kernel - Cleanup vm_page_pcpu_cache()
[dragonfly.git] / sys / vm / vm_page.c
blob932d3670d6e5b2524bfc1fa4f6aa414d1a04bf80
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
65 * Resident memory management module. The module manipulates 'VM pages'.
66 * A VM page is the core building block for memory management.
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 #include <sys/alist.h>
77 #include <sys/sysctl.h>
78 #include <sys/cpu_topology.h>
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <sys/lock.h>
83 #include <vm/vm_kern.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
93 #include <machine/inttypes.h>
94 #include <machine/md_var.h>
95 #include <machine/specialreg.h>
97 #include <vm/vm_page2.h>
98 #include <sys/spinlock2.h>
101 * Action hash for user umtx support.
103 #define VMACTION_HSIZE 256
104 #define VMACTION_HMASK (VMACTION_HSIZE - 1)
107 * SET - Minimum required set associative size, must be a power of 2. We
108 * want this to match or exceed the set-associativeness of the cpu.
110 * GRP - A larger set that allows bleed-over into the domains of other
111 * nearby cpus. Also must be a power of 2. Used by the page zeroing
112 * code to smooth things out a bit.
114 #define PQ_SET_ASSOC 16
115 #define PQ_SET_ASSOC_MASK (PQ_SET_ASSOC - 1)
117 #define PQ_GRP_ASSOC (PQ_SET_ASSOC * 2)
118 #define PQ_GRP_ASSOC_MASK (PQ_GRP_ASSOC - 1)
120 static void vm_page_queue_init(void);
121 static void vm_page_free_wakeup(void);
122 static vm_page_t vm_page_select_cache(u_short pg_color);
123 static vm_page_t _vm_page_list_find2(int basequeue, int index);
124 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
127 * Array of tailq lists
129 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
131 LIST_HEAD(vm_page_action_list, vm_page_action);
132 struct vm_page_action_list action_list[VMACTION_HSIZE];
133 static volatile int vm_pages_waiting;
135 static struct alist vm_contig_alist;
136 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
137 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
139 static u_long vm_dma_reserved = 0;
140 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
141 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
142 "Memory reserved for DMA");
143 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
144 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
146 static int vm_contig_verbose = 0;
147 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
149 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
150 vm_pindex_t, pindex);
152 static void
153 vm_page_queue_init(void)
155 int i;
157 for (i = 0; i < PQ_L2_SIZE; i++)
158 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
159 for (i = 0; i < PQ_L2_SIZE; i++)
160 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
161 for (i = 0; i < PQ_L2_SIZE; i++)
162 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
163 for (i = 0; i < PQ_L2_SIZE; i++)
164 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
165 for (i = 0; i < PQ_L2_SIZE; i++)
166 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
167 /* PQ_NONE has no queue */
169 for (i = 0; i < PQ_COUNT; i++) {
170 TAILQ_INIT(&vm_page_queues[i].pl);
171 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
174 for (i = 0; i < VMACTION_HSIZE; i++)
175 LIST_INIT(&action_list[i]);
179 * note: place in initialized data section? Is this necessary?
181 long first_page = 0;
182 int vm_page_array_size = 0;
183 vm_page_t vm_page_array = NULL;
184 vm_paddr_t vm_low_phys_reserved;
187 * (low level boot)
189 * Sets the page size, perhaps based upon the memory size.
190 * Must be called before any use of page-size dependent functions.
192 void
193 vm_set_page_size(void)
195 if (vmstats.v_page_size == 0)
196 vmstats.v_page_size = PAGE_SIZE;
197 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
198 panic("vm_set_page_size: page size not a power of two");
202 * (low level boot)
204 * Add a new page to the freelist for use by the system. New pages
205 * are added to both the head and tail of the associated free page
206 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
207 * requests pull 'recent' adds (higher physical addresses) first.
209 * Beware that the page zeroing daemon will also be running soon after
210 * boot, moving pages from the head to the tail of the PQ_FREE queues.
212 * Must be called in a critical section.
214 static void
215 vm_add_new_page(vm_paddr_t pa)
217 struct vpgqueues *vpq;
218 vm_page_t m;
220 m = PHYS_TO_VM_PAGE(pa);
221 m->phys_addr = pa;
222 m->flags = 0;
223 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
224 m->pat_mode = PAT_WRITE_BACK;
226 * Twist for cpu localization in addition to page coloring, so
227 * different cpus selecting by m->queue get different page colors.
229 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
230 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
232 * Reserve a certain number of contiguous low memory pages for
233 * contigmalloc() to use.
235 if (pa < vm_low_phys_reserved) {
236 atomic_add_int(&vmstats.v_page_count, 1);
237 atomic_add_int(&vmstats.v_dma_pages, 1);
238 m->queue = PQ_NONE;
239 m->wire_count = 1;
240 atomic_add_int(&vmstats.v_wire_count, 1);
241 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
242 return;
246 * General page
248 m->queue = m->pc + PQ_FREE;
249 KKASSERT(m->dirty == 0);
251 atomic_add_int(&vmstats.v_page_count, 1);
252 atomic_add_int(&vmstats.v_free_count, 1);
253 vpq = &vm_page_queues[m->queue];
254 #if 0
255 /* too expensive time-wise in large-mem configurations */
256 if ((vpq->flipflop & 15) == 0) {
257 pmap_zero_page(VM_PAGE_TO_PHYS(m));
258 m->flags |= PG_ZERO;
259 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
260 ++vpq->zero_count;
261 } else {
262 #endif
263 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
264 #if 0
266 ++vpq->flipflop;
267 #endif
268 ++vpq->lcnt;
272 * (low level boot)
274 * Initializes the resident memory module.
276 * Preallocates memory for critical VM structures and arrays prior to
277 * kernel_map becoming available.
279 * Memory is allocated from (virtual2_start, virtual2_end) if available,
280 * otherwise memory is allocated from (virtual_start, virtual_end).
282 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
283 * large enough to hold vm_page_array & other structures for machines with
284 * large amounts of ram, so we want to use virtual2* when available.
286 void
287 vm_page_startup(void)
289 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
290 vm_offset_t mapped;
291 vm_size_t npages;
292 vm_paddr_t page_range;
293 vm_paddr_t new_end;
294 int i;
295 vm_paddr_t pa;
296 int nblocks;
297 vm_paddr_t last_pa;
298 vm_paddr_t end;
299 vm_paddr_t biggestone, biggestsize;
300 vm_paddr_t total;
302 total = 0;
303 biggestsize = 0;
304 biggestone = 0;
305 nblocks = 0;
306 vaddr = round_page(vaddr);
308 for (i = 0; phys_avail[i + 1]; i += 2) {
309 phys_avail[i] = round_page64(phys_avail[i]);
310 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
313 for (i = 0; phys_avail[i + 1]; i += 2) {
314 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
316 if (size > biggestsize) {
317 biggestone = i;
318 biggestsize = size;
320 ++nblocks;
321 total += size;
324 end = phys_avail[biggestone+1];
325 end = trunc_page(end);
328 * Initialize the queue headers for the free queue, the active queue
329 * and the inactive queue.
331 vm_page_queue_init();
333 #if !defined(_KERNEL_VIRTUAL)
335 * VKERNELs don't support minidumps and as such don't need
336 * vm_page_dump
338 * Allocate a bitmap to indicate that a random physical page
339 * needs to be included in a minidump.
341 * The amd64 port needs this to indicate which direct map pages
342 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
344 * However, i386 still needs this workspace internally within the
345 * minidump code. In theory, they are not needed on i386, but are
346 * included should the sf_buf code decide to use them.
348 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
349 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
350 end -= vm_page_dump_size;
351 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
352 VM_PROT_READ | VM_PROT_WRITE);
353 bzero((void *)vm_page_dump, vm_page_dump_size);
354 #endif
356 * Compute the number of pages of memory that will be available for
357 * use (taking into account the overhead of a page structure per
358 * page).
360 first_page = phys_avail[0] / PAGE_SIZE;
361 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
362 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
364 #ifndef _KERNEL_VIRTUAL
366 * (only applies to real kernels)
368 * Reserve a large amount of low memory for potential 32-bit DMA
369 * space allocations. Once device initialization is complete we
370 * release most of it, but keep (vm_dma_reserved) memory reserved
371 * for later use. Typically for X / graphics. Through trial and
372 * error we find that GPUs usually requires ~60-100MB or so.
374 * By default, 128M is left in reserve on machines with 2G+ of ram.
376 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
377 if (vm_low_phys_reserved > total / 4)
378 vm_low_phys_reserved = total / 4;
379 if (vm_dma_reserved == 0) {
380 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */
381 if (vm_dma_reserved > total / 16)
382 vm_dma_reserved = total / 16;
384 #endif
385 alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
386 ALIST_RECORDS_65536);
389 * Initialize the mem entry structures now, and put them in the free
390 * queue.
392 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
393 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
394 vm_page_array = (vm_page_t)mapped;
396 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
398 * since pmap_map on amd64 returns stuff out of a direct-map region,
399 * we have to manually add these pages to the minidump tracking so
400 * that they can be dumped, including the vm_page_array.
402 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
403 dump_add_page(pa);
404 #endif
407 * Clear all of the page structures
409 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
410 vm_page_array_size = page_range;
413 * Construct the free queue(s) in ascending order (by physical
414 * address) so that the first 16MB of physical memory is allocated
415 * last rather than first. On large-memory machines, this avoids
416 * the exhaustion of low physical memory before isa_dmainit has run.
418 vmstats.v_page_count = 0;
419 vmstats.v_free_count = 0;
420 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
421 pa = phys_avail[i];
422 if (i == biggestone)
423 last_pa = new_end;
424 else
425 last_pa = phys_avail[i + 1];
426 while (pa < last_pa && npages-- > 0) {
427 vm_add_new_page(pa);
428 pa += PAGE_SIZE;
431 if (virtual2_start)
432 virtual2_start = vaddr;
433 else
434 virtual_start = vaddr;
438 * We tended to reserve a ton of memory for contigmalloc(). Now that most
439 * drivers have initialized we want to return most the remaining free
440 * reserve back to the VM page queues so they can be used for normal
441 * allocations.
443 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
445 static void
446 vm_page_startup_finish(void *dummy __unused)
448 alist_blk_t blk;
449 alist_blk_t rblk;
450 alist_blk_t count;
451 alist_blk_t xcount;
452 alist_blk_t bfree;
453 vm_page_t m;
455 spin_lock(&vm_contig_spin);
456 for (;;) {
457 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
458 if (bfree <= vm_dma_reserved / PAGE_SIZE)
459 break;
460 if (count == 0)
461 break;
464 * Figure out how much of the initial reserve we have to
465 * free in order to reach our target.
467 bfree -= vm_dma_reserved / PAGE_SIZE;
468 if (count > bfree) {
469 blk += count - bfree;
470 count = bfree;
474 * Calculate the nearest power of 2 <= count.
476 for (xcount = 1; xcount <= count; xcount <<= 1)
478 xcount >>= 1;
479 blk += count - xcount;
480 count = xcount;
483 * Allocate the pages from the alist, then free them to
484 * the normal VM page queues.
486 * Pages allocated from the alist are wired. We have to
487 * busy, unwire, and free them. We must also adjust
488 * vm_low_phys_reserved before freeing any pages to prevent
489 * confusion.
491 rblk = alist_alloc(&vm_contig_alist, blk, count);
492 if (rblk != blk) {
493 kprintf("vm_page_startup_finish: Unable to return "
494 "dma space @0x%08x/%d -> 0x%08x\n",
495 blk, count, rblk);
496 break;
498 atomic_add_int(&vmstats.v_dma_pages, -count);
499 spin_unlock(&vm_contig_spin);
501 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
502 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
503 while (count) {
504 vm_page_busy_wait(m, FALSE, "cpgfr");
505 vm_page_unwire(m, 0);
506 vm_page_free(m);
507 --count;
508 ++m;
510 spin_lock(&vm_contig_spin);
512 spin_unlock(&vm_contig_spin);
515 * Print out how much DMA space drivers have already allocated and
516 * how much is left over.
518 kprintf("DMA space used: %jdk, remaining available: %jdk\n",
519 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
520 (PAGE_SIZE / 1024),
521 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
523 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
524 vm_page_startup_finish, NULL);
528 * Scan comparison function for Red-Black tree scans. An inclusive
529 * (start,end) is expected. Other fields are not used.
532 rb_vm_page_scancmp(struct vm_page *p, void *data)
534 struct rb_vm_page_scan_info *info = data;
536 if (p->pindex < info->start_pindex)
537 return(-1);
538 if (p->pindex > info->end_pindex)
539 return(1);
540 return(0);
544 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
546 if (p1->pindex < p2->pindex)
547 return(-1);
548 if (p1->pindex > p2->pindex)
549 return(1);
550 return(0);
553 void
554 vm_page_init(vm_page_t m)
556 /* do nothing for now. Called from pmap_page_init() */
560 * Each page queue has its own spin lock, which is fairly optimal for
561 * allocating and freeing pages at least.
563 * The caller must hold the vm_page_spin_lock() before locking a vm_page's
564 * queue spinlock via this function. Also note that m->queue cannot change
565 * unless both the page and queue are locked.
567 static __inline
568 void
569 _vm_page_queue_spin_lock(vm_page_t m)
571 u_short queue;
573 queue = m->queue;
574 if (queue != PQ_NONE) {
575 spin_lock(&vm_page_queues[queue].spin);
576 KKASSERT(queue == m->queue);
580 static __inline
581 void
582 _vm_page_queue_spin_unlock(vm_page_t m)
584 u_short queue;
586 queue = m->queue;
587 cpu_ccfence();
588 if (queue != PQ_NONE)
589 spin_unlock(&vm_page_queues[queue].spin);
592 static __inline
593 void
594 _vm_page_queues_spin_lock(u_short queue)
596 cpu_ccfence();
597 if (queue != PQ_NONE)
598 spin_lock(&vm_page_queues[queue].spin);
602 static __inline
603 void
604 _vm_page_queues_spin_unlock(u_short queue)
606 cpu_ccfence();
607 if (queue != PQ_NONE)
608 spin_unlock(&vm_page_queues[queue].spin);
611 void
612 vm_page_queue_spin_lock(vm_page_t m)
614 _vm_page_queue_spin_lock(m);
617 void
618 vm_page_queues_spin_lock(u_short queue)
620 _vm_page_queues_spin_lock(queue);
623 void
624 vm_page_queue_spin_unlock(vm_page_t m)
626 _vm_page_queue_spin_unlock(m);
629 void
630 vm_page_queues_spin_unlock(u_short queue)
632 _vm_page_queues_spin_unlock(queue);
636 * This locks the specified vm_page and its queue in the proper order
637 * (page first, then queue). The queue may change so the caller must
638 * recheck on return.
640 static __inline
641 void
642 _vm_page_and_queue_spin_lock(vm_page_t m)
644 vm_page_spin_lock(m);
645 _vm_page_queue_spin_lock(m);
648 static __inline
649 void
650 _vm_page_and_queue_spin_unlock(vm_page_t m)
652 _vm_page_queues_spin_unlock(m->queue);
653 vm_page_spin_unlock(m);
656 void
657 vm_page_and_queue_spin_unlock(vm_page_t m)
659 _vm_page_and_queue_spin_unlock(m);
662 void
663 vm_page_and_queue_spin_lock(vm_page_t m)
665 _vm_page_and_queue_spin_lock(m);
669 * Helper function removes vm_page from its current queue.
670 * Returns the base queue the page used to be on.
672 * The vm_page and the queue must be spinlocked.
673 * This function will unlock the queue but leave the page spinlocked.
675 static __inline u_short
676 _vm_page_rem_queue_spinlocked(vm_page_t m)
678 struct vpgqueues *pq;
679 u_short queue;
680 u_short oqueue;
682 queue = m->queue;
683 if (queue != PQ_NONE) {
684 pq = &vm_page_queues[queue];
685 TAILQ_REMOVE(&pq->pl, m, pageq);
686 atomic_add_int(pq->cnt, -1);
687 pq->lcnt--;
688 m->queue = PQ_NONE;
689 oqueue = queue;
690 if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO))
691 --pq->zero_count;
692 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
693 queue -= m->pc;
694 vm_page_queues_spin_unlock(oqueue); /* intended */
696 return queue;
700 * Helper function places the vm_page on the specified queue.
702 * The vm_page must be spinlocked.
703 * This function will return with both the page and the queue locked.
705 static __inline void
706 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
708 struct vpgqueues *pq;
710 KKASSERT(m->queue == PQ_NONE);
712 if (queue != PQ_NONE) {
713 vm_page_queues_spin_lock(queue);
714 pq = &vm_page_queues[queue];
715 ++pq->lcnt;
716 atomic_add_int(pq->cnt, 1);
717 m->queue = queue;
720 * Put zero'd pages on the end ( where we look for zero'd pages
721 * first ) and non-zerod pages at the head.
723 if (queue - m->pc == PQ_FREE) {
724 if (m->flags & PG_ZERO) {
725 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
726 ++pq->zero_count;
727 } else {
728 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
730 } else if (athead) {
731 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
732 } else {
733 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
735 /* leave the queue spinlocked */
740 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
741 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we
742 * did not. Only one sleep call will be made before returning.
744 * This function does NOT busy the page and on return the page is not
745 * guaranteed to be available.
747 void
748 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
750 u_int32_t flags;
752 for (;;) {
753 flags = m->flags;
754 cpu_ccfence();
756 if ((flags & PG_BUSY) == 0 &&
757 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
758 break;
760 tsleep_interlock(m, 0);
761 if (atomic_cmpset_int(&m->flags, flags,
762 flags | PG_WANTED | PG_REFERENCED)) {
763 tsleep(m, PINTERLOCKED, msg, 0);
764 break;
770 * This calculates and returns a page color given an optional VM object and
771 * either a pindex or an iterator. We attempt to return a cpu-localized
772 * pg_color that is still roughly 16-way set-associative. The CPU topology
773 * is used if it was probed.
775 * The caller may use the returned value to index into e.g. PQ_FREE when
776 * allocating a page in order to nominally obtain pages that are hopefully
777 * already localized to the requesting cpu. This function is not able to
778 * provide any sort of guarantee of this, but does its best to improve
779 * hardware cache management performance.
781 * WARNING! The caller must mask the returned value with PQ_L2_MASK.
783 u_short
784 vm_get_pg_color(globaldata_t gd, vm_object_t object, vm_pindex_t pindex)
786 u_short pg_color;
787 int phys_id;
788 int core_id;
789 int object_pg_color;
791 phys_id = get_cpu_phys_id(gd->gd_cpuid);
792 core_id = get_cpu_core_id(gd->gd_cpuid);
793 object_pg_color = object ? object->pg_color : 0;
795 if (cpu_topology_phys_ids && cpu_topology_core_ids) {
796 int grpsize = PQ_L2_SIZE / cpu_topology_phys_ids;
798 if (grpsize / cpu_topology_core_ids >= PQ_SET_ASSOC) {
800 * Enough space for a full break-down.
802 pg_color = phys_id * grpsize;
803 pg_color += core_id * grpsize / cpu_topology_core_ids;
804 pg_color += (pindex + object_pg_color) %
805 (grpsize / cpu_topology_core_ids);
806 } else {
808 * Not enough space, split up by physical package,
809 * then split up by core id but only down to a
810 * 16-set. If all else fails, force a 16-set.
812 pg_color = phys_id * grpsize;
813 if (grpsize > 16) {
814 pg_color += 16 * (core_id % (grpsize / 16));
815 grpsize = 16;
816 } else {
817 grpsize = 16;
819 pg_color += (pindex + object_pg_color) %
820 grpsize;
822 } else {
824 * Unknown topology, distribute things evenly.
826 pg_color = gd->gd_cpuid * PQ_L2_SIZE / ncpus;
827 pg_color += pindex + object_pg_color;
829 return pg_color;
833 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we
834 * also wait for m->busy to become 0 before setting PG_BUSY.
836 void
837 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
838 int also_m_busy, const char *msg
839 VM_PAGE_DEBUG_ARGS)
841 u_int32_t flags;
843 for (;;) {
844 flags = m->flags;
845 cpu_ccfence();
846 if (flags & PG_BUSY) {
847 tsleep_interlock(m, 0);
848 if (atomic_cmpset_int(&m->flags, flags,
849 flags | PG_WANTED | PG_REFERENCED)) {
850 tsleep(m, PINTERLOCKED, msg, 0);
852 } else if (also_m_busy && (flags & PG_SBUSY)) {
853 tsleep_interlock(m, 0);
854 if (atomic_cmpset_int(&m->flags, flags,
855 flags | PG_WANTED | PG_REFERENCED)) {
856 tsleep(m, PINTERLOCKED, msg, 0);
858 } else {
859 if (atomic_cmpset_int(&m->flags, flags,
860 flags | PG_BUSY)) {
861 #ifdef VM_PAGE_DEBUG
862 m->busy_func = func;
863 m->busy_line = lineno;
864 #endif
865 break;
872 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy
873 * is also 0.
875 * Returns non-zero on failure.
878 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
879 VM_PAGE_DEBUG_ARGS)
881 u_int32_t flags;
883 for (;;) {
884 flags = m->flags;
885 cpu_ccfence();
886 if (flags & PG_BUSY)
887 return TRUE;
888 if (also_m_busy && (flags & PG_SBUSY))
889 return TRUE;
890 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
891 #ifdef VM_PAGE_DEBUG
892 m->busy_func = func;
893 m->busy_line = lineno;
894 #endif
895 return FALSE;
901 * Clear the PG_BUSY flag and return non-zero to indicate to the caller
902 * that a wakeup() should be performed.
904 * The vm_page must be spinlocked and will remain spinlocked on return.
905 * The related queue must NOT be spinlocked (which could deadlock us).
907 * (inline version)
909 static __inline
911 _vm_page_wakeup(vm_page_t m)
913 u_int32_t flags;
915 for (;;) {
916 flags = m->flags;
917 cpu_ccfence();
918 if (atomic_cmpset_int(&m->flags, flags,
919 flags & ~(PG_BUSY | PG_WANTED))) {
920 break;
923 return(flags & PG_WANTED);
927 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This
928 * is typically the last call you make on a page before moving onto
929 * other things.
931 void
932 vm_page_wakeup(vm_page_t m)
934 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
935 vm_page_spin_lock(m);
936 if (_vm_page_wakeup(m)) {
937 vm_page_spin_unlock(m);
938 wakeup(m);
939 } else {
940 vm_page_spin_unlock(m);
945 * Holding a page keeps it from being reused. Other parts of the system
946 * can still disassociate the page from its current object and free it, or
947 * perform read or write I/O on it and/or otherwise manipulate the page,
948 * but if the page is held the VM system will leave the page and its data
949 * intact and not reuse the page for other purposes until the last hold
950 * reference is released. (see vm_page_wire() if you want to prevent the
951 * page from being disassociated from its object too).
953 * The caller must still validate the contents of the page and, if necessary,
954 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
955 * before manipulating the page.
957 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
959 void
960 vm_page_hold(vm_page_t m)
962 vm_page_spin_lock(m);
963 atomic_add_int(&m->hold_count, 1);
964 if (m->queue - m->pc == PQ_FREE) {
965 _vm_page_queue_spin_lock(m);
966 _vm_page_rem_queue_spinlocked(m);
967 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
968 _vm_page_queue_spin_unlock(m);
970 vm_page_spin_unlock(m);
974 * The opposite of vm_page_hold(). If the page is on the HOLD queue
975 * it was freed while held and must be moved back to the FREE queue.
977 void
978 vm_page_unhold(vm_page_t m)
980 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
981 ("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
982 m, m->hold_count, m->queue - m->pc));
983 vm_page_spin_lock(m);
984 atomic_add_int(&m->hold_count, -1);
985 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
986 _vm_page_queue_spin_lock(m);
987 _vm_page_rem_queue_spinlocked(m);
988 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
989 _vm_page_queue_spin_unlock(m);
991 vm_page_spin_unlock(m);
995 * vm_page_getfake:
997 * Create a fictitious page with the specified physical address and
998 * memory attribute. The memory attribute is the only the machine-
999 * dependent aspect of a fictitious page that must be initialized.
1002 void
1003 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1006 if ((m->flags & PG_FICTITIOUS) != 0) {
1008 * The page's memattr might have changed since the
1009 * previous initialization. Update the pmap to the
1010 * new memattr.
1012 goto memattr;
1014 m->phys_addr = paddr;
1015 m->queue = PQ_NONE;
1016 /* Fictitious pages don't use "segind". */
1017 /* Fictitious pages don't use "order" or "pool". */
1018 m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
1019 m->wire_count = 1;
1020 pmap_page_init(m);
1021 memattr:
1022 pmap_page_set_memattr(m, memattr);
1026 * Inserts the given vm_page into the object and object list.
1028 * The pagetables are not updated but will presumably fault the page
1029 * in if necessary, or if a kernel page the caller will at some point
1030 * enter the page into the kernel's pmap. We are not allowed to block
1031 * here so we *can't* do this anyway.
1033 * This routine may not block.
1034 * This routine must be called with the vm_object held.
1035 * This routine must be called with a critical section held.
1037 * This routine returns TRUE if the page was inserted into the object
1038 * successfully, and FALSE if the page already exists in the object.
1041 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1043 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1044 if (m->object != NULL)
1045 panic("vm_page_insert: already inserted");
1047 object->generation++;
1050 * Record the object/offset pair in this page and add the
1051 * pv_list_count of the page to the object.
1053 * The vm_page spin lock is required for interactions with the pmap.
1055 vm_page_spin_lock(m);
1056 m->object = object;
1057 m->pindex = pindex;
1058 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1059 m->object = NULL;
1060 m->pindex = 0;
1061 vm_page_spin_unlock(m);
1062 return FALSE;
1064 ++object->resident_page_count;
1065 ++mycpu->gd_vmtotal.t_rm;
1066 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
1067 vm_page_spin_unlock(m);
1070 * Since we are inserting a new and possibly dirty page,
1071 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1073 if ((m->valid & m->dirty) ||
1074 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1075 vm_object_set_writeable_dirty(object);
1078 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1080 swap_pager_page_inserted(m);
1081 return TRUE;
1085 * Removes the given vm_page_t from the (object,index) table
1087 * The underlying pmap entry (if any) is NOT removed here.
1088 * This routine may not block.
1090 * The page must be BUSY and will remain BUSY on return.
1091 * No other requirements.
1093 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave
1094 * it busy.
1096 void
1097 vm_page_remove(vm_page_t m)
1099 vm_object_t object;
1101 if (m->object == NULL) {
1102 return;
1105 if ((m->flags & PG_BUSY) == 0)
1106 panic("vm_page_remove: page not busy");
1108 object = m->object;
1110 vm_object_hold(object);
1113 * Remove the page from the object and update the object.
1115 * The vm_page spin lock is required for interactions with the pmap.
1117 vm_page_spin_lock(m);
1118 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1119 --object->resident_page_count;
1120 --mycpu->gd_vmtotal.t_rm;
1121 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
1122 m->object = NULL;
1123 vm_page_spin_unlock(m);
1125 object->generation++;
1127 vm_object_drop(object);
1131 * Locate and return the page at (object, pindex), or NULL if the
1132 * page could not be found.
1134 * The caller must hold the vm_object token.
1136 vm_page_t
1137 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1139 vm_page_t m;
1142 * Search the hash table for this object/offset pair
1144 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1145 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1146 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1147 return(m);
1150 vm_page_t
1151 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1152 vm_pindex_t pindex,
1153 int also_m_busy, const char *msg
1154 VM_PAGE_DEBUG_ARGS)
1156 u_int32_t flags;
1157 vm_page_t m;
1159 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1160 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1161 while (m) {
1162 KKASSERT(m->object == object && m->pindex == pindex);
1163 flags = m->flags;
1164 cpu_ccfence();
1165 if (flags & PG_BUSY) {
1166 tsleep_interlock(m, 0);
1167 if (atomic_cmpset_int(&m->flags, flags,
1168 flags | PG_WANTED | PG_REFERENCED)) {
1169 tsleep(m, PINTERLOCKED, msg, 0);
1170 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1171 pindex);
1173 } else if (also_m_busy && (flags & PG_SBUSY)) {
1174 tsleep_interlock(m, 0);
1175 if (atomic_cmpset_int(&m->flags, flags,
1176 flags | PG_WANTED | PG_REFERENCED)) {
1177 tsleep(m, PINTERLOCKED, msg, 0);
1178 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1179 pindex);
1181 } else if (atomic_cmpset_int(&m->flags, flags,
1182 flags | PG_BUSY)) {
1183 #ifdef VM_PAGE_DEBUG
1184 m->busy_func = func;
1185 m->busy_line = lineno;
1186 #endif
1187 break;
1190 return m;
1194 * Attempt to lookup and busy a page.
1196 * Returns NULL if the page could not be found
1198 * Returns a vm_page and error == TRUE if the page exists but could not
1199 * be busied.
1201 * Returns a vm_page and error == FALSE on success.
1203 vm_page_t
1204 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1205 vm_pindex_t pindex,
1206 int also_m_busy, int *errorp
1207 VM_PAGE_DEBUG_ARGS)
1209 u_int32_t flags;
1210 vm_page_t m;
1212 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1213 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1214 *errorp = FALSE;
1215 while (m) {
1216 KKASSERT(m->object == object && m->pindex == pindex);
1217 flags = m->flags;
1218 cpu_ccfence();
1219 if (flags & PG_BUSY) {
1220 *errorp = TRUE;
1221 break;
1223 if (also_m_busy && (flags & PG_SBUSY)) {
1224 *errorp = TRUE;
1225 break;
1227 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1228 #ifdef VM_PAGE_DEBUG
1229 m->busy_func = func;
1230 m->busy_line = lineno;
1231 #endif
1232 break;
1235 return m;
1239 * Attempt to repurpose the passed-in page. If the passed-in page cannot
1240 * be repurposed it will be released, *must_reenter will be set to 1, and
1241 * this function will fall-through to vm_page_lookup_busy_try().
1243 * The passed-in page must be wired and not busy. The returned page will
1244 * be busied and not wired.
1246 * A different page may be returned. The returned page will be busied and
1247 * not wired.
1249 * NULL can be returned. If so, the required page could not be busied.
1250 * The passed-in page will be unwired.
1252 vm_page_t
1253 vm_page_repurpose(struct vm_object *object, vm_pindex_t pindex,
1254 int also_m_busy, int *errorp, vm_page_t m,
1255 int *must_reenter, int *iswired)
1257 if (m) {
1258 vm_page_busy_wait(m, TRUE, "biodep");
1259 if ((m->flags & (PG_UNMANAGED | PG_MAPPED | PG_FICTITIOUS)) ||
1260 m->busy || m->wire_count != 1 || m->hold_count) {
1261 vm_page_unwire(m, 0);
1262 vm_page_wakeup(m);
1263 /* fall through to normal lookup */
1264 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
1265 vm_page_unwire(m, 0);
1266 vm_page_deactivate(m);
1267 vm_page_wakeup(m);
1268 /* fall through to normal lookup */
1269 } else {
1271 * We can safely repurpose the page. It should
1272 * already be unqueued.
1274 KKASSERT(m->queue == PQ_NONE && m->dirty == 0);
1275 vm_page_remove(m);
1276 m->valid = 0;
1277 m->act_count = 0;
1278 if (vm_page_insert(m, object, pindex)) {
1279 *errorp = 0;
1280 *iswired = 1;
1282 return m;
1284 vm_page_unwire(m, 0);
1285 vm_page_free(m);
1286 /* fall through to normal lookup */
1289 *must_reenter = 1;
1290 *iswired = 0;
1291 m = vm_page_lookup_busy_try(object, pindex, also_m_busy, errorp);
1293 return m;
1297 * Caller must hold the related vm_object
1299 vm_page_t
1300 vm_page_next(vm_page_t m)
1302 vm_page_t next;
1304 next = vm_page_rb_tree_RB_NEXT(m);
1305 if (next && next->pindex != m->pindex + 1)
1306 next = NULL;
1307 return (next);
1311 * vm_page_rename()
1313 * Move the given vm_page from its current object to the specified
1314 * target object/offset. The page must be busy and will remain so
1315 * on return.
1317 * new_object must be held.
1318 * This routine might block. XXX ?
1320 * NOTE: Swap associated with the page must be invalidated by the move. We
1321 * have to do this for several reasons: (1) we aren't freeing the
1322 * page, (2) we are dirtying the page, (3) the VM system is probably
1323 * moving the page from object A to B, and will then later move
1324 * the backing store from A to B and we can't have a conflict.
1326 * NOTE: We *always* dirty the page. It is necessary both for the
1327 * fact that we moved it, and because we may be invalidating
1328 * swap. If the page is on the cache, we have to deactivate it
1329 * or vm_page_dirty() will panic. Dirty pages are not allowed
1330 * on the cache.
1332 void
1333 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1335 KKASSERT(m->flags & PG_BUSY);
1336 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1337 if (m->object) {
1338 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1339 vm_page_remove(m);
1341 if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1342 panic("vm_page_rename: target exists (%p,%"PRIu64")",
1343 new_object, new_pindex);
1345 if (m->queue - m->pc == PQ_CACHE)
1346 vm_page_deactivate(m);
1347 vm_page_dirty(m);
1351 * vm_page_unqueue() without any wakeup. This routine is used when a page
1352 * is to remain BUSYied by the caller.
1354 * This routine may not block.
1356 void
1357 vm_page_unqueue_nowakeup(vm_page_t m)
1359 vm_page_and_queue_spin_lock(m);
1360 (void)_vm_page_rem_queue_spinlocked(m);
1361 vm_page_spin_unlock(m);
1365 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1366 * if necessary.
1368 * This routine may not block.
1370 void
1371 vm_page_unqueue(vm_page_t m)
1373 u_short queue;
1375 vm_page_and_queue_spin_lock(m);
1376 queue = _vm_page_rem_queue_spinlocked(m);
1377 if (queue == PQ_FREE || queue == PQ_CACHE) {
1378 vm_page_spin_unlock(m);
1379 pagedaemon_wakeup();
1380 } else {
1381 vm_page_spin_unlock(m);
1386 * vm_page_list_find()
1388 * Find a page on the specified queue with color optimization.
1390 * The page coloring optimization attempts to locate a page that does
1391 * not overload other nearby pages in the object in the cpu's L1 or L2
1392 * caches. We need this optimization because cpu caches tend to be
1393 * physical caches, while object spaces tend to be virtual.
1395 * The page coloring optimization also, very importantly, tries to localize
1396 * memory to cpus and physical sockets.
1398 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1399 * and the algorithm is adjusted to localize allocations on a per-core basis.
1400 * This is done by 'twisting' the colors.
1402 * The page is returned spinlocked and removed from its queue (it will
1403 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller
1404 * is responsible for dealing with the busy-page case (usually by
1405 * deactivating the page and looping).
1407 * NOTE: This routine is carefully inlined. A non-inlined version
1408 * is available for outside callers but the only critical path is
1409 * from within this source file.
1411 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1412 * represent stable storage, allowing us to order our locks vm_page
1413 * first, then queue.
1415 static __inline
1416 vm_page_t
1417 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1419 vm_page_t m;
1421 for (;;) {
1422 if (prefer_zero) {
1423 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl,
1424 pglist);
1425 } else {
1426 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1428 if (m == NULL) {
1429 m = _vm_page_list_find2(basequeue, index);
1430 return(m);
1432 vm_page_and_queue_spin_lock(m);
1433 if (m->queue == basequeue + index) {
1434 _vm_page_rem_queue_spinlocked(m);
1435 /* vm_page_t spin held, no queue spin */
1436 break;
1438 vm_page_and_queue_spin_unlock(m);
1440 return(m);
1444 * If we could not find the page in the desired queue try to find it in
1445 * a nearby queue.
1447 static vm_page_t
1448 _vm_page_list_find2(int basequeue, int index)
1450 struct vpgqueues *pq;
1451 vm_page_t m = NULL;
1452 int pqmask = PQ_SET_ASSOC_MASK >> 1;
1453 int pqi;
1454 int i;
1456 index &= PQ_L2_MASK;
1457 pq = &vm_page_queues[basequeue];
1460 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1461 * else fails (PQ_L2_MASK which is 255).
1463 do {
1464 pqmask = (pqmask << 1) | 1;
1465 for (i = 0; i <= pqmask; ++i) {
1466 pqi = (index & ~pqmask) | ((index + i) & pqmask);
1467 m = TAILQ_FIRST(&pq[pqi].pl);
1468 if (m) {
1469 _vm_page_and_queue_spin_lock(m);
1470 if (m->queue == basequeue + pqi) {
1471 _vm_page_rem_queue_spinlocked(m);
1472 return(m);
1474 _vm_page_and_queue_spin_unlock(m);
1475 --i;
1476 continue;
1479 } while (pqmask != PQ_L2_MASK);
1481 return(m);
1485 * Returns a vm_page candidate for allocation. The page is not busied so
1486 * it can move around. The caller must busy the page (and typically
1487 * deactivate it if it cannot be busied!)
1489 * Returns a spinlocked vm_page that has been removed from its queue.
1491 vm_page_t
1492 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1494 return(_vm_page_list_find(basequeue, index, prefer_zero));
1498 * Find a page on the cache queue with color optimization, remove it
1499 * from the queue, and busy it. The returned page will not be spinlocked.
1501 * A candidate failure will be deactivated. Candidates can fail due to
1502 * being busied by someone else, in which case they will be deactivated.
1504 * This routine may not block.
1507 static vm_page_t
1508 vm_page_select_cache(u_short pg_color)
1510 vm_page_t m;
1512 for (;;) {
1513 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1514 if (m == NULL)
1515 break;
1517 * (m) has been removed from its queue and spinlocked
1519 if (vm_page_busy_try(m, TRUE)) {
1520 _vm_page_deactivate_locked(m, 0);
1521 vm_page_spin_unlock(m);
1522 } else {
1524 * We successfully busied the page
1526 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1527 m->hold_count == 0 &&
1528 m->wire_count == 0 &&
1529 (m->dirty & m->valid) == 0) {
1530 vm_page_spin_unlock(m);
1531 pagedaemon_wakeup();
1532 return(m);
1536 * The page cannot be recycled, deactivate it.
1538 _vm_page_deactivate_locked(m, 0);
1539 if (_vm_page_wakeup(m)) {
1540 vm_page_spin_unlock(m);
1541 wakeup(m);
1542 } else {
1543 vm_page_spin_unlock(m);
1547 return (m);
1551 * Find a free or zero page, with specified preference. We attempt to
1552 * inline the nominal case and fall back to _vm_page_select_free()
1553 * otherwise. A busied page is removed from the queue and returned.
1555 * This routine may not block.
1557 static __inline vm_page_t
1558 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1560 vm_page_t m;
1562 for (;;) {
1563 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1564 prefer_zero);
1565 if (m == NULL)
1566 break;
1567 if (vm_page_busy_try(m, TRUE)) {
1569 * Various mechanisms such as a pmap_collect can
1570 * result in a busy page on the free queue. We
1571 * have to move the page out of the way so we can
1572 * retry the allocation. If the other thread is not
1573 * allocating the page then m->valid will remain 0 and
1574 * the pageout daemon will free the page later on.
1576 * Since we could not busy the page, however, we
1577 * cannot make assumptions as to whether the page
1578 * will be allocated by the other thread or not,
1579 * so all we can do is deactivate it to move it out
1580 * of the way. In particular, if the other thread
1581 * wires the page it may wind up on the inactive
1582 * queue and the pageout daemon will have to deal
1583 * with that case too.
1585 _vm_page_deactivate_locked(m, 0);
1586 vm_page_spin_unlock(m);
1587 } else {
1589 * Theoretically if we are able to busy the page
1590 * atomic with the queue removal (using the vm_page
1591 * lock) nobody else should be able to mess with the
1592 * page before us.
1594 KKASSERT((m->flags & (PG_UNMANAGED |
1595 PG_NEED_COMMIT)) == 0);
1596 KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1597 "pg %p q=%d flags=%08x hold=%d wire=%d",
1598 m, m->queue, m->flags, m->hold_count, m->wire_count));
1599 KKASSERT(m->wire_count == 0);
1600 vm_page_spin_unlock(m);
1601 pagedaemon_wakeup();
1603 /* return busied and removed page */
1604 return(m);
1607 return(m);
1611 * vm_page_alloc()
1613 * Allocate and return a memory cell associated with this VM object/offset
1614 * pair. If object is NULL an unassociated page will be allocated.
1616 * The returned page will be busied and removed from its queues. This
1617 * routine can block and may return NULL if a race occurs and the page
1618 * is found to already exist at the specified (object, pindex).
1620 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
1621 * VM_ALLOC_QUICK like normal but cannot use cache
1622 * VM_ALLOC_SYSTEM greater free drain
1623 * VM_ALLOC_INTERRUPT allow free list to be completely drained
1624 * VM_ALLOC_ZERO advisory request for pre-zero'd page only
1625 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only
1626 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision
1627 * (see vm_page_grab())
1628 * VM_ALLOC_USE_GD ok to use per-gd cache
1630 * The object must be held if not NULL
1631 * This routine may not block
1633 * Additional special handling is required when called from an interrupt
1634 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
1635 * in this case.
1637 vm_page_t
1638 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1640 globaldata_t gd = mycpu;
1641 vm_object_t obj;
1642 vm_page_t m;
1643 u_short pg_color;
1645 #if 0
1647 * Special per-cpu free VM page cache. The pages are pre-busied
1648 * and pre-zerod for us.
1650 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1651 crit_enter_gd(gd);
1652 if (gd->gd_vmpg_count) {
1653 m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1654 crit_exit_gd(gd);
1655 goto done;
1657 crit_exit_gd(gd);
1659 #endif
1660 m = NULL;
1663 * CPU LOCALIZATION
1665 * CPU localization algorithm. Break the page queues up by physical
1666 * id and core id (note that two cpu threads will have the same core
1667 * id, and core_id != gd_cpuid).
1669 * This is nowhere near perfect, for example the last pindex in a
1670 * subgroup will overflow into the next cpu or package. But this
1671 * should get us good page reuse locality in heavy mixed loads.
1673 pg_color = vm_get_pg_color(gd, object, pindex);
1675 KKASSERT(page_req &
1676 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1677 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1680 * Certain system threads (pageout daemon, buf_daemon's) are
1681 * allowed to eat deeper into the free page list.
1683 if (curthread->td_flags & TDF_SYSTHREAD)
1684 page_req |= VM_ALLOC_SYSTEM;
1687 * Impose various limitations. Note that the v_free_reserved test
1688 * must match the opposite of vm_page_count_target() to avoid
1689 * livelocks, be careful.
1691 loop:
1692 if (vmstats.v_free_count >= vmstats.v_free_reserved ||
1693 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1694 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1695 vmstats.v_free_count > vmstats.v_interrupt_free_min)
1698 * The free queue has sufficient free pages to take one out.
1700 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1701 m = vm_page_select_free(pg_color, TRUE);
1702 else
1703 m = vm_page_select_free(pg_color, FALSE);
1704 } else if (page_req & VM_ALLOC_NORMAL) {
1706 * Allocatable from the cache (non-interrupt only). On
1707 * success, we must free the page and try again, thus
1708 * ensuring that vmstats.v_*_free_min counters are replenished.
1710 #ifdef INVARIANTS
1711 if (curthread->td_preempted) {
1712 kprintf("vm_page_alloc(): warning, attempt to allocate"
1713 " cache page from preempting interrupt\n");
1714 m = NULL;
1715 } else {
1716 m = vm_page_select_cache(pg_color);
1718 #else
1719 m = vm_page_select_cache(pg_color);
1720 #endif
1722 * On success move the page into the free queue and loop.
1724 * Only do this if we can safely acquire the vm_object lock,
1725 * because this is effectively a random page and the caller
1726 * might be holding the lock shared, we don't want to
1727 * deadlock.
1729 if (m != NULL) {
1730 KASSERT(m->dirty == 0,
1731 ("Found dirty cache page %p", m));
1732 if ((obj = m->object) != NULL) {
1733 if (vm_object_hold_try(obj)) {
1734 vm_page_protect(m, VM_PROT_NONE);
1735 vm_page_free(m);
1736 /* m->object NULL here */
1737 vm_object_drop(obj);
1738 } else {
1739 vm_page_deactivate(m);
1740 vm_page_wakeup(m);
1742 } else {
1743 vm_page_protect(m, VM_PROT_NONE);
1744 vm_page_free(m);
1746 goto loop;
1750 * On failure return NULL
1752 #if defined(DIAGNOSTIC)
1753 if (vmstats.v_cache_count > 0)
1754 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1755 #endif
1756 vm_pageout_deficit++;
1757 pagedaemon_wakeup();
1758 return (NULL);
1759 } else {
1761 * No pages available, wakeup the pageout daemon and give up.
1763 vm_pageout_deficit++;
1764 pagedaemon_wakeup();
1765 return (NULL);
1769 * v_free_count can race so loop if we don't find the expected
1770 * page.
1772 if (m == NULL)
1773 goto loop;
1776 * Good page found. The page has already been busied for us and
1777 * removed from its queues.
1779 KASSERT(m->dirty == 0,
1780 ("vm_page_alloc: free/cache page %p was dirty", m));
1781 KKASSERT(m->queue == PQ_NONE);
1783 #if 0
1784 done:
1785 #endif
1787 * Initialize the structure, inheriting some flags but clearing
1788 * all the rest. The page has already been busied for us.
1790 vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY));
1791 KKASSERT(m->wire_count == 0);
1792 KKASSERT(m->busy == 0);
1793 m->act_count = 0;
1794 m->valid = 0;
1797 * Caller must be holding the object lock (asserted by
1798 * vm_page_insert()).
1800 * NOTE: Inserting a page here does not insert it into any pmaps
1801 * (which could cause us to block allocating memory).
1803 * NOTE: If no object an unassociated page is allocated, m->pindex
1804 * can be used by the caller for any purpose.
1806 if (object) {
1807 if (vm_page_insert(m, object, pindex) == FALSE) {
1808 vm_page_free(m);
1809 if ((page_req & VM_ALLOC_NULL_OK) == 0)
1810 panic("PAGE RACE %p[%ld]/%p",
1811 object, (long)pindex, m);
1812 m = NULL;
1814 } else {
1815 m->pindex = pindex;
1819 * Don't wakeup too often - wakeup the pageout daemon when
1820 * we would be nearly out of memory.
1822 pagedaemon_wakeup();
1825 * A PG_BUSY page is returned.
1827 return (m);
1831 * Returns number of pages available in our DMA memory reserve
1832 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1834 vm_size_t
1835 vm_contig_avail_pages(void)
1837 alist_blk_t blk;
1838 alist_blk_t count;
1839 alist_blk_t bfree;
1840 spin_lock(&vm_contig_spin);
1841 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
1842 spin_unlock(&vm_contig_spin);
1844 return bfree;
1848 * Attempt to allocate contiguous physical memory with the specified
1849 * requirements.
1851 vm_page_t
1852 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1853 unsigned long alignment, unsigned long boundary,
1854 unsigned long size, vm_memattr_t memattr)
1856 alist_blk_t blk;
1857 vm_page_t m;
1858 int i;
1860 alignment >>= PAGE_SHIFT;
1861 if (alignment == 0)
1862 alignment = 1;
1863 boundary >>= PAGE_SHIFT;
1864 if (boundary == 0)
1865 boundary = 1;
1866 size = (size + PAGE_MASK) >> PAGE_SHIFT;
1868 spin_lock(&vm_contig_spin);
1869 blk = alist_alloc(&vm_contig_alist, 0, size);
1870 if (blk == ALIST_BLOCK_NONE) {
1871 spin_unlock(&vm_contig_spin);
1872 if (bootverbose) {
1873 kprintf("vm_page_alloc_contig: %ldk nospace\n",
1874 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
1876 return(NULL);
1878 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1879 alist_free(&vm_contig_alist, blk, size);
1880 spin_unlock(&vm_contig_spin);
1881 if (bootverbose) {
1882 kprintf("vm_page_alloc_contig: %ldk high "
1883 "%016jx failed\n",
1884 (size + PAGE_MASK) * (PAGE_SIZE / 1024),
1885 (intmax_t)high);
1887 return(NULL);
1889 spin_unlock(&vm_contig_spin);
1890 if (vm_contig_verbose) {
1891 kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1892 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1893 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
1896 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
1897 if (memattr != VM_MEMATTR_DEFAULT)
1898 for (i = 0;i < size;i++)
1899 pmap_page_set_memattr(&m[i], memattr);
1900 return m;
1904 * Free contiguously allocated pages. The pages will be wired but not busy.
1905 * When freeing to the alist we leave them wired and not busy.
1907 void
1908 vm_page_free_contig(vm_page_t m, unsigned long size)
1910 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1911 vm_pindex_t start = pa >> PAGE_SHIFT;
1912 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1914 if (vm_contig_verbose) {
1915 kprintf("vm_page_free_contig: %016jx/%ldk\n",
1916 (intmax_t)pa, size / 1024);
1918 if (pa < vm_low_phys_reserved) {
1919 KKASSERT(pa + size <= vm_low_phys_reserved);
1920 spin_lock(&vm_contig_spin);
1921 alist_free(&vm_contig_alist, start, pages);
1922 spin_unlock(&vm_contig_spin);
1923 } else {
1924 while (pages) {
1925 vm_page_busy_wait(m, FALSE, "cpgfr");
1926 vm_page_unwire(m, 0);
1927 vm_page_free(m);
1928 --pages;
1929 ++m;
1937 * Wait for sufficient free memory for nominal heavy memory use kernel
1938 * operations.
1940 * WARNING! Be sure never to call this in any vm_pageout code path, which
1941 * will trivially deadlock the system.
1943 void
1944 vm_wait_nominal(void)
1946 while (vm_page_count_min(0))
1947 vm_wait(0);
1951 * Test if vm_wait_nominal() would block.
1954 vm_test_nominal(void)
1956 if (vm_page_count_min(0))
1957 return(1);
1958 return(0);
1962 * Block until free pages are available for allocation, called in various
1963 * places before memory allocations.
1965 * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1966 * more generous then that.
1968 void
1969 vm_wait(int timo)
1972 * never wait forever
1974 if (timo == 0)
1975 timo = hz;
1976 lwkt_gettoken(&vm_token);
1978 if (curthread == pagethread) {
1980 * The pageout daemon itself needs pages, this is bad.
1982 if (vm_page_count_min(0)) {
1983 vm_pageout_pages_needed = 1;
1984 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1986 } else {
1988 * Wakeup the pageout daemon if necessary and wait.
1990 * Do not wait indefinitely for the target to be reached,
1991 * as load might prevent it from being reached any time soon.
1992 * But wait a little to try to slow down page allocations
1993 * and to give more important threads (the pagedaemon)
1994 * allocation priority.
1996 if (vm_page_count_target()) {
1997 if (vm_pages_needed == 0) {
1998 vm_pages_needed = 1;
1999 wakeup(&vm_pages_needed);
2001 ++vm_pages_waiting; /* SMP race ok */
2002 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2005 lwkt_reltoken(&vm_token);
2009 * Block until free pages are available for allocation
2011 * Called only from vm_fault so that processes page faulting can be
2012 * easily tracked.
2014 void
2015 vm_wait_pfault(void)
2018 * Wakeup the pageout daemon if necessary and wait.
2020 * Do not wait indefinitely for the target to be reached,
2021 * as load might prevent it from being reached any time soon.
2022 * But wait a little to try to slow down page allocations
2023 * and to give more important threads (the pagedaemon)
2024 * allocation priority.
2026 if (vm_page_count_min(0)) {
2027 lwkt_gettoken(&vm_token);
2028 while (vm_page_count_severe()) {
2029 if (vm_page_count_target()) {
2030 if (vm_pages_needed == 0) {
2031 vm_pages_needed = 1;
2032 wakeup(&vm_pages_needed);
2034 ++vm_pages_waiting; /* SMP race ok */
2035 tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2038 lwkt_reltoken(&vm_token);
2043 * Put the specified page on the active list (if appropriate). Ensure
2044 * that act_count is at least ACT_INIT but do not otherwise mess with it.
2046 * The caller should be holding the page busied ? XXX
2047 * This routine may not block.
2049 void
2050 vm_page_activate(vm_page_t m)
2052 u_short oqueue;
2054 vm_page_spin_lock(m);
2055 if (m->queue - m->pc != PQ_ACTIVE) {
2056 _vm_page_queue_spin_lock(m);
2057 oqueue = _vm_page_rem_queue_spinlocked(m);
2058 /* page is left spinlocked, queue is unlocked */
2060 if (oqueue == PQ_CACHE)
2061 mycpu->gd_cnt.v_reactivated++;
2062 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2063 if (m->act_count < ACT_INIT)
2064 m->act_count = ACT_INIT;
2065 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2067 _vm_page_and_queue_spin_unlock(m);
2068 if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2069 pagedaemon_wakeup();
2070 } else {
2071 if (m->act_count < ACT_INIT)
2072 m->act_count = ACT_INIT;
2073 vm_page_spin_unlock(m);
2078 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
2079 * routine is called when a page has been added to the cache or free
2080 * queues.
2082 * This routine may not block.
2084 static __inline void
2085 vm_page_free_wakeup(void)
2088 * If the pageout daemon itself needs pages, then tell it that
2089 * there are some free.
2091 if (vm_pageout_pages_needed &&
2092 vmstats.v_cache_count + vmstats.v_free_count >=
2093 vmstats.v_pageout_free_min
2095 vm_pageout_pages_needed = 0;
2096 wakeup(&vm_pageout_pages_needed);
2100 * Wakeup processes that are waiting on memory.
2102 * Generally speaking we want to wakeup stuck processes as soon as
2103 * possible. !vm_page_count_min(0) is the absolute minimum point
2104 * where we can do this. Wait a bit longer to reduce degenerate
2105 * re-blocking (vm_page_free_hysteresis). The target check is just
2106 * to make sure the min-check w/hysteresis does not exceed the
2107 * normal target.
2109 if (vm_pages_waiting) {
2110 if (!vm_page_count_min(vm_page_free_hysteresis) ||
2111 !vm_page_count_target()) {
2112 vm_pages_waiting = 0;
2113 wakeup(&vmstats.v_free_count);
2114 ++mycpu->gd_cnt.v_ppwakeups;
2116 #if 0
2117 if (!vm_page_count_target()) {
2119 * Plenty of pages are free, wakeup everyone.
2121 vm_pages_waiting = 0;
2122 wakeup(&vmstats.v_free_count);
2123 ++mycpu->gd_cnt.v_ppwakeups;
2124 } else if (!vm_page_count_min(0)) {
2126 * Some pages are free, wakeup someone.
2128 int wcount = vm_pages_waiting;
2129 if (wcount > 0)
2130 --wcount;
2131 vm_pages_waiting = wcount;
2132 wakeup_one(&vmstats.v_free_count);
2133 ++mycpu->gd_cnt.v_ppwakeups;
2135 #endif
2140 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2141 * it from its VM object.
2143 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on
2144 * return (the page will have been freed).
2146 void
2147 vm_page_free_toq(vm_page_t m)
2149 mycpu->gd_cnt.v_tfree++;
2150 KKASSERT((m->flags & PG_MAPPED) == 0);
2151 KKASSERT(m->flags & PG_BUSY);
2153 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2154 kprintf("vm_page_free: pindex(%lu), busy(%d), "
2155 "PG_BUSY(%d), hold(%d)\n",
2156 (u_long)m->pindex, m->busy,
2157 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2158 if ((m->queue - m->pc) == PQ_FREE)
2159 panic("vm_page_free: freeing free page");
2160 else
2161 panic("vm_page_free: freeing busy page");
2165 * Remove from object, spinlock the page and its queues and
2166 * remove from any queue. No queue spinlock will be held
2167 * after this section (because the page was removed from any
2168 * queue).
2170 vm_page_remove(m);
2171 vm_page_and_queue_spin_lock(m);
2172 _vm_page_rem_queue_spinlocked(m);
2175 * No further management of fictitious pages occurs beyond object
2176 * and queue removal.
2178 if ((m->flags & PG_FICTITIOUS) != 0) {
2179 vm_page_spin_unlock(m);
2180 vm_page_wakeup(m);
2181 return;
2184 m->valid = 0;
2185 vm_page_undirty(m);
2187 if (m->wire_count != 0) {
2188 if (m->wire_count > 1) {
2189 panic(
2190 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2191 m->wire_count, (long)m->pindex);
2193 panic("vm_page_free: freeing wired page");
2197 * Clear the UNMANAGED flag when freeing an unmanaged page.
2198 * Clear the NEED_COMMIT flag
2200 if (m->flags & PG_UNMANAGED)
2201 vm_page_flag_clear(m, PG_UNMANAGED);
2202 if (m->flags & PG_NEED_COMMIT)
2203 vm_page_flag_clear(m, PG_NEED_COMMIT);
2205 if (m->hold_count != 0) {
2206 vm_page_flag_clear(m, PG_ZERO);
2207 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2208 } else {
2209 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2213 * This sequence allows us to clear PG_BUSY while still holding
2214 * its spin lock, which reduces contention vs allocators. We
2215 * must not leave the queue locked or _vm_page_wakeup() may
2216 * deadlock.
2218 _vm_page_queue_spin_unlock(m);
2219 if (_vm_page_wakeup(m)) {
2220 vm_page_spin_unlock(m);
2221 wakeup(m);
2222 } else {
2223 vm_page_spin_unlock(m);
2225 vm_page_free_wakeup();
2229 * vm_page_free_fromq_fast()
2231 * Remove a non-zero page from one of the free queues; the page is removed for
2232 * zeroing, so do not issue a wakeup.
2234 * Our zeroidle code is now per-cpu so only do a limited scan. We try to
2235 * stay within a single cpu's domain but we do a little statistical
2236 * improvement by encompassing two cpu's domains worst-case.
2238 vm_page_t
2239 vm_page_free_fromq_fast(void)
2241 globaldata_t gd = mycpu;
2242 vm_page_t m;
2243 int i;
2244 int qi;
2246 m = NULL;
2247 qi = vm_get_pg_color(gd, NULL, ++gd->gd_quick_color);
2248 qi = qi & PQ_L2_MASK;
2251 * 16 = one cpu's domain
2252 * 32 = two cpu's domains
2253 * (note masking at bottom of loop!)
2255 for (i = 0; i < 10; ++i) {
2256 m = vm_page_list_find(PQ_FREE, qi, FALSE);
2257 /* page is returned spinlocked and removed from its queue */
2258 if (m) {
2259 if (vm_page_busy_try(m, TRUE)) {
2261 * We were unable to busy the page, deactivate
2262 * it and loop.
2264 _vm_page_deactivate_locked(m, 0);
2265 vm_page_spin_unlock(m);
2266 } else if (m->flags & PG_ZERO) {
2268 * The page is already PG_ZERO, requeue it
2269 * and loop.
2271 _vm_page_add_queue_spinlocked(m,
2272 PQ_FREE + m->pc,
2274 vm_page_queue_spin_unlock(m);
2275 if (_vm_page_wakeup(m)) {
2276 vm_page_spin_unlock(m);
2277 wakeup(m);
2278 } else {
2279 vm_page_spin_unlock(m);
2281 } else {
2283 * The page is not PG_ZERO'd so return it.
2285 KKASSERT((m->flags & (PG_UNMANAGED |
2286 PG_NEED_COMMIT)) == 0);
2287 KKASSERT(m->hold_count == 0);
2288 KKASSERT(m->wire_count == 0);
2289 vm_page_spin_unlock(m);
2290 break;
2292 m = NULL;
2295 return (m);
2299 * vm_page_unmanage()
2301 * Prevent PV management from being done on the page. The page is
2302 * removed from the paging queues as if it were wired, and as a
2303 * consequence of no longer being managed the pageout daemon will not
2304 * touch it (since there is no way to locate the pte mappings for the
2305 * page). madvise() calls that mess with the pmap will also no longer
2306 * operate on the page.
2308 * Beyond that the page is still reasonably 'normal'. Freeing the page
2309 * will clear the flag.
2311 * This routine is used by OBJT_PHYS objects - objects using unswappable
2312 * physical memory as backing store rather then swap-backed memory and
2313 * will eventually be extended to support 4MB unmanaged physical
2314 * mappings.
2316 * Caller must be holding the page busy.
2318 void
2319 vm_page_unmanage(vm_page_t m)
2321 KKASSERT(m->flags & PG_BUSY);
2322 if ((m->flags & PG_UNMANAGED) == 0) {
2323 if (m->wire_count == 0)
2324 vm_page_unqueue(m);
2326 vm_page_flag_set(m, PG_UNMANAGED);
2330 * Mark this page as wired down by yet another map, removing it from
2331 * paging queues as necessary.
2333 * Caller must be holding the page busy.
2335 void
2336 vm_page_wire(vm_page_t m)
2339 * Only bump the wire statistics if the page is not already wired,
2340 * and only unqueue the page if it is on some queue (if it is unmanaged
2341 * it is already off the queues). Don't do anything with fictitious
2342 * pages because they are always wired.
2344 KKASSERT(m->flags & PG_BUSY);
2345 if ((m->flags & PG_FICTITIOUS) == 0) {
2346 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2347 if ((m->flags & PG_UNMANAGED) == 0)
2348 vm_page_unqueue(m);
2349 atomic_add_int(&vmstats.v_wire_count, 1);
2351 KASSERT(m->wire_count != 0,
2352 ("vm_page_wire: wire_count overflow m=%p", m));
2357 * Release one wiring of this page, potentially enabling it to be paged again.
2359 * Many pages placed on the inactive queue should actually go
2360 * into the cache, but it is difficult to figure out which. What
2361 * we do instead, if the inactive target is well met, is to put
2362 * clean pages at the head of the inactive queue instead of the tail.
2363 * This will cause them to be moved to the cache more quickly and
2364 * if not actively re-referenced, freed more quickly. If we just
2365 * stick these pages at the end of the inactive queue, heavy filesystem
2366 * meta-data accesses can cause an unnecessary paging load on memory bound
2367 * processes. This optimization causes one-time-use metadata to be
2368 * reused more quickly.
2370 * Pages marked PG_NEED_COMMIT are always activated and never placed on
2371 * the inactive queue. This helps the pageout daemon determine memory
2372 * pressure and act on out-of-memory situations more quickly.
2374 * BUT, if we are in a low-memory situation we have no choice but to
2375 * put clean pages on the cache queue.
2377 * A number of routines use vm_page_unwire() to guarantee that the page
2378 * will go into either the inactive or active queues, and will NEVER
2379 * be placed in the cache - for example, just after dirtying a page.
2380 * dirty pages in the cache are not allowed.
2382 * This routine may not block.
2384 void
2385 vm_page_unwire(vm_page_t m, int activate)
2387 KKASSERT(m->flags & PG_BUSY);
2388 if (m->flags & PG_FICTITIOUS) {
2389 /* do nothing */
2390 } else if (m->wire_count <= 0) {
2391 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2392 } else {
2393 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2394 atomic_add_int(&vmstats.v_wire_count, -1);
2395 if (m->flags & PG_UNMANAGED) {
2397 } else if (activate || (m->flags & PG_NEED_COMMIT)) {
2398 vm_page_spin_lock(m);
2399 _vm_page_add_queue_spinlocked(m,
2400 PQ_ACTIVE + m->pc, 0);
2401 _vm_page_and_queue_spin_unlock(m);
2402 } else {
2403 vm_page_spin_lock(m);
2404 vm_page_flag_clear(m, PG_WINATCFLS);
2405 _vm_page_add_queue_spinlocked(m,
2406 PQ_INACTIVE + m->pc, 0);
2407 ++vm_swapcache_inactive_heuristic;
2408 _vm_page_and_queue_spin_unlock(m);
2415 * Move the specified page to the inactive queue. If the page has
2416 * any associated swap, the swap is deallocated.
2418 * Normally athead is 0 resulting in LRU operation. athead is set
2419 * to 1 if we want this page to be 'as if it were placed in the cache',
2420 * except without unmapping it from the process address space.
2422 * vm_page's spinlock must be held on entry and will remain held on return.
2423 * This routine may not block.
2425 static void
2426 _vm_page_deactivate_locked(vm_page_t m, int athead)
2428 u_short oqueue;
2431 * Ignore if already inactive.
2433 if (m->queue - m->pc == PQ_INACTIVE)
2434 return;
2435 _vm_page_queue_spin_lock(m);
2436 oqueue = _vm_page_rem_queue_spinlocked(m);
2438 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2439 if (oqueue == PQ_CACHE)
2440 mycpu->gd_cnt.v_reactivated++;
2441 vm_page_flag_clear(m, PG_WINATCFLS);
2442 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2443 if (athead == 0)
2444 ++vm_swapcache_inactive_heuristic;
2446 /* NOTE: PQ_NONE if condition not taken */
2447 _vm_page_queue_spin_unlock(m);
2448 /* leaves vm_page spinlocked */
2452 * Attempt to deactivate a page.
2454 * No requirements.
2456 void
2457 vm_page_deactivate(vm_page_t m)
2459 vm_page_spin_lock(m);
2460 _vm_page_deactivate_locked(m, 0);
2461 vm_page_spin_unlock(m);
2464 void
2465 vm_page_deactivate_locked(vm_page_t m)
2467 _vm_page_deactivate_locked(m, 0);
2471 * Attempt to move a page to PQ_CACHE.
2473 * Returns 0 on failure, 1 on success
2475 * The page should NOT be busied by the caller. This function will validate
2476 * whether the page can be safely moved to the cache.
2479 vm_page_try_to_cache(vm_page_t m)
2481 vm_page_spin_lock(m);
2482 if (vm_page_busy_try(m, TRUE)) {
2483 vm_page_spin_unlock(m);
2484 return(0);
2486 if (m->dirty || m->hold_count || m->wire_count ||
2487 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2488 if (_vm_page_wakeup(m)) {
2489 vm_page_spin_unlock(m);
2490 wakeup(m);
2491 } else {
2492 vm_page_spin_unlock(m);
2494 return(0);
2496 vm_page_spin_unlock(m);
2499 * Page busied by us and no longer spinlocked. Dirty pages cannot
2500 * be moved to the cache.
2502 vm_page_test_dirty(m);
2503 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2504 vm_page_wakeup(m);
2505 return(0);
2507 vm_page_cache(m);
2508 return(1);
2512 * Attempt to free the page. If we cannot free it, we do nothing.
2513 * 1 is returned on success, 0 on failure.
2515 * No requirements.
2518 vm_page_try_to_free(vm_page_t m)
2520 vm_page_spin_lock(m);
2521 if (vm_page_busy_try(m, TRUE)) {
2522 vm_page_spin_unlock(m);
2523 return(0);
2527 * The page can be in any state, including already being on the free
2528 * queue. Check to see if it really can be freed.
2530 if (m->dirty || /* can't free if it is dirty */
2531 m->hold_count || /* or held (XXX may be wrong) */
2532 m->wire_count || /* or wired */
2533 (m->flags & (PG_UNMANAGED | /* or unmanaged */
2534 PG_NEED_COMMIT)) || /* or needs a commit */
2535 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */
2536 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */
2537 if (_vm_page_wakeup(m)) {
2538 vm_page_spin_unlock(m);
2539 wakeup(m);
2540 } else {
2541 vm_page_spin_unlock(m);
2543 return(0);
2545 vm_page_spin_unlock(m);
2548 * We can probably free the page.
2550 * Page busied by us and no longer spinlocked. Dirty pages will
2551 * not be freed by this function. We have to re-test the
2552 * dirty bit after cleaning out the pmaps.
2554 vm_page_test_dirty(m);
2555 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2556 vm_page_wakeup(m);
2557 return(0);
2559 vm_page_protect(m, VM_PROT_NONE);
2560 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2561 vm_page_wakeup(m);
2562 return(0);
2564 vm_page_free(m);
2565 return(1);
2569 * vm_page_cache
2571 * Put the specified page onto the page cache queue (if appropriate).
2573 * The page must be busy, and this routine will release the busy and
2574 * possibly even free the page.
2576 void
2577 vm_page_cache(vm_page_t m)
2579 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2580 m->busy || m->wire_count || m->hold_count) {
2581 kprintf("vm_page_cache: attempting to cache busy/held page\n");
2582 vm_page_wakeup(m);
2583 return;
2587 * Already in the cache (and thus not mapped)
2589 if ((m->queue - m->pc) == PQ_CACHE) {
2590 KKASSERT((m->flags & PG_MAPPED) == 0);
2591 vm_page_wakeup(m);
2592 return;
2596 * Caller is required to test m->dirty, but note that the act of
2597 * removing the page from its maps can cause it to become dirty
2598 * on an SMP system due to another cpu running in usermode.
2600 if (m->dirty) {
2601 panic("vm_page_cache: caching a dirty page, pindex: %ld",
2602 (long)m->pindex);
2606 * Remove all pmaps and indicate that the page is not
2607 * writeable or mapped. Our vm_page_protect() call may
2608 * have blocked (especially w/ VM_PROT_NONE), so recheck
2609 * everything.
2611 vm_page_protect(m, VM_PROT_NONE);
2612 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2613 m->busy || m->wire_count || m->hold_count) {
2614 vm_page_wakeup(m);
2615 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2616 vm_page_deactivate(m);
2617 vm_page_wakeup(m);
2618 } else {
2619 _vm_page_and_queue_spin_lock(m);
2620 _vm_page_rem_queue_spinlocked(m);
2621 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2622 _vm_page_queue_spin_unlock(m);
2623 if (_vm_page_wakeup(m)) {
2624 vm_page_spin_unlock(m);
2625 wakeup(m);
2626 } else {
2627 vm_page_spin_unlock(m);
2629 vm_page_free_wakeup();
2634 * vm_page_dontneed()
2636 * Cache, deactivate, or do nothing as appropriate. This routine
2637 * is typically used by madvise() MADV_DONTNEED.
2639 * Generally speaking we want to move the page into the cache so
2640 * it gets reused quickly. However, this can result in a silly syndrome
2641 * due to the page recycling too quickly. Small objects will not be
2642 * fully cached. On the otherhand, if we move the page to the inactive
2643 * queue we wind up with a problem whereby very large objects
2644 * unnecessarily blow away our inactive and cache queues.
2646 * The solution is to move the pages based on a fixed weighting. We
2647 * either leave them alone, deactivate them, or move them to the cache,
2648 * where moving them to the cache has the highest weighting.
2649 * By forcing some pages into other queues we eventually force the
2650 * system to balance the queues, potentially recovering other unrelated
2651 * space from active. The idea is to not force this to happen too
2652 * often.
2654 * The page must be busied.
2656 void
2657 vm_page_dontneed(vm_page_t m)
2659 static int dnweight;
2660 int dnw;
2661 int head;
2663 dnw = ++dnweight;
2666 * occassionally leave the page alone
2668 if ((dnw & 0x01F0) == 0 ||
2669 m->queue - m->pc == PQ_INACTIVE ||
2670 m->queue - m->pc == PQ_CACHE
2672 if (m->act_count >= ACT_INIT)
2673 --m->act_count;
2674 return;
2678 * If vm_page_dontneed() is inactivating a page, it must clear
2679 * the referenced flag; otherwise the pagedaemon will see references
2680 * on the page in the inactive queue and reactivate it. Until the
2681 * page can move to the cache queue, madvise's job is not done.
2683 vm_page_flag_clear(m, PG_REFERENCED);
2684 pmap_clear_reference(m);
2686 if (m->dirty == 0)
2687 vm_page_test_dirty(m);
2689 if (m->dirty || (dnw & 0x0070) == 0) {
2691 * Deactivate the page 3 times out of 32.
2693 head = 0;
2694 } else {
2696 * Cache the page 28 times out of every 32. Note that
2697 * the page is deactivated instead of cached, but placed
2698 * at the head of the queue instead of the tail.
2700 head = 1;
2702 vm_page_spin_lock(m);
2703 _vm_page_deactivate_locked(m, head);
2704 vm_page_spin_unlock(m);
2708 * These routines manipulate the 'soft busy' count for a page. A soft busy
2709 * is almost like PG_BUSY except that it allows certain compatible operations
2710 * to occur on the page while it is busy. For example, a page undergoing a
2711 * write can still be mapped read-only.
2713 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only
2714 * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2715 * busy bit is cleared.
2717 void
2718 vm_page_io_start(vm_page_t m)
2720 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2721 atomic_add_char(&m->busy, 1);
2722 vm_page_flag_set(m, PG_SBUSY);
2725 void
2726 vm_page_io_finish(vm_page_t m)
2728 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2729 atomic_subtract_char(&m->busy, 1);
2730 if (m->busy == 0)
2731 vm_page_flag_clear(m, PG_SBUSY);
2735 * Indicate that a clean VM page requires a filesystem commit and cannot
2736 * be reused. Used by tmpfs.
2738 void
2739 vm_page_need_commit(vm_page_t m)
2741 vm_page_flag_set(m, PG_NEED_COMMIT);
2742 vm_object_set_writeable_dirty(m->object);
2745 void
2746 vm_page_clear_commit(vm_page_t m)
2748 vm_page_flag_clear(m, PG_NEED_COMMIT);
2752 * Grab a page, blocking if it is busy and allocating a page if necessary.
2753 * A busy page is returned or NULL. The page may or may not be valid and
2754 * might not be on a queue (the caller is responsible for the disposition of
2755 * the page).
2757 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2758 * page will be zero'd and marked valid.
2760 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2761 * valid even if it already exists.
2763 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also
2764 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2765 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2767 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2768 * always returned if we had blocked.
2770 * This routine may not be called from an interrupt.
2772 * PG_ZERO is *ALWAYS* cleared by this routine.
2774 * No other requirements.
2776 vm_page_t
2777 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2779 vm_page_t m;
2780 int error;
2781 int shared = 1;
2783 KKASSERT(allocflags &
2784 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2785 vm_object_hold_shared(object);
2786 for (;;) {
2787 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2788 if (error) {
2789 vm_page_sleep_busy(m, TRUE, "pgrbwt");
2790 if ((allocflags & VM_ALLOC_RETRY) == 0) {
2791 m = NULL;
2792 break;
2794 /* retry */
2795 } else if (m == NULL) {
2796 if (shared) {
2797 vm_object_upgrade(object);
2798 shared = 0;
2800 if (allocflags & VM_ALLOC_RETRY)
2801 allocflags |= VM_ALLOC_NULL_OK;
2802 m = vm_page_alloc(object, pindex,
2803 allocflags & ~VM_ALLOC_RETRY);
2804 if (m)
2805 break;
2806 vm_wait(0);
2807 if ((allocflags & VM_ALLOC_RETRY) == 0)
2808 goto failed;
2809 } else {
2810 /* m found */
2811 break;
2816 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2818 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2819 * valid even if already valid.
2821 if (m->valid == 0) {
2822 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2823 if ((m->flags & PG_ZERO) == 0)
2824 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2825 m->valid = VM_PAGE_BITS_ALL;
2827 } else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2828 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2829 m->valid = VM_PAGE_BITS_ALL;
2831 vm_page_flag_clear(m, PG_ZERO);
2832 failed:
2833 vm_object_drop(object);
2834 return(m);
2838 * Mapping function for valid bits or for dirty bits in
2839 * a page. May not block.
2841 * Inputs are required to range within a page.
2843 * No requirements.
2844 * Non blocking.
2847 vm_page_bits(int base, int size)
2849 int first_bit;
2850 int last_bit;
2852 KASSERT(
2853 base + size <= PAGE_SIZE,
2854 ("vm_page_bits: illegal base/size %d/%d", base, size)
2857 if (size == 0) /* handle degenerate case */
2858 return(0);
2860 first_bit = base >> DEV_BSHIFT;
2861 last_bit = (base + size - 1) >> DEV_BSHIFT;
2863 return ((2 << last_bit) - (1 << first_bit));
2867 * Sets portions of a page valid and clean. The arguments are expected
2868 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2869 * of any partial chunks touched by the range. The invalid portion of
2870 * such chunks will be zero'd.
2872 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2873 * align base to DEV_BSIZE so as not to mark clean a partially
2874 * truncated device block. Otherwise the dirty page status might be
2875 * lost.
2877 * This routine may not block.
2879 * (base + size) must be less then or equal to PAGE_SIZE.
2881 static void
2882 _vm_page_zero_valid(vm_page_t m, int base, int size)
2884 int frag;
2885 int endoff;
2887 if (size == 0) /* handle degenerate case */
2888 return;
2891 * If the base is not DEV_BSIZE aligned and the valid
2892 * bit is clear, we have to zero out a portion of the
2893 * first block.
2896 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2897 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2899 pmap_zero_page_area(
2900 VM_PAGE_TO_PHYS(m),
2901 frag,
2902 base - frag
2907 * If the ending offset is not DEV_BSIZE aligned and the
2908 * valid bit is clear, we have to zero out a portion of
2909 * the last block.
2912 endoff = base + size;
2914 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2915 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2917 pmap_zero_page_area(
2918 VM_PAGE_TO_PHYS(m),
2919 endoff,
2920 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2926 * Set valid, clear dirty bits. If validating the entire
2927 * page we can safely clear the pmap modify bit. We also
2928 * use this opportunity to clear the PG_NOSYNC flag. If a process
2929 * takes a write fault on a MAP_NOSYNC memory area the flag will
2930 * be set again.
2932 * We set valid bits inclusive of any overlap, but we can only
2933 * clear dirty bits for DEV_BSIZE chunks that are fully within
2934 * the range.
2936 * Page must be busied?
2937 * No other requirements.
2939 void
2940 vm_page_set_valid(vm_page_t m, int base, int size)
2942 _vm_page_zero_valid(m, base, size);
2943 m->valid |= vm_page_bits(base, size);
2948 * Set valid bits and clear dirty bits.
2950 * NOTE: This function does not clear the pmap modified bit.
2951 * Also note that e.g. NFS may use a byte-granular base
2952 * and size.
2954 * WARNING: Page must be busied? But vfs_clean_one_page() will call
2955 * this without necessarily busying the page (via bdwrite()).
2956 * So for now vm_token must also be held.
2958 * No other requirements.
2960 void
2961 vm_page_set_validclean(vm_page_t m, int base, int size)
2963 int pagebits;
2965 _vm_page_zero_valid(m, base, size);
2966 pagebits = vm_page_bits(base, size);
2967 m->valid |= pagebits;
2968 m->dirty &= ~pagebits;
2969 if (base == 0 && size == PAGE_SIZE) {
2970 /*pmap_clear_modify(m);*/
2971 vm_page_flag_clear(m, PG_NOSYNC);
2976 * Set valid & dirty. Used by buwrite()
2978 * WARNING: Page must be busied? But vfs_dirty_one_page() will
2979 * call this function in buwrite() so for now vm_token must
2980 * be held.
2982 * No other requirements.
2984 void
2985 vm_page_set_validdirty(vm_page_t m, int base, int size)
2987 int pagebits;
2989 pagebits = vm_page_bits(base, size);
2990 m->valid |= pagebits;
2991 m->dirty |= pagebits;
2992 if (m->object)
2993 vm_object_set_writeable_dirty(m->object);
2997 * Clear dirty bits.
2999 * NOTE: This function does not clear the pmap modified bit.
3000 * Also note that e.g. NFS may use a byte-granular base
3001 * and size.
3003 * Page must be busied?
3004 * No other requirements.
3006 void
3007 vm_page_clear_dirty(vm_page_t m, int base, int size)
3009 m->dirty &= ~vm_page_bits(base, size);
3010 if (base == 0 && size == PAGE_SIZE) {
3011 /*pmap_clear_modify(m);*/
3012 vm_page_flag_clear(m, PG_NOSYNC);
3017 * Make the page all-dirty.
3019 * Also make sure the related object and vnode reflect the fact that the
3020 * object may now contain a dirty page.
3022 * Page must be busied?
3023 * No other requirements.
3025 void
3026 vm_page_dirty(vm_page_t m)
3028 #ifdef INVARIANTS
3029 int pqtype = m->queue - m->pc;
3030 #endif
3031 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3032 ("vm_page_dirty: page in free/cache queue!"));
3033 if (m->dirty != VM_PAGE_BITS_ALL) {
3034 m->dirty = VM_PAGE_BITS_ALL;
3035 if (m->object)
3036 vm_object_set_writeable_dirty(m->object);
3041 * Invalidates DEV_BSIZE'd chunks within a page. Both the
3042 * valid and dirty bits for the effected areas are cleared.
3044 * Page must be busied?
3045 * Does not block.
3046 * No other requirements.
3048 void
3049 vm_page_set_invalid(vm_page_t m, int base, int size)
3051 int bits;
3053 bits = vm_page_bits(base, size);
3054 m->valid &= ~bits;
3055 m->dirty &= ~bits;
3056 m->object->generation++;
3060 * The kernel assumes that the invalid portions of a page contain
3061 * garbage, but such pages can be mapped into memory by user code.
3062 * When this occurs, we must zero out the non-valid portions of the
3063 * page so user code sees what it expects.
3065 * Pages are most often semi-valid when the end of a file is mapped
3066 * into memory and the file's size is not page aligned.
3068 * Page must be busied?
3069 * No other requirements.
3071 void
3072 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3074 int b;
3075 int i;
3078 * Scan the valid bits looking for invalid sections that
3079 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
3080 * valid bit may be set ) have already been zerod by
3081 * vm_page_set_validclean().
3083 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3084 if (i == (PAGE_SIZE / DEV_BSIZE) ||
3085 (m->valid & (1 << i))
3087 if (i > b) {
3088 pmap_zero_page_area(
3089 VM_PAGE_TO_PHYS(m),
3090 b << DEV_BSHIFT,
3091 (i - b) << DEV_BSHIFT
3094 b = i + 1;
3099 * setvalid is TRUE when we can safely set the zero'd areas
3100 * as being valid. We can do this if there are no cache consistency
3101 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
3103 if (setvalid)
3104 m->valid = VM_PAGE_BITS_ALL;
3108 * Is a (partial) page valid? Note that the case where size == 0
3109 * will return FALSE in the degenerate case where the page is entirely
3110 * invalid, and TRUE otherwise.
3112 * Does not block.
3113 * No other requirements.
3116 vm_page_is_valid(vm_page_t m, int base, int size)
3118 int bits = vm_page_bits(base, size);
3120 if (m->valid && ((m->valid & bits) == bits))
3121 return 1;
3122 else
3123 return 0;
3127 * update dirty bits from pmap/mmu. May not block.
3129 * Caller must hold the page busy
3131 void
3132 vm_page_test_dirty(vm_page_t m)
3134 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3135 vm_page_dirty(m);
3140 * Register an action, associating it with its vm_page
3142 void
3143 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
3145 struct vm_page_action_list *list;
3146 int hv;
3148 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3149 list = &action_list[hv];
3151 lwkt_gettoken(&vm_token);
3152 vm_page_flag_set(action->m, PG_ACTIONLIST);
3153 action->event = event;
3154 LIST_INSERT_HEAD(list, action, entry);
3155 lwkt_reltoken(&vm_token);
3159 * Unregister an action, disassociating it from its related vm_page
3161 void
3162 vm_page_unregister_action(vm_page_action_t action)
3164 struct vm_page_action_list *list;
3165 int hv;
3167 lwkt_gettoken(&vm_token);
3168 if (action->event != VMEVENT_NONE) {
3169 action->event = VMEVENT_NONE;
3170 LIST_REMOVE(action, entry);
3172 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3173 list = &action_list[hv];
3174 if (LIST_EMPTY(list))
3175 vm_page_flag_clear(action->m, PG_ACTIONLIST);
3177 lwkt_reltoken(&vm_token);
3181 * Issue an event on a VM page. Corresponding action structures are
3182 * removed from the page's list and called.
3184 * If the vm_page has no more pending action events we clear its
3185 * PG_ACTIONLIST flag.
3187 void
3188 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3190 struct vm_page_action_list *list;
3191 struct vm_page_action *scan;
3192 struct vm_page_action *next;
3193 int hv;
3194 int all;
3196 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
3197 list = &action_list[hv];
3198 all = 1;
3200 lwkt_gettoken(&vm_token);
3201 LIST_FOREACH_MUTABLE(scan, list, entry, next) {
3202 if (scan->m == m) {
3203 if (scan->event == event) {
3204 scan->event = VMEVENT_NONE;
3205 LIST_REMOVE(scan, entry);
3206 scan->func(m, scan);
3207 /* XXX */
3208 } else {
3209 all = 0;
3213 if (all)
3214 vm_page_flag_clear(m, PG_ACTIONLIST);
3215 lwkt_reltoken(&vm_token);
3218 #include "opt_ddb.h"
3219 #ifdef DDB
3220 #include <sys/kernel.h>
3222 #include <ddb/ddb.h>
3224 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3226 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3227 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3228 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3229 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3230 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3231 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3232 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3233 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3234 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3235 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3238 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3240 int i;
3241 db_printf("PQ_FREE:");
3242 for(i=0;i<PQ_L2_SIZE;i++) {
3243 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3245 db_printf("\n");
3247 db_printf("PQ_CACHE:");
3248 for(i=0;i<PQ_L2_SIZE;i++) {
3249 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3251 db_printf("\n");
3253 db_printf("PQ_ACTIVE:");
3254 for(i=0;i<PQ_L2_SIZE;i++) {
3255 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3257 db_printf("\n");
3259 db_printf("PQ_INACTIVE:");
3260 for(i=0;i<PQ_L2_SIZE;i++) {
3261 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3263 db_printf("\n");
3265 #endif /* DDB */