fdisk - Use heads = 255 on file images
[dragonfly.git] / lib / libm / src / math_private.h
blobfaa8834f9dff08ed08b0aa32a8a946963da3e3d7
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
13 * from: @(#)fdlibm.h 5.1 93/09/24
14 * $NetBSD: math_private.h,v 1.11 2001/02/21 18:09:26 bjh21 Exp $
15 * $DragonFly: src/lib/libm/src/math_private.h,v 1.1 2005/07/26 21:15:20 joerg Exp $
18 #ifndef _MATH_PRIVATE_H_
19 #define _MATH_PRIVATE_H_
21 #include <sys/types.h>
23 /* The original fdlibm code used statements like:
24 n0 = ((*(int*)&one)>>29)^1; * index of high word *
25 ix0 = *(n0+(int*)&x); * high word of x *
26 ix1 = *((1-n0)+(int*)&x); * low word of x *
27 to dig two 32 bit words out of the 64 bit IEEE floating point
28 value. That is non-ANSI, and, moreover, the gcc instruction
29 scheduler gets it wrong. We instead use the following macros.
30 Unlike the original code, we determine the endianness at compile
31 time, not at run time; I don't see much benefit to selecting
32 endianness at run time. */
34 /* A union which permits us to convert between a double and two 32 bit
35 ints. */
38 * The ARM ports are little endian except for the FPA word order which is
39 * big endian.
42 #if (BYTE_ORDER == BIG_ENDIAN) || (defined(__arm__) && !defined(__VFP_FP__))
44 typedef union
46 double value;
47 struct
49 u_int32_t msw;
50 u_int32_t lsw;
51 } parts;
52 } ieee_double_shape_type;
54 #endif
56 #if (BYTE_ORDER == LITTLE_ENDIAN) && \
57 !(defined(__arm__) && !defined(__VFP_FP__))
59 typedef union
61 double value;
62 struct
64 u_int32_t lsw;
65 u_int32_t msw;
66 } parts;
67 } ieee_double_shape_type;
69 #endif
71 /* Get two 32 bit ints from a double. */
73 #define EXTRACT_WORDS(ix0,ix1,d) \
74 do { \
75 ieee_double_shape_type ew_u; \
76 ew_u.value = (d); \
77 (ix0) = ew_u.parts.msw; \
78 (ix1) = ew_u.parts.lsw; \
79 } while (0)
81 /* Get the more significant 32 bit int from a double. */
83 #define GET_HIGH_WORD(i,d) \
84 do { \
85 ieee_double_shape_type gh_u; \
86 gh_u.value = (d); \
87 (i) = gh_u.parts.msw; \
88 } while (0)
90 /* Get the less significant 32 bit int from a double. */
92 #define GET_LOW_WORD(i,d) \
93 do { \
94 ieee_double_shape_type gl_u; \
95 gl_u.value = (d); \
96 (i) = gl_u.parts.lsw; \
97 } while (0)
99 /* Set a double from two 32 bit ints. */
101 #define INSERT_WORDS(d,ix0,ix1) \
102 do { \
103 ieee_double_shape_type iw_u; \
104 iw_u.parts.msw = (ix0); \
105 iw_u.parts.lsw = (ix1); \
106 (d) = iw_u.value; \
107 } while (0)
109 /* Set the more significant 32 bits of a double from an int. */
111 #define SET_HIGH_WORD(d,v) \
112 do { \
113 ieee_double_shape_type sh_u; \
114 sh_u.value = (d); \
115 sh_u.parts.msw = (v); \
116 (d) = sh_u.value; \
117 } while (0)
119 /* Set the less significant 32 bits of a double from an int. */
121 #define SET_LOW_WORD(d,v) \
122 do { \
123 ieee_double_shape_type sl_u; \
124 sl_u.value = (d); \
125 sl_u.parts.lsw = (v); \
126 (d) = sl_u.value; \
127 } while (0)
129 /* A union which permits us to convert between a float and a 32 bit
130 int. */
132 typedef union
134 float value;
135 u_int32_t word;
136 } ieee_float_shape_type;
138 /* Get a 32 bit int from a float. */
140 #define GET_FLOAT_WORD(i,d) \
141 do { \
142 ieee_float_shape_type gf_u; \
143 gf_u.value = (d); \
144 (i) = gf_u.word; \
145 } while (0)
147 /* Set a float from a 32 bit int. */
149 #define SET_FLOAT_WORD(d,i) \
150 do { \
151 ieee_float_shape_type sf_u; \
152 sf_u.word = (i); \
153 (d) = sf_u.value; \
154 } while (0)
156 #ifdef _COMPLEX_H
159 * C99 specifies that complex numbers have the same representation as
160 * an array of two elements, where the first element is the real part
161 * and the second element is the imaginary part.
163 typedef union {
164 float complex f;
165 float a[2];
166 } float_complex;
167 typedef union {
168 double complex f;
169 double a[2];
170 } double_complex;
171 typedef union {
172 long double complex f;
173 long double a[2];
174 } long_double_complex;
175 #define REALPART(z) ((z).a[0])
176 #define IMAGPART(z) ((z).a[1])
179 * Inline functions that can be used to construct complex values.
181 * The C99 standard intends x+I*y to be used for this, but x+I*y is
182 * currently unusable in general since gcc introduces many overflow,
183 * underflow, sign and efficiency bugs by rewriting I*y as
184 * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
185 * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
186 * to -0.0+I*0.0.
188 static __inline float complex
189 cpackf(float x, float y)
191 float_complex z;
193 REALPART(z) = x;
194 IMAGPART(z) = y;
195 return (z.f);
198 static __inline double complex
199 cpack(double x, double y)
201 double_complex z;
203 REALPART(z) = x;
204 IMAGPART(z) = y;
205 return (z.f);
208 static __inline long double complex
209 cpackl(long double x, long double y)
211 long_double_complex z;
213 REALPART(z) = x;
214 IMAGPART(z) = y;
215 return (z.f);
218 #endif /* _COMPLEX_H */
220 __BEGIN_DECLS
221 #pragma GCC visibility push(hidden)
223 /* ieee style elementary functions */
224 int __libm_rem_pio2(double, double*);
226 /* fdlibm kernel function */
227 double __kernel_sin(double, double, int);
228 double __kernel_cos(double, double);
229 double __kernel_tan(double, double, int);
230 int __kernel_rem_pio2(double*, double*, int, int, int, const int*);
233 /* ieee style elementary float functions */
234 int __libm_rem_pio2f(float,float*);
236 /* float versions of fdlibm kernel functions */
237 float __kernel_sinf(float, float, int);
238 float __kernel_cosf(float, float);
239 float __kernel_tanf(float, float, int);
240 int __kernel_rem_pio2f(float*, float*, int, int, int, const int*);
242 #pragma GCC visibility pop
243 __END_DECLS
245 #endif /* _MATH_PRIVATE_H_ */