Patch files even in the NOINET6 case.
[dragonfly.git] / sbin / newfs / mkfs.c
blobea56ea59e97e763b99fd7d1e5fa2a9663176dac6
1 /*
2 * Copyright (c) 1980, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)mkfs.c 8.11 (Berkeley) 5/3/95
34 * $FreeBSD: src/sbin/newfs/mkfs.c,v 1.29.2.6 2001/09/21 19:15:21 dillon Exp $
35 * $DragonFly: src/sbin/newfs/mkfs.c,v 1.13 2006/08/13 20:55:12 swildner Exp $
38 #include "defs.h"
40 #ifndef STANDALONE
41 #include <stdlib.h>
42 #else
44 extern int atoi(char *);
45 extern char * getenv(char *);
47 #ifdef FSIRAND
48 extern long random(void);
49 extern void srandomdev(void);
50 #endif
52 #endif /* STANDALONE */
55 * make file system for cylinder-group style file systems
59 * We limit the size of the inode map to be no more than a
60 * third of the cylinder group space, since we must leave at
61 * least an equal amount of space for the block map.
63 * N.B.: MAXIPG must be a multiple of INOPB(fs).
65 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
67 #define UMASK 0755
68 #define MAXINOPB (MAXBSIZE / sizeof(struct ufs1_dinode))
69 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
72 * variables set up by front end.
74 extern int mfs; /* run as the memory based filesystem */
75 extern char *mfs_mtpt; /* mount point for mfs */
76 extern struct stat mfs_mtstat; /* stat prior to mount */
77 extern int Nflag; /* run mkfs without writing file system */
78 extern int Oflag; /* format as an 4.3BSD file system */
79 extern int Uflag; /* enable soft updates for file system */
80 extern int fssize; /* file system size */
81 extern int ntracks; /* # tracks/cylinder */
82 extern int nsectors; /* # sectors/track */
83 extern int nphyssectors; /* # sectors/track including spares */
84 extern int secpercyl; /* sectors per cylinder */
85 extern int sectorsize; /* bytes/sector */
86 extern int realsectorsize; /* bytes/sector in hardware*/
87 extern int rpm; /* revolutions/minute of drive */
88 extern int interleave; /* hardware sector interleave */
89 extern int trackskew; /* sector 0 skew, per track */
90 extern int fsize; /* fragment size */
91 extern int bsize; /* block size */
92 extern int cpg; /* cylinders/cylinder group */
93 extern int cpgflg; /* cylinders/cylinder group flag was given */
94 extern int minfree; /* free space threshold */
95 extern int opt; /* optimization preference (space or time) */
96 extern int density; /* number of bytes per inode */
97 extern int maxcontig; /* max contiguous blocks to allocate */
98 extern int rotdelay; /* rotational delay between blocks */
99 extern int maxbpg; /* maximum blocks per file in a cyl group */
100 extern int nrpos; /* # of distinguished rotational positions */
101 extern int bbsize; /* boot block size */
102 extern int sbsize; /* superblock size */
103 extern int avgfilesize; /* expected average file size */
104 extern int avgfilesperdir; /* expected number of files per directory */
105 extern u_long memleft; /* virtual memory available */
106 extern caddr_t membase; /* start address of memory based filesystem */
107 extern char * filename;
109 extern void fatal(const char *fmt, ...);
111 union {
112 struct fs fs;
113 char pad[SBSIZE];
114 } fsun;
115 #define sblock fsun.fs
116 struct csum *fscs;
118 union {
119 struct cg cg;
120 char pad[MAXBSIZE];
121 } cgun;
122 #define acg cgun.cg
124 struct ufs1_dinode zino[MAXBSIZE / sizeof(struct ufs1_dinode)];
126 int fsi, fso;
127 static fsnode_t copyroot;
128 static fsnode_t copyhlinks;
129 #ifdef FSIRAND
130 int randinit;
131 #endif
132 daddr_t alloc(int, int);
133 long calcipg(long, long, off_t *);
134 static int charsperline(void);
135 void clrblock(struct fs *, unsigned char *, int);
136 void fsinit(time_t);
137 void initcg(int, time_t);
138 int isblock(struct fs *, unsigned char *, int);
139 void iput(struct ufs1_dinode *, ino_t);
140 int makedir(struct direct *, int);
141 void parentready(int);
142 void rdfs(daddr_t, int, char *);
143 void setblock(struct fs *, unsigned char *, int);
144 void started(int);
145 void wtfs(daddr_t, int, char *);
146 void wtfsflush(void);
148 #ifndef STANDALONE
149 void get_memleft(void);
150 void raise_data_limit(void);
151 #else
152 void free(char *);
153 char * calloc(u_long, u_long);
154 caddr_t malloc(u_long);
155 caddr_t realloc(char *, u_long);
156 #endif
158 int mfs_ppid = 0;
159 int parentready_signalled;
161 void
162 mkfs(struct partition *pp, char *fsys, int fi, int fo, const char *mfscopy)
164 long i, mincpc, mincpg, inospercg;
165 long cylno, rpos, blk, j, emitwarn = 0;
166 long used, mincpgcnt, bpcg;
167 off_t usedb;
168 long mapcramped, inodecramped;
169 long postblsize, rotblsize, totalsbsize;
170 int status, fd;
171 time_t utime;
172 quad_t sizepb;
173 int width;
174 char tmpbuf[100]; /* XXX this will break in about 2,500 years */
176 #ifndef STANDALONE
177 time(&utime);
178 #endif
179 #ifdef FSIRAND
180 if (!randinit) {
181 randinit = 1;
182 srandomdev();
184 #endif
185 if (mfs) {
186 int omask;
187 pid_t child;
189 mfs_ppid = getpid();
190 signal(SIGUSR1, parentready);
191 if ((child = fork()) != 0) {
192 if (child == -1)
193 err(10, "mfs");
194 if (mfscopy)
195 copyroot = FSCopy(&copyhlinks, mfscopy);
196 signal(SIGUSR1, started);
197 kill(child, SIGUSR1);
198 if (waitpid(child, &status, 0) != -1 && WIFEXITED(status))
199 exit(WEXITSTATUS(status));
200 exit(11);
201 /* NOTREACHED */
203 omask = sigblock(1 << SIGUSR1);
204 while (parentready_signalled == 0)
205 sigpause(1 << SIGUSR1);
206 sigblock(omask);
207 #ifdef STANDALONE
208 malloc(0);
209 #else
210 raise_data_limit();
211 #endif
212 if (filename != NULL) {
213 unsigned char buf[BUFSIZ];
214 unsigned long l, l1;
215 ssize_t w;
217 fd = open(filename, O_RDWR|O_TRUNC|O_CREAT, 0644);
218 if(fd < 0)
219 err(12, "%s", filename);
220 l1 = fssize * sectorsize;
221 if (l1 > BUFSIZ)
222 l1 = BUFSIZ;
223 for (l = 0; l < (u_long)fssize * (u_long)sectorsize; l += l1) {
224 w = write(fd, buf, l1);
225 if (w < 0 || (u_long)w != l1)
226 err(12, "%s", filename);
228 membase = mmap(
230 fssize * sectorsize,
231 PROT_READ|PROT_WRITE,
232 MAP_SHARED,
235 if(membase == MAP_FAILED)
236 err(12, "mmap");
237 close(fd);
238 } else {
239 #ifndef STANDALONE
240 get_memleft();
241 #endif
242 if ((u_long)fssize * (u_long)sectorsize >
243 (memleft - 131072))
244 fssize = (memleft - 131072) / sectorsize;
245 if ((membase = malloc(fssize * sectorsize)) == NULL)
246 errx(13, "malloc failed");
249 fsi = fi;
250 fso = fo;
251 if (Oflag) {
252 sblock.fs_inodefmt = FS_42INODEFMT;
253 sblock.fs_maxsymlinklen = 0;
254 } else {
255 sblock.fs_inodefmt = FS_44INODEFMT;
256 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
258 if (Uflag)
259 sblock.fs_flags |= FS_DOSOFTDEP;
261 * Validate the given file system size.
262 * Verify that its last block can actually be accessed.
264 if (fssize <= 0)
265 printf("preposterous size %d\n", fssize), exit(13);
266 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
267 (char *)&sblock);
269 * collect and verify the sector and track info
271 sblock.fs_nsect = nsectors;
272 sblock.fs_ntrak = ntracks;
273 if (sblock.fs_ntrak <= 0)
274 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
275 if (sblock.fs_nsect <= 0)
276 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
278 * collect and verify the filesystem density info
280 sblock.fs_avgfilesize = avgfilesize;
281 sblock.fs_avgfpdir = avgfilesperdir;
282 if (sblock.fs_avgfilesize <= 0)
283 printf("illegal expected average file size %d\n",
284 sblock.fs_avgfilesize), exit(14);
285 if (sblock.fs_avgfpdir <= 0)
286 printf("illegal expected number of files per directory %d\n",
287 sblock.fs_avgfpdir), exit(15);
289 * collect and verify the block and fragment sizes
291 sblock.fs_bsize = bsize;
292 sblock.fs_fsize = fsize;
293 if (!POWEROF2(sblock.fs_bsize)) {
294 printf("block size must be a power of 2, not %d\n",
295 sblock.fs_bsize);
296 exit(16);
298 if (!POWEROF2(sblock.fs_fsize)) {
299 printf("fragment size must be a power of 2, not %d\n",
300 sblock.fs_fsize);
301 exit(17);
303 if (sblock.fs_fsize < sectorsize) {
304 printf("fragment size %d is too small, minimum is %d\n",
305 sblock.fs_fsize, sectorsize);
306 exit(18);
308 if (sblock.fs_bsize < MINBSIZE) {
309 printf("block size %d is too small, minimum is %d\n",
310 sblock.fs_bsize, MINBSIZE);
311 exit(19);
313 if (sblock.fs_bsize < sblock.fs_fsize) {
314 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
315 sblock.fs_bsize, sblock.fs_fsize);
316 exit(20);
318 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
319 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
320 sblock.fs_qbmask = ~sblock.fs_bmask;
321 sblock.fs_qfmask = ~sblock.fs_fmask;
322 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
323 sblock.fs_bshift++;
324 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
325 sblock.fs_fshift++;
326 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
327 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
328 sblock.fs_fragshift++;
329 if (sblock.fs_frag > MAXFRAG) {
330 printf("fragment size %d is too small, minimum with block size %d is %d\n",
331 sblock.fs_fsize, sblock.fs_bsize,
332 sblock.fs_bsize / MAXFRAG);
333 exit(21);
335 sblock.fs_nrpos = nrpos;
336 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
337 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
338 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
339 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
340 sblock.fs_fsbtodb++;
341 sblock.fs_sblkno =
342 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
343 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
344 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
345 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
346 sblock.fs_cgoffset = roundup(
347 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
348 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
349 sblock.fs_cgmask <<= 1;
350 if (!POWEROF2(sblock.fs_ntrak))
351 sblock.fs_cgmask <<= 1;
352 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
353 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
354 sizepb *= NINDIR(&sblock);
355 sblock.fs_maxfilesize += sizepb;
358 * Validate specified/determined secpercyl
359 * and calculate minimum cylinders per group.
361 sblock.fs_spc = secpercyl;
362 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
363 sblock.fs_cpc > 1 && (i & 1) == 0;
364 sblock.fs_cpc >>= 1, i >>= 1)
365 /* void */;
366 mincpc = sblock.fs_cpc;
367 bpcg = sblock.fs_spc * sectorsize;
368 inospercg = roundup(bpcg / sizeof(struct ufs1_dinode), INOPB(&sblock));
369 if (inospercg > MAXIPG(&sblock))
370 inospercg = MAXIPG(&sblock);
371 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
372 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
373 sblock.fs_spc);
374 mincpg = roundup(mincpgcnt, mincpc);
376 * Ensure that cylinder group with mincpg has enough space
377 * for block maps.
379 sblock.fs_cpg = mincpg;
380 sblock.fs_ipg = inospercg;
381 if (maxcontig > 1)
382 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
383 mapcramped = 0;
384 while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
385 mapcramped = 1;
386 if (sblock.fs_bsize < MAXBSIZE) {
387 sblock.fs_bsize <<= 1;
388 if ((i & 1) == 0) {
389 i >>= 1;
390 } else {
391 sblock.fs_cpc <<= 1;
392 mincpc <<= 1;
393 mincpg = roundup(mincpgcnt, mincpc);
394 sblock.fs_cpg = mincpg;
396 sblock.fs_frag <<= 1;
397 sblock.fs_fragshift += 1;
398 if (sblock.fs_frag <= MAXFRAG)
399 continue;
401 if (sblock.fs_fsize == sblock.fs_bsize) {
402 printf("There is no block size that");
403 printf(" can support this disk\n");
404 exit(22);
406 sblock.fs_frag >>= 1;
407 sblock.fs_fragshift -= 1;
408 sblock.fs_fsize <<= 1;
409 sblock.fs_nspf <<= 1;
412 * Ensure that cylinder group with mincpg has enough space for inodes.
414 inodecramped = 0;
415 inospercg = calcipg(mincpg, bpcg, &usedb);
416 sblock.fs_ipg = inospercg;
417 while (inospercg > MAXIPG(&sblock)) {
418 inodecramped = 1;
419 if (mincpc == 1 || sblock.fs_frag == 1 ||
420 sblock.fs_bsize == MINBSIZE)
421 break;
422 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
423 "minimum bytes per inode is",
424 (int)((mincpg * (off_t)bpcg - usedb)
425 / MAXIPG(&sblock) + 1));
426 sblock.fs_bsize >>= 1;
427 sblock.fs_frag >>= 1;
428 sblock.fs_fragshift -= 1;
429 mincpc >>= 1;
430 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
431 if (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
432 sblock.fs_bsize <<= 1;
433 break;
435 mincpg = sblock.fs_cpg;
436 inospercg = calcipg(mincpg, bpcg, &usedb);
437 sblock.fs_ipg = inospercg;
439 if (inodecramped) {
440 if (inospercg > MAXIPG(&sblock)) {
441 printf("Minimum bytes per inode is %d\n",
442 (int)((mincpg * (off_t)bpcg - usedb)
443 / MAXIPG(&sblock) + 1));
444 } else if (!mapcramped) {
445 printf("With %d bytes per inode, ", density);
446 printf("minimum cylinders per group is %ld\n", mincpg);
449 if (mapcramped) {
450 printf("With %d sectors per cylinder, ", sblock.fs_spc);
451 printf("minimum cylinders per group is %ld\n", mincpg);
453 if (inodecramped || mapcramped) {
454 if (sblock.fs_bsize != bsize)
455 printf("%s to be changed from %d to %d\n",
456 "This requires the block size",
457 bsize, sblock.fs_bsize);
458 if (sblock.fs_fsize != fsize)
459 printf("\t%s to be changed from %d to %d\n",
460 "and the fragment size",
461 fsize, sblock.fs_fsize);
462 exit(23);
465 * Calculate the number of cylinders per group
467 sblock.fs_cpg = cpg;
468 if (sblock.fs_cpg % mincpc != 0) {
469 printf("%s groups must have a multiple of %ld cylinders\n",
470 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
471 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
472 if (!cpgflg)
473 cpg = sblock.fs_cpg;
476 * Must ensure there is enough space for inodes.
478 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
479 while (sblock.fs_ipg > MAXIPG(&sblock)) {
480 inodecramped = 1;
481 sblock.fs_cpg -= mincpc;
482 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
485 * Must ensure there is enough space to hold block map.
487 while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
488 mapcramped = 1;
489 sblock.fs_cpg -= mincpc;
490 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
492 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
493 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
494 printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
495 exit(24);
497 if (sblock.fs_cpg < mincpg) {
498 printf("cylinder groups must have at least %ld cylinders\n",
499 mincpg);
500 exit(25);
501 } else if (sblock.fs_cpg != cpg) {
502 if (!cpgflg && !mfs)
503 printf("Warning: ");
504 else if (!mapcramped && !inodecramped)
505 exit(26);
506 if (!mfs) {
507 if (mapcramped && inodecramped)
508 printf("Block size and bytes per inode restrict");
509 else if (mapcramped)
510 printf("Block size restricts");
511 else
512 printf("Bytes per inode restrict");
513 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
515 if (cpgflg)
516 exit(27);
518 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
520 * Now have size for file system and nsect and ntrak.
521 * Determine number of cylinders and blocks in the file system.
523 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
524 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
525 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
526 sblock.fs_ncyl++;
527 emitwarn = 1;
529 if (sblock.fs_ncyl < 1) {
530 printf("file systems must have at least one cylinder\n");
531 exit(28);
534 * Determine feasability/values of rotational layout tables.
536 * The size of the rotational layout tables is limited by the
537 * size of the superblock, SBSIZE. The amount of space available
538 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
539 * The size of these tables is inversely proportional to the block
540 * size of the file system. The size increases if sectors per track
541 * are not powers of two, because more cylinders must be described
542 * by the tables before the rotational pattern repeats (fs_cpc).
544 sblock.fs_interleave = interleave;
545 sblock.fs_trackskew = trackskew;
546 sblock.fs_npsect = nphyssectors;
547 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
548 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
549 if (sblock.fs_sbsize > SBSIZE)
550 sblock.fs_sbsize = SBSIZE;
551 if (sblock.fs_ntrak == 1) {
552 sblock.fs_cpc = 0;
553 goto next;
555 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
556 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
557 totalsbsize = sizeof(struct fs) + rotblsize;
558 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
559 /* use old static table space */
560 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
561 (char *)(&sblock.fs_firstfield);
562 sblock.fs_rotbloff = &sblock.fs_space[0] -
563 (u_char *)(&sblock.fs_firstfield);
564 } else {
565 /* use dynamic table space */
566 sblock.fs_postbloff = &sblock.fs_space[0] -
567 (u_char *)(&sblock.fs_firstfield);
568 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
569 totalsbsize += postblsize;
571 if (totalsbsize > SBSIZE ||
572 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
573 printf("%s %s %d %s %d.%s",
574 "Warning: insufficient space in super block for\n",
575 "rotational layout tables with nsect", sblock.fs_nsect,
576 "and ntrak", sblock.fs_ntrak,
577 "\nFile system performance may be impaired.\n");
578 sblock.fs_cpc = 0;
579 goto next;
581 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
582 if (sblock.fs_sbsize > SBSIZE)
583 sblock.fs_sbsize = SBSIZE;
585 * calculate the available blocks for each rotational position
587 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
588 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
589 fs_postbl(&sblock, cylno)[rpos] = -1;
590 for (i = (rotblsize - 1) * sblock.fs_frag;
591 i >= 0; i -= sblock.fs_frag) {
592 cylno = cbtocylno(&sblock, i);
593 rpos = cbtorpos(&sblock, i);
594 blk = fragstoblks(&sblock, i);
595 if (fs_postbl(&sblock, cylno)[rpos] == -1)
596 fs_rotbl(&sblock)[blk] = 0;
597 else
598 fs_rotbl(&sblock)[blk] =
599 fs_postbl(&sblock, cylno)[rpos] - blk;
600 fs_postbl(&sblock, cylno)[rpos] = blk;
602 next:
604 * Compute/validate number of cylinder groups.
606 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
607 if (sblock.fs_ncyl % sblock.fs_cpg)
608 sblock.fs_ncg++;
609 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
610 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
611 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
612 printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n",
613 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
614 (long)(sblock.fs_fpg / sblock.fs_frag));
615 printf("number of cylinders per cylinder group (%d) %s.\n",
616 sblock.fs_cpg, "must be increased");
617 exit(29);
619 j = sblock.fs_ncg - 1;
620 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
621 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
622 if (j == 0) {
623 printf("Filesystem must have at least %d sectors\n",
624 NSPF(&sblock) *
625 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
626 exit(30);
628 printf(
629 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n",
630 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
631 i / sblock.fs_frag);
632 printf(
633 " cylinder group. This implies %ld sector(s) cannot be allocated.\n",
634 i * NSPF(&sblock));
635 sblock.fs_ncg--;
636 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
637 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
638 NSPF(&sblock);
639 emitwarn = 0;
641 if (emitwarn && !mfs) {
642 printf("Warning: %d sector(s) in last cylinder unallocated\n",
643 sblock.fs_spc -
644 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
645 * sblock.fs_spc));
648 * fill in remaining fields of the super block
650 sblock.fs_csaddr = cgdmin(&sblock, 0);
651 sblock.fs_cssize =
652 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
654 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
655 * longer used. However, we still initialise them so that the
656 * filesystem remains compatible with old kernels.
658 i = sblock.fs_bsize / sizeof(struct csum);
659 sblock.fs_csmask = ~(i - 1);
660 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
661 sblock.fs_csshift++;
662 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
663 if (fscs == NULL)
664 errx(31, "calloc failed");
665 sblock.fs_magic = FS_MAGIC;
666 sblock.fs_rotdelay = rotdelay;
667 sblock.fs_minfree = minfree;
668 sblock.fs_maxcontig = maxcontig;
669 sblock.fs_maxbpg = maxbpg;
670 sblock.fs_rps = rpm / 60;
671 sblock.fs_optim = opt;
672 sblock.fs_cgrotor = 0;
673 sblock.fs_cstotal.cs_ndir = 0;
674 sblock.fs_cstotal.cs_nbfree = 0;
675 sblock.fs_cstotal.cs_nifree = 0;
676 sblock.fs_cstotal.cs_nffree = 0;
677 sblock.fs_fmod = 0;
678 sblock.fs_ronly = 0;
679 sblock.fs_clean = 1;
680 #ifdef FSIRAND
681 sblock.fs_id[0] = (long)utime;
682 sblock.fs_id[1] = random();
683 #endif
686 * Dump out summary information about file system.
688 if (!mfs) {
689 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
690 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
691 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
692 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
693 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)%s\n",
694 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
695 sblock.fs_ncg, sblock.fs_cpg,
696 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
697 sblock.fs_ipg,
698 sblock.fs_flags & FS_DOSOFTDEP ? " SOFTUPDATES" : "");
699 #undef B2MBFACTOR
702 * Now build the cylinders group blocks and
703 * then print out indices of cylinder groups.
705 if (!mfs)
706 printf("super-block backups (for fsck -b #) at:\n");
707 i = 0;
708 width = charsperline();
709 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
710 initcg(cylno, utime);
711 if (mfs)
712 continue;
713 j = snprintf(tmpbuf, sizeof(tmpbuf), " %ld%s",
714 fsbtodb(&sblock, cgsblock(&sblock, cylno)),
715 cylno < (sblock.fs_ncg-1) ? "," : "" );
716 if (i + j >= width) {
717 printf("\n");
718 i = 0;
720 i += j;
721 printf("%s", tmpbuf);
722 fflush(stdout);
724 if (!mfs)
725 printf("\n");
726 if (Nflag && !mfs)
727 exit(0);
729 * Now construct the initial file system,
730 * then write out the super-block.
732 fsinit(utime);
733 sblock.fs_time = utime;
734 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
735 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
736 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
737 sblock.fs_cssize - i < sblock.fs_bsize ?
738 sblock.fs_cssize - i : sblock.fs_bsize,
739 ((char *)fscs) + i);
741 * Write out the duplicate super blocks
743 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
744 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
745 sbsize, (char *)&sblock);
746 wtfsflush();
748 * Update information about this partion in pack
749 * label, so that it may be updated on disk.
751 pp->p_fstype = FS_BSDFFS;
752 pp->p_fsize = sblock.fs_fsize;
753 pp->p_frag = sblock.fs_frag;
754 pp->p_cpg = sblock.fs_cpg;
756 * Notify parent process of success.
757 * Dissociate from session and tty.
759 if (mfs) {
760 kill(mfs_ppid, SIGUSR1);
761 setsid();
762 close(0);
763 close(1);
764 close(2);
765 chdir("/");
770 * Initialize a cylinder group.
772 void
773 initcg(int cylno, time_t utime)
775 daddr_t cbase, d, dlower, dupper, dmax, blkno;
776 long i;
777 unsigned long k;
778 struct csum *cs;
779 #ifdef FSIRAND
780 uint32_t j;
781 #endif
784 * Determine block bounds for cylinder group.
785 * Allow space for super block summary information in first
786 * cylinder group.
788 cbase = cgbase(&sblock, cylno);
789 dmax = cbase + sblock.fs_fpg;
790 if (dmax > sblock.fs_size)
791 dmax = sblock.fs_size;
792 dlower = cgsblock(&sblock, cylno) - cbase;
793 dupper = cgdmin(&sblock, cylno) - cbase;
794 if (cylno == 0)
795 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
796 cs = fscs + cylno;
797 memset(&acg, 0, sblock.fs_cgsize);
798 acg.cg_time = utime;
799 acg.cg_magic = CG_MAGIC;
800 acg.cg_cgx = cylno;
801 if (cylno == sblock.fs_ncg - 1)
802 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
803 else
804 acg.cg_ncyl = sblock.fs_cpg;
805 acg.cg_niblk = sblock.fs_ipg;
806 acg.cg_ndblk = dmax - cbase;
807 if (sblock.fs_contigsumsize > 0)
808 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
809 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
810 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
811 acg.cg_iusedoff = acg.cg_boff +
812 sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
813 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
814 if (sblock.fs_contigsumsize <= 0) {
815 acg.cg_nextfreeoff = acg.cg_freeoff +
816 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
817 } else {
818 acg.cg_clustersumoff = acg.cg_freeoff + howmany
819 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
820 sizeof(u_int32_t);
821 acg.cg_clustersumoff =
822 roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
823 acg.cg_clusteroff = acg.cg_clustersumoff +
824 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
825 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
826 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
828 if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
829 printf("Panic: cylinder group too big\n");
830 exit(37);
832 acg.cg_cs.cs_nifree += sblock.fs_ipg;
833 if (cylno == 0) {
834 for (k = 0; k < ROOTINO; k++) {
835 setbit(cg_inosused(&acg), k);
836 acg.cg_cs.cs_nifree--;
839 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
840 #ifdef FSIRAND
841 for (j = 0;
842 j < sblock.fs_bsize / sizeof(struct ufs1_dinode);
843 j++) {
844 zino[j].di_gen = random();
846 #endif
847 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
848 sblock.fs_bsize, (char *)zino);
850 if (cylno > 0) {
852 * In cylno 0, beginning space is reserved
853 * for boot and super blocks.
855 for (d = 0; d < dlower; d += sblock.fs_frag) {
856 blkno = d / sblock.fs_frag;
857 setblock(&sblock, cg_blksfree(&acg), blkno);
858 if (sblock.fs_contigsumsize > 0)
859 setbit(cg_clustersfree(&acg), blkno);
860 acg.cg_cs.cs_nbfree++;
861 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
862 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
863 [cbtorpos(&sblock, d)]++;
865 sblock.fs_dsize += dlower;
867 sblock.fs_dsize += acg.cg_ndblk - dupper;
868 if ((i = dupper % sblock.fs_frag)) {
869 acg.cg_frsum[sblock.fs_frag - i]++;
870 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
871 setbit(cg_blksfree(&acg), dupper);
872 acg.cg_cs.cs_nffree++;
875 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
876 blkno = d / sblock.fs_frag;
877 setblock(&sblock, cg_blksfree(&acg), blkno);
878 if (sblock.fs_contigsumsize > 0)
879 setbit(cg_clustersfree(&acg), blkno);
880 acg.cg_cs.cs_nbfree++;
881 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
882 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
883 [cbtorpos(&sblock, d)]++;
884 d += sblock.fs_frag;
886 if (d < dmax - cbase) {
887 acg.cg_frsum[dmax - cbase - d]++;
888 for (; d < dmax - cbase; d++) {
889 setbit(cg_blksfree(&acg), d);
890 acg.cg_cs.cs_nffree++;
893 if (sblock.fs_contigsumsize > 0) {
894 int32_t *sump = cg_clustersum(&acg);
895 u_char *mapp = cg_clustersfree(&acg);
896 int map = *mapp++;
897 int bit = 1;
898 int run = 0;
900 for (i = 0; i < acg.cg_nclusterblks; i++) {
901 if ((map & bit) != 0) {
902 run++;
903 } else if (run != 0) {
904 if (run > sblock.fs_contigsumsize)
905 run = sblock.fs_contigsumsize;
906 sump[run]++;
907 run = 0;
909 if ((i & (NBBY - 1)) != (NBBY - 1)) {
910 bit <<= 1;
911 } else {
912 map = *mapp++;
913 bit = 1;
916 if (run != 0) {
917 if (run > sblock.fs_contigsumsize)
918 run = sblock.fs_contigsumsize;
919 sump[run]++;
922 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
923 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
924 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
925 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
926 *cs = acg.cg_cs;
927 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
928 sblock.fs_bsize, (char *)&acg);
932 * initialize the file system
934 struct ufs1_dinode node;
936 #ifdef LOSTDIR
937 #define PREDEFDIR 3
938 #else
939 #define PREDEFDIR 2
940 #endif
942 struct direct root_dir[] = {
943 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
944 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
945 #ifdef LOSTDIR
946 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
947 #endif
949 struct odirect {
950 u_long d_ino;
951 u_short d_reclen;
952 u_short d_namlen;
953 u_char d_name[MAXNAMLEN + 1];
954 } oroot_dir[] = {
955 { ROOTINO, sizeof(struct direct), 1, "." },
956 { ROOTINO, sizeof(struct direct), 2, ".." },
957 #ifdef LOSTDIR
958 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
959 #endif
961 #ifdef LOSTDIR
962 struct direct lost_found_dir[] = {
963 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
964 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
965 { 0, DIRBLKSIZ, 0, 0, 0 },
967 struct odirect olost_found_dir[] = {
968 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
969 { ROOTINO, sizeof(struct direct), 2, ".." },
970 { 0, DIRBLKSIZ, 0, 0 },
972 #endif
973 char buf[MAXBSIZE];
975 void
976 fsinit(time_t utime)
978 #ifdef LOSTDIR
979 int i;
980 #endif
983 * initialize the node
985 node.di_atime = utime;
986 node.di_mtime = utime;
987 node.di_ctime = utime;
988 #ifdef LOSTDIR
990 * create the lost+found directory
992 if (Oflag) {
993 makedir((struct direct *)olost_found_dir, 2);
994 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
995 memmove(&buf[i], &olost_found_dir[2],
996 DIRSIZ(0, &olost_found_dir[2]));
997 } else {
998 makedir(lost_found_dir, 2);
999 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
1000 memmove(&buf[i], &lost_found_dir[2],
1001 DIRSIZ(0, &lost_found_dir[2]));
1003 node.di_mode = IFDIR | UMASK;
1004 node.di_nlink = 2;
1005 node.di_size = sblock.fs_bsize;
1006 node.di_db[0] = alloc(node.di_size, node.di_mode);
1007 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1008 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
1009 iput(&node, LOSTFOUNDINO);
1010 #endif
1012 * create the root directory
1014 if (mfs)
1015 node.di_mode = IFDIR | 01777;
1016 else
1017 node.di_mode = IFDIR | UMASK;
1018 node.di_nlink = PREDEFDIR;
1019 if (Oflag)
1020 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
1021 else
1022 node.di_size = makedir(root_dir, PREDEFDIR);
1023 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
1024 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1025 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
1026 iput(&node, ROOTINO);
1030 * construct a set of directory entries in "buf".
1031 * return size of directory.
1034 makedir(struct direct *protodir, int entries)
1036 char *cp;
1037 int i, spcleft;
1039 spcleft = DIRBLKSIZ;
1040 for (cp = buf, i = 0; i < entries - 1; i++) {
1041 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
1042 memmove(cp, &protodir[i], protodir[i].d_reclen);
1043 cp += protodir[i].d_reclen;
1044 spcleft -= protodir[i].d_reclen;
1046 protodir[i].d_reclen = spcleft;
1047 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
1048 return (DIRBLKSIZ);
1052 * allocate a block or frag
1054 daddr_t
1055 alloc(int size, int mode)
1057 int i, frag;
1058 daddr_t d, blkno;
1060 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1061 (char *)&acg);
1062 if (acg.cg_magic != CG_MAGIC) {
1063 printf("cg 0: bad magic number\n");
1064 return (0);
1066 if (acg.cg_cs.cs_nbfree == 0) {
1067 printf("first cylinder group ran out of space\n");
1068 return (0);
1070 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1071 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
1072 goto goth;
1073 printf("internal error: can't find block in cyl 0\n");
1074 return (0);
1075 goth:
1076 blkno = fragstoblks(&sblock, d);
1077 clrblock(&sblock, cg_blksfree(&acg), blkno);
1078 if (sblock.fs_contigsumsize > 0)
1079 clrbit(cg_clustersfree(&acg), blkno);
1080 acg.cg_cs.cs_nbfree--;
1081 sblock.fs_cstotal.cs_nbfree--;
1082 fscs[0].cs_nbfree--;
1083 if (mode & IFDIR) {
1084 acg.cg_cs.cs_ndir++;
1085 sblock.fs_cstotal.cs_ndir++;
1086 fscs[0].cs_ndir++;
1088 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1089 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1090 if (size != sblock.fs_bsize) {
1091 frag = howmany(size, sblock.fs_fsize);
1092 fscs[0].cs_nffree += sblock.fs_frag - frag;
1093 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1094 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1095 acg.cg_frsum[sblock.fs_frag - frag]++;
1096 for (i = frag; i < sblock.fs_frag; i++)
1097 setbit(cg_blksfree(&acg), d + i);
1099 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1100 (char *)&acg);
1101 return (d);
1105 * Calculate number of inodes per group.
1107 long
1108 calcipg(long cylspg, long bpcg, off_t *usedbp)
1110 int i;
1111 long ipg, new_ipg, ncg, ncyl;
1112 off_t usedb;
1115 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1116 * Note that fssize is still in sectors, not filesystem blocks.
1118 ncyl = howmany(fssize, (u_int)secpercyl);
1119 ncg = howmany(ncyl, cylspg);
1121 * Iterate a few times to allow for ipg depending on itself.
1123 ipg = 0;
1124 for (i = 0; i < 10; i++) {
1125 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1126 * NSPF(&sblock) * (off_t)sectorsize;
1127 new_ipg = (cylspg * (quad_t)bpcg - usedb) / density * fssize
1128 / ncg / secpercyl / cylspg;
1129 new_ipg = roundup(new_ipg, INOPB(&sblock));
1130 if (new_ipg == ipg)
1131 break;
1132 ipg = new_ipg;
1134 *usedbp = usedb;
1135 return (ipg);
1139 * Allocate an inode on the disk
1141 void
1142 iput(struct ufs1_dinode *ip, ino_t ino)
1144 struct ufs1_dinode inobuf[MAXINOPB];
1145 daddr_t d;
1146 int c;
1148 #ifdef FSIRAND
1149 ip->di_gen = random();
1150 #endif
1151 c = ino_to_cg(&sblock, ino);
1152 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1153 (char *)&acg);
1154 if (acg.cg_magic != CG_MAGIC) {
1155 printf("cg 0: bad magic number\n");
1156 exit(31);
1158 acg.cg_cs.cs_nifree--;
1159 setbit(cg_inosused(&acg), ino);
1160 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1161 (char *)&acg);
1162 sblock.fs_cstotal.cs_nifree--;
1163 fscs[0].cs_nifree--;
1164 if (ino >= (uint32_t)sblock.fs_ipg * (uint32_t)sblock.fs_ncg) {
1165 printf("fsinit: inode value out of range (%ju).\n",
1166 (uintmax_t)ino);
1167 exit(32);
1169 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1170 rdfs(d, sblock.fs_bsize, (char *)inobuf);
1171 inobuf[ino_to_fsbo(&sblock, ino)] = *ip;
1172 wtfs(d, sblock.fs_bsize, (char *)inobuf);
1176 * Parent notifies child that it can proceed with the newfs and mount
1177 * operation (occurs after parent has copied the underlying filesystem
1178 * if the -C option was specified (for MFS), or immediately after the
1179 * parent forked the child otherwise).
1181 void
1182 parentready(__unused int signo)
1184 parentready_signalled = 1;
1188 * Notify parent process that the filesystem has created itself successfully.
1190 * We have to wait until the mount has actually completed!
1192 void
1193 started(__unused int signo)
1195 int retry = 100; /* 10 seconds, 100ms */
1197 while (mfs_ppid && retry) {
1198 struct stat st;
1200 if (
1201 stat(mfs_mtpt, &st) < 0 ||
1202 st.st_dev != mfs_mtstat.st_dev
1204 break;
1206 usleep(100*1000);
1207 --retry;
1209 if (retry == 0) {
1210 fatal("mfs mount failed waiting for mount to go active");
1211 } else if (copyroot) {
1212 FSPaste(mfs_mtpt, copyroot, copyhlinks);
1214 exit(0);
1217 #ifdef STANDALONE
1219 * Replace libc function with one suited to our needs.
1221 caddr_t
1222 malloc(u_long size)
1224 char *base, *i;
1225 static u_long pgsz;
1226 struct rlimit rlp;
1228 if (pgsz == 0) {
1229 base = sbrk(0);
1230 pgsz = getpagesize() - 1;
1231 i = (char *)((u_long)(base + pgsz) &~ pgsz);
1232 base = sbrk(i - base);
1233 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1234 warn("getrlimit");
1235 rlp.rlim_cur = rlp.rlim_max;
1236 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1237 warn("setrlimit");
1238 memleft = rlp.rlim_max - (u_long)base;
1240 size = (size + pgsz) &~ pgsz;
1241 if (size > memleft)
1242 size = memleft;
1243 memleft -= size;
1244 if (size == 0)
1245 return (0);
1246 return ((caddr_t)sbrk(size));
1250 * Replace libc function with one suited to our needs.
1252 caddr_t
1253 realloc(char *ptr, u_long size)
1255 void *p;
1257 if ((p = malloc(size)) == NULL)
1258 return (NULL);
1259 memmove(p, ptr, size);
1260 free(ptr);
1261 return (p);
1265 * Replace libc function with one suited to our needs.
1267 char *
1268 calloc(u_long size, u_long numelm)
1270 caddr_t base;
1272 size *= numelm;
1273 if ((base = malloc(size)) == NULL)
1274 return (NULL);
1275 memset(base, 0, size);
1276 return (base);
1280 * Replace libc function with one suited to our needs.
1282 void
1283 free(char *ptr)
1286 /* do not worry about it for now */
1289 #else /* !STANDALONE */
1291 void
1292 raise_data_limit(void)
1294 struct rlimit rlp;
1296 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1297 warn("getrlimit");
1298 rlp.rlim_cur = rlp.rlim_max;
1299 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1300 warn("setrlimit");
1303 #ifdef __ELF__
1304 extern char *_etext;
1305 #define etext _etext
1306 #else
1307 extern char *etext;
1308 #endif
1310 void
1311 get_memleft(void)
1313 static u_long pgsz;
1314 struct rlimit rlp;
1315 u_long freestart;
1316 u_long dstart;
1317 u_long memused;
1319 pgsz = getpagesize() - 1;
1320 dstart = ((u_long)&etext) &~ pgsz;
1321 freestart = ((u_long)((char *)sbrk(0) + pgsz) &~ pgsz);
1322 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1323 warn("getrlimit");
1324 memused = freestart - dstart;
1325 memleft = rlp.rlim_cur - memused;
1327 #endif /* STANDALONE */
1330 * read a block from the file system
1332 void
1333 rdfs(daddr_t bno, int size, char *bf)
1335 int n;
1337 wtfsflush();
1338 if (mfs) {
1339 memmove(bf, membase + bno * sectorsize, size);
1340 return;
1342 if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
1343 printf("seek error: %ld\n", (long)bno);
1344 err(33, "rdfs");
1346 n = read(fsi, bf, size);
1347 if (n != size) {
1348 printf("read error: %ld\n", (long)bno);
1349 err(34, "rdfs");
1353 #define WCSIZE (128 * 1024)
1354 daddr_t wc_sect; /* units of sectorsize */
1355 int wc_end; /* bytes */
1356 static char wc[WCSIZE]; /* bytes */
1359 * Flush dirty write behind buffer.
1361 void
1362 wtfsflush(void)
1364 int n;
1365 if (wc_end) {
1366 if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) {
1367 printf("seek error: %ld\n", (long)wc_sect);
1368 err(35, "wtfs - writecombine");
1370 n = write(fso, wc, wc_end);
1371 if (n != wc_end) {
1372 printf("write error: %ld\n", (long)wc_sect);
1373 err(36, "wtfs - writecombine");
1375 wc_end = 0;
1380 * write a block to the file system
1382 void
1383 wtfs(daddr_t bno, int size, char *bf)
1385 int n;
1386 int done;
1388 if (mfs) {
1389 memmove(membase + bno * sectorsize, bf, size);
1390 return;
1392 if (Nflag)
1393 return;
1394 done = 0;
1395 if (wc_end == 0 && size <= WCSIZE) {
1396 wc_sect = bno;
1397 bcopy(bf, wc, size);
1398 wc_end = size;
1399 if (wc_end < WCSIZE)
1400 return;
1401 done = 1;
1403 if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize &&
1404 wc_end + size <= WCSIZE) {
1405 bcopy(bf, wc + wc_end, size);
1406 wc_end += size;
1407 if (wc_end < WCSIZE)
1408 return;
1409 done = 1;
1411 wtfsflush();
1412 if (done)
1413 return;
1414 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1415 printf("seek error: %ld\n", (long)bno);
1416 err(35, "wtfs");
1418 n = write(fso, bf, size);
1419 if (n != size) {
1420 printf("write error: %ld\n", (long)bno);
1421 err(36, "wtfs");
1426 * check if a block is available
1429 isblock(struct fs *fs, unsigned char *cp, int h)
1431 unsigned char mask;
1433 switch (fs->fs_frag) {
1434 case 8:
1435 return (cp[h] == 0xff);
1436 case 4:
1437 mask = 0x0f << ((h & 0x1) << 2);
1438 return ((cp[h >> 1] & mask) == mask);
1439 case 2:
1440 mask = 0x03 << ((h & 0x3) << 1);
1441 return ((cp[h >> 2] & mask) == mask);
1442 case 1:
1443 mask = 0x01 << (h & 0x7);
1444 return ((cp[h >> 3] & mask) == mask);
1445 default:
1446 #ifdef STANDALONE
1447 printf("isblock bad fs_frag %d\n", fs->fs_frag);
1448 #else
1449 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1450 #endif
1451 return (0);
1456 * take a block out of the map
1458 void
1459 clrblock(struct fs *fs, unsigned char *cp, int h)
1461 switch ((fs)->fs_frag) {
1462 case 8:
1463 cp[h] = 0;
1464 return;
1465 case 4:
1466 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1467 return;
1468 case 2:
1469 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1470 return;
1471 case 1:
1472 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1473 return;
1474 default:
1475 #ifdef STANDALONE
1476 printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1477 #else
1478 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1479 #endif
1480 return;
1485 * put a block into the map
1487 void
1488 setblock(struct fs *fs, unsigned char *cp, int h)
1490 switch (fs->fs_frag) {
1491 case 8:
1492 cp[h] = 0xff;
1493 return;
1494 case 4:
1495 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1496 return;
1497 case 2:
1498 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1499 return;
1500 case 1:
1501 cp[h >> 3] |= (0x01 << (h & 0x7));
1502 return;
1503 default:
1504 #ifdef STANDALONE
1505 printf("setblock bad fs_frag %d\n", fs->fs_frag);
1506 #else
1507 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1508 #endif
1509 return;
1514 * Determine the number of characters in a
1515 * single line.
1518 static int
1519 charsperline(void)
1521 int columns;
1522 char *cp;
1523 struct winsize ws;
1525 columns = 0;
1526 if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1527 columns = ws.ws_col;
1528 if (columns == 0 && (cp = getenv("COLUMNS")))
1529 columns = atoi(cp);
1530 if (columns == 0)
1531 columns = 80; /* last resort */
1532 return columns;