drm/radeon - Attempt to fix data structure corruption on exit
[dragonfly.git] / contrib / ldns / sha2.c
blob9a27122bfe1e3b38a39252b9dc76c227231bc9ff
1 /*
2 * FILE: sha2.c
3 * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
4 *
5 * Copyright (c) 2000-2001, Aaron D. Gifford
6 * All rights reserved.
8 * Modified by Jelte Jansen to fit in ldns, and not clash with any
9 * system-defined SHA code.
10 * Changes:
11 * - Renamed (external) functions and constants to fit ldns style
12 * - Removed _End and _Data functions
13 * - Added ldns_shaX(data, len, digest) convenience functions
14 * - Removed prototypes of _Transform functions and made those static
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the copyright holder nor the names of contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
40 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
43 #include <ldns/config.h>
44 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
45 #include <assert.h> /* assert() */
46 #include <ldns/sha2.h>
49 * ASSERT NOTE:
50 * Some sanity checking code is included using assert(). On my FreeBSD
51 * system, this additional code can be removed by compiling with NDEBUG
52 * defined. Check your own systems manpage on assert() to see how to
53 * compile WITHOUT the sanity checking code on your system.
55 * UNROLLED TRANSFORM LOOP NOTE:
56 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
57 * loop version for the hash transform rounds (defined using macros
58 * later in this file). Either define on the command line, for example:
60 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
62 * or define below:
64 * #define SHA2_UNROLL_TRANSFORM
69 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
71 * BYTE_ORDER NOTE:
73 * Please make sure that your system defines BYTE_ORDER. If your
74 * architecture is little-endian, make sure it also defines
75 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
76 * equivilent.
78 * If your system does not define the above, then you can do so by
79 * hand like this:
81 * #define LITTLE_ENDIAN 1234
82 * #define BIG_ENDIAN 4321
84 * And for little-endian machines, add:
86 * #define BYTE_ORDER LITTLE_ENDIAN
88 * Or for big-endian machines:
90 * #define BYTE_ORDER BIG_ENDIAN
92 * The FreeBSD machine this was written on defines BYTE_ORDER
93 * appropriately by including <sys/types.h> (which in turn includes
94 * <machine/endian.h> where the appropriate definitions are actually
95 * made).
97 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
98 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
99 #endif
101 typedef uint8_t sha2_byte; /* Exactly 1 byte */
102 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
103 #ifdef S_SPLINT_S
104 typedef unsigned long long sha2_word64; /* lint 8 bytes */
105 #else
106 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
107 #endif
109 /*** SHA-256/384/512 Various Length Definitions ***********************/
110 /* NOTE: Most of these are in sha2.h */
111 #define ldns_sha256_SHORT_BLOCK_LENGTH (LDNS_SHA256_BLOCK_LENGTH - 8)
112 #define ldns_sha384_SHORT_BLOCK_LENGTH (LDNS_SHA384_BLOCK_LENGTH - 16)
113 #define ldns_sha512_SHORT_BLOCK_LENGTH (LDNS_SHA512_BLOCK_LENGTH - 16)
116 /*** ENDIAN REVERSAL MACROS *******************************************/
117 #if BYTE_ORDER == LITTLE_ENDIAN
118 #define REVERSE32(w,x) { \
119 sha2_word32 tmp = (w); \
120 tmp = (tmp >> 16) | (tmp << 16); \
121 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
123 #ifndef S_SPLINT_S
124 #define REVERSE64(w,x) { \
125 sha2_word64 tmp = (w); \
126 tmp = (tmp >> 32) | (tmp << 32); \
127 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
128 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
129 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
130 ((tmp & 0x0000ffff0000ffffULL) << 16); \
132 #else /* splint */
133 #define REVERSE64(w,x) /* splint */
134 #endif /* splint */
135 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
138 * Macro for incrementally adding the unsigned 64-bit integer n to the
139 * unsigned 128-bit integer (represented using a two-element array of
140 * 64-bit words):
142 #define ADDINC128(w,n) { \
143 (w)[0] += (sha2_word64)(n); \
144 if ((w)[0] < (n)) { \
145 (w)[1]++; \
148 #ifdef S_SPLINT_S
149 #undef ADDINC128
150 #define ADDINC128(w,n) /* splint */
151 #endif
154 * Macros for copying blocks of memory and for zeroing out ranges
155 * of memory. Using these macros makes it easy to switch from
156 * using memset()/memcpy() and using bzero()/bcopy().
158 * Please define either SHA2_USE_MEMSET_MEMCPY or define
159 * SHA2_USE_BZERO_BCOPY depending on which function set you
160 * choose to use:
162 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
163 /* Default to memset()/memcpy() if no option is specified */
164 #define SHA2_USE_MEMSET_MEMCPY 1
165 #endif
166 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
167 /* Abort with an error if BOTH options are defined */
168 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
169 #endif
171 #ifdef SHA2_USE_MEMSET_MEMCPY
172 #define MEMSET_BZERO(p,l) memset((p), 0, (l))
173 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
174 #endif
175 #ifdef SHA2_USE_BZERO_BCOPY
176 #define MEMSET_BZERO(p,l) bzero((p), (l))
177 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
178 #endif
181 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
183 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
185 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
186 * S is a ROTATION) because the SHA-256/384/512 description document
187 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
188 * same "backwards" definition.
190 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
191 #define R(b,x) ((x) >> (b))
192 /* 32-bit Rotate-right (used in SHA-256): */
193 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
194 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
195 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
197 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
198 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
199 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
201 /* Four of six logical functions used in SHA-256: */
202 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
203 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
204 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
205 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
207 /* Four of six logical functions used in SHA-384 and SHA-512: */
208 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
209 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
210 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
211 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
213 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
214 /* Hash constant words K for SHA-256: */
215 static const sha2_word32 K256[64] = {
216 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
217 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
218 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
219 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
220 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
221 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
222 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
223 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
224 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
225 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
226 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
227 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
228 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
229 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
230 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
231 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
234 /* initial hash value H for SHA-256: */
235 static const sha2_word32 ldns_sha256_initial_hash_value[8] = {
236 0x6a09e667UL,
237 0xbb67ae85UL,
238 0x3c6ef372UL,
239 0xa54ff53aUL,
240 0x510e527fUL,
241 0x9b05688cUL,
242 0x1f83d9abUL,
243 0x5be0cd19UL
246 /* Hash constant words K for SHA-384 and SHA-512: */
247 static const sha2_word64 K512[80] = {
248 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
249 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
250 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
251 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
252 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
253 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
254 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
255 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
256 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
257 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
258 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
259 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
260 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
261 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
262 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
263 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
264 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
265 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
266 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
267 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
268 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
269 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
270 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
271 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
272 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
273 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
274 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
275 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
276 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
277 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
278 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
279 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
280 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
281 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
282 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
283 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
284 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
285 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
286 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
287 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
290 /* initial hash value H for SHA-384 */
291 static const sha2_word64 sha384_initial_hash_value[8] = {
292 0xcbbb9d5dc1059ed8ULL,
293 0x629a292a367cd507ULL,
294 0x9159015a3070dd17ULL,
295 0x152fecd8f70e5939ULL,
296 0x67332667ffc00b31ULL,
297 0x8eb44a8768581511ULL,
298 0xdb0c2e0d64f98fa7ULL,
299 0x47b5481dbefa4fa4ULL
302 /* initial hash value H for SHA-512 */
303 static const sha2_word64 sha512_initial_hash_value[8] = {
304 0x6a09e667f3bcc908ULL,
305 0xbb67ae8584caa73bULL,
306 0x3c6ef372fe94f82bULL,
307 0xa54ff53a5f1d36f1ULL,
308 0x510e527fade682d1ULL,
309 0x9b05688c2b3e6c1fULL,
310 0x1f83d9abfb41bd6bULL,
311 0x5be0cd19137e2179ULL
314 /*** SHA-256: *********************************************************/
315 void ldns_sha256_init(ldns_sha256_CTX* context) {
316 if (context == (ldns_sha256_CTX*)0) {
317 return;
319 MEMCPY_BCOPY(context->state, ldns_sha256_initial_hash_value, LDNS_SHA256_DIGEST_LENGTH);
320 MEMSET_BZERO(context->buffer, LDNS_SHA256_BLOCK_LENGTH);
321 context->bitcount = 0;
324 #ifdef SHA2_UNROLL_TRANSFORM
326 /* Unrolled SHA-256 round macros: */
328 #if BYTE_ORDER == LITTLE_ENDIAN
330 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
331 REVERSE32(*data++, W256[j]); \
332 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
333 K256[j] + W256[j]; \
334 (d) += T1; \
335 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
339 #else /* BYTE_ORDER == LITTLE_ENDIAN */
341 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
342 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
343 K256[j] + (W256[j] = *data++); \
344 (d) += T1; \
345 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
348 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
350 #define ROUND256(a,b,c,d,e,f,g,h) \
351 s0 = W256[(j+1)&0x0f]; \
352 s0 = sigma0_256(s0); \
353 s1 = W256[(j+14)&0x0f]; \
354 s1 = sigma1_256(s1); \
355 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
356 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
357 (d) += T1; \
358 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
361 static void ldns_sha256_Transform(ldns_sha256_CTX* context,
362 const sha2_word32* data) {
363 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
364 sha2_word32 T1, *W256;
365 int j;
367 W256 = (sha2_word32*)context->buffer;
369 /* initialize registers with the prev. intermediate value */
370 a = context->state[0];
371 b = context->state[1];
372 c = context->state[2];
373 d = context->state[3];
374 e = context->state[4];
375 f = context->state[5];
376 g = context->state[6];
377 h = context->state[7];
379 j = 0;
380 do {
381 /* Rounds 0 to 15 (unrolled): */
382 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
383 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
384 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
385 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
386 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
387 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
388 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
389 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
390 } while (j < 16);
392 /* Now for the remaining rounds to 64: */
393 do {
394 ROUND256(a,b,c,d,e,f,g,h);
395 ROUND256(h,a,b,c,d,e,f,g);
396 ROUND256(g,h,a,b,c,d,e,f);
397 ROUND256(f,g,h,a,b,c,d,e);
398 ROUND256(e,f,g,h,a,b,c,d);
399 ROUND256(d,e,f,g,h,a,b,c);
400 ROUND256(c,d,e,f,g,h,a,b);
401 ROUND256(b,c,d,e,f,g,h,a);
402 } while (j < 64);
404 /* Compute the current intermediate hash value */
405 context->state[0] += a;
406 context->state[1] += b;
407 context->state[2] += c;
408 context->state[3] += d;
409 context->state[4] += e;
410 context->state[5] += f;
411 context->state[6] += g;
412 context->state[7] += h;
414 /* Clean up */
415 a = b = c = d = e = f = g = h = T1 = 0;
418 #else /* SHA2_UNROLL_TRANSFORM */
420 static void ldns_sha256_Transform(ldns_sha256_CTX* context,
421 const sha2_word32* data) {
422 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
423 sha2_word32 T1, T2, *W256;
424 int j;
426 W256 = (sha2_word32*)context->buffer;
428 /* initialize registers with the prev. intermediate value */
429 a = context->state[0];
430 b = context->state[1];
431 c = context->state[2];
432 d = context->state[3];
433 e = context->state[4];
434 f = context->state[5];
435 g = context->state[6];
436 h = context->state[7];
438 j = 0;
439 do {
440 #if BYTE_ORDER == LITTLE_ENDIAN
441 /* Copy data while converting to host byte order */
442 REVERSE32(*data++,W256[j]);
443 /* Apply the SHA-256 compression function to update a..h */
444 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
445 #else /* BYTE_ORDER == LITTLE_ENDIAN */
446 /* Apply the SHA-256 compression function to update a..h with copy */
447 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
448 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
449 T2 = Sigma0_256(a) + Maj(a, b, c);
450 h = g;
451 g = f;
452 f = e;
453 e = d + T1;
454 d = c;
455 c = b;
456 b = a;
457 a = T1 + T2;
459 j++;
460 } while (j < 16);
462 do {
463 /* Part of the message block expansion: */
464 s0 = W256[(j+1)&0x0f];
465 s0 = sigma0_256(s0);
466 s1 = W256[(j+14)&0x0f];
467 s1 = sigma1_256(s1);
469 /* Apply the SHA-256 compression function to update a..h */
470 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
471 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
472 T2 = Sigma0_256(a) + Maj(a, b, c);
473 h = g;
474 g = f;
475 f = e;
476 e = d + T1;
477 d = c;
478 c = b;
479 b = a;
480 a = T1 + T2;
482 j++;
483 } while (j < 64);
485 /* Compute the current intermediate hash value */
486 context->state[0] += a;
487 context->state[1] += b;
488 context->state[2] += c;
489 context->state[3] += d;
490 context->state[4] += e;
491 context->state[5] += f;
492 context->state[6] += g;
493 context->state[7] += h;
495 /* Clean up */
496 a = b = c = d = e = f = g = h = T1 = T2 = 0;
499 #endif /* SHA2_UNROLL_TRANSFORM */
501 void ldns_sha256_update(ldns_sha256_CTX* context, const sha2_byte *data, size_t len) {
502 size_t freespace, usedspace;
504 if (len == 0) {
505 /* Calling with no data is valid - we do nothing */
506 return;
509 /* Sanity check: */
510 assert(context != (ldns_sha256_CTX*)0 && data != (sha2_byte*)0);
512 usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
513 if (usedspace > 0) {
514 /* Calculate how much free space is available in the buffer */
515 freespace = LDNS_SHA256_BLOCK_LENGTH - usedspace;
517 if (len >= freespace) {
518 /* Fill the buffer completely and process it */
519 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
520 context->bitcount += freespace << 3;
521 len -= freespace;
522 data += freespace;
523 ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
524 } else {
525 /* The buffer is not yet full */
526 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
527 context->bitcount += len << 3;
528 /* Clean up: */
529 usedspace = freespace = 0;
530 return;
533 while (len >= LDNS_SHA256_BLOCK_LENGTH) {
534 /* Process as many complete blocks as we can */
535 ldns_sha256_Transform(context, (sha2_word32*)data);
536 context->bitcount += LDNS_SHA256_BLOCK_LENGTH << 3;
537 len -= LDNS_SHA256_BLOCK_LENGTH;
538 data += LDNS_SHA256_BLOCK_LENGTH;
540 if (len > 0) {
541 /* There's left-overs, so save 'em */
542 MEMCPY_BCOPY(context->buffer, data, len);
543 context->bitcount += len << 3;
545 /* Clean up: */
546 usedspace = freespace = 0;
549 typedef union _ldns_sha2_buffer_union {
550 uint8_t* theChars;
551 uint64_t* theLongs;
552 } ldns_sha2_buffer_union;
554 void ldns_sha256_final(sha2_byte digest[], ldns_sha256_CTX* context) {
555 sha2_word32 *d = (sha2_word32*)digest;
556 size_t usedspace;
557 ldns_sha2_buffer_union cast_var;
559 /* Sanity check: */
560 assert(context != (ldns_sha256_CTX*)0);
562 /* If no digest buffer is passed, we don't bother doing this: */
563 if (digest != (sha2_byte*)0) {
564 usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
565 #if BYTE_ORDER == LITTLE_ENDIAN
566 /* Convert FROM host byte order */
567 REVERSE64(context->bitcount,context->bitcount);
568 #endif
569 if (usedspace > 0) {
570 /* Begin padding with a 1 bit: */
571 context->buffer[usedspace++] = 0x80;
573 if (usedspace <= ldns_sha256_SHORT_BLOCK_LENGTH) {
574 /* Set-up for the last transform: */
575 MEMSET_BZERO(&context->buffer[usedspace], ldns_sha256_SHORT_BLOCK_LENGTH - usedspace);
576 } else {
577 if (usedspace < LDNS_SHA256_BLOCK_LENGTH) {
578 MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA256_BLOCK_LENGTH - usedspace);
580 /* Do second-to-last transform: */
581 ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
583 /* And set-up for the last transform: */
584 MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
586 } else {
587 /* Set-up for the last transform: */
588 MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
590 /* Begin padding with a 1 bit: */
591 *context->buffer = 0x80;
593 /* Set the bit count: */
594 cast_var.theChars = context->buffer;
595 cast_var.theLongs[ldns_sha256_SHORT_BLOCK_LENGTH / 8] = context->bitcount;
597 /* final transform: */
598 ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
600 #if BYTE_ORDER == LITTLE_ENDIAN
602 /* Convert TO host byte order */
603 int j;
604 for (j = 0; j < 8; j++) {
605 REVERSE32(context->state[j],context->state[j]);
606 *d++ = context->state[j];
609 #else
610 MEMCPY_BCOPY(d, context->state, LDNS_SHA256_DIGEST_LENGTH);
611 #endif
614 /* Clean up state data: */
615 MEMSET_BZERO(context, sizeof(ldns_sha256_CTX));
616 usedspace = 0;
619 unsigned char *
620 ldns_sha256(unsigned char *data, unsigned int data_len, unsigned char *digest)
622 ldns_sha256_CTX ctx;
623 ldns_sha256_init(&ctx);
624 ldns_sha256_update(&ctx, data, data_len);
625 ldns_sha256_final(digest, &ctx);
626 return digest;
629 /*** SHA-512: *********************************************************/
630 void ldns_sha512_init(ldns_sha512_CTX* context) {
631 if (context == (ldns_sha512_CTX*)0) {
632 return;
634 MEMCPY_BCOPY(context->state, sha512_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
635 MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH);
636 context->bitcount[0] = context->bitcount[1] = 0;
639 #ifdef SHA2_UNROLL_TRANSFORM
641 /* Unrolled SHA-512 round macros: */
642 #if BYTE_ORDER == LITTLE_ENDIAN
644 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
645 REVERSE64(*data++, W512[j]); \
646 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
647 K512[j] + W512[j]; \
648 (d) += T1, \
649 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
653 #else /* BYTE_ORDER == LITTLE_ENDIAN */
655 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
656 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
657 K512[j] + (W512[j] = *data++); \
658 (d) += T1; \
659 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
662 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
664 #define ROUND512(a,b,c,d,e,f,g,h) \
665 s0 = W512[(j+1)&0x0f]; \
666 s0 = sigma0_512(s0); \
667 s1 = W512[(j+14)&0x0f]; \
668 s1 = sigma1_512(s1); \
669 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
670 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
671 (d) += T1; \
672 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
675 static void ldns_sha512_Transform(ldns_sha512_CTX* context,
676 const sha2_word64* data) {
677 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
678 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
679 int j;
681 /* initialize registers with the prev. intermediate value */
682 a = context->state[0];
683 b = context->state[1];
684 c = context->state[2];
685 d = context->state[3];
686 e = context->state[4];
687 f = context->state[5];
688 g = context->state[6];
689 h = context->state[7];
691 j = 0;
692 do {
693 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
694 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
695 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
696 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
697 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
698 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
699 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
700 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
701 } while (j < 16);
703 /* Now for the remaining rounds up to 79: */
704 do {
705 ROUND512(a,b,c,d,e,f,g,h);
706 ROUND512(h,a,b,c,d,e,f,g);
707 ROUND512(g,h,a,b,c,d,e,f);
708 ROUND512(f,g,h,a,b,c,d,e);
709 ROUND512(e,f,g,h,a,b,c,d);
710 ROUND512(d,e,f,g,h,a,b,c);
711 ROUND512(c,d,e,f,g,h,a,b);
712 ROUND512(b,c,d,e,f,g,h,a);
713 } while (j < 80);
715 /* Compute the current intermediate hash value */
716 context->state[0] += a;
717 context->state[1] += b;
718 context->state[2] += c;
719 context->state[3] += d;
720 context->state[4] += e;
721 context->state[5] += f;
722 context->state[6] += g;
723 context->state[7] += h;
725 /* Clean up */
726 a = b = c = d = e = f = g = h = T1 = 0;
729 #else /* SHA2_UNROLL_TRANSFORM */
731 static void ldns_sha512_Transform(ldns_sha512_CTX* context,
732 const sha2_word64* data) {
733 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
734 sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
735 int j;
737 /* initialize registers with the prev. intermediate value */
738 a = context->state[0];
739 b = context->state[1];
740 c = context->state[2];
741 d = context->state[3];
742 e = context->state[4];
743 f = context->state[5];
744 g = context->state[6];
745 h = context->state[7];
747 j = 0;
748 do {
749 #if BYTE_ORDER == LITTLE_ENDIAN
750 /* Convert TO host byte order */
751 REVERSE64(*data++, W512[j]);
752 /* Apply the SHA-512 compression function to update a..h */
753 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
754 #else /* BYTE_ORDER == LITTLE_ENDIAN */
755 /* Apply the SHA-512 compression function to update a..h with copy */
756 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
757 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
758 T2 = Sigma0_512(a) + Maj(a, b, c);
759 h = g;
760 g = f;
761 f = e;
762 e = d + T1;
763 d = c;
764 c = b;
765 b = a;
766 a = T1 + T2;
768 j++;
769 } while (j < 16);
771 do {
772 /* Part of the message block expansion: */
773 s0 = W512[(j+1)&0x0f];
774 s0 = sigma0_512(s0);
775 s1 = W512[(j+14)&0x0f];
776 s1 = sigma1_512(s1);
778 /* Apply the SHA-512 compression function to update a..h */
779 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
780 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
781 T2 = Sigma0_512(a) + Maj(a, b, c);
782 h = g;
783 g = f;
784 f = e;
785 e = d + T1;
786 d = c;
787 c = b;
788 b = a;
789 a = T1 + T2;
791 j++;
792 } while (j < 80);
794 /* Compute the current intermediate hash value */
795 context->state[0] += a;
796 context->state[1] += b;
797 context->state[2] += c;
798 context->state[3] += d;
799 context->state[4] += e;
800 context->state[5] += f;
801 context->state[6] += g;
802 context->state[7] += h;
804 /* Clean up */
805 a = b = c = d = e = f = g = h = T1 = T2 = 0;
808 #endif /* SHA2_UNROLL_TRANSFORM */
810 void ldns_sha512_update(ldns_sha512_CTX* context, const sha2_byte *data, size_t len) {
811 size_t freespace, usedspace;
813 if (len == 0) {
814 /* Calling with no data is valid - we do nothing */
815 return;
818 /* Sanity check: */
819 assert(context != (ldns_sha512_CTX*)0 && data != (sha2_byte*)0);
821 usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
822 if (usedspace > 0) {
823 /* Calculate how much free space is available in the buffer */
824 freespace = LDNS_SHA512_BLOCK_LENGTH - usedspace;
826 if (len >= freespace) {
827 /* Fill the buffer completely and process it */
828 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
829 ADDINC128(context->bitcount, freespace << 3);
830 len -= freespace;
831 data += freespace;
832 ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
833 } else {
834 /* The buffer is not yet full */
835 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
836 ADDINC128(context->bitcount, len << 3);
837 /* Clean up: */
838 usedspace = freespace = 0;
839 return;
842 while (len >= LDNS_SHA512_BLOCK_LENGTH) {
843 /* Process as many complete blocks as we can */
844 ldns_sha512_Transform(context, (sha2_word64*)data);
845 ADDINC128(context->bitcount, LDNS_SHA512_BLOCK_LENGTH << 3);
846 len -= LDNS_SHA512_BLOCK_LENGTH;
847 data += LDNS_SHA512_BLOCK_LENGTH;
849 if (len > 0) {
850 /* There's left-overs, so save 'em */
851 MEMCPY_BCOPY(context->buffer, data, len);
852 ADDINC128(context->bitcount, len << 3);
854 /* Clean up: */
855 usedspace = freespace = 0;
858 static void ldns_sha512_Last(ldns_sha512_CTX* context) {
859 size_t usedspace;
860 ldns_sha2_buffer_union cast_var;
862 usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
863 #if BYTE_ORDER == LITTLE_ENDIAN
864 /* Convert FROM host byte order */
865 REVERSE64(context->bitcount[0],context->bitcount[0]);
866 REVERSE64(context->bitcount[1],context->bitcount[1]);
867 #endif
868 if (usedspace > 0) {
869 /* Begin padding with a 1 bit: */
870 context->buffer[usedspace++] = 0x80;
872 if (usedspace <= ldns_sha512_SHORT_BLOCK_LENGTH) {
873 /* Set-up for the last transform: */
874 MEMSET_BZERO(&context->buffer[usedspace], ldns_sha512_SHORT_BLOCK_LENGTH - usedspace);
875 } else {
876 if (usedspace < LDNS_SHA512_BLOCK_LENGTH) {
877 MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA512_BLOCK_LENGTH - usedspace);
879 /* Do second-to-last transform: */
880 ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
882 /* And set-up for the last transform: */
883 MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH - 2);
885 } else {
886 /* Prepare for final transform: */
887 MEMSET_BZERO(context->buffer, ldns_sha512_SHORT_BLOCK_LENGTH);
889 /* Begin padding with a 1 bit: */
890 *context->buffer = 0x80;
892 /* Store the length of input data (in bits): */
893 cast_var.theChars = context->buffer;
894 cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8] = context->bitcount[1];
895 cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0];
897 /* final transform: */
898 ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
901 void ldns_sha512_final(sha2_byte digest[], ldns_sha512_CTX* context) {
902 sha2_word64 *d = (sha2_word64*)digest;
904 /* Sanity check: */
905 assert(context != (ldns_sha512_CTX*)0);
907 /* If no digest buffer is passed, we don't bother doing this: */
908 if (digest != (sha2_byte*)0) {
909 ldns_sha512_Last(context);
911 /* Save the hash data for output: */
912 #if BYTE_ORDER == LITTLE_ENDIAN
914 /* Convert TO host byte order */
915 int j;
916 for (j = 0; j < 8; j++) {
917 REVERSE64(context->state[j],context->state[j]);
918 *d++ = context->state[j];
921 #else
922 MEMCPY_BCOPY(d, context->state, LDNS_SHA512_DIGEST_LENGTH);
923 #endif
926 /* Zero out state data */
927 MEMSET_BZERO(context, sizeof(ldns_sha512_CTX));
930 unsigned char *
931 ldns_sha512(unsigned char *data, unsigned int data_len, unsigned char *digest)
933 ldns_sha512_CTX ctx;
934 ldns_sha512_init(&ctx);
935 ldns_sha512_update(&ctx, data, data_len);
936 ldns_sha512_final(digest, &ctx);
937 return digest;
940 /*** SHA-384: *********************************************************/
941 void ldns_sha384_init(ldns_sha384_CTX* context) {
942 if (context == (ldns_sha384_CTX*)0) {
943 return;
945 MEMCPY_BCOPY(context->state, sha384_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
946 MEMSET_BZERO(context->buffer, LDNS_SHA384_BLOCK_LENGTH);
947 context->bitcount[0] = context->bitcount[1] = 0;
950 void ldns_sha384_update(ldns_sha384_CTX* context, const sha2_byte* data, size_t len) {
951 ldns_sha512_update((ldns_sha512_CTX*)context, data, len);
954 void ldns_sha384_final(sha2_byte digest[], ldns_sha384_CTX* context) {
955 sha2_word64 *d = (sha2_word64*)digest;
957 /* Sanity check: */
958 assert(context != (ldns_sha384_CTX*)0);
960 /* If no digest buffer is passed, we don't bother doing this: */
961 if (digest != (sha2_byte*)0) {
962 ldns_sha512_Last((ldns_sha512_CTX*)context);
964 /* Save the hash data for output: */
965 #if BYTE_ORDER == LITTLE_ENDIAN
967 /* Convert TO host byte order */
968 int j;
969 for (j = 0; j < 6; j++) {
970 REVERSE64(context->state[j],context->state[j]);
971 *d++ = context->state[j];
974 #else
975 MEMCPY_BCOPY(d, context->state, LDNS_SHA384_DIGEST_LENGTH);
976 #endif
979 /* Zero out state data */
980 MEMSET_BZERO(context, sizeof(ldns_sha384_CTX));
983 unsigned char *
984 ldns_sha384(unsigned char *data, unsigned int data_len, unsigned char *digest)
986 ldns_sha384_CTX ctx;
987 ldns_sha384_init(&ctx);
988 ldns_sha384_update(&ctx, data, data_len);
989 ldns_sha384_final(digest, &ctx);
990 return digest;