Merge branch 'master' of ssh://crater.dragonflybsd.org/repository/git/dragonfly
[dragonfly.git] / sys / vfs / union / union_subr.c
blob5833a145880e6fccedc669668794e6baedf22e44
1 /*
2 * Copyright (c) 1994 Jan-Simon Pendry
3 * Copyright (c) 1994
4 * The Regents of the University of California. All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * Jan-Simon Pendry.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
37 * @(#)union_subr.c 8.20 (Berkeley) 5/20/95
38 * $FreeBSD: src/sys/miscfs/union/union_subr.c,v 1.43.2.2 2001/12/25 01:44:45 dillon Exp $
39 * $DragonFly: src/sys/vfs/union/union_subr.c,v 1.28 2007/05/06 19:23:35 dillon Exp $
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/vnode.h>
46 #include <sys/proc.h>
47 #include <sys/namei.h>
48 #include <sys/malloc.h>
49 #include <sys/fcntl.h>
50 #include <sys/file.h>
51 #include <sys/filedesc.h>
52 #include <sys/module.h>
53 #include <sys/mount.h>
54 #include <sys/stat.h>
55 #include <vm/vm.h>
56 #include <vm/vm_extern.h> /* for vnode_pager_setsize */
57 #include <vm/vm_zone.h>
58 #include <vm/vm_object.h> /* for vm cache coherency */
59 #include "union.h"
61 extern int union_init (void);
63 /* must be power of two, otherwise change UNION_HASH() */
64 #define NHASH 32
66 /* unsigned int ... */
67 #define UNION_HASH(u, l) \
68 (((((uintptr_t) (u)) + ((uintptr_t) l)) >> 8) & (NHASH-1))
70 static LIST_HEAD(unhead, union_node) unhead[NHASH];
71 static int unvplock[NHASH];
73 static void union_dircache_r (struct vnode *vp, struct vnode ***vppp,
74 int *cntp);
75 static int union_list_lock (int ix);
76 static void union_list_unlock (int ix);
77 static int union_relookup (struct union_mount *um, struct vnode *dvp,
78 struct vnode **vpp,
79 struct componentname *cnp,
80 struct componentname *cn, char *path,
81 int pathlen);
82 static void union_updatevp (struct union_node *un,
83 struct vnode *uppervp,
84 struct vnode *lowervp);
85 static void union_newlower (struct union_node *, struct vnode *);
86 static void union_newupper (struct union_node *, struct vnode *);
87 static int union_copyfile (struct vnode *, struct vnode *,
88 struct ucred *, struct thread *);
89 static int union_vn_create (struct vnode **, struct union_node *,
90 struct thread *);
91 static int union_vn_close (struct vnode *, int, struct ucred *);
93 int
94 union_init(void)
96 int i;
98 for (i = 0; i < NHASH; i++)
99 LIST_INIT(&unhead[i]);
100 bzero((caddr_t)unvplock, sizeof(unvplock));
101 return (0);
104 static int
105 union_list_lock(int ix)
107 if (unvplock[ix] & UNVP_LOCKED) {
108 unvplock[ix] |= UNVP_WANT;
109 (void) tsleep((caddr_t) &unvplock[ix], 0, "unllck", 0);
110 return (1);
112 unvplock[ix] |= UNVP_LOCKED;
113 return (0);
116 static void
117 union_list_unlock(int ix)
119 unvplock[ix] &= ~UNVP_LOCKED;
121 if (unvplock[ix] & UNVP_WANT) {
122 unvplock[ix] &= ~UNVP_WANT;
123 wakeup((caddr_t) &unvplock[ix]);
128 * union_updatevp:
130 * The uppervp, if not NULL, must be referenced and not locked by us
131 * The lowervp, if not NULL, must be referenced.
133 * if uppervp and lowervp match pointers already installed, nothing
134 * happens. The passed vp's (when matching) are not adjusted. This
135 * routine may only be called by union_newupper() and union_newlower().
138 static void
139 union_updatevp(struct union_node *un, struct vnode *uppervp,
140 struct vnode *lowervp)
142 int ohash = UNION_HASH(un->un_uppervp, un->un_lowervp);
143 int nhash = UNION_HASH(uppervp, lowervp);
144 int docache = (lowervp != NULLVP || uppervp != NULLVP);
145 int lhash, uhash;
148 * Ensure locking is ordered from lower to higher
149 * to avoid deadlocks.
151 if (nhash < ohash) {
152 lhash = nhash;
153 uhash = ohash;
154 } else {
155 lhash = ohash;
156 uhash = nhash;
159 if (lhash != uhash) {
160 while (union_list_lock(lhash))
161 continue;
164 while (union_list_lock(uhash))
165 continue;
167 if (ohash != nhash || !docache) {
168 if (un->un_flags & UN_CACHED) {
169 un->un_flags &= ~UN_CACHED;
170 LIST_REMOVE(un, un_cache);
174 if (ohash != nhash)
175 union_list_unlock(ohash);
177 if (un->un_lowervp != lowervp) {
178 if (un->un_lowervp) {
179 vrele(un->un_lowervp);
180 if (un->un_path) {
181 kfree(un->un_path, M_TEMP);
182 un->un_path = 0;
185 un->un_lowervp = lowervp;
186 un->un_lowersz = VNOVAL;
189 if (un->un_uppervp != uppervp) {
190 if (un->un_uppervp)
191 vrele(un->un_uppervp);
192 un->un_uppervp = uppervp;
193 un->un_uppersz = VNOVAL;
196 if (docache && (ohash != nhash)) {
197 LIST_INSERT_HEAD(&unhead[nhash], un, un_cache);
198 un->un_flags |= UN_CACHED;
201 union_list_unlock(nhash);
205 * Set a new lowervp. The passed lowervp must be referenced and will be
206 * stored in the vp in a referenced state.
209 static void
210 union_newlower(struct union_node *un, struct vnode *lowervp)
212 union_updatevp(un, un->un_uppervp, lowervp);
216 * Set a new uppervp. The passed uppervp must be locked and will be
217 * stored in the vp in a locked state. The caller should not unlock
218 * uppervp.
221 static void
222 union_newupper(struct union_node *un, struct vnode *uppervp)
224 union_updatevp(un, uppervp, un->un_lowervp);
228 * Keep track of size changes in the underlying vnodes.
229 * If the size changes, then callback to the vm layer
230 * giving priority to the upper layer size.
232 void
233 union_newsize(struct vnode *vp, off_t uppersz, off_t lowersz)
235 struct union_node *un;
236 off_t sz;
238 /* only interested in regular files */
239 if (vp->v_type != VREG)
240 return;
242 un = VTOUNION(vp);
243 sz = VNOVAL;
245 if ((uppersz != VNOVAL) && (un->un_uppersz != uppersz)) {
246 un->un_uppersz = uppersz;
247 if (sz == VNOVAL)
248 sz = un->un_uppersz;
251 if ((lowersz != VNOVAL) && (un->un_lowersz != lowersz)) {
252 un->un_lowersz = lowersz;
253 if (sz == VNOVAL)
254 sz = un->un_lowersz;
257 if (sz != VNOVAL) {
258 UDEBUG(("union: %s size now %ld\n",
259 (uppersz != VNOVAL ? "upper" : "lower"), (long)sz));
260 vnode_pager_setsize(vp, sz);
265 * union_allocvp: allocate a union_node and associate it with a
266 * parent union_node and one or two vnodes.
268 * vpp Holds the returned vnode locked and referenced if no
269 * error occurs.
271 * mp Holds the mount point. mp may or may not be busied.
272 * allocvp makes no changes to mp.
274 * dvp Holds the parent union_node to the one we wish to create.
275 * XXX may only be used to traverse an uncopied lowervp-based
276 * tree? XXX
278 * dvp may or may not be locked. allocvp makes no changes
279 * to dvp.
281 * upperdvp Holds the parent vnode to uppervp, generally used along
282 * with path component information to create a shadow of
283 * lowervp when uppervp does not exist.
285 * upperdvp is referenced but unlocked on entry, and will be
286 * dereferenced on return.
288 * uppervp Holds the new uppervp vnode to be stored in the
289 * union_node we are allocating. uppervp is referenced but
290 * not locked, and will be dereferenced on return.
292 * lowervp Holds the new lowervp vnode to be stored in the
293 * union_node we are allocating. lowervp is referenced but
294 * not locked, and will be dereferenced on return.
296 * cnp Holds path component information to be coupled with
297 * lowervp and upperdvp to allow unionfs to create an uppervp
298 * later on. Only used if lowervp is valid. The conents
299 * of cnp is only valid for the duration of the call.
301 * docache Determine whether this node should be entered in the
302 * cache or whether it should be destroyed as soon as possible.
304 * all union_nodes are maintained on a singly-linked
305 * list. new nodes are only allocated when they cannot
306 * be found on this list. entries on the list are
307 * removed when the vfs reclaim entry is called.
309 * a single lock is kept for the entire list. this is
310 * needed because the getnewvnode() function can block
311 * waiting for a vnode to become free, in which case there
312 * may be more than one process trying to get the same
313 * vnode. this lock is only taken if we are going to
314 * call getnewvnode, since the kernel itself is single-threaded.
316 * if an entry is found on the list, then call vget() to
317 * take a reference. this is done because there may be
318 * zero references to it and so it needs to removed from
319 * the vnode free list.
323 union_allocvp(struct vnode **vpp,
324 struct mount *mp,
325 struct vnode *dvp, /* parent union vnode */
326 struct vnode *upperdvp, /* parent vnode of uppervp */
327 struct componentname *cnp, /* may be null */
328 struct vnode *uppervp, /* may be null */
329 struct vnode *lowervp, /* may be null */
330 int docache)
332 int error;
333 struct union_node *un = 0;
334 struct union_mount *um = MOUNTTOUNIONMOUNT(mp);
335 struct thread *td = (cnp) ? cnp->cn_td : curthread; /* XXX */
336 int hash = 0;
337 int vflag;
338 int try;
340 if (uppervp == NULLVP && lowervp == NULLVP)
341 panic("union: unidentifiable allocation");
343 if (uppervp && lowervp && (uppervp->v_type != lowervp->v_type)) {
344 vrele(lowervp);
345 lowervp = NULLVP;
348 /* detect the root vnode (and aliases) */
349 vflag = 0;
350 if ((uppervp == um->um_uppervp) &&
351 ((lowervp == NULLVP) || lowervp == um->um_lowervp)) {
352 if (lowervp == NULLVP) {
353 lowervp = um->um_lowervp;
354 if (lowervp != NULLVP)
355 vref(lowervp);
357 vflag = VROOT;
360 loop:
361 if (!docache) {
362 un = 0;
363 } else for (try = 0; try < 3; try++) {
364 switch (try) {
365 case 0:
366 if (lowervp == NULLVP)
367 continue;
368 hash = UNION_HASH(uppervp, lowervp);
369 break;
371 case 1:
372 if (uppervp == NULLVP)
373 continue;
374 hash = UNION_HASH(uppervp, NULLVP);
375 break;
377 case 2:
378 if (lowervp == NULLVP)
379 continue;
380 hash = UNION_HASH(NULLVP, lowervp);
381 break;
384 while (union_list_lock(hash))
385 continue;
387 for (un = unhead[hash].lh_first; un != 0;
388 un = un->un_cache.le_next) {
389 if ((un->un_lowervp == lowervp ||
390 un->un_lowervp == NULLVP) &&
391 (un->un_uppervp == uppervp ||
392 un->un_uppervp == NULLVP) &&
393 (UNIONTOV(un)->v_mount == mp)) {
394 if (vget(UNIONTOV(un), LK_EXCLUSIVE|LK_SLEEPFAIL)) {
395 union_list_unlock(hash);
396 goto loop;
398 break;
402 union_list_unlock(hash);
404 if (un)
405 break;
408 if (un) {
410 * Obtain a lock on the union_node. Everything is unlocked
411 * except for dvp, so check that case. If they match, our
412 * new un is already locked. Otherwise we have to lock our
413 * new un.
415 * A potential deadlock situation occurs when we are holding
416 * one lock while trying to get another. We must follow
417 * strict ordering rules to avoid it. We try to locate dvp
418 * by scanning up from un_vnode, since the most likely
419 * scenario is un being under dvp.
422 if (dvp && un->un_vnode != dvp) {
423 struct vnode *scan = un->un_vnode;
425 do {
426 scan = VTOUNION(scan)->un_pvp;
427 } while (scan && scan->v_tag == VT_UNION && scan != dvp);
428 if (scan != dvp) {
430 * our new un is above dvp (we never saw dvp
431 * while moving up the tree).
433 vref(dvp);
434 vn_unlock(dvp);
435 error = vn_lock(un->un_vnode, LK_EXCLUSIVE);
436 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
437 vrele(dvp);
438 } else {
440 * our new un is under dvp
442 error = vn_lock(un->un_vnode, LK_EXCLUSIVE);
444 } else if (dvp == NULLVP) {
446 * dvp is NULL, we need to lock un.
448 error = vn_lock(un->un_vnode, LK_EXCLUSIVE);
449 } else {
451 * dvp == un->un_vnode, we are already locked.
453 error = 0;
456 if (error)
457 goto loop;
460 * At this point, the union_node is locked and referenced.
462 * uppervp is locked and referenced or NULL, lowervp is
463 * referenced or NULL.
465 UDEBUG(("Modify existing un %p vn %p upper %p(refs %d) -> %p(refs %d)\n",
466 un, un->un_vnode, un->un_uppervp,
467 (un->un_uppervp ? un->un_uppervp->v_sysref.refcnt : -99),
468 uppervp,
469 (uppervp ? uppervp->v_sysref.refcnt : -99)
472 if (uppervp != un->un_uppervp) {
473 KASSERT(uppervp == NULL || uppervp->v_sysref.refcnt > 0, ("union_allocvp: too few refs %d (at least 1 required) on uppervp", uppervp->v_sysref.refcnt));
474 union_newupper(un, uppervp);
475 } else if (uppervp) {
476 KASSERT(uppervp->v_sysref.refcnt > 1, ("union_allocvp: too few refs %d (at least 2 required) on uppervp", uppervp->v_sysref.refcnt));
477 vrele(uppervp);
481 * Save information about the lower layer.
482 * This needs to keep track of pathname
483 * and directory information which union_vn_create
484 * might need.
486 if (lowervp != un->un_lowervp) {
487 union_newlower(un, lowervp);
488 if (cnp && (lowervp != NULLVP)) {
489 un->un_path = malloc(cnp->cn_namelen+1,
490 M_TEMP, M_WAITOK);
491 bcopy(cnp->cn_nameptr, un->un_path,
492 cnp->cn_namelen);
493 un->un_path[cnp->cn_namelen] = '\0';
495 } else if (lowervp) {
496 vrele(lowervp);
500 * and upperdvp
502 if (upperdvp != un->un_dirvp) {
503 if (un->un_dirvp)
504 vrele(un->un_dirvp);
505 un->un_dirvp = upperdvp;
506 } else if (upperdvp) {
507 vrele(upperdvp);
510 *vpp = UNIONTOV(un);
511 return (0);
514 if (docache) {
516 * otherwise lock the vp list while we call getnewvnode
517 * since that can block.
519 hash = UNION_HASH(uppervp, lowervp);
521 if (union_list_lock(hash))
522 goto loop;
526 * Create new node rather then replace old node
529 error = getnewvnode(VT_UNION, mp, vpp, 0, 0);
530 if (error) {
532 * If an error occurs clear out vnodes.
534 if (lowervp)
535 vrele(lowervp);
536 if (uppervp)
537 vrele(uppervp);
538 if (upperdvp)
539 vrele(upperdvp);
540 *vpp = NULL;
541 goto out;
544 MALLOC((*vpp)->v_data, void *, sizeof(struct union_node),
545 M_TEMP, M_WAITOK);
547 (*vpp)->v_flag |= vflag;
548 if (uppervp)
549 (*vpp)->v_type = uppervp->v_type;
550 else
551 (*vpp)->v_type = lowervp->v_type;
553 un = VTOUNION(*vpp);
554 bzero(un, sizeof(*un));
556 un->un_vnode = *vpp;
557 un->un_uppervp = uppervp;
558 un->un_uppersz = VNOVAL;
559 un->un_lowervp = lowervp;
560 un->un_lowersz = VNOVAL;
561 un->un_dirvp = upperdvp;
562 un->un_pvp = dvp; /* only parent dir in new allocation */
563 if (dvp != NULLVP)
564 vref(dvp);
565 un->un_dircache = 0;
566 un->un_openl = 0;
568 if (cnp && (lowervp != NULLVP)) {
569 un->un_path = kmalloc(cnp->cn_namelen+1, M_TEMP, M_WAITOK);
570 bcopy(cnp->cn_nameptr, un->un_path, cnp->cn_namelen);
571 un->un_path[cnp->cn_namelen] = '\0';
572 } else {
573 un->un_path = 0;
574 un->un_dirvp = NULL;
577 if (docache) {
578 LIST_INSERT_HEAD(&unhead[hash], un, un_cache);
579 un->un_flags |= UN_CACHED;
583 * locked refd vpp is returned
586 out:
587 if (docache)
588 union_list_unlock(hash);
590 return (error);
594 union_freevp(struct vnode *vp)
596 struct union_node *un = VTOUNION(vp);
598 vp->v_data = NULL;
599 if (un->un_flags & UN_CACHED) {
600 un->un_flags &= ~UN_CACHED;
601 LIST_REMOVE(un, un_cache);
603 if (un->un_pvp != NULLVP) {
604 vrele(un->un_pvp);
605 un->un_pvp = NULL;
607 if (un->un_uppervp != NULLVP) {
608 vrele(un->un_uppervp);
609 un->un_uppervp = NULL;
611 if (un->un_lowervp != NULLVP) {
612 vrele(un->un_lowervp);
613 un->un_lowervp = NULL;
615 if (un->un_dirvp != NULLVP) {
616 vrele(un->un_dirvp);
617 un->un_dirvp = NULL;
619 if (un->un_path) {
620 kfree(un->un_path, M_TEMP);
621 un->un_path = NULL;
623 kfree(un, M_TEMP);
624 return (0);
628 * copyfile. copy the vnode (fvp) to the vnode (tvp)
629 * using a sequence of reads and writes. both (fvp)
630 * and (tvp) are locked on entry and exit.
632 * fvp and tvp are both exclusive locked on call, but their refcount's
633 * haven't been bumped at all.
635 static int
636 union_copyfile(struct vnode *fvp, struct vnode *tvp, struct ucred *cred,
637 struct thread *td)
639 char *buf;
640 struct uio uio;
641 struct iovec iov;
642 int error = 0;
645 * strategy:
646 * allocate a buffer of size MAXBSIZE.
647 * loop doing reads and writes, keeping track
648 * of the current uio offset.
649 * give up at the first sign of trouble.
652 bzero(&uio, sizeof(uio));
654 uio.uio_td = td;
655 uio.uio_segflg = UIO_SYSSPACE;
656 uio.uio_offset = 0;
658 buf = kmalloc(MAXBSIZE, M_TEMP, M_WAITOK);
660 /* ugly loop follows... */
661 do {
662 off_t offset = uio.uio_offset;
663 int count;
664 int bufoffset;
667 * Setup for big read
669 uio.uio_iov = &iov;
670 uio.uio_iovcnt = 1;
671 iov.iov_base = buf;
672 iov.iov_len = MAXBSIZE;
673 uio.uio_resid = iov.iov_len;
674 uio.uio_rw = UIO_READ;
676 if ((error = VOP_READ(fvp, &uio, 0, cred)) != 0)
677 break;
680 * Get bytes read, handle read eof case and setup for
681 * write loop
683 if ((count = MAXBSIZE - uio.uio_resid) == 0)
684 break;
685 bufoffset = 0;
688 * Write until an error occurs or our buffer has been
689 * exhausted, then update the offset for the next read.
691 while (bufoffset < count) {
692 uio.uio_iov = &iov;
693 uio.uio_iovcnt = 1;
694 iov.iov_base = buf + bufoffset;
695 iov.iov_len = count - bufoffset;
696 uio.uio_offset = offset + bufoffset;
697 uio.uio_rw = UIO_WRITE;
698 uio.uio_resid = iov.iov_len;
700 if ((error = VOP_WRITE(tvp, &uio, 0, cred)) != 0)
701 break;
702 bufoffset += (count - bufoffset) - uio.uio_resid;
704 uio.uio_offset = offset + bufoffset;
705 } while (error == 0);
707 kfree(buf, M_TEMP);
708 return (error);
713 * un's vnode is assumed to be locked on entry and remains locked on exit.
717 union_copyup(struct union_node *un, int docopy, struct ucred *cred,
718 struct thread *td)
720 int error;
721 struct vnode *lvp, *uvp;
724 * If the user does not have read permission, the vnode should not
725 * be copied to upper layer.
727 vn_lock(un->un_lowervp, LK_EXCLUSIVE | LK_RETRY);
728 error = VOP_ACCESS(un->un_lowervp, VREAD, cred);
729 vn_unlock(un->un_lowervp);
730 if (error)
731 return (error);
733 error = union_vn_create(&uvp, un, td);
734 if (error)
735 return (error);
737 lvp = un->un_lowervp;
739 KASSERT(uvp->v_sysref.refcnt > 0, ("copy: uvp refcount 0: %d", uvp->v_sysref.refcnt));
740 if (docopy) {
742 * XX - should not ignore errors
743 * from VOP_CLOSE
745 vn_lock(lvp, LK_EXCLUSIVE | LK_RETRY);
746 error = VOP_OPEN(lvp, FREAD, cred, NULL);
747 if (error == 0) {
748 error = union_copyfile(lvp, uvp, cred, td);
749 vn_unlock(lvp);
750 (void) VOP_CLOSE(lvp, FREAD);
752 if (error == 0)
753 UDEBUG(("union: copied up %s\n", un->un_path));
756 vn_unlock(uvp);
757 union_newupper(un, uvp);
758 KASSERT(uvp->v_sysref.refcnt > 0, ("copy: uvp refcount 0: %d", uvp->v_sysref.refcnt));
759 union_vn_close(uvp, FWRITE, cred);
760 KASSERT(uvp->v_sysref.refcnt > 0, ("copy: uvp refcount 0: %d", uvp->v_sysref.refcnt));
762 * Subsequent IOs will go to the top layer, so
763 * call close on the lower vnode and open on the
764 * upper vnode to ensure that the filesystem keeps
765 * its references counts right. This doesn't do
766 * the right thing with (cred) and (FREAD) though.
767 * Ignoring error returns is not right, either.
769 if (error == 0) {
770 int i;
772 for (i = 0; i < un->un_openl; i++) {
773 VOP_CLOSE(lvp, FREAD);
774 VOP_OPEN(uvp, FREAD, cred, NULL);
776 un->un_openl = 0;
779 return (error);
784 * union_relookup:
786 * dvp should be locked on entry and will be locked on return. No
787 * net change in the ref count will occur.
789 * If an error is returned, *vpp will be invalid, otherwise it
790 * will hold a locked, referenced vnode. If *vpp == dvp then
791 * remember that only one exclusive lock is held.
794 static int
795 union_relookup(struct union_mount *um, struct vnode *dvp, struct vnode **vpp,
796 struct componentname *cnp, struct componentname *cn, char *path,
797 int pathlen)
799 int error;
802 * A new componentname structure must be faked up because
803 * there is no way to know where the upper level cnp came
804 * from or what it is being used for. This must duplicate
805 * some of the work done by NDINIT, some of the work done
806 * by namei, some of the work done by lookup and some of
807 * the work done by VOP_LOOKUP when given a CREATE flag.
808 * Conclusion: Horrible.
810 cn->cn_namelen = pathlen;
811 cn->cn_nameptr = objcache_get(namei_oc, M_WAITOK);
812 bcopy(path, cn->cn_nameptr, cn->cn_namelen);
813 cn->cn_nameptr[cn->cn_namelen] = '\0';
815 cn->cn_nameiop = NAMEI_CREATE;
816 cn->cn_flags = CNP_LOCKPARENT;
817 cn->cn_td = cnp->cn_td;
818 if (um->um_op == UNMNT_ABOVE)
819 cn->cn_cred = cnp->cn_cred;
820 else
821 cn->cn_cred = um->um_cred;
822 cn->cn_consume = cnp->cn_consume;
824 vref(dvp);
825 vn_unlock(dvp);
828 * Pass dvp unlocked and referenced on call to relookup().
830 * If an error occurs, dvp will be returned unlocked and dereferenced.
833 if ((error = relookup(dvp, vpp, cn)) != 0) {
834 objcache_put(namei_oc, cn->cn_nameptr);
835 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
836 return(error);
838 objcache_put(namei_oc, cn->cn_nameptr);
841 * If no error occurs, dvp will be returned locked with the reference
842 * left as before, and vpp will be returned referenced and locked.
844 * We want to return with dvp as it was passed to us, so we get
845 * rid of our reference.
847 vrele(dvp);
848 return (0);
852 * Create a shadow directory in the upper layer.
853 * The new vnode is returned locked.
855 * (um) points to the union mount structure for access to the
856 * the mounting process's credentials.
857 * (dvp) is the directory in which to create the shadow directory,
858 * it is locked (but not ref'd) on entry and return.
859 * (cnp) is the componentname to be created.
860 * (vpp) is the returned newly created shadow directory, which
861 * is returned locked and ref'd
864 union_mkshadow(struct union_mount *um, struct vnode *dvp,
865 struct componentname *cnp, struct vnode **vpp)
867 int error;
868 struct vattr va;
869 struct thread *td = cnp->cn_td;
870 struct componentname cn;
872 error = union_relookup(um, dvp, vpp, cnp, &cn,
873 cnp->cn_nameptr, cnp->cn_namelen);
874 if (error)
875 return (error);
877 if (*vpp) {
878 if (dvp == *vpp)
879 vrele(*vpp);
880 else
881 vput(*vpp);
882 *vpp = NULLVP;
883 return (EEXIST);
887 * policy: when creating the shadow directory in the
888 * upper layer, create it owned by the user who did
889 * the mount, group from parent directory, and mode
890 * 777 modified by umask (ie mostly identical to the
891 * mkdir syscall). (jsp, kb)
894 VATTR_NULL(&va);
895 va.va_type = VDIR;
896 va.va_mode = um->um_cmode;
898 error = VOP_MKDIR(dvp, vpp, &cn, &va);
899 /*vput(dvp);*/
900 return (error);
904 * Create a whiteout entry in the upper layer.
906 * (um) points to the union mount structure for access to the
907 * the mounting process's credentials.
908 * (dvp) is the directory in which to create the whiteout.
909 * it is locked on entry and return.
910 * (cnp) is the componentname to be created.
913 union_mkwhiteout(struct union_mount *um, struct vnode *dvp,
914 struct componentname *cnp, char *path)
916 int error;
917 struct thread *td = cnp->cn_td;
918 struct vnode *wvp;
919 struct componentname cn;
920 struct ucred *cred;
922 KKASSERT(td->td_proc);
923 cred = td->td_proc->p_ucred;
925 error = union_relookup(um, dvp, &wvp, cnp, &cn, path, strlen(path));
926 if (error)
927 return (error);
929 if (wvp) {
930 if (wvp == dvp)
931 vrele(wvp);
932 else
933 vput(wvp);
934 return (EEXIST);
937 error = VOP_WHITEOUT(dvp, &cn, NAMEI_CREATE);
938 return (error);
942 * union_vn_create: creates and opens a new shadow file
943 * on the upper union layer. this function is similar
944 * in spirit to calling vn_open but it avoids calling namei().
945 * the problem with calling namei is that a) it locks too many
946 * things, and b) it doesn't start at the "right" directory,
947 * whereas relookup is told where to start.
949 * On entry, the vnode associated with un is locked. It remains locked
950 * on return.
952 * If no error occurs, *vpp contains a locked referenced vnode for your
953 * use. If an error occurs *vpp iis undefined.
955 static int
956 union_vn_create(struct vnode **vpp, struct union_node *un, struct thread *td)
958 struct vnode *vp;
959 struct ucred *cred;
960 struct vattr vat;
961 struct vattr *vap = &vat;
962 int fmode = FFLAGS(O_WRONLY|O_CREAT|O_TRUNC|O_EXCL);
963 int error;
964 int cmode;
965 struct componentname cn;
967 KKASSERT(td->td_proc);
968 cred = td->td_proc->p_ucred;
969 cmode = UN_FILEMODE & ~td->td_proc->p_fd->fd_cmask;
971 *vpp = NULLVP;
974 * Build a new componentname structure (for the same
975 * reasons outlines in union_mkshadow).
976 * The difference here is that the file is owned by
977 * the current user, rather than by the person who
978 * did the mount, since the current user needs to be
979 * able to write the file (that's why it is being
980 * copied in the first place).
982 cn.cn_namelen = strlen(un->un_path);
983 cn.cn_nameptr = objcache_get(namei_oc, M_WAITOK);
984 bcopy(un->un_path, cn.cn_nameptr, cn.cn_namelen+1);
985 cn.cn_nameiop = NAMEI_CREATE;
986 cn.cn_flags = CNP_LOCKPARENT;
987 cn.cn_td = td;
988 cn.cn_cred = cred;
989 cn.cn_consume = 0;
992 * Pass dvp unlocked and referenced on call to relookup().
994 * If an error occurs, dvp will be returned unlocked and dereferenced.
996 vref(un->un_dirvp);
997 error = relookup(un->un_dirvp, &vp, &cn);
998 objcache_put(namei_oc, cn.cn_nameptr);
999 if (error)
1000 return (error);
1003 * If no error occurs, dvp will be returned locked with the reference
1004 * left as before, and vpp will be returned referenced and locked.
1006 if (vp) {
1007 vput(un->un_dirvp);
1008 if (vp == un->un_dirvp)
1009 vrele(vp);
1010 else
1011 vput(vp);
1012 return (EEXIST);
1016 * Good - there was no race to create the file
1017 * so go ahead and create it. The permissions
1018 * on the file will be 0666 modified by the
1019 * current user's umask. Access to the file, while
1020 * it is unioned, will require access to the top *and*
1021 * bottom files. Access when not unioned will simply
1022 * require access to the top-level file.
1023 * TODO: confirm choice of access permissions.
1025 VATTR_NULL(vap);
1026 vap->va_type = VREG;
1027 vap->va_mode = cmode;
1028 error = VOP_CREATE(un->un_dirvp, &vp, &cn, vap);
1029 vput(un->un_dirvp);
1030 if (error)
1031 return (error);
1033 error = VOP_OPEN(vp, fmode, cred, NULL);
1034 if (error) {
1035 vput(vp);
1036 return (error);
1038 *vpp = vp;
1039 return (0);
1042 static int
1043 union_vn_close(struct vnode *vp, int fmode, struct ucred *cred)
1045 return (VOP_CLOSE(vp, fmode));
1048 #if 0
1051 * union_removed_upper:
1053 * called with union_node unlocked. XXX
1056 void
1057 union_removed_upper(struct union_node *un)
1059 struct thread *td = curthread; /* XXX */
1060 struct vnode **vpp;
1063 * Do not set the uppervp to NULLVP. If lowervp is NULLVP,
1064 * union node will have neither uppervp nor lowervp. We remove
1065 * the union node from cache, so that it will not be referrenced.
1067 union_newupper(un, NULLVP);
1068 if (un->un_dircache != 0) {
1069 for (vpp = un->un_dircache; *vpp != NULLVP; vpp++)
1070 vrele(*vpp);
1071 kfree(un->un_dircache, M_TEMP);
1072 un->un_dircache = 0;
1075 if (un->un_flags & UN_CACHED) {
1076 un->un_flags &= ~UN_CACHED;
1077 LIST_REMOVE(un, un_cache);
1081 #endif
1084 * determine whether a whiteout is needed
1085 * during a remove/rmdir operation.
1088 union_dowhiteout(struct union_node *un, struct ucred *cred, struct thread *td)
1090 struct vattr va;
1092 if (un->un_lowervp != NULLVP)
1093 return (1);
1095 if (VOP_GETATTR(un->un_uppervp, &va) == 0 &&
1096 (va.va_flags & OPAQUE))
1097 return (1);
1099 return (0);
1102 static void
1103 union_dircache_r(struct vnode *vp, struct vnode ***vppp, int *cntp)
1105 struct union_node *un;
1107 if (vp->v_tag != VT_UNION) {
1108 if (vppp) {
1109 vref(vp);
1110 *(*vppp)++ = vp;
1111 if (--(*cntp) == 0)
1112 panic("union: dircache table too small");
1113 } else {
1114 (*cntp)++;
1117 return;
1120 un = VTOUNION(vp);
1121 if (un->un_uppervp != NULLVP)
1122 union_dircache_r(un->un_uppervp, vppp, cntp);
1123 if (un->un_lowervp != NULLVP)
1124 union_dircache_r(un->un_lowervp, vppp, cntp);
1127 struct vnode *
1128 union_dircache(struct vnode *vp, struct thread *td)
1130 int cnt;
1131 struct vnode *nvp;
1132 struct vnode **vpp;
1133 struct vnode **dircache;
1134 struct union_node *un;
1135 int error;
1137 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1138 dircache = VTOUNION(vp)->un_dircache;
1140 nvp = NULLVP;
1142 if (dircache == NULL) {
1143 cnt = 0;
1144 union_dircache_r(vp, 0, &cnt);
1145 cnt++;
1146 dircache = malloc(cnt * sizeof(struct vnode *),
1147 M_TEMP, M_WAITOK);
1148 vpp = dircache;
1149 union_dircache_r(vp, &vpp, &cnt);
1150 *vpp = NULLVP;
1151 vpp = dircache + 1;
1152 } else {
1153 vpp = dircache;
1154 do {
1155 if (*vpp++ == VTOUNION(vp)->un_uppervp)
1156 break;
1157 } while (*vpp != NULLVP);
1160 if (*vpp == NULLVP)
1161 goto out;
1163 /*vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);*/
1164 UDEBUG(("ALLOCVP-3 %p ref %d\n", *vpp, (*vpp ? (*vpp)->v_sysref.refcnt : -99)));
1165 vref(*vpp);
1166 error = union_allocvp(&nvp, vp->v_mount, NULLVP, NULLVP, NULL, *vpp, NULLVP, 0);
1167 UDEBUG(("ALLOCVP-3B %p ref %d\n", nvp, (*vpp ? (*vpp)->v_sysref.refcnt : -99)));
1168 if (error)
1169 goto out;
1171 VTOUNION(vp)->un_dircache = 0;
1172 un = VTOUNION(nvp);
1173 un->un_dircache = dircache;
1175 out:
1176 vn_unlock(vp);
1177 return (nvp);
1181 * Guarentee coherency with the VM cache by invalidating any clean VM pages
1182 * associated with this write and updating any dirty VM pages. Since our
1183 * vnode is locked, other processes will not be able to read the pages in
1184 * again until after our write completes.
1186 * We also have to be coherent with reads, by flushing any pending dirty
1187 * pages prior to issuing the read.
1189 * XXX this is somewhat of a hack at the moment. To support this properly
1190 * we would have to be able to run VOP_READ and VOP_WRITE through the VM
1191 * cache. Then we wouldn't need to worry about coherency.
1194 void
1195 union_vm_coherency(struct vnode *vp, struct uio *uio, int cleanfls)
1197 vm_object_t object;
1198 vm_pindex_t pstart;
1199 vm_pindex_t pend;
1200 int pgoff;
1202 if ((object = vp->v_object) == NULL)
1203 return;
1205 pgoff = uio->uio_offset & PAGE_MASK;
1206 pstart = uio->uio_offset / PAGE_SIZE;
1207 pend = pstart + (uio->uio_resid + pgoff + PAGE_MASK) / PAGE_SIZE;
1209 vm_object_page_clean(object, pstart, pend, OBJPC_SYNC);
1210 if (cleanfls)
1211 vm_object_page_remove(object, pstart, pend, TRUE);
1215 * Module glue to remove #ifdef UNION from vfs_syscalls.c
1217 static int
1218 union_dircheck(struct thread *td, struct vnode **vp, struct file *fp)
1220 int error = 0;
1222 if ((*vp)->v_tag == VT_UNION) {
1223 struct vnode *lvp;
1225 lvp = union_dircache(*vp, td);
1226 if (lvp != NULLVP) {
1227 struct vattr va;
1230 * If the directory is opaque,
1231 * then don't show lower entries
1233 error = VOP_GETATTR(*vp, &va);
1234 if (va.va_flags & OPAQUE) {
1235 vput(lvp);
1236 lvp = NULL;
1240 if (lvp != NULLVP) {
1241 error = VOP_OPEN(lvp, FREAD, fp->f_cred, NULL);
1242 if (error) {
1243 vput(lvp);
1244 return (error);
1246 vn_unlock(lvp);
1247 fp->f_data = lvp;
1248 fp->f_offset = 0;
1249 error = vn_close(*vp, FREAD);
1250 if (error)
1251 return (error);
1252 *vp = lvp;
1253 return -1; /* goto unionread */
1256 return error;
1259 static int
1260 union_modevent(module_t mod, int type, void *data)
1262 switch (type) {
1263 case MOD_LOAD:
1264 union_dircheckp = union_dircheck;
1265 break;
1266 case MOD_UNLOAD:
1267 union_dircheckp = NULL;
1268 break;
1269 default:
1270 break;
1272 return 0;
1275 static moduledata_t union_mod = {
1276 "union_dircheck",
1277 union_modevent,
1278 NULL
1281 DECLARE_MODULE(union_dircheck, union_mod, SI_SUB_VFS, SI_ORDER_ANY);