1 /* e_rem_pio2f.c -- float version of e_rem_pio2.c
2 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
13 * ====================================================
15 * $NetBSD: e_rem_pio2f.c,v 1.8 2002/05/26 22:01:52 wiz Exp $
16 * $DragonFly: src/lib/libm/src/e_rem_pio2f.c,v 1.1 2005/07/26 21:15:20 joerg Exp $
19 /* __libm_rem_pio2f(x,y)
21 * return the remainder of x rem pi/2 in y[0]+y[1]
22 * use __kernel_rem_pio2f()
26 #include "math_private.h"
29 * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
31 static const int32_t two_over_pi
[] = {
32 0xA2, 0xF9, 0x83, 0x6E, 0x4E, 0x44, 0x15, 0x29, 0xFC,
33 0x27, 0x57, 0xD1, 0xF5, 0x34, 0xDD, 0xC0, 0xDB, 0x62,
34 0x95, 0x99, 0x3C, 0x43, 0x90, 0x41, 0xFE, 0x51, 0x63,
35 0xAB, 0xDE, 0xBB, 0xC5, 0x61, 0xB7, 0x24, 0x6E, 0x3A,
36 0x42, 0x4D, 0xD2, 0xE0, 0x06, 0x49, 0x2E, 0xEA, 0x09,
37 0xD1, 0x92, 0x1C, 0xFE, 0x1D, 0xEB, 0x1C, 0xB1, 0x29,
38 0xA7, 0x3E, 0xE8, 0x82, 0x35, 0xF5, 0x2E, 0xBB, 0x44,
39 0x84, 0xE9, 0x9C, 0x70, 0x26, 0xB4, 0x5F, 0x7E, 0x41,
40 0x39, 0x91, 0xD6, 0x39, 0x83, 0x53, 0x39, 0xF4, 0x9C,
41 0x84, 0x5F, 0x8B, 0xBD, 0xF9, 0x28, 0x3B, 0x1F, 0xF8,
42 0x97, 0xFF, 0xDE, 0x05, 0x98, 0x0F, 0xEF, 0x2F, 0x11,
43 0x8B, 0x5A, 0x0A, 0x6D, 0x1F, 0x6D, 0x36, 0x7E, 0xCF,
44 0x27, 0xCB, 0x09, 0xB7, 0x4F, 0x46, 0x3F, 0x66, 0x9E,
45 0x5F, 0xEA, 0x2D, 0x75, 0x27, 0xBA, 0xC7, 0xEB, 0xE5,
46 0xF1, 0x7B, 0x3D, 0x07, 0x39, 0xF7, 0x8A, 0x52, 0x92,
47 0xEA, 0x6B, 0xFB, 0x5F, 0xB1, 0x1F, 0x8D, 0x5D, 0x08,
48 0x56, 0x03, 0x30, 0x46, 0xFC, 0x7B, 0x6B, 0xAB, 0xF0,
49 0xCF, 0xBC, 0x20, 0x9A, 0xF4, 0x36, 0x1D, 0xA9, 0xE3,
50 0x91, 0x61, 0x5E, 0xE6, 0x1B, 0x08, 0x65, 0x99, 0x85,
51 0x5F, 0x14, 0xA0, 0x68, 0x40, 0x8D, 0xFF, 0xD8, 0x80,
52 0x4D, 0x73, 0x27, 0x31, 0x06, 0x06, 0x15, 0x56, 0xCA,
53 0x73, 0xA8, 0xC9, 0x60, 0xE2, 0x7B, 0xC0, 0x8C, 0x6B,
56 /* This array is like the one in e_rem_pio2.c, but the numbers are
57 single precision and the last 8 bits are forced to 0. */
58 static const int32_t npio2_hw
[] = {
59 0x3fc90f00, 0x40490f00, 0x4096cb00, 0x40c90f00, 0x40fb5300, 0x4116cb00,
60 0x412fed00, 0x41490f00, 0x41623100, 0x417b5300, 0x418a3a00, 0x4196cb00,
61 0x41a35c00, 0x41afed00, 0x41bc7e00, 0x41c90f00, 0x41d5a000, 0x41e23100,
62 0x41eec200, 0x41fb5300, 0x4203f200, 0x420a3a00, 0x42108300, 0x4216cb00,
63 0x421d1400, 0x42235c00, 0x4229a500, 0x422fed00, 0x42363600, 0x423c7e00,
64 0x4242c700, 0x42490f00
68 * invpio2: 24 bits of 2/pi
69 * pio2_1: first 17 bit of pi/2
70 * pio2_1t: pi/2 - pio2_1
71 * pio2_2: second 17 bit of pi/2
72 * pio2_2t: pi/2 - (pio2_1+pio2_2)
73 * pio2_3: third 17 bit of pi/2
74 * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
78 zero
= 0.0000000000e+00, /* 0x00000000 */
79 half
= 5.0000000000e-01, /* 0x3f000000 */
80 two8
= 2.5600000000e+02, /* 0x43800000 */
81 invpio2
= 6.3661980629e-01, /* 0x3f22f984 */
82 pio2_1
= 1.5707855225e+00, /* 0x3fc90f80 */
83 pio2_1t
= 1.0804334124e-05, /* 0x37354443 */
84 pio2_2
= 1.0804273188e-05, /* 0x37354400 */
85 pio2_2t
= 6.0770999344e-11, /* 0x2e85a308 */
86 pio2_3
= 6.0770943833e-11, /* 0x2e85a300 */
87 pio2_3t
= 6.1232342629e-17; /* 0x248d3132 */
90 __libm_rem_pio2f(float x
, float *y
)
94 int32_t e0
,i
,j
,nx
,n
,ix
,hx
;
98 if(ix
<=0x3f490fd8) /* |x| ~<= pi/4 , no need for reduction */
99 {y
[0] = x
; y
[1] = 0; return 0;}
100 if(ix
<0x4016cbe4) { /* |x| < 3pi/4, special case with n=+-1 */
103 if((ix
&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
105 y
[1] = (z
-y
[0])-pio2_1t
;
106 } else { /* near pi/2, use 24+24+24 bit pi */
109 y
[1] = (z
-y
[0])-pio2_2t
;
112 } else { /* negative x */
114 if((ix
&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
116 y
[1] = (z
-y
[0])+pio2_1t
;
117 } else { /* near pi/2, use 24+24+24 bit pi */
120 y
[1] = (z
-y
[0])+pio2_2t
;
125 if(ix
<=0x43490f80) { /* |x| ~<= 2^7*(pi/2), medium size */
127 n
= (int32_t) (t
*invpio2
+half
);
130 w
= fn
*pio2_1t
; /* 1st round good to 40 bit */
131 if(n
<32&&(ix
&0xffffff00)!=npio2_hw
[n
-1]) {
132 y
[0] = r
-w
; /* quick check no cancellation */
137 GET_FLOAT_WORD(high
,y
[0]);
138 i
= j
-((high
>>23)&0xff);
139 if(i
>8) { /* 2nd iteration needed, good to 57 */
143 w
= fn
*pio2_2t
-((t
-r
)-w
);
145 GET_FLOAT_WORD(high
,y
[0]);
146 i
= j
-((high
>>23)&0xff);
147 if(i
>25) { /* 3rd iteration need, 74 bits acc */
148 t
= r
; /* will cover all possible cases */
151 w
= fn
*pio2_3t
-((t
-r
)-w
);
157 if(hx
<0) {y
[0] = -y
[0]; y
[1] = -y
[1]; return -n
;}
161 * all other (large) arguments
163 if(ix
>=0x7f800000) { /* x is inf or NaN */
164 y
[0]=y
[1]=x
-x
; return 0;
166 /* set z = scalbn(|x|,ilogb(x)-7) */
167 e0
= (ix
>>23)-134; /* e0 = ilogb(z)-7; */
168 SET_FLOAT_WORD(z
, ix
- ((int32_t)(e0
<<23)));
170 tx
[i
] = (float)((int32_t)(z
));
175 while(tx
[nx
-1]==zero
) nx
--; /* skip zero term */
176 n
= __kernel_rem_pio2f(tx
,y
,e0
,nx
,2,two_over_pi
);
177 if(hx
<0) {y
[0] = -y
[0]; y
[1] = -y
[1]; return -n
;}