fdisk - Use heads = 255 on file images
[dragonfly.git] / lib / libm / src / e_sqrt.c
blobfd79eec5e246358a0bf7e1583b33ce7941d01e8a
1 /* @(#)e_sqrt.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
12 * $NetBSD: e_sqrt.c,v 1.12 2002/05/26 22:01:52 wiz Exp $
13 * $DragonFly: src/lib/libm/src/e_sqrt.c,v 1.1 2005/07/26 21:15:20 joerg Exp $
16 /* sqrt(x)
17 * Return correctly rounded sqrt.
18 * ------------------------------------------
19 * | Use the hardware sqrt if you have one |
20 * ------------------------------------------
21 * Method:
22 * Bit by bit method using integer arithmetic. (Slow, but portable)
23 * 1. Normalization
24 * Scale x to y in [1,4) with even powers of 2:
25 * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
26 * sqrt(x) = 2^k * sqrt(y)
27 * 2. Bit by bit computation
28 * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
29 * i 0
30 * i+1 2
31 * s = 2*q , and y = 2 * ( y - q ). (1)
32 * i i i i
34 * To compute q from q , one checks whether
35 * i+1 i
37 * -(i+1) 2
38 * (q + 2 ) <= y. (2)
39 * i
40 * -(i+1)
41 * If (2) is false, then q = q ; otherwise q = q + 2 .
42 * i+1 i i+1 i
44 * With some algebric manipulation, it is not difficult to see
45 * that (2) is equivalent to
46 * -(i+1)
47 * s + 2 <= y (3)
48 * i i
50 * The advantage of (3) is that s and y can be computed by
51 * i i
52 * the following recurrence formula:
53 * if (3) is false
55 * s = s , y = y ; (4)
56 * i+1 i i+1 i
58 * otherwise,
59 * -i -(i+1)
60 * s = s + 2 , y = y - s - 2 (5)
61 * i+1 i i+1 i i
63 * One may easily use induction to prove (4) and (5).
64 * Note. Since the left hand side of (3) contain only i+2 bits,
65 * it does not necessary to do a full (53-bit) comparison
66 * in (3).
67 * 3. Final rounding
68 * After generating the 53 bits result, we compute one more bit.
69 * Together with the remainder, we can decide whether the
70 * result is exact, bigger than 1/2ulp, or less than 1/2ulp
71 * (it will never equal to 1/2ulp).
72 * The rounding mode can be detected by checking whether
73 * huge + tiny is equal to huge, and whether huge - tiny is
74 * equal to huge for some floating point number "huge" and "tiny".
76 * Special cases:
77 * sqrt(+-0) = +-0 ... exact
78 * sqrt(inf) = inf
79 * sqrt(-ve) = NaN ... with invalid signal
80 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
82 * Other methods : see the appended file at the end of the program below.
83 *---------------
86 #include <math.h>
87 #include "math_private.h"
89 static const double one = 1.0, tiny=1.0e-300;
91 double
92 sqrt(double x)
94 double z;
95 int32_t sign = (int)0x80000000;
96 int32_t ix0,s0,q,m,t,i;
97 u_int32_t r,t1,s1,ix1,q1;
99 EXTRACT_WORDS(ix0,ix1,x);
101 /* take care of Inf and NaN */
102 if((ix0&0x7ff00000)==0x7ff00000) {
103 return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
104 sqrt(-inf)=sNaN */
106 /* take care of zero */
107 if(ix0<=0) {
108 if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
109 else if(ix0<0)
110 return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
112 /* normalize x */
113 m = (ix0>>20);
114 if(m==0) { /* subnormal x */
115 while(ix0==0) {
116 m -= 21;
117 ix0 |= (ix1>>11); ix1 <<= 21;
119 for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
120 m -= i-1;
121 ix0 |= (ix1>>(32-i));
122 ix1 <<= i;
124 m -= 1023; /* unbias exponent */
125 ix0 = (ix0&0x000fffff)|0x00100000;
126 if(m&1){ /* odd m, double x to make it even */
127 ix0 += ix0 + ((ix1&sign)>>31);
128 ix1 += ix1;
130 m >>= 1; /* m = [m/2] */
132 /* generate sqrt(x) bit by bit */
133 ix0 += ix0 + ((ix1&sign)>>31);
134 ix1 += ix1;
135 q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
136 r = 0x00200000; /* r = moving bit from right to left */
138 while(r!=0) {
139 t = s0+r;
140 if(t<=ix0) {
141 s0 = t+r;
142 ix0 -= t;
143 q += r;
145 ix0 += ix0 + ((ix1&sign)>>31);
146 ix1 += ix1;
147 r>>=1;
150 r = sign;
151 while(r!=0) {
152 t1 = s1+r;
153 t = s0;
154 if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
155 s1 = t1+r;
156 if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
157 ix0 -= t;
158 if (ix1 < t1) ix0 -= 1;
159 ix1 -= t1;
160 q1 += r;
162 ix0 += ix0 + ((ix1&sign)>>31);
163 ix1 += ix1;
164 r>>=1;
167 /* use floating add to find out rounding direction */
168 if((ix0|ix1)!=0) {
169 z = one-tiny; /* trigger inexact flag */
170 if (z>=one) {
171 z = one+tiny;
172 if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
173 else if (z>one) {
174 if (q1==(u_int32_t)0xfffffffe) q+=1;
175 q1+=2;
176 } else
177 q1 += (q1&1);
180 ix0 = (q>>1)+0x3fe00000;
181 ix1 = q1>>1;
182 if ((q&1)==1) ix1 |= sign;
183 ix0 += (m <<20);
184 INSERT_WORDS(z,ix0,ix1);
185 return z;
189 Other methods (use floating-point arithmetic)
190 -------------
191 (This is a copy of a drafted paper by Prof W. Kahan
192 and K.C. Ng, written in May, 1986)
194 Two algorithms are given here to implement sqrt(x)
195 (IEEE double precision arithmetic) in software.
196 Both supply sqrt(x) correctly rounded. The first algorithm (in
197 Section A) uses newton iterations and involves four divisions.
198 The second one uses reciproot iterations to avoid division, but
199 requires more multiplications. Both algorithms need the ability
200 to chop results of arithmetic operations instead of round them,
201 and the INEXACT flag to indicate when an arithmetic operation
202 is executed exactly with no roundoff error, all part of the
203 standard (IEEE 754-1985). The ability to perform shift, add,
204 subtract and logical AND operations upon 32-bit words is needed
205 too, though not part of the standard.
207 A. sqrt(x) by Newton Iteration
209 (1) Initial approximation
211 Let x0 and x1 be the leading and the trailing 32-bit words of
212 a floating point number x (in IEEE double format) respectively
214 1 11 52 ...widths
215 ------------------------------------------------------
216 x: |s| e | f |
217 ------------------------------------------------------
218 msb lsb msb lsb ...order
221 ------------------------ ------------------------
222 x0: |s| e | f1 | x1: | f2 |
223 ------------------------ ------------------------
225 By performing shifts and subtracts on x0 and x1 (both regarded
226 as integers), we obtain an 8-bit approximation of sqrt(x) as
227 follows.
229 k := (x0>>1) + 0x1ff80000;
230 y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
231 Here k is a 32-bit integer and T1[] is an integer array containing
232 correction terms. Now magically the floating value of y (y's
233 leading 32-bit word is y0, the value of its trailing word is 0)
234 approximates sqrt(x) to almost 8-bit.
236 Value of T1:
237 static int T1[32]= {
238 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
239 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
240 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
241 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
243 (2) Iterative refinement
245 Apply Heron's rule three times to y, we have y approximates
246 sqrt(x) to within 1 ulp (Unit in the Last Place):
248 y := (y+x/y)/2 ... almost 17 sig. bits
249 y := (y+x/y)/2 ... almost 35 sig. bits
250 y := y-(y-x/y)/2 ... within 1 ulp
253 Remark 1.
254 Another way to improve y to within 1 ulp is:
256 y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
257 y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
260 (x-y )*y
261 y := y + 2* ---------- ...within 1 ulp
263 3y + x
266 This formula has one division fewer than the one above; however,
267 it requires more multiplications and additions. Also x must be
268 scaled in advance to avoid spurious overflow in evaluating the
269 expression 3y*y+x. Hence it is not recommended uless division
270 is slow. If division is very slow, then one should use the
271 reciproot algorithm given in section B.
273 (3) Final adjustment
275 By twiddling y's last bit it is possible to force y to be
276 correctly rounded according to the prevailing rounding mode
277 as follows. Let r and i be copies of the rounding mode and
278 inexact flag before entering the square root program. Also we
279 use the expression y+-ulp for the next representable floating
280 numbers (up and down) of y. Note that y+-ulp = either fixed
281 point y+-1, or multiply y by nextafter(1,+-inf) in chopped
282 mode.
284 I := FALSE; ... reset INEXACT flag I
285 R := RZ; ... set rounding mode to round-toward-zero
286 z := x/y; ... chopped quotient, possibly inexact
287 If(not I) then { ... if the quotient is exact
288 if(z=y) {
289 I := i; ... restore inexact flag
290 R := r; ... restore rounded mode
291 return sqrt(x):=y.
292 } else {
293 z := z - ulp; ... special rounding
296 i := TRUE; ... sqrt(x) is inexact
297 If (r=RN) then z=z+ulp ... rounded-to-nearest
298 If (r=RP) then { ... round-toward-+inf
299 y = y+ulp; z=z+ulp;
301 y := y+z; ... chopped sum
302 y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
303 I := i; ... restore inexact flag
304 R := r; ... restore rounded mode
305 return sqrt(x):=y.
307 (4) Special cases
309 Square root of +inf, +-0, or NaN is itself;
310 Square root of a negative number is NaN with invalid signal.
313 B. sqrt(x) by Reciproot Iteration
315 (1) Initial approximation
317 Let x0 and x1 be the leading and the trailing 32-bit words of
318 a floating point number x (in IEEE double format) respectively
319 (see section A). By performing shifs and subtracts on x0 and y0,
320 we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
322 k := 0x5fe80000 - (x0>>1);
323 y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
325 Here k is a 32-bit integer and T2[] is an integer array
326 containing correction terms. Now magically the floating
327 value of y (y's leading 32-bit word is y0, the value of
328 its trailing word y1 is set to zero) approximates 1/sqrt(x)
329 to almost 7.8-bit.
331 Value of T2:
332 static int T2[64]= {
333 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
334 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
335 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
336 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
337 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
338 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
339 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
340 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
342 (2) Iterative refinement
344 Apply Reciproot iteration three times to y and multiply the
345 result by x to get an approximation z that matches sqrt(x)
346 to about 1 ulp. To be exact, we will have
347 -1ulp < sqrt(x)-z<1.0625ulp.
349 ... set rounding mode to Round-to-nearest
350 y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
351 y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
352 ... special arrangement for better accuracy
353 z := x*y ... 29 bits to sqrt(x), with z*y<1
354 z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
356 Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
357 (a) the term z*y in the final iteration is always less than 1;
358 (b) the error in the final result is biased upward so that
359 -1 ulp < sqrt(x) - z < 1.0625 ulp
360 instead of |sqrt(x)-z|<1.03125ulp.
362 (3) Final adjustment
364 By twiddling y's last bit it is possible to force y to be
365 correctly rounded according to the prevailing rounding mode
366 as follows. Let r and i be copies of the rounding mode and
367 inexact flag before entering the square root program. Also we
368 use the expression y+-ulp for the next representable floating
369 numbers (up and down) of y. Note that y+-ulp = either fixed
370 point y+-1, or multiply y by nextafter(1,+-inf) in chopped
371 mode.
373 R := RZ; ... set rounding mode to round-toward-zero
374 switch(r) {
375 case RN: ... round-to-nearest
376 if(x<= z*(z-ulp)...chopped) z = z - ulp; else
377 if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
378 break;
379 case RZ:case RM: ... round-to-zero or round-to--inf
380 R:=RP; ... reset rounding mod to round-to-+inf
381 if(x<z*z ... rounded up) z = z - ulp; else
382 if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
383 break;
384 case RP: ... round-to-+inf
385 if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
386 if(x>z*z ...chopped) z = z+ulp;
387 break;
390 Remark 3. The above comparisons can be done in fixed point. For
391 example, to compare x and w=z*z chopped, it suffices to compare
392 x1 and w1 (the trailing parts of x and w), regarding them as
393 two's complement integers.
395 ...Is z an exact square root?
396 To determine whether z is an exact square root of x, let z1 be the
397 trailing part of z, and also let x0 and x1 be the leading and
398 trailing parts of x.
400 If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
401 I := 1; ... Raise Inexact flag: z is not exact
402 else {
403 j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
404 k := z1 >> 26; ... get z's 25-th and 26-th
405 fraction bits
406 I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
408 R:= r ... restore rounded mode
409 return sqrt(x):=z.
411 If multiplication is cheaper than the foregoing red tape, the
412 Inexact flag can be evaluated by
414 I := i;
415 I := (z*z!=x) or I.
417 Note that z*z can overwrite I; this value must be sensed if it is
418 True.
420 Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
421 zero.
423 --------------------
424 z1: | f2 |
425 --------------------
426 bit 31 bit 0
428 Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
429 or even of logb(x) have the following relations:
431 -------------------------------------------------
432 bit 27,26 of z1 bit 1,0 of x1 logb(x)
433 -------------------------------------------------
434 00 00 odd and even
435 01 01 even
436 10 10 odd
437 10 00 even
438 11 01 even
439 -------------------------------------------------
441 (4) Special cases (see (4) of Section A).