44 static __inline int writehammervol(struct volume_info *vol);
45 static __inline int writehammerbuf(struct buffer_info *buf);
47 uuid_t Hammer_FSType;
48 uuid_t Hammer_FSId;
49 int UseReadBehind = -4;
50 int UseReadAhead = 4;
51 int DebugOpt;
53 TAILQ_HEAD(volume_list, volume_info);
54 static struct volume_list VolList = TAILQ_HEAD_INITIALIZER(VolList);
55 static int valid_hammer_volumes;
57 static __inline
58 int
59 buffer_hash(hammer_off_t zone2_offset)
61 int hi;
63 hi = (int)(zone2_offset / HAMMER_BUFSIZE) & HAMMER_BUFLISTMASK;
64 return(hi);
67 static struct buffer_info*
68 find_buffer(hammer_off_t zone2_offset)
70 struct volume_info *volume;
71 struct buffer_info *buf;
72 int hi;
74 volume = get_volume(HAMMER_VOL_DECODE(zone2_offset));
75 assert(volume);
77 hi = buffer_hash(zone2_offset);
78 TAILQ_FOREACH(buf, &volume->buffer_lists[hi], entry)
79 if (buf->zone2_offset == zone2_offset)
80 return(buf);
81 return(NULL);
84 static
85 struct volume_info *
86 __alloc_volume(const char *volname, int oflags)
88 struct volume_info *vol;
89 int i;
91 vol = calloc(1, sizeof(*vol));
92 vol->vol_no = -1;
93 vol->rdonly = (oflags == O_RDONLY);
94 vol->name = strdup(volname);
95 vol->fd = open(vol->name, oflags);
96 if (vol->fd < 0)
97 err(1, "alloc_volume: Failed to open %s", vol->name);
98 check_volume(vol);
100 vol->ondisk = calloc(1, HAMMER_BUFSIZE);
102 for (i = 0; i < HAMMER_BUFLISTS; ++i)
103 TAILQ_INIT(&vol->buffer_lists[i]);
105 return(vol);
108 static void
109 __add_volume(struct volume_info *vol)
111 struct volume_info *scan;
112 struct stat st1, st2;
114 if (fstat(vol->fd, &st1) != 0)
115 errx(1, "add_volume: %s: Failed to stat", vol->name);
117 TAILQ_FOREACH(scan, &VolList, entry) {
118 if (scan->vol_no == vol->vol_no) {
119 errx(1, "add_volume: %s: Duplicate volume number %d "
120 "against %s",
121 vol->name, vol->vol_no, scan->name);
123 if (fstat(scan->fd, &st2) != 0) {
124 errx(1, "add_volume: %s: Failed to stat %s",
125 vol->name, scan->name);
127 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev)) {
128 errx(1, "add_volume: %s: Specified more than once",
129 vol->name);
133 TAILQ_INSERT_TAIL(&VolList, vol, entry);
136 static void
137 __verify_volume(struct volume_info *vol)
139 hammer_volume_ondisk_t ondisk = vol->ondisk;
141 if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
142 errx(1, "verify_volume: Invalid volume signature %016jx",
143 ondisk->vol_signature);
145 if (ondisk->vol_rootvol != HAMMER_ROOT_VOLNO) {
146 errx(1, "verify_volume: Invalid root volume# %d",
147 ondisk->vol_rootvol);
149 if (bcmp(&Hammer_FSType, &ondisk->vol_fstype, sizeof(Hammer_FSType))) {
150 errx(1, "verify_volume: %s: Header does not indicate "
151 "that this is a HAMMER volume", vol->name);
153 if (bcmp(&Hammer_FSId, &ondisk->vol_fsid, sizeof(Hammer_FSId))) {
154 errx(1, "verify_volume: %s: FSId does not match other volumes!",
155 vol->name);
160 * Initialize a volume structure and ondisk vol_no field.
162 struct volume_info *
163 init_volume(const char *filename, int oflags, int32_t vol_no)
165 struct volume_info *vol;
167 vol = __alloc_volume(filename, oflags);
168 vol->vol_no = vol->ondisk->vol_no = vol_no;
170 __add_volume(vol);
172 return(vol);
176 * Initialize a volume structure and read ondisk volume header.
178 struct volume_info*
179 load_volume(const char *filename, int oflags, int verify)
181 struct volume_info *vol;
182 int n;
184 vol = __alloc_volume(filename, oflags);
186 n = readhammervol(vol);
187 if (n == -1) {
188 err(1, "load_volume: %s: Read failed at offset 0", vol->name);
190 vol->vol_no = vol->ondisk->vol_no;
192 if (valid_hammer_volumes++ == 0)
193 Hammer_FSId = vol->ondisk->vol_fsid;
194 if (verify)
195 __verify_volume(vol);
197 __add_volume(vol);
199 return(vol);
203 * Check basic volume characteristics.
205 static void
206 check_volume(struct volume_info *vol)
208 struct partinfo pinfo;
209 struct stat st;
212 * Get basic information about the volume
214 if (ioctl(vol->fd, DIOCGPART, &pinfo) < 0) {
216 * Allow the formatting of regular files as HAMMER volumes
218 if (fstat(vol->fd, &st) < 0)
219 err(1, "Unable to stat %s", vol->name);
220 vol->size = st.st_size;
221 vol->type = "REGFILE";
222 } else {
224 * When formatting a block device as a HAMMER volume the
225 * sector size must be compatible. HAMMER uses 16384 byte
226 * filesystem buffers.
228 if (pinfo.reserved_blocks) {
229 errx(1, "HAMMER cannot be placed in a partition "
230 "which overlaps the disklabel or MBR");
232 if (pinfo.media_blksize > HAMMER_BUFSIZE ||
233 HAMMER_BUFSIZE % pinfo.media_blksize) {
234 errx(1, "A media sector size of %d is not supported",
235 pinfo.media_blksize);
238 vol->size = pinfo.media_size;
239 vol->device_offset = pinfo.media_offset;
240 vol->type = "DEVICE";
244 void
245 assert_volume_offset(struct volume_info *vol)
247 assert(hammer_is_zone_raw_buffer(vol->vol_free_off));
248 assert(hammer_is_zone_raw_buffer(vol->vol_free_end));
249 if (vol->vol_free_off >= vol->vol_free_end)
250 errx(1, "Ran out of room, filesystem too small");
253 struct volume_info *
254 get_volume(int32_t vol_no)
256 struct volume_info *vol;
258 TAILQ_FOREACH(vol, &VolList, entry) {
259 if (vol->vol_no == vol_no)
260 break;
263 return(vol);
266 struct volume_info *
267 get_root_volume(void)
269 return(get_volume(HAMMER_ROOT_VOLNO));
272 static hammer_off_t
273 __blockmap_xlate_to_zone2(hammer_off_t buf_offset)
275 hammer_off_t zone2_offset;
276 int error = 0;
278 if (hammer_is_zone_raw_buffer(buf_offset))
279 zone2_offset = buf_offset;
280 else
281 zone2_offset = blockmap_lookup(buf_offset, &error);
283 if (error)
284 return(HAMMER_OFF_BAD);
285 assert(hammer_is_zone_raw_buffer(zone2_offset));
287 return(zone2_offset);
290 static struct buffer_info *
291 __alloc_buffer(hammer_off_t zone2_offset, int isnew)
293 struct volume_info *volume;
294 struct buffer_info *buf;
295 int hi;
297 volume = get_volume(HAMMER_VOL_DECODE(zone2_offset));
298 assert(volume != NULL);
300 buf = calloc(1, sizeof(*buf));
301 buf->zone2_offset = zone2_offset;
302 buf->raw_offset = hammer_xlate_to_phys(volume->ondisk, zone2_offset);
303 buf->volume = volume;
304 buf->ondisk = calloc(1, HAMMER_BUFSIZE);
306 if (isnew <= 0) {
307 if (readhammerbuf(buf) == -1) {
308 err(1, "Failed to read %s:%016jx at %016jx",
309 volume->name,
310 (intmax_t)buf->zone2_offset,
311 (intmax_t)buf->raw_offset);
315 hi = buffer_hash(zone2_offset);
316 TAILQ_INSERT_TAIL(&volume->buffer_lists[hi], buf, entry);
317 hammer_cache_add(&buf->cache);
319 return(buf);
323 * Acquire the 16KB buffer for specified zone offset.
325 static struct buffer_info *
326 get_buffer(hammer_off_t buf_offset, int isnew)
328 struct buffer_info *buf;
329 hammer_off_t zone2_offset;
330 int dora = 0;
332 zone2_offset = __blockmap_xlate_to_zone2(buf_offset);
333 if (zone2_offset == HAMMER_OFF_BAD)
334 return(NULL);
336 zone2_offset &= ~HAMMER_BUFMASK64;
337 buf = find_buffer(zone2_offset);
339 if (buf == NULL) {
340 buf = __alloc_buffer(zone2_offset, isnew);
341 dora = (isnew == 0);
342 } else {
343 assert(isnew != -1);
344 hammer_cache_used(&buf->cache);
346 assert(buf->ondisk != NULL);
348 ++buf->cache.refs;
349 hammer_cache_flush();
351 if (isnew > 0) {
352 assert(buf->cache.modified == 0);
353 bzero(buf->ondisk, HAMMER_BUFSIZE);
354 buf->cache.modified = 1;
356 if (dora)
357 get_buffer_readahead(buf);
358 return(buf);
361 static void
362 get_buffer_readahead(struct buffer_info *base)
364 struct buffer_info *buf;
365 struct volume_info *vol;
366 hammer_off_t zone2_offset;
367 int64_t raw_offset;
368 int ri = UseReadBehind;
369 int re = UseReadAhead;
371 raw_offset = base->raw_offset + ri * HAMMER_BUFSIZE;
372 vol = base->volume;
374 while (ri < re) {
375 if (raw_offset >= vol->ondisk->vol_buf_end)
376 break;
377 if (raw_offset < vol->ondisk->vol_buf_beg || ri == 0) {
378 ++ri;
379 raw_offset += HAMMER_BUFSIZE;
380 continue;
382 zone2_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no,
383 raw_offset - vol->ondisk->vol_buf_beg);
384 buf = find_buffer(zone2_offset);
385 if (buf == NULL) {
386 /* call with -1 to prevent another readahead */
387 buf = get_buffer(zone2_offset, -1);
388 rel_buffer(buf);
390 ++ri;
391 raw_offset += HAMMER_BUFSIZE;
395 void
396 rel_buffer(struct buffer_info *buffer)
398 struct volume_info *volume;
399 int hi;
401 if (buffer == NULL)
402 return;
403 assert(buffer->cache.refs > 0);
404 if (--buffer->cache.refs == 0) {
405 if (buffer->cache.delete) {
406 hi = buffer_hash(buffer->zone2_offset);
407 volume = buffer->volume;
408 if (buffer->cache.modified)
409 flush_buffer(buffer);
410 TAILQ_REMOVE(&volume->buffer_lists[hi], buffer, entry);
411 hammer_cache_del(&buffer->cache);
412 free(buffer->ondisk);
413 free(buffer);
419 * Retrieve a pointer to a buffer data given a buffer offset. The underlying
420 * bufferp is freed if isnew or the offset is out of range of the cached data.
421 * If bufferp is freed a referenced buffer is loaded into it.
423 void *
424 get_buffer_data(hammer_off_t buf_offset, struct buffer_info **bufferp,
425 int isnew)
427 hammer_off_t xor;
429 if (*bufferp != NULL) {
430 /* XXX xor is always non zero for indirect zones */
431 xor = HAMMER_OFF_LONG_ENCODE(buf_offset) ^
432 HAMMER_OFF_LONG_ENCODE((*bufferp)->zone2_offset);
433 if (isnew > 0 || (xor & ~HAMMER_BUFMASK64)) {
434 rel_buffer(*bufferp);
435 *bufferp = NULL;
439 if (*bufferp == NULL) {
440 *bufferp = get_buffer(buf_offset, isnew);
441 if (*bufferp == NULL)
442 return(NULL);
445 return(((char *)(*bufferp)->ondisk) +
446 ((int32_t)buf_offset & HAMMER_BUFMASK));
450 * Allocate HAMMER elements - B-Tree nodes
452 hammer_node_ondisk_t
453 alloc_btree_node(hammer_off_t *offp, struct buffer_info **data_bufferp)
455 hammer_node_ondisk_t node;
457 node = alloc_blockmap(HAMMER_ZONE_BTREE_INDEX, sizeof(*node),
458 offp, data_bufferp);
459 bzero(node, sizeof(*node));
460 return(node);
464 * Allocate HAMMER elements - meta data (inode, direntry, PFS, etc)
466 void *
467 alloc_meta_element(hammer_off_t *offp, int32_t data_len,
468 struct buffer_info **data_bufferp)
470 void *data;
472 data = alloc_blockmap(HAMMER_ZONE_META_INDEX, data_len,
473 offp, data_bufferp);
474 bzero(data, data_len);
475 return(data);
479 * Format a new blockmap. This is mostly a degenerate case because
480 * all allocations are now actually done from the freemap.
482 void
483 format_blockmap(struct volume_info *root_vol, int zone, hammer_off_t offset)
485 hammer_blockmap_t blockmap;
486 hammer_off_t zone_base;
488 /* Only root volume needs formatting */
489 assert(root_vol->vol_no == HAMMER_ROOT_VOLNO);
491 assert(hammer_is_index_record(zone));
493 blockmap = &root_vol->ondisk->vol0_blockmap[zone];
494 zone_base = HAMMER_ZONE_ENCODE(zone, offset);
496 bzero(blockmap, sizeof(*blockmap));
497 blockmap->phys_offset = 0;
498 blockmap->first_offset = zone_base;
499 blockmap->next_offset = zone_base;
500 blockmap->alloc_offset = HAMMER_ENCODE(zone, 255, -1);
501 hammer_crc_set_blockmap(blockmap);
505 * Format a new freemap. Set all layer1 entries to UNAVAIL. The initialize
506 * code will load each volume's freemap.
508 void
509 format_freemap(struct volume_info *root_vol)
511 struct buffer_info *buffer = NULL;
512 hammer_off_t layer1_offset;
513 hammer_blockmap_t blockmap;
514 hammer_blockmap_layer1_t layer1;
515 int i, isnew;
517 /* Only root volume needs formatting */
518 assert(root_vol->vol_no == HAMMER_ROOT_VOLNO);
520 layer1_offset = bootstrap_bigblock(root_vol);
521 for (i = 0; i < HAMMER_BIGBLOCK_SIZE; i += sizeof(*layer1)) {
522 isnew = ((i % HAMMER_BUFSIZE) == 0);
523 layer1 = get_buffer_data(layer1_offset + i, &buffer, isnew);
524 bzero(layer1, sizeof(*layer1));
525 layer1->phys_offset = HAMMER_BLOCKMAP_UNAVAIL;
526 layer1->blocks_free = 0;
527 hammer_crc_set_layer1(layer1);
529 assert(i == HAMMER_BIGBLOCK_SIZE);
530 rel_buffer(buffer);
532 blockmap = &root_vol->ondisk->vol0_blockmap[HAMMER_ZONE_FREEMAP_INDEX];
533 bzero(blockmap, sizeof(*blockmap));
534 blockmap->phys_offset = layer1_offset;
535 blockmap->first_offset = 0;
536 blockmap->next_offset = HAMMER_ENCODE_RAW_BUFFER(0, 0);
537 blockmap->alloc_offset = HAMMER_ENCODE_RAW_BUFFER(255, -1);
538 hammer_crc_set_blockmap(blockmap);
542 * Load the volume's remaining free space into the freemap.
544 * Returns the number of big-blocks available.
546 int64_t
547 initialize_freemap(struct volume_info *vol)
549 struct volume_info *root_vol;
550 struct buffer_info *buffer1 = NULL;
551 struct buffer_info *buffer2 = NULL;
552 hammer_blockmap_layer1_t layer1;
553 hammer_blockmap_layer2_t layer2;
554 hammer_off_t layer1_offset;
555 hammer_off_t layer2_offset;
556 hammer_off_t phys_offset;
557 hammer_off_t block_offset;
558 hammer_off_t aligned_vol_free_end;
559 hammer_blockmap_t freemap;
560 int64_t count = 0;
561 int64_t layer1_count = 0;
563 root_vol = get_root_volume();
565 assert_volume_offset(vol);
566 aligned_vol_free_end = HAMMER_BLOCKMAP_LAYER2_DOALIGN(vol->vol_free_end);
568 printf("initialize freemap volume %d\n", vol->vol_no);
571 * Initialize the freemap. First preallocate the big-blocks required
572 * to implement layer2. This preallocation is a bootstrap allocation
573 * using blocks from the target volume.
575 freemap = &root_vol->ondisk->vol0_blockmap[HAMMER_ZONE_FREEMAP_INDEX];
577 for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
578 phys_offset < aligned_vol_free_end;
579 phys_offset += HAMMER_BLOCKMAP_LAYER2) {
580 layer1_offset = freemap->phys_offset +
581 HAMMER_BLOCKMAP_LAYER1_OFFSET(phys_offset);
582 layer1 = get_buffer_data(layer1_offset, &buffer1, 0);
583 if (layer1->phys_offset == HAMMER_BLOCKMAP_UNAVAIL) {
584 layer1->phys_offset = bootstrap_bigblock(vol);
585 layer1->blocks_free = 0;
586 buffer1->cache.modified = 1;
587 hammer_crc_set_layer1(layer1);
592 * Now fill everything in.
594 for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
595 phys_offset < aligned_vol_free_end;
596 phys_offset += HAMMER_BLOCKMAP_LAYER2) {
597 layer1_count = 0;
598 layer1_offset = freemap->phys_offset +
599 HAMMER_BLOCKMAP_LAYER1_OFFSET(phys_offset);
600 layer1 = get_buffer_data(layer1_offset, &buffer1, 0);
601 assert(layer1->phys_offset != HAMMER_BLOCKMAP_UNAVAIL);
603 for (block_offset = 0;
604 block_offset < HAMMER_BLOCKMAP_LAYER2;
605 block_offset += HAMMER_BIGBLOCK_SIZE) {
606 layer2_offset = layer1->phys_offset +
607 HAMMER_BLOCKMAP_LAYER2_OFFSET(block_offset);
608 layer2 = get_buffer_data(layer2_offset, &buffer2, 0);
609 bzero(layer2, sizeof(*layer2));
611 if (phys_offset + block_offset < vol->vol_free_off) {
613 * Big-blocks already allocated as part
614 * of the freemap bootstrap.
616 layer2->zone = HAMMER_ZONE_FREEMAP_INDEX;
617 layer2->append_off = HAMMER_BIGBLOCK_SIZE;
618 layer2->bytes_free = 0;
619 } else if (phys_offset + block_offset < vol->vol_free_end) {
620 layer2->zone = 0;
621 layer2->append_off = 0;
622 layer2->bytes_free = HAMMER_BIGBLOCK_SIZE;
623 ++count;
624 ++layer1_count;
625 } else {
626 layer2->zone = HAMMER_ZONE_UNAVAIL_INDEX;
627 layer2->append_off = HAMMER_BIGBLOCK_SIZE;
628 layer2->bytes_free = 0;
630 hammer_crc_set_layer2(layer2);
631 buffer2->cache.modified = 1;
634 layer1->blocks_free += layer1_count;
635 hammer_crc_set_layer1(layer1);
636 buffer1->cache.modified = 1;
639 rel_buffer(buffer1);
640 rel_buffer(buffer2);
641 return(count);
645 * Returns the number of big-blocks available for filesystem data and undos
646 * without formatting.
648 int64_t
649 count_freemap(struct volume_info *vol)
651 hammer_off_t phys_offset;
652 hammer_off_t vol_free_off;
653 hammer_off_t aligned_vol_free_end;
654 int64_t count = 0;
656 vol_free_off = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
658 assert_volume_offset(vol);
659 aligned_vol_free_end = HAMMER_BLOCKMAP_LAYER2_DOALIGN(vol->vol_free_end);
661 if (vol->vol_no == HAMMER_ROOT_VOLNO)
662 vol_free_off += HAMMER_BIGBLOCK_SIZE;
664 for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
665 phys_offset < aligned_vol_free_end;
666 phys_offset += HAMMER_BLOCKMAP_LAYER2) {
667 vol_free_off += HAMMER_BIGBLOCK_SIZE;
670 for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
671 phys_offset < aligned_vol_free_end;
672 phys_offset += HAMMER_BIGBLOCK_SIZE) {
673 if (phys_offset < vol_free_off) {
675 } else if (phys_offset < vol->vol_free_end) {
676 ++count;
680 return(count);
684 * Format the undomap for the root volume.
686 void
687 format_undomap(struct volume_info *root_vol, int64_t *undo_buffer_size)
689 hammer_off_t undo_limit;
690 hammer_blockmap_t blockmap;
691 hammer_volume_ondisk_t ondisk;
692 struct buffer_info *buffer = NULL;
693 hammer_off_t scan;
694 int n;
695 int limit_index;
696 uint32_t seqno;
698 /* Only root volume needs formatting */
699 assert(root_vol->vol_no == HAMMER_ROOT_VOLNO);
700 ondisk = root_vol->ondisk;
703 * Size the undo buffer in multiples of HAMMER_BIGBLOCK_SIZE,
704 * up to HAMMER_MAX_UNDO_BIGBLOCKS big-blocks.
705 * Size to approximately 0.1% of the disk.
707 * The minimum UNDO fifo size is 512MB, or approximately 1% of
708 * the recommended 50G disk.
710 * Changing this minimum is rather dangerous as complex filesystem
711 * operations can cause the UNDO FIFO to fill up otherwise.
713 undo_limit = *undo_buffer_size;
714 if (undo_limit == 0) {
715 undo_limit = HAMMER_VOL_BUF_SIZE(ondisk) / 1000;
716 if (undo_limit < HAMMER_BIGBLOCK_SIZE * HAMMER_MIN_UNDO_BIGBLOCKS)
717 undo_limit = HAMMER_BIGBLOCK_SIZE * HAMMER_MIN_UNDO_BIGBLOCKS;
719 undo_limit = HAMMER_BIGBLOCK_DOALIGN(undo_limit);
720 if (undo_limit < HAMMER_BIGBLOCK_SIZE)
721 undo_limit = HAMMER_BIGBLOCK_SIZE;
722 if (undo_limit > HAMMER_BIGBLOCK_SIZE * HAMMER_MAX_UNDO_BIGBLOCKS)
723 undo_limit = HAMMER_BIGBLOCK_SIZE * HAMMER_MAX_UNDO_BIGBLOCKS;
724 *undo_buffer_size = undo_limit;
726 blockmap = &ondisk->vol0_blockmap[HAMMER_ZONE_UNDO_INDEX];
727 bzero(blockmap, sizeof(*blockmap));
728 blockmap->phys_offset = HAMMER_BLOCKMAP_UNAVAIL;
729 blockmap->first_offset = HAMMER_ENCODE_UNDO(0);
730 blockmap->next_offset = blockmap->first_offset;
731 blockmap->alloc_offset = HAMMER_ENCODE_UNDO(undo_limit);
732 hammer_crc_set_blockmap(blockmap);
734 limit_index = undo_limit / HAMMER_BIGBLOCK_SIZE;
735 assert(limit_index <= HAMMER_MAX_UNDO_BIGBLOCKS);
737 for (n = 0; n < limit_index; ++n) {
738 ondisk->vol0_undo_array[n] = alloc_undo_bigblock(root_vol);
740 while (n < HAMMER_MAX_UNDO_BIGBLOCKS) {
741 ondisk->vol0_undo_array[n++] = HAMMER_BLOCKMAP_UNAVAIL;
745 * Pre-initialize the UNDO blocks (HAMMER version 4+)
747 printf("initializing the undo map (%jd MB)\n",
748 (intmax_t)HAMMER_OFF_LONG_ENCODE(blockmap->alloc_offset) /
749 (1024 * 1024));
751 scan = blockmap->first_offset;
752 seqno = 0;
754 while (scan < blockmap->alloc_offset) {
755 hammer_fifo_head_t head;
756 hammer_fifo_tail_t tail;
757 int isnew;
758 int bytes = HAMMER_UNDO_ALIGN;
760 isnew = ((scan & HAMMER_BUFMASK64) == 0);
761 head = get_buffer_data(scan, &buffer, isnew);
762 buffer->cache.modified = 1;
763 tail = (void *)((char *)head + bytes - sizeof(*tail));
765 bzero(head, bytes);
766 head->hdr_signature = HAMMER_HEAD_SIGNATURE;
767 head->hdr_type = HAMMER_HEAD_TYPE_DUMMY;
768 head->hdr_size = bytes;
769 head->hdr_seq = seqno++;
771 tail->tail_signature = HAMMER_TAIL_SIGNATURE;
772 tail->tail_type = HAMMER_HEAD_TYPE_DUMMY;
773 tail->tail_size = bytes;
775 hammer_crc_set_fifo_head(head, bytes);
777 scan += bytes;
779 rel_buffer(buffer);
782 const char *zone_labels[] = {
783 "", /* 0 */
784 "raw_volume", /* 1 */
785 "raw_buffer", /* 2 */
786 "undo", /* 3 */
787 "freemap", /* 4 */
788 "", /* 5 */
789 "", /* 6 */
790 "", /* 7 */
791 "btree", /* 8 */
792 "meta", /* 9 */
793 "large_data", /* 10 */
794 "small_data", /* 11 */
795 "", /* 12 */
796 "", /* 13 */
797 "", /* 14 */
798 "unavail", /* 15 */
801 void
802 print_blockmap(const struct volume_info *vol)
804 hammer_blockmap_t blockmap;
805 hammer_volume_ondisk_t ondisk;
806 int64_t size, used;
807 int i;
808 #define INDENT ""
810 ondisk = vol->ondisk;
811 printf(INDENT"vol_label\t%s\n", ondisk->vol_label);
812 printf(INDENT"vol_count\t%d\n", ondisk->vol_count);
813 printf(INDENT"vol_bot_beg\t%s\n", sizetostr(ondisk->vol_bot_beg));
814 printf(INDENT"vol_mem_beg\t%s\n", sizetostr(ondisk->vol_mem_beg));
815 printf(INDENT"vol_buf_beg\t%s\n", sizetostr(ondisk->vol_buf_beg));
816 printf(INDENT"vol_buf_end\t%s\n", sizetostr(ondisk->vol_buf_end));
817 printf(INDENT"vol0_next_tid\t%016jx\n",
818 (uintmax_t)ondisk->vol0_next_tid);
820 blockmap = &ondisk->vol0_blockmap[HAMMER_ZONE_UNDO_INDEX];
821 size = HAMMER_OFF_LONG_ENCODE(blockmap->alloc_offset);
822 if (blockmap->first_offset <= blockmap->next_offset)
823 used = blockmap->next_offset - blockmap->first_offset;
824 else
825 used = blockmap->alloc_offset - blockmap->first_offset +
826 HAMMER_OFF_LONG_ENCODE(blockmap->next_offset);
827 printf(INDENT"undo_size\t%s\n", sizetostr(size));
828 printf(INDENT"undo_used\t%s\n", sizetostr(used));
830 printf(INDENT"zone # "
831 "phys first next alloc\n");
832 for (i = 0; i < HAMMER_MAX_ZONES; i++) {
833 blockmap = &ondisk->vol0_blockmap[i];
834 printf(INDENT"zone %-2d %-10s %016jx %016jx %016jx %016jx\n",
835 i, zone_labels[i],
836 (uintmax_t)blockmap->phys_offset,
837 (uintmax_t)blockmap->first_offset,
838 (uintmax_t)blockmap->next_offset,
839 (uintmax_t)blockmap->alloc_offset);
844 * Flush various tracking structures to disk
846 void
847 flush_all_volumes(void)
849 struct volume_info *vol;
851 TAILQ_FOREACH(vol, &VolList, entry)
852 flush_volume(vol);
855 void
856 flush_volume(struct volume_info *volume)
858 struct buffer_info *buffer;
859 int i;
861 for (i = 0; i < HAMMER_BUFLISTS; ++i) {
862 TAILQ_FOREACH(buffer, &volume->buffer_lists[i], entry)
863 flush_buffer(buffer);
865 if (writehammervol(volume) == -1)
866 err(1, "Write volume %d (%s)", volume->vol_no, volume->name);
869 void
870 flush_buffer(struct buffer_info *buffer)
872 struct volume_info *vol;
874 vol = buffer->volume;
875 if (writehammerbuf(buffer) == -1)
876 err(1, "Write volume %d (%s)", vol->vol_no, vol->name);
877 buffer->cache.modified = 0;
881 * Core I/O operations
883 static int
884 __read(struct volume_info *vol, void *data, int64_t offset, int size)
886 ssize_t n;
888 n = pread(vol->fd, data, size, offset);
889 if (n != size)
890 return(-1);
891 return(0);
894 static __inline int
895 readhammervol(struct volume_info *vol)
897 return(__read(vol, vol->ondisk, 0, HAMMER_BUFSIZE));
900 static __inline int
901 readhammerbuf(struct buffer_info *buf)
903 return(__read(buf->volume, buf->ondisk, buf->raw_offset, HAMMER_BUFSIZE));
906 static int
907 __write(struct volume_info *vol, const void *data, int64_t offset, int size)
909 ssize_t n;
911 if (vol->rdonly)
912 return(0);
914 n = pwrite(vol->fd, data, size, offset);
915 if (n != size)
916 return(-1);
917 return(0);
920 static __inline int
921 writehammervol(struct volume_info *vol)
923 return(__write(vol, vol->ondisk, 0, HAMMER_BUFSIZE));
926 static __inline int
927 writehammerbuf(struct buffer_info *buf)
929 return(__write(buf->volume, buf->ondisk, buf->raw_offset, HAMMER_BUFSIZE));
932 int64_t init_boot_area_size(int64_t value, off_t avg_vol_size)
934 if (value == 0) {
935 value = HAMMER_BOOT_NOMBYTES;
936 while (value > avg_vol_size / HAMMER_MAX_VOLUMES)
937 value >>= 1;
940 if (value < HAMMER_BOOT_MINBYTES) {
941 value = HAMMER_BOOT_MINBYTES;
942 } else if (value > HAMMER_BOOT_MAXBYTES) {
943 value = HAMMER_BOOT_MAXBYTES;
946 return(value);
949 int64_t init_memory_log_size(int64_t value, off_t avg_vol_size)
951 if (value == 0) {
952 value = HAMMER_MEM_NOMBYTES;
953 while (value > avg_vol_size / HAMMER_MAX_VOLUMES)
954 value >>= 1;
957 if (value < HAMMER_MEM_MINBYTES) {
958 value = HAMMER_MEM_MINBYTES;
959 } else if (value > HAMMER_MEM_MAXBYTES) {
960 value = HAMMER_MEM_MAXBYTES;
963 return(value);