Merge branch 'master' of ssh://crater.dragonflybsd.org/repository/git/dragonfly
[dragonfly.git] / sys / vfs / ufs / ffs_balloc.c
blob670eac4be08b04db3e6c3f2b1a004408f4230814
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)ffs_balloc.c 8.8 (Berkeley) 6/16/95
34 * $FreeBSD: src/sys/ufs/ffs/ffs_balloc.c,v 1.26.2.1 2002/10/10 19:48:20 dillon Exp $
35 * $DragonFly: src/sys/vfs/ufs/ffs_balloc.c,v 1.19 2008/05/21 18:49:49 dillon Exp $
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/buf.h>
42 #include <sys/lock.h>
43 #include <sys/mount.h>
44 #include <sys/vnode.h>
46 #include "quota.h"
47 #include "inode.h"
48 #include "ufs_extern.h"
50 #include "fs.h"
51 #include "ffs_extern.h"
54 * Balloc defines the structure of filesystem storage
55 * by allocating the physical blocks on a device given
56 * the inode and the logical block number in a file.
58 * ffs_balloc(struct vnode *a_vp, ufs_daddr_t a_lbn, int a_size,
59 * struct ucred *a_cred, int a_flags, struct buf *a_bpp)
61 int
62 ffs_balloc(struct vop_balloc_args *ap)
64 struct inode *ip;
65 ufs_daddr_t lbn;
66 int size;
67 struct ucred *cred;
68 int flags;
69 struct fs *fs;
70 ufs_daddr_t nb;
71 struct buf *bp, *nbp, *dbp;
72 struct vnode *vp;
73 struct indir indirs[NIADDR + 2];
74 ufs_daddr_t newb, *bap, pref;
75 int deallocated, osize, nsize, num, i, error;
76 ufs_daddr_t *allocib, *blkp, *allocblk, allociblk[NIADDR + 1];
77 ufs_daddr_t *lbns_remfree, lbns[NIADDR + 1];
78 int unwindidx;
79 int seqcount;
81 vp = ap->a_vp;
82 ip = VTOI(vp);
83 fs = ip->i_fs;
84 lbn = lblkno(fs, ap->a_startoffset);
85 size = blkoff(fs, ap->a_startoffset) + ap->a_size;
86 if (size > fs->fs_bsize)
87 panic("ffs_balloc: blk too big");
88 *ap->a_bpp = NULL;
89 if (lbn < 0)
90 return (EFBIG);
91 cred = ap->a_cred;
92 flags = ap->a_flags;
95 * The vnode must be locked for us to be able to safely mess
96 * around with the inode.
98 if (vn_islocked(vp) != LK_EXCLUSIVE) {
99 panic("ffs_balloc: vnode %p not exclusively locked!", vp);
103 * If the next write will extend the file into a new block,
104 * and the file is currently composed of a fragment
105 * this fragment has to be extended to be a full block.
107 nb = lblkno(fs, ip->i_size);
108 if (nb < NDADDR && nb < lbn) {
110 * The filesize prior to this write can fit in direct
111 * blocks (ex. fragmentation is possibly done)
112 * we are now extending the file write beyond
113 * the block which has end of the file prior to this write.
115 osize = blksize(fs, ip, nb);
117 * osize gives disk allocated size in the last block. It is
118 * either in fragments or a file system block size.
120 if (osize < fs->fs_bsize && osize > 0) {
121 /* A few fragments are already allocated, since the
122 * current extends beyond this block allocated the
123 * complete block as fragments are on in last block.
125 error = ffs_realloccg(ip, nb,
126 ffs_blkpref(ip, nb, (int)nb, &ip->i_db[0]),
127 osize, (int)fs->fs_bsize, cred, &bp);
128 if (error)
129 return (error);
130 if (DOINGSOFTDEP(vp))
131 softdep_setup_allocdirect(ip, nb,
132 dofftofsb(fs, bp->b_bio2.bio_offset),
133 ip->i_db[nb], fs->fs_bsize, osize, bp);
134 /* adjust the inode size, we just grew */
135 ip->i_size = smalllblktosize(fs, nb + 1);
136 ip->i_db[nb] = dofftofsb(fs, bp->b_bio2.bio_offset);
137 ip->i_flag |= IN_CHANGE | IN_UPDATE;
138 if (flags & B_SYNC)
139 bwrite(bp);
140 else
141 bawrite(bp);
142 /* bp is already released here */
146 * The first NDADDR blocks are direct blocks
148 if (lbn < NDADDR) {
149 nb = ip->i_db[lbn];
150 if (nb != 0 && ip->i_size >= smalllblktosize(fs, lbn + 1)) {
151 error = bread(vp, lblktodoff(fs, lbn), fs->fs_bsize, &bp);
152 if (error) {
153 brelse(bp);
154 return (error);
156 bp->b_bio2.bio_offset = fsbtodoff(fs, nb);
157 *ap->a_bpp = bp;
158 return (0);
160 if (nb != 0) {
162 * Consider need to reallocate a fragment.
164 osize = fragroundup(fs, blkoff(fs, ip->i_size));
165 nsize = fragroundup(fs, size);
166 if (nsize <= osize) {
167 error = bread(vp, lblktodoff(fs, lbn),
168 osize, &bp);
169 if (error) {
170 brelse(bp);
171 return (error);
173 bp->b_bio2.bio_offset = fsbtodoff(fs, nb);
174 } else {
175 error = ffs_realloccg(ip, lbn,
176 ffs_blkpref(ip, lbn, (int)lbn,
177 &ip->i_db[0]), osize, nsize, cred, &bp);
178 if (error)
179 return (error);
180 if (DOINGSOFTDEP(vp))
181 softdep_setup_allocdirect(ip, lbn,
182 dofftofsb(fs, bp->b_bio2.bio_offset),
183 nb, nsize, osize, bp);
185 } else {
186 if (ip->i_size < smalllblktosize(fs, lbn + 1))
187 nsize = fragroundup(fs, size);
188 else
189 nsize = fs->fs_bsize;
190 error = ffs_alloc(ip, lbn,
191 ffs_blkpref(ip, lbn, (int)lbn, &ip->i_db[0]),
192 nsize, cred, &newb);
193 if (error)
194 return (error);
195 bp = getblk(vp, lblktodoff(fs, lbn), nsize, 0, 0);
196 bp->b_bio2.bio_offset = fsbtodoff(fs, newb);
197 if (flags & B_CLRBUF)
198 vfs_bio_clrbuf(bp);
199 if (DOINGSOFTDEP(vp))
200 softdep_setup_allocdirect(ip, lbn, newb, 0,
201 nsize, 0, bp);
203 ip->i_db[lbn] = dofftofsb(fs, bp->b_bio2.bio_offset);
204 ip->i_flag |= IN_CHANGE | IN_UPDATE;
205 *ap->a_bpp = bp;
206 return (0);
209 * Determine the number of levels of indirection.
211 pref = 0;
212 if ((error = ufs_getlbns(vp, lbn, indirs, &num)) != 0)
213 return(error);
214 #ifdef DIAGNOSTIC
215 if (num < 1)
216 panic ("ffs_balloc: ufs_bmaparray returned indirect block");
217 #endif
219 * Get a handle on the data block buffer before working through
220 * indirect blocks to avoid a deadlock between the VM system holding
221 * a locked VM page and issuing a BMAP (which tries to lock the
222 * indirect blocks), and the filesystem holding a locked indirect
223 * block and then trying to read a data block (which tries to lock
224 * the underlying VM pages).
226 dbp = getblk(vp, lblktodoff(fs, lbn), fs->fs_bsize, 0, 0);
229 * Setup undo history
231 allocib = NULL;
232 allocblk = allociblk;
233 lbns_remfree = lbns;
235 unwindidx = -1;
238 * Fetch the first indirect block directly from the inode, allocating
239 * one if necessary.
241 --num;
242 nb = ip->i_ib[indirs[0].in_off];
243 if (nb == 0) {
244 pref = ffs_blkpref(ip, lbn, 0, NULL);
246 * If the filesystem has run out of space we can skip the
247 * full fsync/undo of the main [fail] case since no undo
248 * history has been built yet. Hence the goto fail2.
250 if ((error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize,
251 cred, &newb)) != 0)
252 goto fail2;
253 nb = newb;
254 *allocblk++ = nb;
255 *lbns_remfree++ = indirs[1].in_lbn;
256 bp = getblk(vp, lblktodoff(fs, indirs[1].in_lbn),
257 fs->fs_bsize, 0, 0);
258 bp->b_bio2.bio_offset = fsbtodoff(fs, nb);
259 vfs_bio_clrbuf(bp);
260 if (DOINGSOFTDEP(vp)) {
261 softdep_setup_allocdirect(ip, NDADDR + indirs[0].in_off,
262 newb, 0, fs->fs_bsize, 0, bp);
263 bdwrite(bp);
264 } else {
266 * Write synchronously so that indirect blocks
267 * never point at garbage.
269 if (DOINGASYNC(vp))
270 bdwrite(bp);
271 else if ((error = bwrite(bp)) != 0)
272 goto fail;
274 allocib = &ip->i_ib[indirs[0].in_off];
275 *allocib = nb;
276 ip->i_flag |= IN_CHANGE | IN_UPDATE;
280 * Fetch through the indirect blocks, allocating as necessary.
282 for (i = 1;;) {
283 error = bread(vp, lblktodoff(fs, indirs[i].in_lbn), (int)fs->fs_bsize, &bp);
284 if (error) {
285 brelse(bp);
286 goto fail;
288 bap = (ufs_daddr_t *)bp->b_data;
289 nb = bap[indirs[i].in_off];
290 if (i == num)
291 break;
292 i += 1;
293 if (nb != 0) {
294 bqrelse(bp);
295 continue;
297 if (pref == 0)
298 pref = ffs_blkpref(ip, lbn, 0, NULL);
299 if ((error =
300 ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred, &newb)) != 0) {
301 brelse(bp);
302 goto fail;
304 nb = newb;
305 *allocblk++ = nb;
306 *lbns_remfree++ = indirs[i].in_lbn;
307 nbp = getblk(vp, lblktodoff(fs, indirs[i].in_lbn),
308 fs->fs_bsize, 0, 0);
309 nbp->b_bio2.bio_offset = fsbtodoff(fs, nb);
310 vfs_bio_clrbuf(nbp);
311 if (DOINGSOFTDEP(vp)) {
312 softdep_setup_allocindir_meta(nbp, ip, bp,
313 indirs[i - 1].in_off, nb);
314 bdwrite(nbp);
315 } else {
317 * Write synchronously so that indirect blocks
318 * never point at garbage.
320 if ((error = bwrite(nbp)) != 0) {
321 brelse(bp);
322 goto fail;
325 bap[indirs[i - 1].in_off] = nb;
326 if (allocib == NULL && unwindidx < 0)
327 unwindidx = i - 1;
329 * If required, write synchronously, otherwise use
330 * delayed write.
332 if (flags & B_SYNC) {
333 bwrite(bp);
334 } else {
335 if (bp->b_bufsize == fs->fs_bsize)
336 bp->b_flags |= B_CLUSTEROK;
337 bdwrite(bp);
342 * Get the data block, allocating if necessary. We have already
343 * called getblk() on the data block buffer, dbp. If we have to
344 * allocate it and B_CLRBUF has been set the inference is an intention
345 * to zero out the related disk blocks, so we do not have to issue
346 * a read. Instead we simply call vfs_bio_clrbuf(). If B_CLRBUF is
347 * not set the caller intends to overwrite the entire contents of the
348 * buffer and we don't waste time trying to clean up the contents.
350 * bp references the current indirect block. When allocating,
351 * the block must be updated.
353 if (nb == 0) {
354 pref = ffs_blkpref(ip, lbn, indirs[i].in_off, &bap[0]);
355 error = ffs_alloc(ip,
356 lbn, pref, (int)fs->fs_bsize, cred, &newb);
357 if (error) {
358 brelse(bp);
359 goto fail;
361 nb = newb;
362 *allocblk++ = nb;
363 *lbns_remfree++ = lbn;
364 dbp->b_bio2.bio_offset = fsbtodoff(fs, nb);
365 if (flags & B_CLRBUF)
366 vfs_bio_clrbuf(dbp);
367 if (DOINGSOFTDEP(vp))
368 softdep_setup_allocindir_page(ip, lbn, bp,
369 indirs[i].in_off, nb, 0, dbp);
370 bap[indirs[i].in_off] = nb;
372 * If required, write synchronously, otherwise use
373 * delayed write.
375 if (flags & B_SYNC) {
376 bwrite(bp);
377 } else {
378 if (bp->b_bufsize == fs->fs_bsize)
379 bp->b_flags |= B_CLUSTEROK;
380 bdwrite(bp);
382 *ap->a_bpp = dbp;
383 return (0);
385 brelse(bp);
388 * At this point all related indirect blocks have been allocated
389 * if necessary and released. bp is no longer valid. dbp holds
390 * our getblk()'d data block.
392 * XXX we previously performed a cluster_read operation here.
394 if (flags & B_CLRBUF) {
396 * If B_CLRBUF is set we must validate the invalid portions
397 * of the buffer. This typically requires a read-before-
398 * write. The strategy call will fill in bio_offset in that
399 * case.
401 * If we hit this case we do a cluster read if possible
402 * since nearby data blocks are likely to be accessed soon
403 * too.
405 if ((dbp->b_flags & B_CACHE) == 0) {
406 bqrelse(dbp);
407 seqcount = (flags & B_SEQMASK) >> B_SEQSHIFT;
408 if (seqcount &&
409 (vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
410 error = cluster_read(vp, (off_t)ip->i_size,
411 lblktodoff(fs, lbn),
412 (int)fs->fs_bsize,
413 MAXBSIZE, seqcount, &dbp);
414 } else {
415 error = bread(vp, lblktodoff(fs, lbn), (int)fs->fs_bsize, &dbp);
417 if (error)
418 goto fail;
419 } else {
420 dbp->b_bio2.bio_offset = fsbtodoff(fs, nb);
422 } else {
424 * If B_CLRBUF is not set the caller intends to overwrite
425 * the entire contents of the buffer. We can simply set
426 * bio_offset and we are done.
428 dbp->b_bio2.bio_offset = fsbtodoff(fs, nb);
430 *ap->a_bpp = dbp;
431 return (0);
432 fail:
434 * If we have failed part way through block allocation, we
435 * have to deallocate any indirect blocks that we have allocated.
436 * We have to fsync the file before we start to get rid of all
437 * of its dependencies so that we do not leave them dangling.
438 * We have to sync it at the end so that the soft updates code
439 * does not find any untracked changes. Although this is really
440 * slow, running out of disk space is not expected to be a common
441 * occurence. The error return from fsync is ignored as we already
442 * have an error to return to the user.
444 (void) VOP_FSYNC(vp, MNT_WAIT);
445 for (deallocated = 0, blkp = allociblk, lbns_remfree = lbns;
446 blkp < allocblk; blkp++, lbns_remfree++) {
448 * We shall not leave the freed blocks on the vnode
449 * buffer object lists.
451 bp = getblk(vp, *lbns_remfree, fs->fs_bsize, 0, 0);
452 bp->b_flags |= (B_INVAL | B_RELBUF);
453 bp->b_flags &= ~B_ASYNC;
454 brelse(bp);
455 deallocated += fs->fs_bsize;
458 if (allocib != NULL) {
459 *allocib = 0;
460 } else if (unwindidx >= 0) {
461 int r;
463 r = bread(vp, lblktodoff(fs, indirs[unwindidx].in_lbn), (int)fs->fs_bsize, &bp);
464 if (r) {
465 panic("Could not unwind indirect block, error %d", r);
466 brelse(bp);
467 } else {
468 bap = (ufs_daddr_t *)bp->b_data;
469 bap[indirs[unwindidx].in_off] = 0;
470 if (flags & B_SYNC) {
471 bwrite(bp);
472 } else {
473 if (bp->b_bufsize == fs->fs_bsize)
474 bp->b_flags |= B_CLUSTEROK;
475 bdwrite(bp);
479 if (deallocated) {
480 #ifdef QUOTA
482 * Restore user's disk quota because allocation failed.
484 (void) ufs_chkdq(ip, (long)-btodb(deallocated), cred, FORCE);
485 #endif
486 ip->i_blocks -= btodb(deallocated);
487 ip->i_flag |= IN_CHANGE | IN_UPDATE;
489 (void) VOP_FSYNC(vp, MNT_WAIT);
492 * After the buffers are invalidated and on-disk pointers are
493 * cleared, free the blocks.
495 for (blkp = allociblk; blkp < allocblk; blkp++) {
496 ffs_blkfree(ip, *blkp, fs->fs_bsize);
500 * Cleanup the data block we getblk()'d before returning.
502 fail2:
503 brelse(dbp);
504 return (error);