Update gcc-50 to SVN version 231263 (gcc-5-branch)
[dragonfly.git] / contrib / gcc-5.0 / gcc / sel-sched.c
blob0a322a84dcb23c1678c877eb788dcaa69874d376
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "hashtab.h"
29 #include "hash-set.h"
30 #include "vec.h"
31 #include "machmode.h"
32 #include "input.h"
33 #include "function.h"
34 #include "predict.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "cfgbuild.h"
38 #include "basic-block.h"
39 #include "flags.h"
40 #include "insn-config.h"
41 #include "insn-attr.h"
42 #include "except.h"
43 #include "recog.h"
44 #include "params.h"
45 #include "target.h"
46 #include "output.h"
47 #include "sched-int.h"
48 #include "ggc.h"
49 #include "symtab.h"
50 #include "wide-int.h"
51 #include "inchash.h"
52 #include "tree.h"
53 #include "langhooks.h"
54 #include "rtlhooks-def.h"
55 #include "emit-rtl.h"
56 #include "ira.h"
57 #include "ira-int.h"
58 #include "rtl-iter.h"
60 #ifdef INSN_SCHEDULING
61 #include "sel-sched-ir.h"
62 #include "sel-sched-dump.h"
63 #include "sel-sched.h"
64 #include "dbgcnt.h"
66 /* Implementation of selective scheduling approach.
67 The below implementation follows the original approach with the following
68 changes:
70 o the scheduler works after register allocation (but can be also tuned
71 to work before RA);
72 o some instructions are not copied or register renamed;
73 o conditional jumps are not moved with code duplication;
74 o several jumps in one parallel group are not supported;
75 o when pipelining outer loops, code motion through inner loops
76 is not supported;
77 o control and data speculation are supported;
78 o some improvements for better compile time/performance were made.
80 Terminology
81 ===========
83 A vinsn, or virtual insn, is an insn with additional data characterizing
84 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
85 Vinsns also act as smart pointers to save memory by reusing them in
86 different expressions. A vinsn is described by vinsn_t type.
88 An expression is a vinsn with additional data characterizing its properties
89 at some point in the control flow graph. The data may be its usefulness,
90 priority, speculative status, whether it was renamed/subsituted, etc.
91 An expression is described by expr_t type.
93 Availability set (av_set) is a set of expressions at a given control flow
94 point. It is represented as av_set_t. The expressions in av sets are kept
95 sorted in the terms of expr_greater_p function. It allows to truncate
96 the set while leaving the best expressions.
98 A fence is a point through which code motion is prohibited. On each step,
99 we gather a parallel group of insns at a fence. It is possible to have
100 multiple fences. A fence is represented via fence_t.
102 A boundary is the border between the fence group and the rest of the code.
103 Currently, we never have more than one boundary per fence, as we finalize
104 the fence group when a jump is scheduled. A boundary is represented
105 via bnd_t.
107 High-level overview
108 ===================
110 The scheduler finds regions to schedule, schedules each one, and finalizes.
111 The regions are formed starting from innermost loops, so that when the inner
112 loop is pipelined, its prologue can be scheduled together with yet unprocessed
113 outer loop. The rest of acyclic regions are found using extend_rgns:
114 the blocks that are not yet allocated to any regions are traversed in top-down
115 order, and a block is added to a region to which all its predecessors belong;
116 otherwise, the block starts its own region.
118 The main scheduling loop (sel_sched_region_2) consists of just
119 scheduling on each fence and updating fences. For each fence,
120 we fill a parallel group of insns (fill_insns) until some insns can be added.
121 First, we compute available exprs (av-set) at the boundary of the current
122 group. Second, we choose the best expression from it. If the stall is
123 required to schedule any of the expressions, we advance the current cycle
124 appropriately. So, the final group does not exactly correspond to a VLIW
125 word. Third, we move the chosen expression to the boundary (move_op)
126 and update the intermediate av sets and liveness sets. We quit fill_insns
127 when either no insns left for scheduling or we have scheduled enough insns
128 so we feel like advancing a scheduling point.
130 Computing available expressions
131 ===============================
133 The computation (compute_av_set) is a bottom-up traversal. At each insn,
134 we're moving the union of its successors' sets through it via
135 moveup_expr_set. The dependent expressions are removed. Local
136 transformations (substitution, speculation) are applied to move more
137 exprs. Then the expr corresponding to the current insn is added.
138 The result is saved on each basic block header.
140 When traversing the CFG, we're moving down for no more than max_ws insns.
141 Also, we do not move down to ineligible successors (is_ineligible_successor),
142 which include moving along a back-edge, moving to already scheduled code,
143 and moving to another fence. The first two restrictions are lifted during
144 pipelining, which allows us to move insns along a back-edge. We always have
145 an acyclic region for scheduling because we forbid motion through fences.
147 Choosing the best expression
148 ============================
150 We sort the final availability set via sel_rank_for_schedule, then we remove
151 expressions which are not yet ready (tick_check_p) or which dest registers
152 cannot be used. For some of them, we choose another register via
153 find_best_reg. To do this, we run find_used_regs to calculate the set of
154 registers which cannot be used. The find_used_regs function performs
155 a traversal of code motion paths for an expr. We consider for renaming
156 only registers which are from the same regclass as the original one and
157 using which does not interfere with any live ranges. Finally, we convert
158 the resulting set to the ready list format and use max_issue and reorder*
159 hooks similarly to the Haifa scheduler.
161 Scheduling the best expression
162 ==============================
164 We run the move_op routine to perform the same type of code motion paths
165 traversal as in find_used_regs. (These are working via the same driver,
166 code_motion_path_driver.) When moving down the CFG, we look for original
167 instruction that gave birth to a chosen expression. We undo
168 the transformations performed on an expression via the history saved in it.
169 When found, we remove the instruction or leave a reg-reg copy/speculation
170 check if needed. On a way up, we insert bookkeeping copies at each join
171 point. If a copy is not needed, it will be removed later during this
172 traversal. We update the saved av sets and liveness sets on the way up, too.
174 Finalizing the schedule
175 =======================
177 When pipelining, we reschedule the blocks from which insns were pipelined
178 to get a tighter schedule. On Itanium, we also perform bundling via
179 the same routine from ia64.c.
181 Dependence analysis changes
182 ===========================
184 We augmented the sched-deps.c with hooks that get called when a particular
185 dependence is found in a particular part of an insn. Using these hooks, we
186 can do several actions such as: determine whether an insn can be moved through
187 another (has_dependence_p, moveup_expr); find out whether an insn can be
188 scheduled on the current cycle (tick_check_p); find out registers that
189 are set/used/clobbered by an insn and find out all the strange stuff that
190 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
191 init_global_and_expr_for_insn).
193 Initialization changes
194 ======================
196 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
197 reused in all of the schedulers. We have split up the initialization of data
198 of such parts into different functions prefixed with scheduler type and
199 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
200 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
201 The same splitting is done with current_sched_info structure:
202 dependence-related parts are in sched_deps_info, common part is in
203 common_sched_info, and haifa/sel/etc part is in current_sched_info.
205 Target contexts
206 ===============
208 As we now have multiple-point scheduling, this would not work with backends
209 which save some of the scheduler state to use it in the target hooks.
210 For this purpose, we introduce a concept of target contexts, which
211 encapsulate such information. The backend should implement simple routines
212 of allocating/freeing/setting such a context. The scheduler calls these
213 as target hooks and handles the target context as an opaque pointer (similar
214 to the DFA state type, state_t).
216 Various speedups
217 ================
219 As the correct data dependence graph is not supported during scheduling (which
220 is to be changed in mid-term), we cache as much of the dependence analysis
221 results as possible to avoid reanalyzing. This includes: bitmap caches on
222 each insn in stream of the region saying yes/no for a query with a pair of
223 UIDs; hashtables with the previously done transformations on each insn in
224 stream; a vector keeping a history of transformations on each expr.
226 Also, we try to minimize the dependence context used on each fence to check
227 whether the given expression is ready for scheduling by removing from it
228 insns that are definitely completed the execution. The results of
229 tick_check_p checks are also cached in a vector on each fence.
231 We keep a valid liveness set on each insn in a region to avoid the high
232 cost of recomputation on large basic blocks.
234 Finally, we try to minimize the number of needed updates to the availability
235 sets. The updates happen in two cases: when fill_insns terminates,
236 we advance all fences and increase the stage number to show that the region
237 has changed and the sets are to be recomputed; and when the next iteration
238 of a loop in fill_insns happens (but this one reuses the saved av sets
239 on bb headers.) Thus, we try to break the fill_insns loop only when
240 "significant" number of insns from the current scheduling window was
241 scheduled. This should be made a target param.
244 TODO: correctly support the data dependence graph at all stages and get rid
245 of all caches. This should speed up the scheduler.
246 TODO: implement moving cond jumps with bookkeeping copies on both targets.
247 TODO: tune the scheduler before RA so it does not create too much pseudos.
250 References:
251 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
252 selective scheduling and software pipelining.
253 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
255 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
256 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
257 for GCC. In Proceedings of GCC Developers' Summit 2006.
259 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
260 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
261 http://rogue.colorado.edu/EPIC7/.
265 /* True when pipelining is enabled. */
266 bool pipelining_p;
268 /* True if bookkeeping is enabled. */
269 bool bookkeeping_p;
271 /* Maximum number of insns that are eligible for renaming. */
272 int max_insns_to_rename;
275 /* Definitions of local types and macros. */
277 /* Represents possible outcomes of moving an expression through an insn. */
278 enum MOVEUP_EXPR_CODE
280 /* The expression is not changed. */
281 MOVEUP_EXPR_SAME,
283 /* Not changed, but requires a new destination register. */
284 MOVEUP_EXPR_AS_RHS,
286 /* Cannot be moved. */
287 MOVEUP_EXPR_NULL,
289 /* Changed (substituted or speculated). */
290 MOVEUP_EXPR_CHANGED
293 /* The container to be passed into rtx search & replace functions. */
294 struct rtx_search_arg
296 /* What we are searching for. */
297 rtx x;
299 /* The occurrence counter. */
300 int n;
303 typedef struct rtx_search_arg *rtx_search_arg_p;
305 /* This struct contains precomputed hard reg sets that are needed when
306 computing registers available for renaming. */
307 struct hard_regs_data
309 /* For every mode, this stores registers available for use with
310 that mode. */
311 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
313 /* True when regs_for_mode[mode] is initialized. */
314 bool regs_for_mode_ok[NUM_MACHINE_MODES];
316 /* For every register, it has regs that are ok to rename into it.
317 The register in question is always set. If not, this means
318 that the whole set is not computed yet. */
319 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
321 /* For every mode, this stores registers not available due to
322 call clobbering. */
323 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
325 /* All registers that are used or call used. */
326 HARD_REG_SET regs_ever_used;
328 #ifdef STACK_REGS
329 /* Stack registers. */
330 HARD_REG_SET stack_regs;
331 #endif
334 /* Holds the results of computation of available for renaming and
335 unavailable hard registers. */
336 struct reg_rename
338 /* These are unavailable due to calls crossing, globalness, etc. */
339 HARD_REG_SET unavailable_hard_regs;
341 /* These are *available* for renaming. */
342 HARD_REG_SET available_for_renaming;
344 /* Whether this code motion path crosses a call. */
345 bool crosses_call;
348 /* A global structure that contains the needed information about harg
349 regs. */
350 static struct hard_regs_data sel_hrd;
353 /* This structure holds local data used in code_motion_path_driver hooks on
354 the same or adjacent levels of recursion. Here we keep those parameters
355 that are not used in code_motion_path_driver routine itself, but only in
356 its hooks. Moreover, all parameters that can be modified in hooks are
357 in this structure, so all other parameters passed explicitly to hooks are
358 read-only. */
359 struct cmpd_local_params
361 /* Local params used in move_op_* functions. */
363 /* Edges for bookkeeping generation. */
364 edge e1, e2;
366 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
367 expr_t c_expr_merged, c_expr_local;
369 /* Local params used in fur_* functions. */
370 /* Copy of the ORIGINAL_INSN list, stores the original insns already
371 found before entering the current level of code_motion_path_driver. */
372 def_list_t old_original_insns;
374 /* Local params used in move_op_* functions. */
375 /* True when we have removed last insn in the block which was
376 also a boundary. Do not update anything or create bookkeeping copies. */
377 BOOL_BITFIELD removed_last_insn : 1;
380 /* Stores the static parameters for move_op_* calls. */
381 struct moveop_static_params
383 /* Destination register. */
384 rtx dest;
386 /* Current C_EXPR. */
387 expr_t c_expr;
389 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
390 they are to be removed. */
391 int uid;
393 #ifdef ENABLE_CHECKING
394 /* This is initialized to the insn on which the driver stopped its traversal. */
395 insn_t failed_insn;
396 #endif
398 /* True if we scheduled an insn with different register. */
399 bool was_renamed;
402 /* Stores the static parameters for fur_* calls. */
403 struct fur_static_params
405 /* Set of registers unavailable on the code motion path. */
406 regset used_regs;
408 /* Pointer to the list of original insns definitions. */
409 def_list_t *original_insns;
411 /* True if a code motion path contains a CALL insn. */
412 bool crosses_call;
415 typedef struct fur_static_params *fur_static_params_p;
416 typedef struct cmpd_local_params *cmpd_local_params_p;
417 typedef struct moveop_static_params *moveop_static_params_p;
419 /* Set of hooks and parameters that determine behaviour specific to
420 move_op or find_used_regs functions. */
421 struct code_motion_path_driver_info_def
423 /* Called on enter to the basic block. */
424 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
426 /* Called when original expr is found. */
427 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
429 /* Called while descending current basic block if current insn is not
430 the original EXPR we're searching for. */
431 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
433 /* Function to merge C_EXPRes from different successors. */
434 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
436 /* Function to finalize merge from different successors and possibly
437 deallocate temporary data structures used for merging. */
438 void (*after_merge_succs) (cmpd_local_params_p, void *);
440 /* Called on the backward stage of recursion to do moveup_expr.
441 Used only with move_op_*. */
442 void (*ascend) (insn_t, void *);
444 /* Called on the ascending pass, before returning from the current basic
445 block or from the whole traversal. */
446 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
448 /* When processing successors in move_op we need only descend into
449 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
450 int succ_flags;
452 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
453 const char *routine_name;
456 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
457 FUR_HOOKS. */
458 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
460 /* Set of hooks for performing move_op and find_used_regs routines with
461 code_motion_path_driver. */
462 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
464 /* True if/when we want to emulate Haifa scheduler in the common code.
465 This is used in sched_rgn_local_init and in various places in
466 sched-deps.c. */
467 int sched_emulate_haifa_p;
469 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
470 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
471 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
472 scheduling window. */
473 int global_level;
475 /* Current fences. */
476 flist_t fences;
478 /* True when separable insns should be scheduled as RHSes. */
479 static bool enable_schedule_as_rhs_p;
481 /* Used in verify_target_availability to assert that target reg is reported
482 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
483 we haven't scheduled anything on the previous fence.
484 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
485 have more conservative value than the one returned by the
486 find_used_regs, thus we shouldn't assert that these values are equal. */
487 static bool scheduled_something_on_previous_fence;
489 /* All newly emitted insns will have their uids greater than this value. */
490 static int first_emitted_uid;
492 /* Set of basic blocks that are forced to start new ebbs. This is a subset
493 of all the ebb heads. */
494 static bitmap_head _forced_ebb_heads;
495 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
497 /* Blocks that need to be rescheduled after pipelining. */
498 bitmap blocks_to_reschedule = NULL;
500 /* True when the first lv set should be ignored when updating liveness. */
501 static bool ignore_first = false;
503 /* Number of insns max_issue has initialized data structures for. */
504 static int max_issue_size = 0;
506 /* Whether we can issue more instructions. */
507 static int can_issue_more;
509 /* Maximum software lookahead window size, reduced when rescheduling after
510 pipelining. */
511 static int max_ws;
513 /* Number of insns scheduled in current region. */
514 static int num_insns_scheduled;
516 /* A vector of expressions is used to be able to sort them. */
517 static vec<expr_t> vec_av_set = vNULL;
519 /* A vector of vinsns is used to hold temporary lists of vinsns. */
520 typedef vec<vinsn_t> vinsn_vec_t;
522 /* This vector has the exprs which may still present in av_sets, but actually
523 can't be moved up due to bookkeeping created during code motion to another
524 fence. See comment near the call to update_and_record_unavailable_insns
525 for the detailed explanations. */
526 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
528 /* This vector has vinsns which are scheduled with renaming on the first fence
529 and then seen on the second. For expressions with such vinsns, target
530 availability information may be wrong. */
531 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
533 /* Vector to store temporary nops inserted in move_op to prevent removal
534 of empty bbs. */
535 static vec<insn_t> vec_temp_moveop_nops = vNULL;
537 /* These bitmaps record original instructions scheduled on the current
538 iteration and bookkeeping copies created by them. */
539 static bitmap current_originators = NULL;
540 static bitmap current_copies = NULL;
542 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
543 visit them afterwards. */
544 static bitmap code_motion_visited_blocks = NULL;
546 /* Variables to accumulate different statistics. */
548 /* The number of bookkeeping copies created. */
549 static int stat_bookkeeping_copies;
551 /* The number of insns that required bookkeeiping for their scheduling. */
552 static int stat_insns_needed_bookkeeping;
554 /* The number of insns that got renamed. */
555 static int stat_renamed_scheduled;
557 /* The number of substitutions made during scheduling. */
558 static int stat_substitutions_total;
561 /* Forward declarations of static functions. */
562 static bool rtx_ok_for_substitution_p (rtx, rtx);
563 static int sel_rank_for_schedule (const void *, const void *);
564 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
565 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
567 static rtx get_dest_from_orig_ops (av_set_t);
568 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
569 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
570 def_list_t *);
571 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
572 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
573 cmpd_local_params_p, void *);
574 static void sel_sched_region_1 (void);
575 static void sel_sched_region_2 (int);
576 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
578 static void debug_state (state_t);
581 /* Functions that work with fences. */
583 /* Advance one cycle on FENCE. */
584 static void
585 advance_one_cycle (fence_t fence)
587 unsigned i;
588 int cycle;
589 rtx_insn *insn;
591 advance_state (FENCE_STATE (fence));
592 cycle = ++FENCE_CYCLE (fence);
593 FENCE_ISSUED_INSNS (fence) = 0;
594 FENCE_STARTS_CYCLE_P (fence) = 1;
595 can_issue_more = issue_rate;
596 FENCE_ISSUE_MORE (fence) = can_issue_more;
598 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
600 if (INSN_READY_CYCLE (insn) < cycle)
602 remove_from_deps (FENCE_DC (fence), insn);
603 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
604 continue;
606 i++;
608 if (sched_verbose >= 2)
610 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
611 debug_state (FENCE_STATE (fence));
615 /* Returns true when SUCC in a fallthru bb of INSN, possibly
616 skipping empty basic blocks. */
617 static bool
618 in_fallthru_bb_p (rtx insn, rtx succ)
620 basic_block bb = BLOCK_FOR_INSN (insn);
621 edge e;
623 if (bb == BLOCK_FOR_INSN (succ))
624 return true;
626 e = find_fallthru_edge_from (bb);
627 if (e)
628 bb = e->dest;
629 else
630 return false;
632 while (sel_bb_empty_p (bb))
633 bb = bb->next_bb;
635 return bb == BLOCK_FOR_INSN (succ);
638 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
639 When a successor will continue a ebb, transfer all parameters of a fence
640 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
641 of scheduling helping to distinguish between the old and the new code. */
642 static void
643 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
644 int orig_max_seqno)
646 bool was_here_p = false;
647 insn_t insn = NULL;
648 insn_t succ;
649 succ_iterator si;
650 ilist_iterator ii;
651 fence_t fence = FLIST_FENCE (old_fences);
652 basic_block bb;
654 /* Get the only element of FENCE_BNDS (fence). */
655 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
657 gcc_assert (!was_here_p);
658 was_here_p = true;
660 gcc_assert (was_here_p && insn != NULL_RTX);
662 /* When in the "middle" of the block, just move this fence
663 to the new list. */
664 bb = BLOCK_FOR_INSN (insn);
665 if (! sel_bb_end_p (insn)
666 || (single_succ_p (bb)
667 && single_pred_p (single_succ (bb))))
669 insn_t succ;
671 succ = (sel_bb_end_p (insn)
672 ? sel_bb_head (single_succ (bb))
673 : NEXT_INSN (insn));
675 if (INSN_SEQNO (succ) > 0
676 && INSN_SEQNO (succ) <= orig_max_seqno
677 && INSN_SCHED_TIMES (succ) <= 0)
679 FENCE_INSN (fence) = succ;
680 move_fence_to_fences (old_fences, new_fences);
682 if (sched_verbose >= 1)
683 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
684 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
686 return;
689 /* Otherwise copy fence's structures to (possibly) multiple successors. */
690 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
692 int seqno = INSN_SEQNO (succ);
694 if (0 < seqno && seqno <= orig_max_seqno
695 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
697 bool b = (in_same_ebb_p (insn, succ)
698 || in_fallthru_bb_p (insn, succ));
700 if (sched_verbose >= 1)
701 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
702 INSN_UID (insn), INSN_UID (succ),
703 BLOCK_NUM (succ), b ? "continue" : "reset");
705 if (b)
706 add_dirty_fence_to_fences (new_fences, succ, fence);
707 else
709 /* Mark block of the SUCC as head of the new ebb. */
710 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
711 add_clean_fence_to_fences (new_fences, succ, fence);
718 /* Functions to support substitution. */
720 /* Returns whether INSN with dependence status DS is eligible for
721 substitution, i.e. it's a copy operation x := y, and RHS that is
722 moved up through this insn should be substituted. */
723 static bool
724 can_substitute_through_p (insn_t insn, ds_t ds)
726 /* We can substitute only true dependencies. */
727 if ((ds & DEP_OUTPUT)
728 || (ds & DEP_ANTI)
729 || ! INSN_RHS (insn)
730 || ! INSN_LHS (insn))
731 return false;
733 /* Now we just need to make sure the INSN_RHS consists of only one
734 simple REG rtx. */
735 if (REG_P (INSN_LHS (insn))
736 && REG_P (INSN_RHS (insn)))
737 return true;
738 return false;
741 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
742 source (if INSN is eligible for substitution). Returns TRUE if
743 substitution was actually performed, FALSE otherwise. Substitution might
744 be not performed because it's either EXPR' vinsn doesn't contain INSN's
745 destination or the resulting insn is invalid for the target machine.
746 When UNDO is true, perform unsubstitution instead (the difference is in
747 the part of rtx on which validate_replace_rtx is called). */
748 static bool
749 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
751 rtx *where;
752 bool new_insn_valid;
753 vinsn_t *vi = &EXPR_VINSN (expr);
754 bool has_rhs = VINSN_RHS (*vi) != NULL;
755 rtx old, new_rtx;
757 /* Do not try to replace in SET_DEST. Although we'll choose new
758 register for the RHS, we don't want to change RHS' original reg.
759 If the insn is not SET, we may still be able to substitute something
760 in it, and if we're here (don't have deps), it doesn't write INSN's
761 dest. */
762 where = (has_rhs
763 ? &VINSN_RHS (*vi)
764 : &PATTERN (VINSN_INSN_RTX (*vi)));
765 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
767 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
768 if (rtx_ok_for_substitution_p (old, *where))
770 rtx_insn *new_insn;
771 rtx *where_replace;
773 /* We should copy these rtxes before substitution. */
774 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
775 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
777 /* Where we'll replace.
778 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
779 used instead of SET_SRC. */
780 where_replace = (has_rhs
781 ? &SET_SRC (PATTERN (new_insn))
782 : &PATTERN (new_insn));
784 new_insn_valid
785 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
786 new_insn);
788 /* ??? Actually, constrain_operands result depends upon choice of
789 destination register. E.g. if we allow single register to be an rhs,
790 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
791 in invalid insn dx=dx, so we'll loose this rhs here.
792 Just can't come up with significant testcase for this, so just
793 leaving it for now. */
794 if (new_insn_valid)
796 change_vinsn_in_expr (expr,
797 create_vinsn_from_insn_rtx (new_insn, false));
799 /* Do not allow clobbering the address register of speculative
800 insns. */
801 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
802 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
803 expr_dest_reg (expr)))
804 EXPR_TARGET_AVAILABLE (expr) = false;
806 return true;
808 else
809 return false;
811 else
812 return false;
815 /* Return the number of places WHAT appears within WHERE.
816 Bail out when we found a reference occupying several hard registers. */
817 static int
818 count_occurrences_equiv (const_rtx what, const_rtx where)
820 int count = 0;
821 subrtx_iterator::array_type array;
822 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
824 const_rtx x = *iter;
825 if (REG_P (x) && REGNO (x) == REGNO (what))
827 /* Bail out if mode is different or more than one register is
828 used. */
829 if (GET_MODE (x) != GET_MODE (what)
830 || (HARD_REGISTER_P (x)
831 && hard_regno_nregs[REGNO (x)][GET_MODE (x)] > 1))
832 return 0;
833 count += 1;
835 else if (GET_CODE (x) == SUBREG
836 && (!REG_P (SUBREG_REG (x))
837 || REGNO (SUBREG_REG (x)) == REGNO (what)))
838 /* ??? Do not support substituting regs inside subregs. In that case,
839 simplify_subreg will be called by validate_replace_rtx, and
840 unsubstitution will fail later. */
841 return 0;
843 return count;
846 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
847 static bool
848 rtx_ok_for_substitution_p (rtx what, rtx where)
850 return (count_occurrences_equiv (what, where) > 0);
854 /* Functions to support register renaming. */
856 /* Substitute VI's set source with REGNO. Returns newly created pattern
857 that has REGNO as its source. */
858 static rtx_insn *
859 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
861 rtx lhs_rtx;
862 rtx pattern;
863 rtx_insn *insn_rtx;
865 lhs_rtx = copy_rtx (VINSN_LHS (vi));
867 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
868 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
870 return insn_rtx;
873 /* Returns whether INSN's src can be replaced with register number
874 NEW_SRC_REG. E.g. the following insn is valid for i386:
876 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
877 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
878 (reg:SI 0 ax [orig:770 c1 ] [770]))
879 (const_int 288 [0x120])) [0 str S1 A8])
880 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
881 (nil))
883 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
884 because of operand constraints:
886 (define_insn "*movqi_1"
887 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
888 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
891 So do constrain_operands here, before choosing NEW_SRC_REG as best
892 reg for rhs. */
894 static bool
895 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
897 vinsn_t vi = INSN_VINSN (insn);
898 machine_mode mode;
899 rtx dst_loc;
900 bool res;
902 gcc_assert (VINSN_SEPARABLE_P (vi));
904 get_dest_and_mode (insn, &dst_loc, &mode);
905 gcc_assert (mode == GET_MODE (new_src_reg));
907 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
908 return true;
910 /* See whether SET_SRC can be replaced with this register. */
911 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
912 res = verify_changes (0);
913 cancel_changes (0);
915 return res;
918 /* Returns whether INSN still be valid after replacing it's DEST with
919 register NEW_REG. */
920 static bool
921 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
923 vinsn_t vi = INSN_VINSN (insn);
924 bool res;
926 /* We should deal here only with separable insns. */
927 gcc_assert (VINSN_SEPARABLE_P (vi));
928 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
930 /* See whether SET_DEST can be replaced with this register. */
931 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
932 res = verify_changes (0);
933 cancel_changes (0);
935 return res;
938 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
939 static rtx_insn *
940 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
942 rtx rhs_rtx;
943 rtx pattern;
944 rtx_insn *insn_rtx;
946 rhs_rtx = copy_rtx (VINSN_RHS (vi));
948 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
949 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
951 return insn_rtx;
954 /* Substitute lhs in the given expression EXPR for the register with number
955 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
956 static void
957 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
959 rtx_insn *insn_rtx;
960 vinsn_t vinsn;
962 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
963 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
965 change_vinsn_in_expr (expr, vinsn);
966 EXPR_WAS_RENAMED (expr) = 1;
967 EXPR_TARGET_AVAILABLE (expr) = 1;
970 /* Returns whether VI writes either one of the USED_REGS registers or,
971 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
972 static bool
973 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
974 HARD_REG_SET unavailable_hard_regs)
976 unsigned regno;
977 reg_set_iterator rsi;
979 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
981 if (REGNO_REG_SET_P (used_regs, regno))
982 return true;
983 if (HARD_REGISTER_NUM_P (regno)
984 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
985 return true;
988 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
990 if (REGNO_REG_SET_P (used_regs, regno))
991 return true;
992 if (HARD_REGISTER_NUM_P (regno)
993 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
994 return true;
997 return false;
1000 /* Returns register class of the output register in INSN.
1001 Returns NO_REGS for call insns because some targets have constraints on
1002 destination register of a call insn.
1004 Code adopted from regrename.c::build_def_use. */
1005 static enum reg_class
1006 get_reg_class (rtx_insn *insn)
1008 int i, n_ops;
1010 extract_constrain_insn (insn);
1011 preprocess_constraints (insn);
1012 n_ops = recog_data.n_operands;
1014 const operand_alternative *op_alt = which_op_alt ();
1015 if (asm_noperands (PATTERN (insn)) > 0)
1017 for (i = 0; i < n_ops; i++)
1018 if (recog_data.operand_type[i] == OP_OUT)
1020 rtx *loc = recog_data.operand_loc[i];
1021 rtx op = *loc;
1022 enum reg_class cl = alternative_class (op_alt, i);
1024 if (REG_P (op)
1025 && REGNO (op) == ORIGINAL_REGNO (op))
1026 continue;
1028 return cl;
1031 else if (!CALL_P (insn))
1033 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1035 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1036 enum reg_class cl = alternative_class (op_alt, opn);
1038 if (recog_data.operand_type[opn] == OP_OUT ||
1039 recog_data.operand_type[opn] == OP_INOUT)
1040 return cl;
1044 /* Insns like
1045 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1046 may result in returning NO_REGS, cause flags is written implicitly through
1047 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1048 return NO_REGS;
1051 #ifdef HARD_REGNO_RENAME_OK
1052 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1053 static void
1054 init_hard_regno_rename (int regno)
1056 int cur_reg;
1058 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1060 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1062 /* We are not interested in renaming in other regs. */
1063 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1064 continue;
1066 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1067 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1070 #endif
1072 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1073 data first. */
1074 static inline bool
1075 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1077 #ifdef HARD_REGNO_RENAME_OK
1078 /* Check whether this is all calculated. */
1079 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1080 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1082 init_hard_regno_rename (from);
1084 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1085 #else
1086 return true;
1087 #endif
1090 /* Calculate set of registers that are capable of holding MODE. */
1091 static void
1092 init_regs_for_mode (machine_mode mode)
1094 int cur_reg;
1096 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1097 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1099 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1101 int nregs;
1102 int i;
1104 /* See whether it accepts all modes that occur in
1105 original insns. */
1106 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1107 continue;
1109 nregs = hard_regno_nregs[cur_reg][mode];
1111 for (i = nregs - 1; i >= 0; --i)
1112 if (fixed_regs[cur_reg + i]
1113 || global_regs[cur_reg + i]
1114 /* Can't use regs which aren't saved by
1115 the prologue. */
1116 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1117 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1118 it affects aliasing globally and invalidates all AV sets. */
1119 || get_reg_base_value (cur_reg + i)
1120 #ifdef LEAF_REGISTERS
1121 /* We can't use a non-leaf register if we're in a
1122 leaf function. */
1123 || (crtl->is_leaf
1124 && !LEAF_REGISTERS[cur_reg + i])
1125 #endif
1127 break;
1129 if (i >= 0)
1130 continue;
1132 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1133 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1134 cur_reg);
1136 /* If the CUR_REG passed all the checks above,
1137 then it's ok. */
1138 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1141 sel_hrd.regs_for_mode_ok[mode] = true;
1144 /* Init all register sets gathered in HRD. */
1145 static void
1146 init_hard_regs_data (void)
1148 int cur_reg = 0;
1149 int cur_mode = 0;
1151 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1152 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1153 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1154 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1156 /* Initialize registers that are valid based on mode when this is
1157 really needed. */
1158 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1159 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1161 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1162 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1163 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1165 #ifdef STACK_REGS
1166 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1168 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1169 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1170 #endif
1173 /* Mark hardware regs in REG_RENAME_P that are not suitable
1174 for renaming rhs in INSN due to hardware restrictions (register class,
1175 modes compatibility etc). This doesn't affect original insn's dest reg,
1176 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1177 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1178 Registers that are in used_regs are always marked in
1179 unavailable_hard_regs as well. */
1181 static void
1182 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1183 regset used_regs ATTRIBUTE_UNUSED)
1185 machine_mode mode;
1186 enum reg_class cl = NO_REGS;
1187 rtx orig_dest;
1188 unsigned cur_reg, regno;
1189 hard_reg_set_iterator hrsi;
1191 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1192 gcc_assert (reg_rename_p);
1194 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1196 /* We have decided not to rename 'mem = something;' insns, as 'something'
1197 is usually a register. */
1198 if (!REG_P (orig_dest))
1199 return;
1201 regno = REGNO (orig_dest);
1203 /* If before reload, don't try to work with pseudos. */
1204 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1205 return;
1207 if (reload_completed)
1208 cl = get_reg_class (def->orig_insn);
1210 /* Stop if the original register is one of the fixed_regs, global_regs or
1211 frame pointer, or we could not discover its class. */
1212 if (fixed_regs[regno]
1213 || global_regs[regno]
1214 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1215 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1216 #else
1217 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1218 #endif
1219 || (reload_completed && cl == NO_REGS))
1221 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1223 /* Give a chance for original register, if it isn't in used_regs. */
1224 if (!def->crosses_call)
1225 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1227 return;
1230 /* If something allocated on stack in this function, mark frame pointer
1231 register unavailable, considering also modes.
1232 FIXME: it is enough to do this once per all original defs. */
1233 if (frame_pointer_needed)
1235 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1236 Pmode, FRAME_POINTER_REGNUM);
1238 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1239 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1240 Pmode, HARD_FRAME_POINTER_REGNUM);
1243 #ifdef STACK_REGS
1244 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1245 is equivalent to as if all stack regs were in this set.
1246 I.e. no stack register can be renamed, and even if it's an original
1247 register here we make sure it won't be lifted over it's previous def
1248 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1249 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1250 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1251 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1252 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1253 sel_hrd.stack_regs);
1254 #endif
1256 /* If there's a call on this path, make regs from call_used_reg_set
1257 unavailable. */
1258 if (def->crosses_call)
1259 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1260 call_used_reg_set);
1262 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1263 but not register classes. */
1264 if (!reload_completed)
1265 return;
1267 /* Leave regs as 'available' only from the current
1268 register class. */
1269 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1270 reg_class_contents[cl]);
1272 mode = GET_MODE (orig_dest);
1274 /* Leave only registers available for this mode. */
1275 if (!sel_hrd.regs_for_mode_ok[mode])
1276 init_regs_for_mode (mode);
1277 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1278 sel_hrd.regs_for_mode[mode]);
1280 /* Exclude registers that are partially call clobbered. */
1281 if (def->crosses_call
1282 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1283 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1284 sel_hrd.regs_for_call_clobbered[mode]);
1286 /* Leave only those that are ok to rename. */
1287 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1288 0, cur_reg, hrsi)
1290 int nregs;
1291 int i;
1293 nregs = hard_regno_nregs[cur_reg][mode];
1294 gcc_assert (nregs > 0);
1296 for (i = nregs - 1; i >= 0; --i)
1297 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1298 break;
1300 if (i >= 0)
1301 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1302 cur_reg);
1305 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1306 reg_rename_p->unavailable_hard_regs);
1308 /* Regno is always ok from the renaming part of view, but it really
1309 could be in *unavailable_hard_regs already, so set it here instead
1310 of there. */
1311 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1314 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1315 best register more recently than REG2. */
1316 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1318 /* Indicates the number of times renaming happened before the current one. */
1319 static int reg_rename_this_tick;
1321 /* Choose the register among free, that is suitable for storing
1322 the rhs value.
1324 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1325 originally appears. There could be multiple original operations
1326 for single rhs since we moving it up and merging along different
1327 paths.
1329 Some code is adapted from regrename.c (regrename_optimize).
1330 If original register is available, function returns it.
1331 Otherwise it performs the checks, so the new register should
1332 comply with the following:
1333 - it should not violate any live ranges (such registers are in
1334 REG_RENAME_P->available_for_renaming set);
1335 - it should not be in the HARD_REGS_USED regset;
1336 - it should be in the class compatible with original uses;
1337 - it should not be clobbered through reference with different mode;
1338 - if we're in the leaf function, then the new register should
1339 not be in the LEAF_REGISTERS;
1340 - etc.
1342 If several registers meet the conditions, the register with smallest
1343 tick is returned to achieve more even register allocation.
1345 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1347 If no register satisfies the above conditions, NULL_RTX is returned. */
1348 static rtx
1349 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1350 struct reg_rename *reg_rename_p,
1351 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1353 int best_new_reg;
1354 unsigned cur_reg;
1355 machine_mode mode = VOIDmode;
1356 unsigned regno, i, n;
1357 hard_reg_set_iterator hrsi;
1358 def_list_iterator di;
1359 def_t def;
1361 /* If original register is available, return it. */
1362 *is_orig_reg_p_ptr = true;
1364 FOR_EACH_DEF (def, di, original_insns)
1366 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1368 gcc_assert (REG_P (orig_dest));
1370 /* Check that all original operations have the same mode.
1371 This is done for the next loop; if we'd return from this
1372 loop, we'd check only part of them, but in this case
1373 it doesn't matter. */
1374 if (mode == VOIDmode)
1375 mode = GET_MODE (orig_dest);
1376 gcc_assert (mode == GET_MODE (orig_dest));
1378 regno = REGNO (orig_dest);
1379 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1380 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1381 break;
1383 /* All hard registers are available. */
1384 if (i == n)
1386 gcc_assert (mode != VOIDmode);
1388 /* Hard registers should not be shared. */
1389 return gen_rtx_REG (mode, regno);
1393 *is_orig_reg_p_ptr = false;
1394 best_new_reg = -1;
1396 /* Among all available regs choose the register that was
1397 allocated earliest. */
1398 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1399 0, cur_reg, hrsi)
1400 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1402 /* Check that all hard regs for mode are available. */
1403 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1404 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1405 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1406 cur_reg + i))
1407 break;
1409 if (i < n)
1410 continue;
1412 /* All hard registers are available. */
1413 if (best_new_reg < 0
1414 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1416 best_new_reg = cur_reg;
1418 /* Return immediately when we know there's no better reg. */
1419 if (! reg_rename_tick[best_new_reg])
1420 break;
1424 if (best_new_reg >= 0)
1426 /* Use the check from the above loop. */
1427 gcc_assert (mode != VOIDmode);
1428 return gen_rtx_REG (mode, best_new_reg);
1431 return NULL_RTX;
1434 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1435 assumptions about available registers in the function. */
1436 static rtx
1437 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1438 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1440 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1441 original_insns, is_orig_reg_p_ptr);
1443 /* FIXME loop over hard_regno_nregs here. */
1444 gcc_assert (best_reg == NULL_RTX
1445 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1447 return best_reg;
1450 /* Choose the pseudo register for storing rhs value. As this is supposed
1451 to work before reload, we return either the original register or make
1452 the new one. The parameters are the same that in choose_nest_reg_1
1453 functions, except that USED_REGS may contain pseudos.
1454 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1456 TODO: take into account register pressure while doing this. Up to this
1457 moment, this function would never return NULL for pseudos, but we should
1458 not rely on this. */
1459 static rtx
1460 choose_best_pseudo_reg (regset used_regs,
1461 struct reg_rename *reg_rename_p,
1462 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1464 def_list_iterator i;
1465 def_t def;
1466 machine_mode mode = VOIDmode;
1467 bool bad_hard_regs = false;
1469 /* We should not use this after reload. */
1470 gcc_assert (!reload_completed);
1472 /* If original register is available, return it. */
1473 *is_orig_reg_p_ptr = true;
1475 FOR_EACH_DEF (def, i, original_insns)
1477 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1478 int orig_regno;
1480 gcc_assert (REG_P (dest));
1482 /* Check that all original operations have the same mode. */
1483 if (mode == VOIDmode)
1484 mode = GET_MODE (dest);
1485 else
1486 gcc_assert (mode == GET_MODE (dest));
1487 orig_regno = REGNO (dest);
1489 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1491 if (orig_regno < FIRST_PSEUDO_REGISTER)
1493 gcc_assert (df_regs_ever_live_p (orig_regno));
1495 /* For hard registers, we have to check hardware imposed
1496 limitations (frame/stack registers, calls crossed). */
1497 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1498 orig_regno))
1500 /* Don't let register cross a call if it doesn't already
1501 cross one. This condition is written in accordance with
1502 that in sched-deps.c sched_analyze_reg(). */
1503 if (!reg_rename_p->crosses_call
1504 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1505 return gen_rtx_REG (mode, orig_regno);
1508 bad_hard_regs = true;
1510 else
1511 return dest;
1515 *is_orig_reg_p_ptr = false;
1517 /* We had some original hard registers that couldn't be used.
1518 Those were likely special. Don't try to create a pseudo. */
1519 if (bad_hard_regs)
1520 return NULL_RTX;
1522 /* We haven't found a register from original operations. Get a new one.
1523 FIXME: control register pressure somehow. */
1525 rtx new_reg = gen_reg_rtx (mode);
1527 gcc_assert (mode != VOIDmode);
1529 max_regno = max_reg_num ();
1530 maybe_extend_reg_info_p ();
1531 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1533 return new_reg;
1537 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1538 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1539 static void
1540 verify_target_availability (expr_t expr, regset used_regs,
1541 struct reg_rename *reg_rename_p)
1543 unsigned n, i, regno;
1544 machine_mode mode;
1545 bool target_available, live_available, hard_available;
1547 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1548 return;
1550 regno = expr_dest_regno (expr);
1551 mode = GET_MODE (EXPR_LHS (expr));
1552 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1553 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1555 live_available = hard_available = true;
1556 for (i = 0; i < n; i++)
1558 if (bitmap_bit_p (used_regs, regno + i))
1559 live_available = false;
1560 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1561 hard_available = false;
1564 /* When target is not available, it may be due to hard register
1565 restrictions, e.g. crosses calls, so we check hard_available too. */
1566 if (target_available)
1567 gcc_assert (live_available);
1568 else
1569 /* Check only if we haven't scheduled something on the previous fence,
1570 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1571 and having more than one fence, we may end having targ_un in a block
1572 in which successors target register is actually available.
1574 The last condition handles the case when a dependence from a call insn
1575 was created in sched-deps.c for insns with destination registers that
1576 never crossed a call before, but do cross one after our code motion.
1578 FIXME: in the latter case, we just uselessly called find_used_regs,
1579 because we can't move this expression with any other register
1580 as well. */
1581 gcc_assert (scheduled_something_on_previous_fence || !live_available
1582 || !hard_available
1583 || (!reload_completed && reg_rename_p->crosses_call
1584 && REG_N_CALLS_CROSSED (regno) == 0));
1587 /* Collect unavailable registers due to liveness for EXPR from BNDS
1588 into USED_REGS. Save additional information about available
1589 registers and unavailable due to hardware restriction registers
1590 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1591 list. */
1592 static void
1593 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1594 struct reg_rename *reg_rename_p,
1595 def_list_t *original_insns)
1597 for (; bnds; bnds = BLIST_NEXT (bnds))
1599 bool res;
1600 av_set_t orig_ops = NULL;
1601 bnd_t bnd = BLIST_BND (bnds);
1603 /* If the chosen best expr doesn't belong to current boundary,
1604 skip it. */
1605 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1606 continue;
1608 /* Put in ORIG_OPS all exprs from this boundary that became
1609 RES on top. */
1610 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1612 /* Compute used regs and OR it into the USED_REGS. */
1613 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1614 reg_rename_p, original_insns);
1616 /* FIXME: the assert is true until we'd have several boundaries. */
1617 gcc_assert (res);
1618 av_set_clear (&orig_ops);
1622 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1623 If BEST_REG is valid, replace LHS of EXPR with it. */
1624 static bool
1625 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1627 /* Try whether we'll be able to generate the insn
1628 'dest := best_reg' at the place of the original operation. */
1629 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1631 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1633 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1635 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1636 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1637 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1638 return false;
1641 /* Make sure that EXPR has the right destination
1642 register. */
1643 if (expr_dest_regno (expr) != REGNO (best_reg))
1644 replace_dest_with_reg_in_expr (expr, best_reg);
1645 else
1646 EXPR_TARGET_AVAILABLE (expr) = 1;
1648 return true;
1651 /* Select and assign best register to EXPR searching from BNDS.
1652 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1653 Return FALSE if no register can be chosen, which could happen when:
1654 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1655 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1656 that are used on the moving path. */
1657 static bool
1658 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1660 static struct reg_rename reg_rename_data;
1662 regset used_regs;
1663 def_list_t original_insns = NULL;
1664 bool reg_ok;
1666 *is_orig_reg_p = false;
1668 /* Don't bother to do anything if this insn doesn't set any registers. */
1669 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1670 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1671 return true;
1673 used_regs = get_clear_regset_from_pool ();
1674 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1676 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1677 &original_insns);
1679 #ifdef ENABLE_CHECKING
1680 /* If after reload, make sure we're working with hard regs here. */
1681 if (reload_completed)
1683 reg_set_iterator rsi;
1684 unsigned i;
1686 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1687 gcc_unreachable ();
1689 #endif
1691 if (EXPR_SEPARABLE_P (expr))
1693 rtx best_reg = NULL_RTX;
1694 /* Check that we have computed availability of a target register
1695 correctly. */
1696 verify_target_availability (expr, used_regs, &reg_rename_data);
1698 /* Turn everything in hard regs after reload. */
1699 if (reload_completed)
1701 HARD_REG_SET hard_regs_used;
1702 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1704 /* Join hard registers unavailable due to register class
1705 restrictions and live range intersection. */
1706 IOR_HARD_REG_SET (hard_regs_used,
1707 reg_rename_data.unavailable_hard_regs);
1709 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1710 original_insns, is_orig_reg_p);
1712 else
1713 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1714 original_insns, is_orig_reg_p);
1716 if (!best_reg)
1717 reg_ok = false;
1718 else if (*is_orig_reg_p)
1720 /* In case of unification BEST_REG may be different from EXPR's LHS
1721 when EXPR's LHS is unavailable, and there is another LHS among
1722 ORIGINAL_INSNS. */
1723 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1725 else
1727 /* Forbid renaming of low-cost insns. */
1728 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1729 reg_ok = false;
1730 else
1731 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1734 else
1736 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1737 any of the HARD_REGS_USED set. */
1738 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1739 reg_rename_data.unavailable_hard_regs))
1741 reg_ok = false;
1742 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1744 else
1746 reg_ok = true;
1747 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1751 ilist_clear (&original_insns);
1752 return_regset_to_pool (used_regs);
1754 return reg_ok;
1758 /* Return true if dependence described by DS can be overcomed. */
1759 static bool
1760 can_speculate_dep_p (ds_t ds)
1762 if (spec_info == NULL)
1763 return false;
1765 /* Leave only speculative data. */
1766 ds &= SPECULATIVE;
1768 if (ds == 0)
1769 return false;
1772 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1773 that we can overcome. */
1774 ds_t spec_mask = spec_info->mask;
1776 if ((ds & spec_mask) != ds)
1777 return false;
1780 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1781 return false;
1783 return true;
1786 /* Get a speculation check instruction.
1787 C_EXPR is a speculative expression,
1788 CHECK_DS describes speculations that should be checked,
1789 ORIG_INSN is the original non-speculative insn in the stream. */
1790 static insn_t
1791 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1793 rtx check_pattern;
1794 rtx_insn *insn_rtx;
1795 insn_t insn;
1796 basic_block recovery_block;
1797 rtx_insn *label;
1799 /* Create a recovery block if target is going to emit branchy check, or if
1800 ORIG_INSN was speculative already. */
1801 if (targetm.sched.needs_block_p (check_ds)
1802 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1804 recovery_block = sel_create_recovery_block (orig_insn);
1805 label = BB_HEAD (recovery_block);
1807 else
1809 recovery_block = NULL;
1810 label = NULL;
1813 /* Get pattern of the check. */
1814 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1815 check_ds);
1817 gcc_assert (check_pattern != NULL);
1819 /* Emit check. */
1820 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1822 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1823 INSN_SEQNO (orig_insn), orig_insn);
1825 /* Make check to be non-speculative. */
1826 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1827 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1829 /* Decrease priority of check by difference of load/check instruction
1830 latencies. */
1831 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1832 - sel_vinsn_cost (INSN_VINSN (insn)));
1834 /* Emit copy of original insn (though with replaced target register,
1835 if needed) to the recovery block. */
1836 if (recovery_block != NULL)
1838 rtx twin_rtx;
1840 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1841 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1842 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1843 INSN_EXPR (orig_insn),
1844 INSN_SEQNO (insn),
1845 bb_note (recovery_block));
1848 /* If we've generated a data speculation check, make sure
1849 that all the bookkeeping instruction we'll create during
1850 this move_op () will allocate an ALAT entry so that the
1851 check won't fail.
1852 In case of control speculation we must convert C_EXPR to control
1853 speculative mode, because failing to do so will bring us an exception
1854 thrown by the non-control-speculative load. */
1855 check_ds = ds_get_max_dep_weak (check_ds);
1856 speculate_expr (c_expr, check_ds);
1858 return insn;
1861 /* True when INSN is a "regN = regN" copy. */
1862 static bool
1863 identical_copy_p (rtx insn)
1865 rtx lhs, rhs, pat;
1867 pat = PATTERN (insn);
1869 if (GET_CODE (pat) != SET)
1870 return false;
1872 lhs = SET_DEST (pat);
1873 if (!REG_P (lhs))
1874 return false;
1876 rhs = SET_SRC (pat);
1877 if (!REG_P (rhs))
1878 return false;
1880 return REGNO (lhs) == REGNO (rhs);
1883 /* Undo all transformations on *AV_PTR that were done when
1884 moving through INSN. */
1885 static void
1886 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1888 av_set_iterator av_iter;
1889 expr_t expr;
1890 av_set_t new_set = NULL;
1892 /* First, kill any EXPR that uses registers set by an insn. This is
1893 required for correctness. */
1894 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1895 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1896 && bitmap_intersect_p (INSN_REG_SETS (insn),
1897 VINSN_REG_USES (EXPR_VINSN (expr)))
1898 /* When an insn looks like 'r1 = r1', we could substitute through
1899 it, but the above condition will still hold. This happened with
1900 gcc.c-torture/execute/961125-1.c. */
1901 && !identical_copy_p (insn))
1903 if (sched_verbose >= 6)
1904 sel_print ("Expr %d removed due to use/set conflict\n",
1905 INSN_UID (EXPR_INSN_RTX (expr)));
1906 av_set_iter_remove (&av_iter);
1909 /* Undo transformations looking at the history vector. */
1910 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1912 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1913 insn, EXPR_VINSN (expr), true);
1915 if (index >= 0)
1917 expr_history_def *phist;
1919 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1921 switch (phist->type)
1923 case TRANS_SPECULATION:
1925 ds_t old_ds, new_ds;
1927 /* Compute the difference between old and new speculative
1928 statuses: that's what we need to check.
1929 Earlier we used to assert that the status will really
1930 change. This no longer works because only the probability
1931 bits in the status may have changed during compute_av_set,
1932 and in the case of merging different probabilities of the
1933 same speculative status along different paths we do not
1934 record this in the history vector. */
1935 old_ds = phist->spec_ds;
1936 new_ds = EXPR_SPEC_DONE_DS (expr);
1938 old_ds &= SPECULATIVE;
1939 new_ds &= SPECULATIVE;
1940 new_ds &= ~old_ds;
1942 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1943 break;
1945 case TRANS_SUBSTITUTION:
1947 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1948 vinsn_t new_vi;
1949 bool add = true;
1951 new_vi = phist->old_expr_vinsn;
1953 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1954 == EXPR_SEPARABLE_P (expr));
1955 copy_expr (tmp_expr, expr);
1957 if (vinsn_equal_p (phist->new_expr_vinsn,
1958 EXPR_VINSN (tmp_expr)))
1959 change_vinsn_in_expr (tmp_expr, new_vi);
1960 else
1961 /* This happens when we're unsubstituting on a bookkeeping
1962 copy, which was in turn substituted. The history is wrong
1963 in this case. Do it the hard way. */
1964 add = substitute_reg_in_expr (tmp_expr, insn, true);
1965 if (add)
1966 av_set_add (&new_set, tmp_expr);
1967 clear_expr (tmp_expr);
1968 break;
1970 default:
1971 gcc_unreachable ();
1977 av_set_union_and_clear (av_ptr, &new_set, NULL);
1981 /* Moveup_* helpers for code motion and computing av sets. */
1983 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1984 The difference from the below function is that only substitution is
1985 performed. */
1986 static enum MOVEUP_EXPR_CODE
1987 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1989 vinsn_t vi = EXPR_VINSN (expr);
1990 ds_t *has_dep_p;
1991 ds_t full_ds;
1993 /* Do this only inside insn group. */
1994 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1996 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1997 if (full_ds == 0)
1998 return MOVEUP_EXPR_SAME;
2000 /* Substitution is the possible choice in this case. */
2001 if (has_dep_p[DEPS_IN_RHS])
2003 /* Can't substitute UNIQUE VINSNs. */
2004 gcc_assert (!VINSN_UNIQUE_P (vi));
2006 if (can_substitute_through_p (through_insn,
2007 has_dep_p[DEPS_IN_RHS])
2008 && substitute_reg_in_expr (expr, through_insn, false))
2010 EXPR_WAS_SUBSTITUTED (expr) = true;
2011 return MOVEUP_EXPR_CHANGED;
2014 /* Don't care about this, as even true dependencies may be allowed
2015 in an insn group. */
2016 return MOVEUP_EXPR_SAME;
2019 /* This can catch output dependencies in COND_EXECs. */
2020 if (has_dep_p[DEPS_IN_INSN])
2021 return MOVEUP_EXPR_NULL;
2023 /* This is either an output or an anti dependence, which usually have
2024 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2025 will fix this. */
2026 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2027 return MOVEUP_EXPR_AS_RHS;
2030 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2031 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2032 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2033 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2034 && !sel_insn_is_speculation_check (through_insn))
2036 /* True when a conflict on a target register was found during moveup_expr. */
2037 static bool was_target_conflict = false;
2039 /* Return true when moving a debug INSN across THROUGH_INSN will
2040 create a bookkeeping block. We don't want to create such blocks,
2041 for they would cause codegen differences between compilations with
2042 and without debug info. */
2044 static bool
2045 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2046 insn_t through_insn)
2048 basic_block bbi, bbt;
2049 edge e1, e2;
2050 edge_iterator ei1, ei2;
2052 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2054 if (sched_verbose >= 9)
2055 sel_print ("no bookkeeping required: ");
2056 return FALSE;
2059 bbi = BLOCK_FOR_INSN (insn);
2061 if (EDGE_COUNT (bbi->preds) == 1)
2063 if (sched_verbose >= 9)
2064 sel_print ("only one pred edge: ");
2065 return TRUE;
2068 bbt = BLOCK_FOR_INSN (through_insn);
2070 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2072 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2074 if (find_block_for_bookkeeping (e1, e2, TRUE))
2076 if (sched_verbose >= 9)
2077 sel_print ("found existing block: ");
2078 return FALSE;
2083 if (sched_verbose >= 9)
2084 sel_print ("would create bookkeeping block: ");
2086 return TRUE;
2089 /* Return true when the conflict with newly created implicit clobbers
2090 between EXPR and THROUGH_INSN is found because of renaming. */
2091 static bool
2092 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2094 HARD_REG_SET temp;
2095 rtx_insn *insn;
2096 rtx reg, rhs, pat;
2097 hard_reg_set_iterator hrsi;
2098 unsigned regno;
2099 bool valid;
2101 /* Make a new pseudo register. */
2102 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2103 max_regno = max_reg_num ();
2104 maybe_extend_reg_info_p ();
2106 /* Validate a change and bail out early. */
2107 insn = EXPR_INSN_RTX (expr);
2108 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2109 valid = verify_changes (0);
2110 cancel_changes (0);
2111 if (!valid)
2113 if (sched_verbose >= 6)
2114 sel_print ("implicit clobbers failed validation, ");
2115 return true;
2118 /* Make a new insn with it. */
2119 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2120 pat = gen_rtx_SET (VOIDmode, reg, rhs);
2121 start_sequence ();
2122 insn = emit_insn (pat);
2123 end_sequence ();
2125 /* Calculate implicit clobbers. */
2126 extract_insn (insn);
2127 preprocess_constraints (insn);
2128 alternative_mask prefrred = get_preferred_alternatives (insn);
2129 ira_implicitly_set_insn_hard_regs (&temp, prefrred);
2130 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2132 /* If any implicit clobber registers intersect with regular ones in
2133 through_insn, we have a dependency and thus bail out. */
2134 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2136 vinsn_t vi = INSN_VINSN (through_insn);
2137 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2138 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2139 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2140 return true;
2143 return false;
2146 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2147 performing necessary transformations. Record the type of transformation
2148 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2149 permit all dependencies except true ones, and try to remove those
2150 too via forward substitution. All cases when a non-eliminable
2151 non-zero cost dependency exists inside an insn group will be fixed
2152 in tick_check_p instead. */
2153 static enum MOVEUP_EXPR_CODE
2154 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2155 enum local_trans_type *ptrans_type)
2157 vinsn_t vi = EXPR_VINSN (expr);
2158 insn_t insn = VINSN_INSN_RTX (vi);
2159 bool was_changed = false;
2160 bool as_rhs = false;
2161 ds_t *has_dep_p;
2162 ds_t full_ds;
2164 /* ??? We use dependencies of non-debug insns on debug insns to
2165 indicate that the debug insns need to be reset if the non-debug
2166 insn is pulled ahead of it. It's hard to figure out how to
2167 introduce such a notion in sel-sched, but it already fails to
2168 support debug insns in other ways, so we just go ahead and
2169 let the deug insns go corrupt for now. */
2170 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2171 return MOVEUP_EXPR_SAME;
2173 /* When inside_insn_group, delegate to the helper. */
2174 if (inside_insn_group)
2175 return moveup_expr_inside_insn_group (expr, through_insn);
2177 /* Deal with unique insns and control dependencies. */
2178 if (VINSN_UNIQUE_P (vi))
2180 /* We can move jumps without side-effects or jumps that are
2181 mutually exclusive with instruction THROUGH_INSN (all in cases
2182 dependencies allow to do so and jump is not speculative). */
2183 if (control_flow_insn_p (insn))
2185 basic_block fallthru_bb;
2187 /* Do not move checks and do not move jumps through other
2188 jumps. */
2189 if (control_flow_insn_p (through_insn)
2190 || sel_insn_is_speculation_check (insn))
2191 return MOVEUP_EXPR_NULL;
2193 /* Don't move jumps through CFG joins. */
2194 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2195 return MOVEUP_EXPR_NULL;
2197 /* The jump should have a clear fallthru block, and
2198 this block should be in the current region. */
2199 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2200 || ! in_current_region_p (fallthru_bb))
2201 return MOVEUP_EXPR_NULL;
2203 /* And it should be mutually exclusive with through_insn. */
2204 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2205 && ! DEBUG_INSN_P (through_insn))
2206 return MOVEUP_EXPR_NULL;
2209 /* Don't move what we can't move. */
2210 if (EXPR_CANT_MOVE (expr)
2211 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2212 return MOVEUP_EXPR_NULL;
2214 /* Don't move SCHED_GROUP instruction through anything.
2215 If we don't force this, then it will be possible to start
2216 scheduling a sched_group before all its dependencies are
2217 resolved.
2218 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2219 as late as possible through rank_for_schedule. */
2220 if (SCHED_GROUP_P (insn))
2221 return MOVEUP_EXPR_NULL;
2223 else
2224 gcc_assert (!control_flow_insn_p (insn));
2226 /* Don't move debug insns if this would require bookkeeping. */
2227 if (DEBUG_INSN_P (insn)
2228 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2229 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2230 return MOVEUP_EXPR_NULL;
2232 /* Deal with data dependencies. */
2233 was_target_conflict = false;
2234 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2235 if (full_ds == 0)
2237 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2238 return MOVEUP_EXPR_SAME;
2240 else
2242 /* We can move UNIQUE insn up only as a whole and unchanged,
2243 so it shouldn't have any dependencies. */
2244 if (VINSN_UNIQUE_P (vi))
2245 return MOVEUP_EXPR_NULL;
2248 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2250 int res;
2252 res = speculate_expr (expr, full_ds);
2253 if (res >= 0)
2255 /* Speculation was successful. */
2256 full_ds = 0;
2257 was_changed = (res > 0);
2258 if (res == 2)
2259 was_target_conflict = true;
2260 if (ptrans_type)
2261 *ptrans_type = TRANS_SPECULATION;
2262 sel_clear_has_dependence ();
2266 if (has_dep_p[DEPS_IN_INSN])
2267 /* We have some dependency that cannot be discarded. */
2268 return MOVEUP_EXPR_NULL;
2270 if (has_dep_p[DEPS_IN_LHS])
2272 /* Only separable insns can be moved up with the new register.
2273 Anyways, we should mark that the original register is
2274 unavailable. */
2275 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2276 return MOVEUP_EXPR_NULL;
2278 /* When renaming a hard register to a pseudo before reload, extra
2279 dependencies can occur from the implicit clobbers of the insn.
2280 Filter out such cases here. */
2281 if (!reload_completed && REG_P (EXPR_LHS (expr))
2282 && HARD_REGISTER_P (EXPR_LHS (expr))
2283 && implicit_clobber_conflict_p (through_insn, expr))
2285 if (sched_verbose >= 6)
2286 sel_print ("implicit clobbers conflict detected, ");
2287 return MOVEUP_EXPR_NULL;
2289 EXPR_TARGET_AVAILABLE (expr) = false;
2290 was_target_conflict = true;
2291 as_rhs = true;
2294 /* At this point we have either separable insns, that will be lifted
2295 up only as RHSes, or non-separable insns with no dependency in lhs.
2296 If dependency is in RHS, then try to perform substitution and move up
2297 substituted RHS:
2299 Ex. 1: Ex.2
2300 y = x; y = x;
2301 z = y*2; y = y*2;
2303 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2304 moved above y=x assignment as z=x*2.
2306 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2307 side can be moved because of the output dependency. The operation was
2308 cropped to its rhs above. */
2309 if (has_dep_p[DEPS_IN_RHS])
2311 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2313 /* Can't substitute UNIQUE VINSNs. */
2314 gcc_assert (!VINSN_UNIQUE_P (vi));
2316 if (can_speculate_dep_p (*rhs_dsp))
2318 int res;
2320 res = speculate_expr (expr, *rhs_dsp);
2321 if (res >= 0)
2323 /* Speculation was successful. */
2324 *rhs_dsp = 0;
2325 was_changed = (res > 0);
2326 if (res == 2)
2327 was_target_conflict = true;
2328 if (ptrans_type)
2329 *ptrans_type = TRANS_SPECULATION;
2331 else
2332 return MOVEUP_EXPR_NULL;
2334 else if (can_substitute_through_p (through_insn,
2335 *rhs_dsp)
2336 && substitute_reg_in_expr (expr, through_insn, false))
2338 /* ??? We cannot perform substitution AND speculation on the same
2339 insn. */
2340 gcc_assert (!was_changed);
2341 was_changed = true;
2342 if (ptrans_type)
2343 *ptrans_type = TRANS_SUBSTITUTION;
2344 EXPR_WAS_SUBSTITUTED (expr) = true;
2346 else
2347 return MOVEUP_EXPR_NULL;
2350 /* Don't move trapping insns through jumps.
2351 This check should be at the end to give a chance to control speculation
2352 to perform its duties. */
2353 if (CANT_MOVE_TRAPPING (expr, through_insn))
2354 return MOVEUP_EXPR_NULL;
2356 return (was_changed
2357 ? MOVEUP_EXPR_CHANGED
2358 : (as_rhs
2359 ? MOVEUP_EXPR_AS_RHS
2360 : MOVEUP_EXPR_SAME));
2363 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2364 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2365 that can exist within a parallel group. Write to RES the resulting
2366 code for moveup_expr. */
2367 static bool
2368 try_bitmap_cache (expr_t expr, insn_t insn,
2369 bool inside_insn_group,
2370 enum MOVEUP_EXPR_CODE *res)
2372 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2374 /* First check whether we've analyzed this situation already. */
2375 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2377 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2379 if (sched_verbose >= 6)
2380 sel_print ("removed (cached)\n");
2381 *res = MOVEUP_EXPR_NULL;
2382 return true;
2384 else
2386 if (sched_verbose >= 6)
2387 sel_print ("unchanged (cached)\n");
2388 *res = MOVEUP_EXPR_SAME;
2389 return true;
2392 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2394 if (inside_insn_group)
2396 if (sched_verbose >= 6)
2397 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2398 *res = MOVEUP_EXPR_SAME;
2399 return true;
2402 else
2403 EXPR_TARGET_AVAILABLE (expr) = false;
2405 /* This is the only case when propagation result can change over time,
2406 as we can dynamically switch off scheduling as RHS. In this case,
2407 just check the flag to reach the correct decision. */
2408 if (enable_schedule_as_rhs_p)
2410 if (sched_verbose >= 6)
2411 sel_print ("unchanged (as RHS, cached)\n");
2412 *res = MOVEUP_EXPR_AS_RHS;
2413 return true;
2415 else
2417 if (sched_verbose >= 6)
2418 sel_print ("removed (cached as RHS, but renaming"
2419 " is now disabled)\n");
2420 *res = MOVEUP_EXPR_NULL;
2421 return true;
2425 return false;
2428 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2429 if successful. Write to RES the resulting code for moveup_expr. */
2430 static bool
2431 try_transformation_cache (expr_t expr, insn_t insn,
2432 enum MOVEUP_EXPR_CODE *res)
2434 struct transformed_insns *pti
2435 = (struct transformed_insns *)
2436 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2437 &EXPR_VINSN (expr),
2438 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2439 if (pti)
2441 /* This EXPR was already moved through this insn and was
2442 changed as a result. Fetch the proper data from
2443 the hashtable. */
2444 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2445 INSN_UID (insn), pti->type,
2446 pti->vinsn_old, pti->vinsn_new,
2447 EXPR_SPEC_DONE_DS (expr));
2449 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2450 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2451 change_vinsn_in_expr (expr, pti->vinsn_new);
2452 if (pti->was_target_conflict)
2453 EXPR_TARGET_AVAILABLE (expr) = false;
2454 if (pti->type == TRANS_SPECULATION)
2456 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2457 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2460 if (sched_verbose >= 6)
2462 sel_print ("changed (cached): ");
2463 dump_expr (expr);
2464 sel_print ("\n");
2467 *res = MOVEUP_EXPR_CHANGED;
2468 return true;
2471 return false;
2474 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2475 static void
2476 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2477 enum MOVEUP_EXPR_CODE res)
2479 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2481 /* Do not cache result of propagating jumps through an insn group,
2482 as it is always true, which is not useful outside the group. */
2483 if (inside_insn_group)
2484 return;
2486 if (res == MOVEUP_EXPR_NULL)
2488 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2489 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2491 else if (res == MOVEUP_EXPR_SAME)
2493 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2494 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2496 else if (res == MOVEUP_EXPR_AS_RHS)
2498 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2499 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2501 else
2502 gcc_unreachable ();
2505 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2506 and transformation type TRANS_TYPE. */
2507 static void
2508 update_transformation_cache (expr_t expr, insn_t insn,
2509 bool inside_insn_group,
2510 enum local_trans_type trans_type,
2511 vinsn_t expr_old_vinsn)
2513 struct transformed_insns *pti;
2515 if (inside_insn_group)
2516 return;
2518 pti = XNEW (struct transformed_insns);
2519 pti->vinsn_old = expr_old_vinsn;
2520 pti->vinsn_new = EXPR_VINSN (expr);
2521 pti->type = trans_type;
2522 pti->was_target_conflict = was_target_conflict;
2523 pti->ds = EXPR_SPEC_DONE_DS (expr);
2524 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2525 vinsn_attach (pti->vinsn_old);
2526 vinsn_attach (pti->vinsn_new);
2527 *((struct transformed_insns **)
2528 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2529 pti, VINSN_HASH_RTX (expr_old_vinsn),
2530 INSERT)) = pti;
2533 /* Same as moveup_expr, but first looks up the result of
2534 transformation in caches. */
2535 static enum MOVEUP_EXPR_CODE
2536 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2538 enum MOVEUP_EXPR_CODE res;
2539 bool got_answer = false;
2541 if (sched_verbose >= 6)
2543 sel_print ("Moving ");
2544 dump_expr (expr);
2545 sel_print (" through %d: ", INSN_UID (insn));
2548 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2549 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2550 == EXPR_INSN_RTX (expr)))
2551 /* Don't use cached information for debug insns that are heads of
2552 basic blocks. */;
2553 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2554 /* When inside insn group, we do not want remove stores conflicting
2555 with previosly issued loads. */
2556 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2557 else if (try_transformation_cache (expr, insn, &res))
2558 got_answer = true;
2560 if (! got_answer)
2562 /* Invoke moveup_expr and record the results. */
2563 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2564 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2565 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2566 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2567 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2569 /* ??? Invent something better than this. We can't allow old_vinsn
2570 to go, we need it for the history vector. */
2571 vinsn_attach (expr_old_vinsn);
2573 res = moveup_expr (expr, insn, inside_insn_group,
2574 &trans_type);
2575 switch (res)
2577 case MOVEUP_EXPR_NULL:
2578 update_bitmap_cache (expr, insn, inside_insn_group, res);
2579 if (sched_verbose >= 6)
2580 sel_print ("removed\n");
2581 break;
2583 case MOVEUP_EXPR_SAME:
2584 update_bitmap_cache (expr, insn, inside_insn_group, res);
2585 if (sched_verbose >= 6)
2586 sel_print ("unchanged\n");
2587 break;
2589 case MOVEUP_EXPR_AS_RHS:
2590 gcc_assert (!unique_p || inside_insn_group);
2591 update_bitmap_cache (expr, insn, inside_insn_group, res);
2592 if (sched_verbose >= 6)
2593 sel_print ("unchanged (as RHS)\n");
2594 break;
2596 case MOVEUP_EXPR_CHANGED:
2597 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2598 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2599 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2600 INSN_UID (insn), trans_type,
2601 expr_old_vinsn, EXPR_VINSN (expr),
2602 expr_old_spec_ds);
2603 update_transformation_cache (expr, insn, inside_insn_group,
2604 trans_type, expr_old_vinsn);
2605 if (sched_verbose >= 6)
2607 sel_print ("changed: ");
2608 dump_expr (expr);
2609 sel_print ("\n");
2611 break;
2612 default:
2613 gcc_unreachable ();
2616 vinsn_detach (expr_old_vinsn);
2619 return res;
2622 /* Moves an av set AVP up through INSN, performing necessary
2623 transformations. */
2624 static void
2625 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2627 av_set_iterator i;
2628 expr_t expr;
2630 FOR_EACH_EXPR_1 (expr, i, avp)
2633 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2635 case MOVEUP_EXPR_SAME:
2636 case MOVEUP_EXPR_AS_RHS:
2637 break;
2639 case MOVEUP_EXPR_NULL:
2640 av_set_iter_remove (&i);
2641 break;
2643 case MOVEUP_EXPR_CHANGED:
2644 expr = merge_with_other_exprs (avp, &i, expr);
2645 break;
2647 default:
2648 gcc_unreachable ();
2653 /* Moves AVP set along PATH. */
2654 static void
2655 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2657 int last_cycle;
2659 if (sched_verbose >= 6)
2660 sel_print ("Moving expressions up in the insn group...\n");
2661 if (! path)
2662 return;
2663 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2664 while (path
2665 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2667 moveup_set_expr (avp, ILIST_INSN (path), true);
2668 path = ILIST_NEXT (path);
2672 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2673 static bool
2674 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2676 expr_def _tmp, *tmp = &_tmp;
2677 int last_cycle;
2678 bool res = true;
2680 copy_expr_onside (tmp, expr);
2681 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2682 while (path
2683 && res
2684 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2686 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2687 != MOVEUP_EXPR_NULL);
2688 path = ILIST_NEXT (path);
2691 if (res)
2693 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2694 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2696 if (tmp_vinsn != expr_vliw_vinsn)
2697 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2700 clear_expr (tmp);
2701 return res;
2705 /* Functions that compute av and lv sets. */
2707 /* Returns true if INSN is not a downward continuation of the given path P in
2708 the current stage. */
2709 static bool
2710 is_ineligible_successor (insn_t insn, ilist_t p)
2712 insn_t prev_insn;
2714 /* Check if insn is not deleted. */
2715 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2716 gcc_unreachable ();
2717 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2718 gcc_unreachable ();
2720 /* If it's the first insn visited, then the successor is ok. */
2721 if (!p)
2722 return false;
2724 prev_insn = ILIST_INSN (p);
2726 if (/* a backward edge. */
2727 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2728 /* is already visited. */
2729 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2730 && (ilist_is_in_p (p, insn)
2731 /* We can reach another fence here and still seqno of insn
2732 would be equal to seqno of prev_insn. This is possible
2733 when prev_insn is a previously created bookkeeping copy.
2734 In that case it'd get a seqno of insn. Thus, check here
2735 whether insn is in current fence too. */
2736 || IN_CURRENT_FENCE_P (insn)))
2737 /* Was already scheduled on this round. */
2738 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2739 && IN_CURRENT_FENCE_P (insn))
2740 /* An insn from another fence could also be
2741 scheduled earlier even if this insn is not in
2742 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2743 || (!pipelining_p
2744 && INSN_SCHED_TIMES (insn) > 0))
2745 return true;
2746 else
2747 return false;
2750 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2751 of handling multiple successors and properly merging its av_sets. P is
2752 the current path traversed. WS is the size of lookahead window.
2753 Return the av set computed. */
2754 static av_set_t
2755 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2757 struct succs_info *sinfo;
2758 av_set_t expr_in_all_succ_branches = NULL;
2759 int is;
2760 insn_t succ, zero_succ = NULL;
2761 av_set_t av1 = NULL;
2763 gcc_assert (sel_bb_end_p (insn));
2765 /* Find different kind of successors needed for correct computing of
2766 SPEC and TARGET_AVAILABLE attributes. */
2767 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2769 /* Debug output. */
2770 if (sched_verbose >= 6)
2772 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2773 dump_insn_vector (sinfo->succs_ok);
2774 sel_print ("\n");
2775 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2776 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2779 /* Add insn to the tail of current path. */
2780 ilist_add (&p, insn);
2782 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2784 av_set_t succ_set;
2786 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2787 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2789 av_set_split_usefulness (succ_set,
2790 sinfo->probs_ok[is],
2791 sinfo->all_prob);
2793 if (sinfo->all_succs_n > 1)
2795 /* Find EXPR'es that came from *all* successors and save them
2796 into expr_in_all_succ_branches. This set will be used later
2797 for calculating speculation attributes of EXPR'es. */
2798 if (is == 0)
2800 expr_in_all_succ_branches = av_set_copy (succ_set);
2802 /* Remember the first successor for later. */
2803 zero_succ = succ;
2805 else
2807 av_set_iterator i;
2808 expr_t expr;
2810 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2811 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2812 av_set_iter_remove (&i);
2816 /* Union the av_sets. Check liveness restrictions on target registers
2817 in special case of two successors. */
2818 if (sinfo->succs_ok_n == 2 && is == 1)
2820 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2821 basic_block bb1 = BLOCK_FOR_INSN (succ);
2823 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2824 av_set_union_and_live (&av1, &succ_set,
2825 BB_LV_SET (bb0),
2826 BB_LV_SET (bb1),
2827 insn);
2829 else
2830 av_set_union_and_clear (&av1, &succ_set, insn);
2833 /* Check liveness restrictions via hard way when there are more than
2834 two successors. */
2835 if (sinfo->succs_ok_n > 2)
2836 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2838 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2840 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2841 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2842 BB_LV_SET (succ_bb));
2845 /* Finally, check liveness restrictions on paths leaving the region. */
2846 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2847 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2848 mark_unavailable_targets
2849 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2851 if (sinfo->all_succs_n > 1)
2853 av_set_iterator i;
2854 expr_t expr;
2856 /* Increase the spec attribute of all EXPR'es that didn't come
2857 from all successors. */
2858 FOR_EACH_EXPR (expr, i, av1)
2859 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2860 EXPR_SPEC (expr)++;
2862 av_set_clear (&expr_in_all_succ_branches);
2864 /* Do not move conditional branches through other
2865 conditional branches. So, remove all conditional
2866 branches from av_set if current operator is a conditional
2867 branch. */
2868 av_set_substract_cond_branches (&av1);
2871 ilist_remove (&p);
2872 free_succs_info (sinfo);
2874 if (sched_verbose >= 6)
2876 sel_print ("av_succs (%d): ", INSN_UID (insn));
2877 dump_av_set (av1);
2878 sel_print ("\n");
2881 return av1;
2884 /* This function computes av_set for the FIRST_INSN by dragging valid
2885 av_set through all basic block insns either from the end of basic block
2886 (computed using compute_av_set_at_bb_end) or from the insn on which
2887 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2888 below the basic block and handling conditional branches.
2889 FIRST_INSN - the basic block head, P - path consisting of the insns
2890 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2891 and bb ends are added to the path), WS - current window size,
2892 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2893 static av_set_t
2894 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2895 bool need_copy_p)
2897 insn_t cur_insn;
2898 int end_ws = ws;
2899 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2900 insn_t after_bb_end = NEXT_INSN (bb_end);
2901 insn_t last_insn;
2902 av_set_t av = NULL;
2903 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2905 /* Return NULL if insn is not on the legitimate downward path. */
2906 if (is_ineligible_successor (first_insn, p))
2908 if (sched_verbose >= 6)
2909 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2911 return NULL;
2914 /* If insn already has valid av(insn) computed, just return it. */
2915 if (AV_SET_VALID_P (first_insn))
2917 av_set_t av_set;
2919 if (sel_bb_head_p (first_insn))
2920 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2921 else
2922 av_set = NULL;
2924 if (sched_verbose >= 6)
2926 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2927 dump_av_set (av_set);
2928 sel_print ("\n");
2931 return need_copy_p ? av_set_copy (av_set) : av_set;
2934 ilist_add (&p, first_insn);
2936 /* As the result after this loop have completed, in LAST_INSN we'll
2937 have the insn which has valid av_set to start backward computation
2938 from: it either will be NULL because on it the window size was exceeded
2939 or other valid av_set as returned by compute_av_set for the last insn
2940 of the basic block. */
2941 for (last_insn = first_insn; last_insn != after_bb_end;
2942 last_insn = NEXT_INSN (last_insn))
2944 /* We may encounter valid av_set not only on bb_head, but also on
2945 those insns on which previously MAX_WS was exceeded. */
2946 if (AV_SET_VALID_P (last_insn))
2948 if (sched_verbose >= 6)
2949 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2950 break;
2953 /* The special case: the last insn of the BB may be an
2954 ineligible_successor due to its SEQ_NO that was set on
2955 it as a bookkeeping. */
2956 if (last_insn != first_insn
2957 && is_ineligible_successor (last_insn, p))
2959 if (sched_verbose >= 6)
2960 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2961 break;
2964 if (DEBUG_INSN_P (last_insn))
2965 continue;
2967 if (end_ws > max_ws)
2969 /* We can reach max lookahead size at bb_header, so clean av_set
2970 first. */
2971 INSN_WS_LEVEL (last_insn) = global_level;
2973 if (sched_verbose >= 6)
2974 sel_print ("Insn %d is beyond the software lookahead window size\n",
2975 INSN_UID (last_insn));
2976 break;
2979 end_ws++;
2982 /* Get the valid av_set into AV above the LAST_INSN to start backward
2983 computation from. It either will be empty av_set or av_set computed from
2984 the successors on the last insn of the current bb. */
2985 if (last_insn != after_bb_end)
2987 av = NULL;
2989 /* This is needed only to obtain av_sets that are identical to
2990 those computed by the old compute_av_set version. */
2991 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2992 av_set_add (&av, INSN_EXPR (last_insn));
2994 else
2995 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2996 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2998 /* Compute av_set in AV starting from below the LAST_INSN up to
2999 location above the FIRST_INSN. */
3000 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
3001 cur_insn = PREV_INSN (cur_insn))
3002 if (!INSN_NOP_P (cur_insn))
3004 expr_t expr;
3006 moveup_set_expr (&av, cur_insn, false);
3008 /* If the expression for CUR_INSN is already in the set,
3009 replace it by the new one. */
3010 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
3011 if (expr != NULL)
3013 clear_expr (expr);
3014 copy_expr (expr, INSN_EXPR (cur_insn));
3016 else
3017 av_set_add (&av, INSN_EXPR (cur_insn));
3020 /* Clear stale bb_av_set. */
3021 if (sel_bb_head_p (first_insn))
3023 av_set_clear (&BB_AV_SET (cur_bb));
3024 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3025 BB_AV_LEVEL (cur_bb) = global_level;
3028 if (sched_verbose >= 6)
3030 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3031 dump_av_set (av);
3032 sel_print ("\n");
3035 ilist_remove (&p);
3036 return av;
3039 /* Compute av set before INSN.
3040 INSN - the current operation (actual rtx INSN)
3041 P - the current path, which is list of insns visited so far
3042 WS - software lookahead window size.
3043 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3044 if we want to save computed av_set in s_i_d, we should make a copy of it.
3046 In the resulting set we will have only expressions that don't have delay
3047 stalls and nonsubstitutable dependences. */
3048 static av_set_t
3049 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3051 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3054 /* Propagate a liveness set LV through INSN. */
3055 static void
3056 propagate_lv_set (regset lv, insn_t insn)
3058 gcc_assert (INSN_P (insn));
3060 if (INSN_NOP_P (insn))
3061 return;
3063 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3066 /* Return livness set at the end of BB. */
3067 static regset
3068 compute_live_after_bb (basic_block bb)
3070 edge e;
3071 edge_iterator ei;
3072 regset lv = get_clear_regset_from_pool ();
3074 gcc_assert (!ignore_first);
3076 FOR_EACH_EDGE (e, ei, bb->succs)
3077 if (sel_bb_empty_p (e->dest))
3079 if (! BB_LV_SET_VALID_P (e->dest))
3081 gcc_unreachable ();
3082 gcc_assert (BB_LV_SET (e->dest) == NULL);
3083 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3084 BB_LV_SET_VALID_P (e->dest) = true;
3086 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3088 else
3089 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3091 return lv;
3094 /* Compute the set of all live registers at the point before INSN and save
3095 it at INSN if INSN is bb header. */
3096 regset
3097 compute_live (insn_t insn)
3099 basic_block bb = BLOCK_FOR_INSN (insn);
3100 insn_t final, temp;
3101 regset lv;
3103 /* Return the valid set if we're already on it. */
3104 if (!ignore_first)
3106 regset src = NULL;
3108 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3109 src = BB_LV_SET (bb);
3110 else
3112 gcc_assert (in_current_region_p (bb));
3113 if (INSN_LIVE_VALID_P (insn))
3114 src = INSN_LIVE (insn);
3117 if (src)
3119 lv = get_regset_from_pool ();
3120 COPY_REG_SET (lv, src);
3122 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3124 COPY_REG_SET (BB_LV_SET (bb), lv);
3125 BB_LV_SET_VALID_P (bb) = true;
3128 return_regset_to_pool (lv);
3129 return lv;
3133 /* We've skipped the wrong lv_set. Don't skip the right one. */
3134 ignore_first = false;
3135 gcc_assert (in_current_region_p (bb));
3137 /* Find a valid LV set in this block or below, if needed.
3138 Start searching from the next insn: either ignore_first is true, or
3139 INSN doesn't have a correct live set. */
3140 temp = NEXT_INSN (insn);
3141 final = NEXT_INSN (BB_END (bb));
3142 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3143 temp = NEXT_INSN (temp);
3144 if (temp == final)
3146 lv = compute_live_after_bb (bb);
3147 temp = PREV_INSN (temp);
3149 else
3151 lv = get_regset_from_pool ();
3152 COPY_REG_SET (lv, INSN_LIVE (temp));
3155 /* Put correct lv sets on the insns which have bad sets. */
3156 final = PREV_INSN (insn);
3157 while (temp != final)
3159 propagate_lv_set (lv, temp);
3160 COPY_REG_SET (INSN_LIVE (temp), lv);
3161 INSN_LIVE_VALID_P (temp) = true;
3162 temp = PREV_INSN (temp);
3165 /* Also put it in a BB. */
3166 if (sel_bb_head_p (insn))
3168 basic_block bb = BLOCK_FOR_INSN (insn);
3170 COPY_REG_SET (BB_LV_SET (bb), lv);
3171 BB_LV_SET_VALID_P (bb) = true;
3174 /* We return LV to the pool, but will not clear it there. Thus we can
3175 legimatelly use LV till the next use of regset_pool_get (). */
3176 return_regset_to_pool (lv);
3177 return lv;
3180 /* Update liveness sets for INSN. */
3181 static inline void
3182 update_liveness_on_insn (rtx_insn *insn)
3184 ignore_first = true;
3185 compute_live (insn);
3188 /* Compute liveness below INSN and write it into REGS. */
3189 static inline void
3190 compute_live_below_insn (rtx_insn *insn, regset regs)
3192 rtx_insn *succ;
3193 succ_iterator si;
3195 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3196 IOR_REG_SET (regs, compute_live (succ));
3199 /* Update the data gathered in av and lv sets starting from INSN. */
3200 static void
3201 update_data_sets (rtx_insn *insn)
3203 update_liveness_on_insn (insn);
3204 if (sel_bb_head_p (insn))
3206 gcc_assert (AV_LEVEL (insn) != 0);
3207 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3208 compute_av_set (insn, NULL, 0, 0);
3213 /* Helper for move_op () and find_used_regs ().
3214 Return speculation type for which a check should be created on the place
3215 of INSN. EXPR is one of the original ops we are searching for. */
3216 static ds_t
3217 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3219 ds_t to_check_ds;
3220 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3222 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3224 if (targetm.sched.get_insn_checked_ds)
3225 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3227 if (spec_info != NULL
3228 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3229 already_checked_ds |= BEGIN_CONTROL;
3231 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3233 to_check_ds &= ~already_checked_ds;
3235 return to_check_ds;
3238 /* Find the set of registers that are unavailable for storing expres
3239 while moving ORIG_OPS up on the path starting from INSN due to
3240 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3242 All the original operations found during the traversal are saved in the
3243 ORIGINAL_INSNS list.
3245 REG_RENAME_P denotes the set of hardware registers that
3246 can not be used with renaming due to the register class restrictions,
3247 mode restrictions and other (the register we'll choose should be
3248 compatible class with the original uses, shouldn't be in call_used_regs,
3249 should be HARD_REGNO_RENAME_OK etc).
3251 Returns TRUE if we've found all original insns, FALSE otherwise.
3253 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3254 to traverse the code motion paths. This helper function finds registers
3255 that are not available for storing expres while moving ORIG_OPS up on the
3256 path starting from INSN. A register considered as used on the moving path,
3257 if one of the following conditions is not satisfied:
3259 (1) a register not set or read on any path from xi to an instance of
3260 the original operation,
3261 (2) not among the live registers of the point immediately following the
3262 first original operation on a given downward path, except for the
3263 original target register of the operation,
3264 (3) not live on the other path of any conditional branch that is passed
3265 by the operation, in case original operations are not present on
3266 both paths of the conditional branch.
3268 All the original operations found during the traversal are saved in the
3269 ORIGINAL_INSNS list.
3271 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3272 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3273 to unavailable hard regs at the point original operation is found. */
3275 static bool
3276 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3277 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3279 def_list_iterator i;
3280 def_t def;
3281 int res;
3282 bool needs_spec_check_p = false;
3283 expr_t expr;
3284 av_set_iterator expr_iter;
3285 struct fur_static_params sparams;
3286 struct cmpd_local_params lparams;
3288 /* We haven't visited any blocks yet. */
3289 bitmap_clear (code_motion_visited_blocks);
3291 /* Init parameters for code_motion_path_driver. */
3292 sparams.crosses_call = false;
3293 sparams.original_insns = original_insns;
3294 sparams.used_regs = used_regs;
3296 /* Set the appropriate hooks and data. */
3297 code_motion_path_driver_info = &fur_hooks;
3299 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3301 reg_rename_p->crosses_call |= sparams.crosses_call;
3303 gcc_assert (res == 1);
3304 gcc_assert (original_insns && *original_insns);
3306 /* ??? We calculate whether an expression needs a check when computing
3307 av sets. This information is not as precise as it could be due to
3308 merging this bit in merge_expr. We can do better in find_used_regs,
3309 but we want to avoid multiple traversals of the same code motion
3310 paths. */
3311 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3312 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3314 /* Mark hardware regs in REG_RENAME_P that are not suitable
3315 for renaming expr in INSN due to hardware restrictions (register class,
3316 modes compatibility etc). */
3317 FOR_EACH_DEF (def, i, *original_insns)
3319 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3321 if (VINSN_SEPARABLE_P (vinsn))
3322 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3324 /* Do not allow clobbering of ld.[sa] address in case some of the
3325 original operations need a check. */
3326 if (needs_spec_check_p)
3327 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3330 return true;
3334 /* Functions to choose the best insn from available ones. */
3336 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3337 static int
3338 sel_target_adjust_priority (expr_t expr)
3340 int priority = EXPR_PRIORITY (expr);
3341 int new_priority;
3343 if (targetm.sched.adjust_priority)
3344 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3345 else
3346 new_priority = priority;
3348 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3349 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3351 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3353 if (sched_verbose >= 4)
3354 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3355 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3356 EXPR_PRIORITY_ADJ (expr), new_priority);
3358 return new_priority;
3361 /* Rank two available exprs for schedule. Never return 0 here. */
3362 static int
3363 sel_rank_for_schedule (const void *x, const void *y)
3365 expr_t tmp = *(const expr_t *) y;
3366 expr_t tmp2 = *(const expr_t *) x;
3367 insn_t tmp_insn, tmp2_insn;
3368 vinsn_t tmp_vinsn, tmp2_vinsn;
3369 int val;
3371 tmp_vinsn = EXPR_VINSN (tmp);
3372 tmp2_vinsn = EXPR_VINSN (tmp2);
3373 tmp_insn = EXPR_INSN_RTX (tmp);
3374 tmp2_insn = EXPR_INSN_RTX (tmp2);
3376 /* Schedule debug insns as early as possible. */
3377 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3378 return -1;
3379 else if (DEBUG_INSN_P (tmp2_insn))
3380 return 1;
3382 /* Prefer SCHED_GROUP_P insns to any others. */
3383 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3385 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3386 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3388 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3389 cannot be cloned. */
3390 if (VINSN_UNIQUE_P (tmp2_vinsn))
3391 return 1;
3392 return -1;
3395 /* Discourage scheduling of speculative checks. */
3396 val = (sel_insn_is_speculation_check (tmp_insn)
3397 - sel_insn_is_speculation_check (tmp2_insn));
3398 if (val)
3399 return val;
3401 /* Prefer not scheduled insn over scheduled one. */
3402 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3404 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3405 if (val)
3406 return val;
3409 /* Prefer jump over non-jump instruction. */
3410 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3411 return -1;
3412 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3413 return 1;
3415 /* Prefer an expr with greater priority. */
3416 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3418 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3419 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3421 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3423 else
3424 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3425 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3426 if (val)
3427 return val;
3429 if (spec_info != NULL && spec_info->mask != 0)
3430 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3432 ds_t ds1, ds2;
3433 dw_t dw1, dw2;
3434 int dw;
3436 ds1 = EXPR_SPEC_DONE_DS (tmp);
3437 if (ds1)
3438 dw1 = ds_weak (ds1);
3439 else
3440 dw1 = NO_DEP_WEAK;
3442 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3443 if (ds2)
3444 dw2 = ds_weak (ds2);
3445 else
3446 dw2 = NO_DEP_WEAK;
3448 dw = dw2 - dw1;
3449 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3450 return dw;
3453 /* Prefer an old insn to a bookkeeping insn. */
3454 if (INSN_UID (tmp_insn) < first_emitted_uid
3455 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3456 return -1;
3457 if (INSN_UID (tmp_insn) >= first_emitted_uid
3458 && INSN_UID (tmp2_insn) < first_emitted_uid)
3459 return 1;
3461 /* Prefer an insn with smaller UID, as a last resort.
3462 We can't safely use INSN_LUID as it is defined only for those insns
3463 that are in the stream. */
3464 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3467 /* Filter out expressions from av set pointed to by AV_PTR
3468 that are pipelined too many times. */
3469 static void
3470 process_pipelined_exprs (av_set_t *av_ptr)
3472 expr_t expr;
3473 av_set_iterator si;
3475 /* Don't pipeline already pipelined code as that would increase
3476 number of unnecessary register moves. */
3477 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3479 if (EXPR_SCHED_TIMES (expr)
3480 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3481 av_set_iter_remove (&si);
3485 /* Filter speculative insns from AV_PTR if we don't want them. */
3486 static void
3487 process_spec_exprs (av_set_t *av_ptr)
3489 expr_t expr;
3490 av_set_iterator si;
3492 if (spec_info == NULL)
3493 return;
3495 /* Scan *AV_PTR to find out if we want to consider speculative
3496 instructions for scheduling. */
3497 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3499 ds_t ds;
3501 ds = EXPR_SPEC_DONE_DS (expr);
3503 /* The probability of a success is too low - don't speculate. */
3504 if ((ds & SPECULATIVE)
3505 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3506 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3507 || (pipelining_p && false
3508 && (ds & DATA_SPEC)
3509 && (ds & CONTROL_SPEC))))
3511 av_set_iter_remove (&si);
3512 continue;
3517 /* Search for any use-like insns in AV_PTR and decide on scheduling
3518 them. Return one when found, and NULL otherwise.
3519 Note that we check here whether a USE could be scheduled to avoid
3520 an infinite loop later. */
3521 static expr_t
3522 process_use_exprs (av_set_t *av_ptr)
3524 expr_t expr;
3525 av_set_iterator si;
3526 bool uses_present_p = false;
3527 bool try_uses_p = true;
3529 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3531 /* This will also initialize INSN_CODE for later use. */
3532 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3534 /* If we have a USE in *AV_PTR that was not scheduled yet,
3535 do so because it will do good only. */
3536 if (EXPR_SCHED_TIMES (expr) <= 0)
3538 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3539 return expr;
3541 av_set_iter_remove (&si);
3543 else
3545 gcc_assert (pipelining_p);
3547 uses_present_p = true;
3550 else
3551 try_uses_p = false;
3554 if (uses_present_p)
3556 /* If we don't want to schedule any USEs right now and we have some
3557 in *AV_PTR, remove them, else just return the first one found. */
3558 if (!try_uses_p)
3560 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3561 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3562 av_set_iter_remove (&si);
3564 else
3566 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3568 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3570 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3571 return expr;
3573 av_set_iter_remove (&si);
3578 return NULL;
3581 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3582 EXPR's history of changes. */
3583 static bool
3584 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3586 vinsn_t vinsn, expr_vinsn;
3587 int n;
3588 unsigned i;
3590 /* Start with checking expr itself and then proceed with all the old forms
3591 of expr taken from its history vector. */
3592 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3593 expr_vinsn;
3594 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3595 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3596 : NULL))
3597 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3598 if (VINSN_SEPARABLE_P (vinsn))
3600 if (vinsn_equal_p (vinsn, expr_vinsn))
3601 return true;
3603 else
3605 /* For non-separable instructions, the blocking insn can have
3606 another pattern due to substitution, and we can't choose
3607 different register as in the above case. Check all registers
3608 being written instead. */
3609 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3610 VINSN_REG_SETS (expr_vinsn)))
3611 return true;
3614 return false;
3617 #ifdef ENABLE_CHECKING
3618 /* Return true if either of expressions from ORIG_OPS can be blocked
3619 by previously created bookkeeping code. STATIC_PARAMS points to static
3620 parameters of move_op. */
3621 static bool
3622 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3624 expr_t expr;
3625 av_set_iterator iter;
3626 moveop_static_params_p sparams;
3628 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3629 created while scheduling on another fence. */
3630 FOR_EACH_EXPR (expr, iter, orig_ops)
3631 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3632 return true;
3634 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3635 sparams = (moveop_static_params_p) static_params;
3637 /* Expressions can be also blocked by bookkeeping created during current
3638 move_op. */
3639 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3640 FOR_EACH_EXPR (expr, iter, orig_ops)
3641 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3642 return true;
3644 /* Expressions in ORIG_OPS may have wrong destination register due to
3645 renaming. Check with the right register instead. */
3646 if (sparams->dest && REG_P (sparams->dest))
3648 rtx reg = sparams->dest;
3649 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3651 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3652 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3653 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3654 return true;
3657 return false;
3659 #endif
3661 /* Clear VINSN_VEC and detach vinsns. */
3662 static void
3663 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3665 unsigned len = vinsn_vec->length ();
3666 if (len > 0)
3668 vinsn_t vinsn;
3669 int n;
3671 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3672 vinsn_detach (vinsn);
3673 vinsn_vec->block_remove (0, len);
3677 /* Add the vinsn of EXPR to the VINSN_VEC. */
3678 static void
3679 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3681 vinsn_attach (EXPR_VINSN (expr));
3682 vinsn_vec->safe_push (EXPR_VINSN (expr));
3685 /* Free the vector representing blocked expressions. */
3686 static void
3687 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3689 vinsn_vec.release ();
3692 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3694 void sel_add_to_insn_priority (rtx insn, int amount)
3696 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3698 if (sched_verbose >= 2)
3699 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3700 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3701 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3704 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3705 true if there is something to schedule. BNDS and FENCE are current
3706 boundaries and fence, respectively. If we need to stall for some cycles
3707 before an expr from AV would become available, write this number to
3708 *PNEED_STALL. */
3709 static bool
3710 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3711 int *pneed_stall)
3713 av_set_iterator si;
3714 expr_t expr;
3715 int sched_next_worked = 0, stalled, n;
3716 static int av_max_prio, est_ticks_till_branch;
3717 int min_need_stall = -1;
3718 deps_t dc = BND_DC (BLIST_BND (bnds));
3720 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3721 already scheduled. */
3722 if (av == NULL)
3723 return false;
3725 /* Empty vector from the previous stuff. */
3726 if (vec_av_set.length () > 0)
3727 vec_av_set.block_remove (0, vec_av_set.length ());
3729 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3730 for each insn. */
3731 gcc_assert (vec_av_set.is_empty ());
3732 FOR_EACH_EXPR (expr, si, av)
3734 vec_av_set.safe_push (expr);
3736 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3738 /* Adjust priority using target backend hook. */
3739 sel_target_adjust_priority (expr);
3742 /* Sort the vector. */
3743 vec_av_set.qsort (sel_rank_for_schedule);
3745 /* We record maximal priority of insns in av set for current instruction
3746 group. */
3747 if (FENCE_STARTS_CYCLE_P (fence))
3748 av_max_prio = est_ticks_till_branch = INT_MIN;
3750 /* Filter out inappropriate expressions. Loop's direction is reversed to
3751 visit "best" instructions first. We assume that vec::unordered_remove
3752 moves last element in place of one being deleted. */
3753 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3755 expr_t expr = vec_av_set[n];
3756 insn_t insn = EXPR_INSN_RTX (expr);
3757 signed char target_available;
3758 bool is_orig_reg_p = true;
3759 int need_cycles, new_prio;
3760 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3762 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3763 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3765 vec_av_set.unordered_remove (n);
3766 continue;
3769 /* Set number of sched_next insns (just in case there
3770 could be several). */
3771 if (FENCE_SCHED_NEXT (fence))
3772 sched_next_worked++;
3774 /* Check all liveness requirements and try renaming.
3775 FIXME: try to minimize calls to this. */
3776 target_available = EXPR_TARGET_AVAILABLE (expr);
3778 /* If insn was already scheduled on the current fence,
3779 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3780 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3781 && !fence_insn_p)
3782 target_available = -1;
3784 /* If the availability of the EXPR is invalidated by the insertion of
3785 bookkeeping earlier, make sure that we won't choose this expr for
3786 scheduling if it's not separable, and if it is separable, then
3787 we have to recompute the set of available registers for it. */
3788 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3790 vec_av_set.unordered_remove (n);
3791 if (sched_verbose >= 4)
3792 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3793 INSN_UID (insn));
3794 continue;
3797 if (target_available == true)
3799 /* Do nothing -- we can use an existing register. */
3800 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3802 else if (/* Non-separable instruction will never
3803 get another register. */
3804 (target_available == false
3805 && !EXPR_SEPARABLE_P (expr))
3806 /* Don't try to find a register for low-priority expression. */
3807 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3808 /* ??? FIXME: Don't try to rename data speculation. */
3809 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3810 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3812 vec_av_set.unordered_remove (n);
3813 if (sched_verbose >= 4)
3814 sel_print ("Expr %d has no suitable target register\n",
3815 INSN_UID (insn));
3817 /* A fence insn should not get here. */
3818 gcc_assert (!fence_insn_p);
3819 continue;
3822 /* At this point a fence insn should always be available. */
3823 gcc_assert (!fence_insn_p
3824 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3826 /* Filter expressions that need to be renamed or speculated when
3827 pipelining, because compensating register copies or speculation
3828 checks are likely to be placed near the beginning of the loop,
3829 causing a stall. */
3830 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3831 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3833 /* Estimation of number of cycles until loop branch for
3834 renaming/speculation to be successful. */
3835 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3837 if ((int) current_loop_nest->ninsns < 9)
3839 vec_av_set.unordered_remove (n);
3840 if (sched_verbose >= 4)
3841 sel_print ("Pipelining expr %d will likely cause stall\n",
3842 INSN_UID (insn));
3843 continue;
3846 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3847 < need_n_ticks_till_branch * issue_rate / 2
3848 && est_ticks_till_branch < need_n_ticks_till_branch)
3850 vec_av_set.unordered_remove (n);
3851 if (sched_verbose >= 4)
3852 sel_print ("Pipelining expr %d will likely cause stall\n",
3853 INSN_UID (insn));
3854 continue;
3858 /* We want to schedule speculation checks as late as possible. Discard
3859 them from av set if there are instructions with higher priority. */
3860 if (sel_insn_is_speculation_check (insn)
3861 && EXPR_PRIORITY (expr) < av_max_prio)
3863 stalled++;
3864 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3865 vec_av_set.unordered_remove (n);
3866 if (sched_verbose >= 4)
3867 sel_print ("Delaying speculation check %d until its first use\n",
3868 INSN_UID (insn));
3869 continue;
3872 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3873 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3874 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3876 /* Don't allow any insns whose data is not yet ready.
3877 Check first whether we've already tried them and failed. */
3878 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3880 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3881 - FENCE_CYCLE (fence));
3882 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3883 est_ticks_till_branch = MAX (est_ticks_till_branch,
3884 EXPR_PRIORITY (expr) + need_cycles);
3886 if (need_cycles > 0)
3888 stalled++;
3889 min_need_stall = (min_need_stall < 0
3890 ? need_cycles
3891 : MIN (min_need_stall, need_cycles));
3892 vec_av_set.unordered_remove (n);
3894 if (sched_verbose >= 4)
3895 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3896 INSN_UID (insn),
3897 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3898 continue;
3902 /* Now resort to dependence analysis to find whether EXPR might be
3903 stalled due to dependencies from FENCE's context. */
3904 need_cycles = tick_check_p (expr, dc, fence);
3905 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3907 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3908 est_ticks_till_branch = MAX (est_ticks_till_branch,
3909 new_prio);
3911 if (need_cycles > 0)
3913 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3915 int new_size = INSN_UID (insn) * 3 / 2;
3917 FENCE_READY_TICKS (fence)
3918 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3919 new_size, FENCE_READY_TICKS_SIZE (fence),
3920 sizeof (int));
3922 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3923 = FENCE_CYCLE (fence) + need_cycles;
3925 stalled++;
3926 min_need_stall = (min_need_stall < 0
3927 ? need_cycles
3928 : MIN (min_need_stall, need_cycles));
3930 vec_av_set.unordered_remove (n);
3932 if (sched_verbose >= 4)
3933 sel_print ("Expr %d is not ready yet until cycle %d\n",
3934 INSN_UID (insn),
3935 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3936 continue;
3939 if (sched_verbose >= 4)
3940 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3941 min_need_stall = 0;
3944 /* Clear SCHED_NEXT. */
3945 if (FENCE_SCHED_NEXT (fence))
3947 gcc_assert (sched_next_worked == 1);
3948 FENCE_SCHED_NEXT (fence) = NULL;
3951 /* No need to stall if this variable was not initialized. */
3952 if (min_need_stall < 0)
3953 min_need_stall = 0;
3955 if (vec_av_set.is_empty ())
3957 /* We need to set *pneed_stall here, because later we skip this code
3958 when ready list is empty. */
3959 *pneed_stall = min_need_stall;
3960 return false;
3962 else
3963 gcc_assert (min_need_stall == 0);
3965 /* Sort the vector. */
3966 vec_av_set.qsort (sel_rank_for_schedule);
3968 if (sched_verbose >= 4)
3970 sel_print ("Total ready exprs: %d, stalled: %d\n",
3971 vec_av_set.length (), stalled);
3972 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3973 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3974 dump_expr (expr);
3975 sel_print ("\n");
3978 *pneed_stall = 0;
3979 return true;
3982 /* Convert a vectored and sorted av set to the ready list that
3983 the rest of the backend wants to see. */
3984 static void
3985 convert_vec_av_set_to_ready (void)
3987 int n;
3988 expr_t expr;
3990 /* Allocate and fill the ready list from the sorted vector. */
3991 ready.n_ready = vec_av_set.length ();
3992 ready.first = ready.n_ready - 1;
3994 gcc_assert (ready.n_ready > 0);
3996 if (ready.n_ready > max_issue_size)
3998 max_issue_size = ready.n_ready;
3999 sched_extend_ready_list (ready.n_ready);
4002 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
4004 vinsn_t vi = EXPR_VINSN (expr);
4005 insn_t insn = VINSN_INSN_RTX (vi);
4007 ready_try[n] = 0;
4008 ready.vec[n] = insn;
4012 /* Initialize ready list from *AV_PTR for the max_issue () call.
4013 If any unrecognizable insn found in *AV_PTR, return it (and skip
4014 max_issue). BND and FENCE are current boundary and fence,
4015 respectively. If we need to stall for some cycles before an expr
4016 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4017 static expr_t
4018 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4019 int *pneed_stall)
4021 expr_t expr;
4023 /* We do not support multiple boundaries per fence. */
4024 gcc_assert (BLIST_NEXT (bnds) == NULL);
4026 /* Process expressions required special handling, i.e. pipelined,
4027 speculative and recog() < 0 expressions first. */
4028 process_pipelined_exprs (av_ptr);
4029 process_spec_exprs (av_ptr);
4031 /* A USE could be scheduled immediately. */
4032 expr = process_use_exprs (av_ptr);
4033 if (expr)
4035 *pneed_stall = 0;
4036 return expr;
4039 /* Turn the av set to a vector for sorting. */
4040 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4042 ready.n_ready = 0;
4043 return NULL;
4046 /* Build the final ready list. */
4047 convert_vec_av_set_to_ready ();
4048 return NULL;
4051 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4052 static bool
4053 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4055 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4056 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4057 : FENCE_CYCLE (fence) - 1;
4058 bool res = false;
4059 int sort_p = 0;
4061 if (!targetm.sched.dfa_new_cycle)
4062 return false;
4064 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4066 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4067 insn, last_scheduled_cycle,
4068 FENCE_CYCLE (fence), &sort_p))
4070 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4071 advance_one_cycle (fence);
4072 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4073 res = true;
4076 return res;
4079 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4080 we can issue. FENCE is the current fence. */
4081 static int
4082 invoke_reorder_hooks (fence_t fence)
4084 int issue_more;
4085 bool ran_hook = false;
4087 /* Call the reorder hook at the beginning of the cycle, and call
4088 the reorder2 hook in the middle of the cycle. */
4089 if (FENCE_ISSUED_INSNS (fence) == 0)
4091 if (targetm.sched.reorder
4092 && !SCHED_GROUP_P (ready_element (&ready, 0))
4093 && ready.n_ready > 1)
4095 /* Don't give reorder the most prioritized insn as it can break
4096 pipelining. */
4097 if (pipelining_p)
4098 --ready.n_ready;
4100 issue_more
4101 = targetm.sched.reorder (sched_dump, sched_verbose,
4102 ready_lastpos (&ready),
4103 &ready.n_ready, FENCE_CYCLE (fence));
4105 if (pipelining_p)
4106 ++ready.n_ready;
4108 ran_hook = true;
4110 else
4111 /* Initialize can_issue_more for variable_issue. */
4112 issue_more = issue_rate;
4114 else if (targetm.sched.reorder2
4115 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4117 if (ready.n_ready == 1)
4118 issue_more =
4119 targetm.sched.reorder2 (sched_dump, sched_verbose,
4120 ready_lastpos (&ready),
4121 &ready.n_ready, FENCE_CYCLE (fence));
4122 else
4124 if (pipelining_p)
4125 --ready.n_ready;
4127 issue_more =
4128 targetm.sched.reorder2 (sched_dump, sched_verbose,
4129 ready.n_ready
4130 ? ready_lastpos (&ready) : NULL,
4131 &ready.n_ready, FENCE_CYCLE (fence));
4133 if (pipelining_p)
4134 ++ready.n_ready;
4137 ran_hook = true;
4139 else
4140 issue_more = FENCE_ISSUE_MORE (fence);
4142 /* Ensure that ready list and vec_av_set are in line with each other,
4143 i.e. vec_av_set[i] == ready_element (&ready, i). */
4144 if (issue_more && ran_hook)
4146 int i, j, n;
4147 rtx_insn **arr = ready.vec;
4148 expr_t *vec = vec_av_set.address ();
4150 for (i = 0, n = ready.n_ready; i < n; i++)
4151 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4153 expr_t tmp;
4155 for (j = i; j < n; j++)
4156 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4157 break;
4158 gcc_assert (j < n);
4160 tmp = vec[i];
4161 vec[i] = vec[j];
4162 vec[j] = tmp;
4166 return issue_more;
4169 /* Return an EXPR corresponding to INDEX element of ready list, if
4170 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4171 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4172 ready.vec otherwise. */
4173 static inline expr_t
4174 find_expr_for_ready (int index, bool follow_ready_element)
4176 expr_t expr;
4177 int real_index;
4179 real_index = follow_ready_element ? ready.first - index : index;
4181 expr = vec_av_set[real_index];
4182 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4184 return expr;
4187 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4188 of such insns found. */
4189 static int
4190 invoke_dfa_lookahead_guard (void)
4192 int i, n;
4193 bool have_hook
4194 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4196 if (sched_verbose >= 2)
4197 sel_print ("ready after reorder: ");
4199 for (i = 0, n = 0; i < ready.n_ready; i++)
4201 expr_t expr;
4202 insn_t insn;
4203 int r;
4205 /* In this loop insn is Ith element of the ready list given by
4206 ready_element, not Ith element of ready.vec. */
4207 insn = ready_element (&ready, i);
4209 if (! have_hook || i == 0)
4210 r = 0;
4211 else
4212 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4214 gcc_assert (INSN_CODE (insn) >= 0);
4216 /* Only insns with ready_try = 0 can get here
4217 from fill_ready_list. */
4218 gcc_assert (ready_try [i] == 0);
4219 ready_try[i] = r;
4220 if (!r)
4221 n++;
4223 expr = find_expr_for_ready (i, true);
4225 if (sched_verbose >= 2)
4227 dump_vinsn (EXPR_VINSN (expr));
4228 sel_print (":%d; ", ready_try[i]);
4232 if (sched_verbose >= 2)
4233 sel_print ("\n");
4234 return n;
4237 /* Calculate the number of privileged insns and return it. */
4238 static int
4239 calculate_privileged_insns (void)
4241 expr_t cur_expr, min_spec_expr = NULL;
4242 int privileged_n = 0, i;
4244 for (i = 0; i < ready.n_ready; i++)
4246 if (ready_try[i])
4247 continue;
4249 if (! min_spec_expr)
4250 min_spec_expr = find_expr_for_ready (i, true);
4252 cur_expr = find_expr_for_ready (i, true);
4254 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4255 break;
4257 ++privileged_n;
4260 if (i == ready.n_ready)
4261 privileged_n = 0;
4263 if (sched_verbose >= 2)
4264 sel_print ("privileged_n: %d insns with SPEC %d\n",
4265 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4266 return privileged_n;
4269 /* Call the rest of the hooks after the choice was made. Return
4270 the number of insns that still can be issued given that the current
4271 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4272 and the insn chosen for scheduling, respectively. */
4273 static int
4274 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4276 gcc_assert (INSN_P (best_insn));
4278 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4279 sel_dfa_new_cycle (best_insn, fence);
4281 if (targetm.sched.variable_issue)
4283 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4284 issue_more =
4285 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4286 issue_more);
4287 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4289 else if (GET_CODE (PATTERN (best_insn)) != USE
4290 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4291 issue_more--;
4293 return issue_more;
4296 /* Estimate the cost of issuing INSN on DFA state STATE. */
4297 static int
4298 estimate_insn_cost (rtx_insn *insn, state_t state)
4300 static state_t temp = NULL;
4301 int cost;
4303 if (!temp)
4304 temp = xmalloc (dfa_state_size);
4306 memcpy (temp, state, dfa_state_size);
4307 cost = state_transition (temp, insn);
4309 if (cost < 0)
4310 return 0;
4311 else if (cost == 0)
4312 return 1;
4313 return cost;
4316 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4317 This function properly handles ASMs, USEs etc. */
4318 static int
4319 get_expr_cost (expr_t expr, fence_t fence)
4321 rtx_insn *insn = EXPR_INSN_RTX (expr);
4323 if (recog_memoized (insn) < 0)
4325 if (!FENCE_STARTS_CYCLE_P (fence)
4326 && INSN_ASM_P (insn))
4327 /* This is asm insn which is tryed to be issued on the
4328 cycle not first. Issue it on the next cycle. */
4329 return 1;
4330 else
4331 /* A USE insn, or something else we don't need to
4332 understand. We can't pass these directly to
4333 state_transition because it will trigger a
4334 fatal error for unrecognizable insns. */
4335 return 0;
4337 else
4338 return estimate_insn_cost (insn, FENCE_STATE (fence));
4341 /* Find the best insn for scheduling, either via max_issue or just take
4342 the most prioritized available. */
4343 static int
4344 choose_best_insn (fence_t fence, int privileged_n, int *index)
4346 int can_issue = 0;
4348 if (dfa_lookahead > 0)
4350 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4351 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4352 can_issue = max_issue (&ready, privileged_n,
4353 FENCE_STATE (fence), true, index);
4354 if (sched_verbose >= 2)
4355 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4356 can_issue, FENCE_ISSUED_INSNS (fence));
4358 else
4360 /* We can't use max_issue; just return the first available element. */
4361 int i;
4363 for (i = 0; i < ready.n_ready; i++)
4365 expr_t expr = find_expr_for_ready (i, true);
4367 if (get_expr_cost (expr, fence) < 1)
4369 can_issue = can_issue_more;
4370 *index = i;
4372 if (sched_verbose >= 2)
4373 sel_print ("using %dth insn from the ready list\n", i + 1);
4375 break;
4379 if (i == ready.n_ready)
4381 can_issue = 0;
4382 *index = -1;
4386 return can_issue;
4389 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4390 BNDS and FENCE are current boundaries and scheduling fence respectively.
4391 Return the expr found and NULL if nothing can be issued atm.
4392 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4393 static expr_t
4394 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4395 int *pneed_stall)
4397 expr_t best;
4399 /* Choose the best insn for scheduling via:
4400 1) sorting the ready list based on priority;
4401 2) calling the reorder hook;
4402 3) calling max_issue. */
4403 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4404 if (best == NULL && ready.n_ready > 0)
4406 int privileged_n, index;
4408 can_issue_more = invoke_reorder_hooks (fence);
4409 if (can_issue_more > 0)
4411 /* Try choosing the best insn until we find one that is could be
4412 scheduled due to liveness restrictions on its destination register.
4413 In the future, we'd like to choose once and then just probe insns
4414 in the order of their priority. */
4415 invoke_dfa_lookahead_guard ();
4416 privileged_n = calculate_privileged_insns ();
4417 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4418 if (can_issue_more)
4419 best = find_expr_for_ready (index, true);
4421 /* We had some available insns, so if we can't issue them,
4422 we have a stall. */
4423 if (can_issue_more == 0)
4425 best = NULL;
4426 *pneed_stall = 1;
4430 if (best != NULL)
4432 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4433 can_issue_more);
4434 if (targetm.sched.variable_issue
4435 && can_issue_more == 0)
4436 *pneed_stall = 1;
4439 if (sched_verbose >= 2)
4441 if (best != NULL)
4443 sel_print ("Best expression (vliw form): ");
4444 dump_expr (best);
4445 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4447 else
4448 sel_print ("No best expr found!\n");
4451 return best;
4455 /* Functions that implement the core of the scheduler. */
4458 /* Emit an instruction from EXPR with SEQNO and VINSN after
4459 PLACE_TO_INSERT. */
4460 static insn_t
4461 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4462 insn_t place_to_insert)
4464 /* This assert fails when we have identical instructions
4465 one of which dominates the other. In this case move_op ()
4466 finds the first instruction and doesn't search for second one.
4467 The solution would be to compute av_set after the first found
4468 insn and, if insn present in that set, continue searching.
4469 For now we workaround this issue in move_op. */
4470 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4472 if (EXPR_WAS_RENAMED (expr))
4474 unsigned regno = expr_dest_regno (expr);
4476 if (HARD_REGISTER_NUM_P (regno))
4478 df_set_regs_ever_live (regno, true);
4479 reg_rename_tick[regno] = ++reg_rename_this_tick;
4483 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4484 place_to_insert);
4487 /* Return TRUE if BB can hold bookkeeping code. */
4488 static bool
4489 block_valid_for_bookkeeping_p (basic_block bb)
4491 insn_t bb_end = BB_END (bb);
4493 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4494 return false;
4496 if (INSN_P (bb_end))
4498 if (INSN_SCHED_TIMES (bb_end) > 0)
4499 return false;
4501 else
4502 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4504 return true;
4507 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4508 into E2->dest, except from E1->src (there may be a sequence of empty basic
4509 blocks between E1->src and E2->dest). Return found block, or NULL if new
4510 one must be created. If LAX holds, don't assume there is a simple path
4511 from E1->src to E2->dest. */
4512 static basic_block
4513 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4515 basic_block candidate_block = NULL;
4516 edge e;
4518 /* Loop over edges from E1 to E2, inclusive. */
4519 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4520 EDGE_SUCC (e->dest, 0))
4522 if (EDGE_COUNT (e->dest->preds) == 2)
4524 if (candidate_block == NULL)
4525 candidate_block = (EDGE_PRED (e->dest, 0) == e
4526 ? EDGE_PRED (e->dest, 1)->src
4527 : EDGE_PRED (e->dest, 0)->src);
4528 else
4529 /* Found additional edge leading to path from e1 to e2
4530 from aside. */
4531 return NULL;
4533 else if (EDGE_COUNT (e->dest->preds) > 2)
4534 /* Several edges leading to path from e1 to e2 from aside. */
4535 return NULL;
4537 if (e == e2)
4538 return ((!lax || candidate_block)
4539 && block_valid_for_bookkeeping_p (candidate_block)
4540 ? candidate_block
4541 : NULL);
4543 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4544 return NULL;
4547 if (lax)
4548 return NULL;
4550 gcc_unreachable ();
4553 /* Create new basic block for bookkeeping code for path(s) incoming into
4554 E2->dest, except from E1->src. Return created block. */
4555 static basic_block
4556 create_block_for_bookkeeping (edge e1, edge e2)
4558 basic_block new_bb, bb = e2->dest;
4560 /* Check that we don't spoil the loop structure. */
4561 if (current_loop_nest)
4563 basic_block latch = current_loop_nest->latch;
4565 /* We do not split header. */
4566 gcc_assert (e2->dest != current_loop_nest->header);
4568 /* We do not redirect the only edge to the latch block. */
4569 gcc_assert (e1->dest != latch
4570 || !single_pred_p (latch)
4571 || e1 != single_pred_edge (latch));
4574 /* Split BB to insert BOOK_INSN there. */
4575 new_bb = sched_split_block (bb, NULL);
4577 /* Move note_list from the upper bb. */
4578 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4579 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4580 BB_NOTE_LIST (bb) = NULL;
4582 gcc_assert (e2->dest == bb);
4584 /* Skip block for bookkeeping copy when leaving E1->src. */
4585 if (e1->flags & EDGE_FALLTHRU)
4586 sel_redirect_edge_and_branch_force (e1, new_bb);
4587 else
4588 sel_redirect_edge_and_branch (e1, new_bb);
4590 gcc_assert (e1->dest == new_bb);
4591 gcc_assert (sel_bb_empty_p (bb));
4593 /* To keep basic block numbers in sync between debug and non-debug
4594 compilations, we have to rotate blocks here. Consider that we
4595 started from (a,b)->d, (c,d)->e, and d contained only debug
4596 insns. It would have been removed before if the debug insns
4597 weren't there, so we'd have split e rather than d. So what we do
4598 now is to swap the block numbers of new_bb and
4599 single_succ(new_bb) == e, so that the insns that were in e before
4600 get the new block number. */
4602 if (MAY_HAVE_DEBUG_INSNS)
4604 basic_block succ;
4605 insn_t insn = sel_bb_head (new_bb);
4606 insn_t last;
4608 if (DEBUG_INSN_P (insn)
4609 && single_succ_p (new_bb)
4610 && (succ = single_succ (new_bb))
4611 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4612 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4614 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4615 insn = NEXT_INSN (insn);
4617 if (insn == last)
4619 sel_global_bb_info_def gbi;
4620 sel_region_bb_info_def rbi;
4621 int i;
4623 if (sched_verbose >= 2)
4624 sel_print ("Swapping block ids %i and %i\n",
4625 new_bb->index, succ->index);
4627 i = new_bb->index;
4628 new_bb->index = succ->index;
4629 succ->index = i;
4631 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4632 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4634 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4635 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4636 sizeof (gbi));
4637 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4639 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4640 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4641 sizeof (rbi));
4642 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4644 i = BLOCK_TO_BB (new_bb->index);
4645 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4646 BLOCK_TO_BB (succ->index) = i;
4648 i = CONTAINING_RGN (new_bb->index);
4649 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4650 CONTAINING_RGN (succ->index) = i;
4652 for (i = 0; i < current_nr_blocks; i++)
4653 if (BB_TO_BLOCK (i) == succ->index)
4654 BB_TO_BLOCK (i) = new_bb->index;
4655 else if (BB_TO_BLOCK (i) == new_bb->index)
4656 BB_TO_BLOCK (i) = succ->index;
4658 FOR_BB_INSNS (new_bb, insn)
4659 if (INSN_P (insn))
4660 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4662 FOR_BB_INSNS (succ, insn)
4663 if (INSN_P (insn))
4664 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4666 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4667 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4669 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4670 && LABEL_P (BB_HEAD (succ)));
4672 if (sched_verbose >= 4)
4673 sel_print ("Swapping code labels %i and %i\n",
4674 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4675 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4677 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4678 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4679 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4680 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4685 return bb;
4688 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4689 into E2->dest, except from E1->src. If the returned insn immediately
4690 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4691 static insn_t
4692 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4694 insn_t place_to_insert;
4695 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4696 create new basic block, but insert bookkeeping there. */
4697 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4699 if (book_block)
4701 place_to_insert = BB_END (book_block);
4703 /* Don't use a block containing only debug insns for
4704 bookkeeping, this causes scheduling differences between debug
4705 and non-debug compilations, for the block would have been
4706 removed already. */
4707 if (DEBUG_INSN_P (place_to_insert))
4709 rtx_insn *insn = sel_bb_head (book_block);
4711 while (insn != place_to_insert &&
4712 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4713 insn = NEXT_INSN (insn);
4715 if (insn == place_to_insert)
4716 book_block = NULL;
4720 if (!book_block)
4722 book_block = create_block_for_bookkeeping (e1, e2);
4723 place_to_insert = BB_END (book_block);
4724 if (sched_verbose >= 9)
4725 sel_print ("New block is %i, split from bookkeeping block %i\n",
4726 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4728 else
4730 if (sched_verbose >= 9)
4731 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4734 *fence_to_rewind = NULL;
4735 /* If basic block ends with a jump, insert bookkeeping code right before it.
4736 Notice if we are crossing a fence when taking PREV_INSN. */
4737 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4739 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4740 place_to_insert = PREV_INSN (place_to_insert);
4743 return place_to_insert;
4746 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4747 for JOIN_POINT. */
4748 static int
4749 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4751 int seqno;
4752 rtx next;
4754 /* Check if we are about to insert bookkeeping copy before a jump, and use
4755 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4756 next = NEXT_INSN (place_to_insert);
4757 if (INSN_P (next)
4758 && JUMP_P (next)
4759 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4761 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4762 seqno = INSN_SEQNO (next);
4764 else if (INSN_SEQNO (join_point) > 0)
4765 seqno = INSN_SEQNO (join_point);
4766 else
4768 seqno = get_seqno_by_preds (place_to_insert);
4770 /* Sometimes the fences can move in such a way that there will be
4771 no instructions with positive seqno around this bookkeeping.
4772 This means that there will be no way to get to it by a regular
4773 fence movement. Never mind because we pick up such pieces for
4774 rescheduling anyways, so any positive value will do for now. */
4775 if (seqno < 0)
4777 gcc_assert (pipelining_p);
4778 seqno = 1;
4782 gcc_assert (seqno > 0);
4783 return seqno;
4786 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4787 NEW_SEQNO to it. Return created insn. */
4788 static insn_t
4789 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4791 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4793 vinsn_t new_vinsn
4794 = create_vinsn_from_insn_rtx (new_insn_rtx,
4795 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4797 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4798 place_to_insert);
4800 INSN_SCHED_TIMES (new_insn) = 0;
4801 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4803 return new_insn;
4806 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4807 E2->dest, except from E1->src (there may be a sequence of empty blocks
4808 between E1->src and E2->dest). Return block containing the copy.
4809 All scheduler data is initialized for the newly created insn. */
4810 static basic_block
4811 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4813 insn_t join_point, place_to_insert, new_insn;
4814 int new_seqno;
4815 bool need_to_exchange_data_sets;
4816 fence_t fence_to_rewind;
4818 if (sched_verbose >= 4)
4819 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4820 e2->dest->index);
4822 join_point = sel_bb_head (e2->dest);
4823 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4824 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4825 need_to_exchange_data_sets
4826 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4828 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4830 if (fence_to_rewind)
4831 FENCE_INSN (fence_to_rewind) = new_insn;
4833 /* When inserting bookkeeping insn in new block, av sets should be
4834 following: old basic block (that now holds bookkeeping) data sets are
4835 the same as was before generation of bookkeeping, and new basic block
4836 (that now hold all other insns of old basic block) data sets are
4837 invalid. So exchange data sets for these basic blocks as sel_split_block
4838 mistakenly exchanges them in this case. Cannot do it earlier because
4839 when single instruction is added to new basic block it should hold NULL
4840 lv_set. */
4841 if (need_to_exchange_data_sets)
4842 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4843 BLOCK_FOR_INSN (join_point));
4845 stat_bookkeeping_copies++;
4846 return BLOCK_FOR_INSN (new_insn);
4849 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4850 on FENCE, but we are unable to copy them. */
4851 static void
4852 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4854 expr_t expr;
4855 av_set_iterator i;
4857 /* An expression does not need bookkeeping if it is available on all paths
4858 from current block to original block and current block dominates
4859 original block. We check availability on all paths by examining
4860 EXPR_SPEC; this is not equivalent, because it may be positive even
4861 if expr is available on all paths (but if expr is not available on
4862 any path, EXPR_SPEC will be positive). */
4864 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4866 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4867 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4868 && (EXPR_SPEC (expr)
4869 || !EXPR_ORIG_BB_INDEX (expr)
4870 || !dominated_by_p (CDI_DOMINATORS,
4871 BASIC_BLOCK_FOR_FN (cfun,
4872 EXPR_ORIG_BB_INDEX (expr)),
4873 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4875 if (sched_verbose >= 4)
4876 sel_print ("Expr %d removed because it would need bookkeeping, which "
4877 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4878 av_set_iter_remove (&i);
4883 /* Moving conditional jump through some instructions.
4885 Consider example:
4887 ... <- current scheduling point
4888 NOTE BASIC BLOCK: <- bb header
4889 (p8) add r14=r14+0x9;;
4890 (p8) mov [r14]=r23
4891 (!p8) jump L1;;
4892 NOTE BASIC BLOCK:
4895 We can schedule jump one cycle earlier, than mov, because they cannot be
4896 executed together as their predicates are mutually exclusive.
4898 This is done in this way: first, new fallthrough basic block is created
4899 after jump (it is always can be done, because there already should be a
4900 fallthrough block, where control flow goes in case of predicate being true -
4901 in our example; otherwise there should be a dependence between those
4902 instructions and jump and we cannot schedule jump right now);
4903 next, all instructions between jump and current scheduling point are moved
4904 to this new block. And the result is this:
4906 NOTE BASIC BLOCK:
4907 (!p8) jump L1 <- current scheduling point
4908 NOTE BASIC BLOCK: <- bb header
4909 (p8) add r14=r14+0x9;;
4910 (p8) mov [r14]=r23
4911 NOTE BASIC BLOCK:
4914 static void
4915 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4917 edge ft_edge;
4918 basic_block block_from, block_next, block_new, block_bnd, bb;
4919 rtx_insn *next, *prev, *link, *head;
4921 block_from = BLOCK_FOR_INSN (insn);
4922 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4923 prev = BND_TO (bnd);
4925 #ifdef ENABLE_CHECKING
4926 /* Moving of jump should not cross any other jumps or beginnings of new
4927 basic blocks. The only exception is when we move a jump through
4928 mutually exclusive insns along fallthru edges. */
4929 if (block_from != block_bnd)
4931 bb = block_from;
4932 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4933 link = PREV_INSN (link))
4935 if (INSN_P (link))
4936 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4937 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4939 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4940 bb = BLOCK_FOR_INSN (link);
4944 #endif
4946 /* Jump is moved to the boundary. */
4947 next = PREV_INSN (insn);
4948 BND_TO (bnd) = insn;
4950 ft_edge = find_fallthru_edge_from (block_from);
4951 block_next = ft_edge->dest;
4952 /* There must be a fallthrough block (or where should go
4953 control flow in case of false jump predicate otherwise?). */
4954 gcc_assert (block_next);
4956 /* Create new empty basic block after source block. */
4957 block_new = sel_split_edge (ft_edge);
4958 gcc_assert (block_new->next_bb == block_next
4959 && block_from->next_bb == block_new);
4961 /* Move all instructions except INSN to BLOCK_NEW. */
4962 bb = block_bnd;
4963 head = BB_HEAD (block_new);
4964 while (bb != block_from->next_bb)
4966 rtx_insn *from, *to;
4967 from = bb == block_bnd ? prev : sel_bb_head (bb);
4968 to = bb == block_from ? next : sel_bb_end (bb);
4970 /* The jump being moved can be the first insn in the block.
4971 In this case we don't have to move anything in this block. */
4972 if (NEXT_INSN (to) != from)
4974 reorder_insns (from, to, head);
4976 for (link = to; link != head; link = PREV_INSN (link))
4977 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4978 head = to;
4981 /* Cleanup possibly empty blocks left. */
4982 block_next = bb->next_bb;
4983 if (bb != block_from)
4984 tidy_control_flow (bb, false);
4985 bb = block_next;
4988 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4989 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4991 gcc_assert (!sel_bb_empty_p (block_from)
4992 && !sel_bb_empty_p (block_new));
4994 /* Update data sets for BLOCK_NEW to represent that INSN and
4995 instructions from the other branch of INSN is no longer
4996 available at BLOCK_NEW. */
4997 BB_AV_LEVEL (block_new) = global_level;
4998 gcc_assert (BB_LV_SET (block_new) == NULL);
4999 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
5000 update_data_sets (sel_bb_head (block_new));
5002 /* INSN is a new basic block header - so prepare its data
5003 structures and update availability and liveness sets. */
5004 update_data_sets (insn);
5006 if (sched_verbose >= 4)
5007 sel_print ("Moving jump %d\n", INSN_UID (insn));
5010 /* Remove nops generated during move_op for preventing removal of empty
5011 basic blocks. */
5012 static void
5013 remove_temp_moveop_nops (bool full_tidying)
5015 int i;
5016 insn_t insn;
5018 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
5020 gcc_assert (INSN_NOP_P (insn));
5021 return_nop_to_pool (insn, full_tidying);
5024 /* Empty the vector. */
5025 if (vec_temp_moveop_nops.length () > 0)
5026 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5029 /* Records the maximal UID before moving up an instruction. Used for
5030 distinguishing between bookkeeping copies and original insns. */
5031 static int max_uid_before_move_op = 0;
5033 /* Remove from AV_VLIW_P all instructions but next when debug counter
5034 tells us so. Next instruction is fetched from BNDS. */
5035 static void
5036 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5038 if (! dbg_cnt (sel_sched_insn_cnt))
5039 /* Leave only the next insn in av_vliw. */
5041 av_set_iterator av_it;
5042 expr_t expr;
5043 bnd_t bnd = BLIST_BND (bnds);
5044 insn_t next = BND_TO (bnd);
5046 gcc_assert (BLIST_NEXT (bnds) == NULL);
5048 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5049 if (EXPR_INSN_RTX (expr) != next)
5050 av_set_iter_remove (&av_it);
5054 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5055 the computed set to *AV_VLIW_P. */
5056 static void
5057 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5059 if (sched_verbose >= 2)
5061 sel_print ("Boundaries: ");
5062 dump_blist (bnds);
5063 sel_print ("\n");
5066 for (; bnds; bnds = BLIST_NEXT (bnds))
5068 bnd_t bnd = BLIST_BND (bnds);
5069 av_set_t av1_copy;
5070 insn_t bnd_to = BND_TO (bnd);
5072 /* Rewind BND->TO to the basic block header in case some bookkeeping
5073 instructions were inserted before BND->TO and it needs to be
5074 adjusted. */
5075 if (sel_bb_head_p (bnd_to))
5076 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5077 else
5078 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5080 bnd_to = PREV_INSN (bnd_to);
5081 if (sel_bb_head_p (bnd_to))
5082 break;
5085 if (BND_TO (bnd) != bnd_to)
5087 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5088 FENCE_INSN (fence) = bnd_to;
5089 BND_TO (bnd) = bnd_to;
5092 av_set_clear (&BND_AV (bnd));
5093 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5095 av_set_clear (&BND_AV1 (bnd));
5096 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5098 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5100 av1_copy = av_set_copy (BND_AV1 (bnd));
5101 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5104 if (sched_verbose >= 2)
5106 sel_print ("Available exprs (vliw form): ");
5107 dump_av_set (*av_vliw_p);
5108 sel_print ("\n");
5112 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5113 expression. When FOR_MOVEOP is true, also replace the register of
5114 expressions found with the register from EXPR_VLIW. */
5115 static av_set_t
5116 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5118 av_set_t expr_seq = NULL;
5119 expr_t expr;
5120 av_set_iterator i;
5122 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5124 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5126 if (for_moveop)
5128 /* The sequential expression has the right form to pass
5129 to move_op except when renaming happened. Put the
5130 correct register in EXPR then. */
5131 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5133 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5135 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5136 stat_renamed_scheduled++;
5138 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5139 This is needed when renaming came up with original
5140 register. */
5141 else if (EXPR_TARGET_AVAILABLE (expr)
5142 != EXPR_TARGET_AVAILABLE (expr_vliw))
5144 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5145 EXPR_TARGET_AVAILABLE (expr) = 1;
5148 if (EXPR_WAS_SUBSTITUTED (expr))
5149 stat_substitutions_total++;
5152 av_set_add (&expr_seq, expr);
5154 /* With substitution inside insn group, it is possible
5155 that more than one expression in expr_seq will correspond
5156 to expr_vliw. In this case, choose one as the attempt to
5157 move both leads to miscompiles. */
5158 break;
5162 if (for_moveop && sched_verbose >= 2)
5164 sel_print ("Best expression(s) (sequential form): ");
5165 dump_av_set (expr_seq);
5166 sel_print ("\n");
5169 return expr_seq;
5173 /* Move nop to previous block. */
5174 static void ATTRIBUTE_UNUSED
5175 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5177 insn_t prev_insn, next_insn, note;
5179 gcc_assert (sel_bb_head_p (nop)
5180 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5181 note = bb_note (BLOCK_FOR_INSN (nop));
5182 prev_insn = sel_bb_end (prev_bb);
5183 next_insn = NEXT_INSN (nop);
5184 gcc_assert (prev_insn != NULL_RTX
5185 && PREV_INSN (note) == prev_insn);
5187 SET_NEXT_INSN (prev_insn) = nop;
5188 SET_PREV_INSN (nop) = prev_insn;
5190 SET_PREV_INSN (note) = nop;
5191 SET_NEXT_INSN (note) = next_insn;
5193 SET_NEXT_INSN (nop) = note;
5194 SET_PREV_INSN (next_insn) = note;
5196 BB_END (prev_bb) = nop;
5197 BLOCK_FOR_INSN (nop) = prev_bb;
5200 /* Prepare a place to insert the chosen expression on BND. */
5201 static insn_t
5202 prepare_place_to_insert (bnd_t bnd)
5204 insn_t place_to_insert;
5206 /* Init place_to_insert before calling move_op, as the later
5207 can possibly remove BND_TO (bnd). */
5208 if (/* If this is not the first insn scheduled. */
5209 BND_PTR (bnd))
5211 /* Add it after last scheduled. */
5212 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5213 if (DEBUG_INSN_P (place_to_insert))
5215 ilist_t l = BND_PTR (bnd);
5216 while ((l = ILIST_NEXT (l)) &&
5217 DEBUG_INSN_P (ILIST_INSN (l)))
5219 if (!l)
5220 place_to_insert = NULL;
5223 else
5224 place_to_insert = NULL;
5226 if (!place_to_insert)
5228 /* Add it before BND_TO. The difference is in the
5229 basic block, where INSN will be added. */
5230 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5231 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5232 == BLOCK_FOR_INSN (BND_TO (bnd)));
5235 return place_to_insert;
5238 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5239 Return the expression to emit in C_EXPR. */
5240 static bool
5241 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5242 av_set_t expr_seq, expr_t c_expr)
5244 bool b, should_move;
5245 unsigned book_uid;
5246 bitmap_iterator bi;
5247 int n_bookkeeping_copies_before_moveop;
5249 /* Make a move. This call will remove the original operation,
5250 insert all necessary bookkeeping instructions and update the
5251 data sets. After that all we have to do is add the operation
5252 at before BND_TO (BND). */
5253 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5254 max_uid_before_move_op = get_max_uid ();
5255 bitmap_clear (current_copies);
5256 bitmap_clear (current_originators);
5258 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5259 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5261 /* We should be able to find the expression we've chosen for
5262 scheduling. */
5263 gcc_assert (b);
5265 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5266 stat_insns_needed_bookkeeping++;
5268 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5270 unsigned uid;
5271 bitmap_iterator bi;
5273 /* We allocate these bitmaps lazily. */
5274 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5275 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5277 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5278 current_originators);
5280 /* Transitively add all originators' originators. */
5281 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5282 if (INSN_ORIGINATORS_BY_UID (uid))
5283 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5284 INSN_ORIGINATORS_BY_UID (uid));
5287 return should_move;
5291 /* Debug a DFA state as an array of bytes. */
5292 static void
5293 debug_state (state_t state)
5295 unsigned char *p;
5296 unsigned int i, size = dfa_state_size;
5298 sel_print ("state (%u):", size);
5299 for (i = 0, p = (unsigned char *) state; i < size; i++)
5300 sel_print (" %d", p[i]);
5301 sel_print ("\n");
5304 /* Advance state on FENCE with INSN. Return true if INSN is
5305 an ASM, and we should advance state once more. */
5306 static bool
5307 advance_state_on_fence (fence_t fence, insn_t insn)
5309 bool asm_p;
5311 if (recog_memoized (insn) >= 0)
5313 int res;
5314 state_t temp_state = alloca (dfa_state_size);
5316 gcc_assert (!INSN_ASM_P (insn));
5317 asm_p = false;
5319 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5320 res = state_transition (FENCE_STATE (fence), insn);
5321 gcc_assert (res < 0);
5323 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5325 FENCE_ISSUED_INSNS (fence)++;
5327 /* We should never issue more than issue_rate insns. */
5328 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5329 gcc_unreachable ();
5332 else
5334 /* This could be an ASM insn which we'd like to schedule
5335 on the next cycle. */
5336 asm_p = INSN_ASM_P (insn);
5337 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5338 advance_one_cycle (fence);
5341 if (sched_verbose >= 2)
5342 debug_state (FENCE_STATE (fence));
5343 if (!DEBUG_INSN_P (insn))
5344 FENCE_STARTS_CYCLE_P (fence) = 0;
5345 FENCE_ISSUE_MORE (fence) = can_issue_more;
5346 return asm_p;
5349 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5350 is nonzero if we need to stall after issuing INSN. */
5351 static void
5352 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5354 bool asm_p;
5356 /* First, reflect that something is scheduled on this fence. */
5357 asm_p = advance_state_on_fence (fence, insn);
5358 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5359 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5360 if (SCHED_GROUP_P (insn))
5362 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5363 SCHED_GROUP_P (insn) = 0;
5365 else
5366 FENCE_SCHED_NEXT (fence) = NULL;
5367 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5368 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5370 /* Set instruction scheduling info. This will be used in bundling,
5371 pipelining, tick computations etc. */
5372 ++INSN_SCHED_TIMES (insn);
5373 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5374 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5375 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5376 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5378 /* This does not account for adjust_cost hooks, just add the biggest
5379 constant the hook may add to the latency. TODO: make this
5380 a target dependent constant. */
5381 INSN_READY_CYCLE (insn)
5382 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5384 : maximal_insn_latency (insn) + 1);
5386 /* Change these fields last, as they're used above. */
5387 FENCE_AFTER_STALL_P (fence) = 0;
5388 if (asm_p || need_stall)
5389 advance_one_cycle (fence);
5391 /* Indicate that we've scheduled something on this fence. */
5392 FENCE_SCHEDULED_P (fence) = true;
5393 scheduled_something_on_previous_fence = true;
5395 /* Print debug information when insn's fields are updated. */
5396 if (sched_verbose >= 2)
5398 sel_print ("Scheduling insn: ");
5399 dump_insn_1 (insn, 1);
5400 sel_print ("\n");
5404 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5405 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5406 return it. */
5407 static blist_t *
5408 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5409 blist_t *bnds_tailp)
5411 succ_iterator si;
5412 insn_t succ;
5414 advance_deps_context (BND_DC (bnd), insn);
5415 FOR_EACH_SUCC_1 (succ, si, insn,
5416 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5418 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5420 ilist_add (&ptr, insn);
5422 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5423 && is_ineligible_successor (succ, ptr))
5425 ilist_clear (&ptr);
5426 continue;
5429 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5431 if (sched_verbose >= 9)
5432 sel_print ("Updating fence insn from %i to %i\n",
5433 INSN_UID (insn), INSN_UID (succ));
5434 FENCE_INSN (fence) = succ;
5436 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5437 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5440 blist_remove (bndsp);
5441 return bnds_tailp;
5444 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5445 static insn_t
5446 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5448 av_set_t expr_seq;
5449 expr_t c_expr = XALLOCA (expr_def);
5450 insn_t place_to_insert;
5451 insn_t insn;
5452 bool should_move;
5454 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5456 /* In case of scheduling a jump skipping some other instructions,
5457 prepare CFG. After this, jump is at the boundary and can be
5458 scheduled as usual insn by MOVE_OP. */
5459 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5461 insn = EXPR_INSN_RTX (expr_vliw);
5463 /* Speculative jumps are not handled. */
5464 if (insn != BND_TO (bnd)
5465 && !sel_insn_is_speculation_check (insn))
5466 move_cond_jump (insn, bnd);
5469 /* Find a place for C_EXPR to schedule. */
5470 place_to_insert = prepare_place_to_insert (bnd);
5471 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5472 clear_expr (c_expr);
5474 /* Add the instruction. The corner case to care about is when
5475 the expr_seq set has more than one expr, and we chose the one that
5476 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5477 we can't use it. Generate the new vinsn. */
5478 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5480 vinsn_t vinsn_new;
5482 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5483 change_vinsn_in_expr (expr_vliw, vinsn_new);
5484 should_move = false;
5486 if (should_move)
5487 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5488 else
5489 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5490 place_to_insert);
5492 /* Return the nops generated for preserving of data sets back
5493 into pool. */
5494 if (INSN_NOP_P (place_to_insert))
5495 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5496 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5498 av_set_clear (&expr_seq);
5500 /* Save the expression scheduled so to reset target availability if we'll
5501 meet it later on the same fence. */
5502 if (EXPR_WAS_RENAMED (expr_vliw))
5503 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5505 /* Check that the recent movement didn't destroyed loop
5506 structure. */
5507 gcc_assert (!pipelining_p
5508 || current_loop_nest == NULL
5509 || loop_latch_edge (current_loop_nest));
5510 return insn;
5513 /* Stall for N cycles on FENCE. */
5514 static void
5515 stall_for_cycles (fence_t fence, int n)
5517 int could_more;
5519 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5520 while (n--)
5521 advance_one_cycle (fence);
5522 if (could_more)
5523 FENCE_AFTER_STALL_P (fence) = 1;
5526 /* Gather a parallel group of insns at FENCE and assign their seqno
5527 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5528 list for later recalculation of seqnos. */
5529 static void
5530 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5532 blist_t bnds = NULL, *bnds_tailp;
5533 av_set_t av_vliw = NULL;
5534 insn_t insn = FENCE_INSN (fence);
5536 if (sched_verbose >= 2)
5537 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5538 INSN_UID (insn), FENCE_CYCLE (fence));
5540 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5541 bnds_tailp = &BLIST_NEXT (bnds);
5542 set_target_context (FENCE_TC (fence));
5543 can_issue_more = FENCE_ISSUE_MORE (fence);
5544 target_bb = INSN_BB (insn);
5546 /* Do while we can add any operation to the current group. */
5549 blist_t *bnds_tailp1, *bndsp;
5550 expr_t expr_vliw;
5551 int need_stall = false;
5552 int was_stall = 0, scheduled_insns = 0;
5553 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5554 int max_stall = pipelining_p ? 1 : 3;
5555 bool last_insn_was_debug = false;
5556 bool was_debug_bb_end_p = false;
5558 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5559 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5560 remove_insns_for_debug (bnds, &av_vliw);
5562 /* Return early if we have nothing to schedule. */
5563 if (av_vliw == NULL)
5564 break;
5566 /* Choose the best expression and, if needed, destination register
5567 for it. */
5570 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5571 if (! expr_vliw && need_stall)
5573 /* All expressions required a stall. Do not recompute av sets
5574 as we'll get the same answer (modulo the insns between
5575 the fence and its boundary, which will not be available for
5576 pipelining).
5577 If we are going to stall for too long, break to recompute av
5578 sets and bring more insns for pipelining. */
5579 was_stall++;
5580 if (need_stall <= 3)
5581 stall_for_cycles (fence, need_stall);
5582 else
5584 stall_for_cycles (fence, 1);
5585 break;
5589 while (! expr_vliw && need_stall);
5591 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5592 if (!expr_vliw)
5594 av_set_clear (&av_vliw);
5595 break;
5598 bndsp = &bnds;
5599 bnds_tailp1 = bnds_tailp;
5602 /* This code will be executed only once until we'd have several
5603 boundaries per fence. */
5605 bnd_t bnd = BLIST_BND (*bndsp);
5607 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5609 bndsp = &BLIST_NEXT (*bndsp);
5610 continue;
5613 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5614 last_insn_was_debug = DEBUG_INSN_P (insn);
5615 if (last_insn_was_debug)
5616 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5617 update_fence_and_insn (fence, insn, need_stall);
5618 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5620 /* Add insn to the list of scheduled on this cycle instructions. */
5621 ilist_add (*scheduled_insns_tailpp, insn);
5622 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5624 while (*bndsp != *bnds_tailp1);
5626 av_set_clear (&av_vliw);
5627 if (!last_insn_was_debug)
5628 scheduled_insns++;
5630 /* We currently support information about candidate blocks only for
5631 one 'target_bb' block. Hence we can't schedule after jump insn,
5632 as this will bring two boundaries and, hence, necessity to handle
5633 information for two or more blocks concurrently. */
5634 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5635 || (was_stall
5636 && (was_stall >= max_stall
5637 || scheduled_insns >= max_insns)))
5638 break;
5640 while (bnds);
5642 gcc_assert (!FENCE_BNDS (fence));
5644 /* Update boundaries of the FENCE. */
5645 while (bnds)
5647 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5649 if (ptr)
5651 insn = ILIST_INSN (ptr);
5653 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5654 ilist_add (&FENCE_BNDS (fence), insn);
5657 blist_remove (&bnds);
5660 /* Update target context on the fence. */
5661 reset_target_context (FENCE_TC (fence), false);
5664 /* All exprs in ORIG_OPS must have the same destination register or memory.
5665 Return that destination. */
5666 static rtx
5667 get_dest_from_orig_ops (av_set_t orig_ops)
5669 rtx dest = NULL_RTX;
5670 av_set_iterator av_it;
5671 expr_t expr;
5672 bool first_p = true;
5674 FOR_EACH_EXPR (expr, av_it, orig_ops)
5676 rtx x = EXPR_LHS (expr);
5678 if (first_p)
5680 first_p = false;
5681 dest = x;
5683 else
5684 gcc_assert (dest == x
5685 || (dest != NULL_RTX && x != NULL_RTX
5686 && rtx_equal_p (dest, x)));
5689 return dest;
5692 /* Update data sets for the bookkeeping block and record those expressions
5693 which become no longer available after inserting this bookkeeping. */
5694 static void
5695 update_and_record_unavailable_insns (basic_block book_block)
5697 av_set_iterator i;
5698 av_set_t old_av_set = NULL;
5699 expr_t cur_expr;
5700 rtx_insn *bb_end = sel_bb_end (book_block);
5702 /* First, get correct liveness in the bookkeeping block. The problem is
5703 the range between the bookeeping insn and the end of block. */
5704 update_liveness_on_insn (bb_end);
5705 if (control_flow_insn_p (bb_end))
5706 update_liveness_on_insn (PREV_INSN (bb_end));
5708 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5709 fence above, where we may choose to schedule an insn which is
5710 actually blocked from moving up with the bookkeeping we create here. */
5711 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5713 old_av_set = av_set_copy (BB_AV_SET (book_block));
5714 update_data_sets (sel_bb_head (book_block));
5716 /* Traverse all the expressions in the old av_set and check whether
5717 CUR_EXPR is in new AV_SET. */
5718 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5720 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5721 EXPR_VINSN (cur_expr));
5723 if (! new_expr
5724 /* In this case, we can just turn off the E_T_A bit, but we can't
5725 represent this information with the current vector. */
5726 || EXPR_TARGET_AVAILABLE (new_expr)
5727 != EXPR_TARGET_AVAILABLE (cur_expr))
5728 /* Unfortunately, the below code could be also fired up on
5729 separable insns, e.g. when moving insns through the new
5730 speculation check as in PR 53701. */
5731 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5734 av_set_clear (&old_av_set);
5738 /* The main effect of this function is that sparams->c_expr is merged
5739 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5740 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5741 lparams->c_expr_merged is copied back to sparams->c_expr after all
5742 successors has been traversed. lparams->c_expr_local is an expr allocated
5743 on stack in the caller function, and is used if there is more than one
5744 successor.
5746 SUCC is one of the SUCCS_NORMAL successors of INSN,
5747 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5748 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5749 static void
5750 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5751 insn_t succ ATTRIBUTE_UNUSED,
5752 int moveop_drv_call_res,
5753 cmpd_local_params_p lparams, void *static_params)
5755 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5757 /* Nothing to do, if original expr wasn't found below. */
5758 if (moveop_drv_call_res != 1)
5759 return;
5761 /* If this is a first successor. */
5762 if (!lparams->c_expr_merged)
5764 lparams->c_expr_merged = sparams->c_expr;
5765 sparams->c_expr = lparams->c_expr_local;
5767 else
5769 /* We must merge all found expressions to get reasonable
5770 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5771 do so then we can first find the expr with epsilon
5772 speculation success probability and only then with the
5773 good probability. As a result the insn will get epsilon
5774 probability and will never be scheduled because of
5775 weakness_cutoff in find_best_expr.
5777 We call merge_expr_data here instead of merge_expr
5778 because due to speculation C_EXPR and X may have the
5779 same insns with different speculation types. And as of
5780 now such insns are considered non-equal.
5782 However, EXPR_SCHED_TIMES is different -- we must get
5783 SCHED_TIMES from a real insn, not a bookkeeping copy.
5784 We force this here. Instead, we may consider merging
5785 SCHED_TIMES to the maximum instead of minimum in the
5786 below function. */
5787 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5789 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5790 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5791 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5793 clear_expr (sparams->c_expr);
5797 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5799 SUCC is one of the SUCCS_NORMAL successors of INSN,
5800 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5801 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5802 STATIC_PARAMS contain USED_REGS set. */
5803 static void
5804 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5805 int moveop_drv_call_res,
5806 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5807 void *static_params)
5809 regset succ_live;
5810 fur_static_params_p sparams = (fur_static_params_p) static_params;
5812 /* Here we compute live regsets only for branches that do not lie
5813 on the code motion paths. These branches correspond to value
5814 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5815 for such branches code_motion_path_driver is not called. */
5816 if (moveop_drv_call_res != 0)
5817 return;
5819 /* Mark all registers that do not meet the following condition:
5820 (3) not live on the other path of any conditional branch
5821 that is passed by the operation, in case original
5822 operations are not present on both paths of the
5823 conditional branch. */
5824 succ_live = compute_live (succ);
5825 IOR_REG_SET (sparams->used_regs, succ_live);
5828 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5829 into SP->CEXPR. */
5830 static void
5831 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5833 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5835 sp->c_expr = lp->c_expr_merged;
5838 /* Track bookkeeping copies created, insns scheduled, and blocks for
5839 rescheduling when INSN is found by move_op. */
5840 static void
5841 track_scheduled_insns_and_blocks (rtx insn)
5843 /* Even if this insn can be a copy that will be removed during current move_op,
5844 we still need to count it as an originator. */
5845 bitmap_set_bit (current_originators, INSN_UID (insn));
5847 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5849 /* Note that original block needs to be rescheduled, as we pulled an
5850 instruction out of it. */
5851 if (INSN_SCHED_TIMES (insn) > 0)
5852 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5853 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5854 num_insns_scheduled++;
5857 /* For instructions we must immediately remove insn from the
5858 stream, so subsequent update_data_sets () won't include this
5859 insn into av_set.
5860 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5861 if (INSN_UID (insn) > max_uid_before_move_op)
5862 stat_bookkeeping_copies--;
5865 /* Emit a register-register copy for INSN if needed. Return true if
5866 emitted one. PARAMS is the move_op static parameters. */
5867 static bool
5868 maybe_emit_renaming_copy (rtx_insn *insn,
5869 moveop_static_params_p params)
5871 bool insn_emitted = false;
5872 rtx cur_reg;
5874 /* Bail out early when expression can not be renamed at all. */
5875 if (!EXPR_SEPARABLE_P (params->c_expr))
5876 return false;
5878 cur_reg = expr_dest_reg (params->c_expr);
5879 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5881 /* If original operation has expr and the register chosen for
5882 that expr is not original operation's dest reg, substitute
5883 operation's right hand side with the register chosen. */
5884 if (REGNO (params->dest) != REGNO (cur_reg))
5886 insn_t reg_move_insn, reg_move_insn_rtx;
5888 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5889 params->dest);
5890 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5891 INSN_EXPR (insn),
5892 INSN_SEQNO (insn),
5893 insn);
5894 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5895 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5897 insn_emitted = true;
5898 params->was_renamed = true;
5901 return insn_emitted;
5904 /* Emit a speculative check for INSN speculated as EXPR if needed.
5905 Return true if we've emitted one. PARAMS is the move_op static
5906 parameters. */
5907 static bool
5908 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5909 moveop_static_params_p params)
5911 bool insn_emitted = false;
5912 insn_t x;
5913 ds_t check_ds;
5915 check_ds = get_spec_check_type_for_insn (insn, expr);
5916 if (check_ds != 0)
5918 /* A speculation check should be inserted. */
5919 x = create_speculation_check (params->c_expr, check_ds, insn);
5920 insn_emitted = true;
5922 else
5924 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5925 x = insn;
5928 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5929 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5930 return insn_emitted;
5933 /* Handle transformations that leave an insn in place of original
5934 insn such as renaming/speculation. Return true if one of such
5935 transformations actually happened, and we have emitted this insn. */
5936 static bool
5937 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5938 moveop_static_params_p params)
5940 bool insn_emitted = false;
5942 insn_emitted = maybe_emit_renaming_copy (insn, params);
5943 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5945 return insn_emitted;
5948 /* If INSN is the only insn in the basic block (not counting JUMP,
5949 which may be a jump to next insn, and DEBUG_INSNs), we want to
5950 leave a NOP there till the return to fill_insns. */
5952 static bool
5953 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5955 insn_t bb_head, bb_end, bb_next, in_next;
5956 basic_block bb = BLOCK_FOR_INSN (insn);
5958 bb_head = sel_bb_head (bb);
5959 bb_end = sel_bb_end (bb);
5961 if (bb_head == bb_end)
5962 return true;
5964 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5965 bb_head = NEXT_INSN (bb_head);
5967 if (bb_head == bb_end)
5968 return true;
5970 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5971 bb_end = PREV_INSN (bb_end);
5973 if (bb_head == bb_end)
5974 return true;
5976 bb_next = NEXT_INSN (bb_head);
5977 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5978 bb_next = NEXT_INSN (bb_next);
5980 if (bb_next == bb_end && JUMP_P (bb_end))
5981 return true;
5983 in_next = NEXT_INSN (insn);
5984 while (DEBUG_INSN_P (in_next))
5985 in_next = NEXT_INSN (in_next);
5987 if (IN_CURRENT_FENCE_P (in_next))
5988 return true;
5990 return false;
5993 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5994 is not removed but reused when INSN is re-emitted. */
5995 static void
5996 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5998 /* If there's only one insn in the BB, make sure that a nop is
5999 inserted into it, so the basic block won't disappear when we'll
6000 delete INSN below with sel_remove_insn. It should also survive
6001 till the return to fill_insns. */
6002 if (need_nop_to_preserve_insn_bb (insn))
6004 insn_t nop = get_nop_from_pool (insn);
6005 gcc_assert (INSN_NOP_P (nop));
6006 vec_temp_moveop_nops.safe_push (nop);
6009 sel_remove_insn (insn, only_disconnect, false);
6012 /* This function is called when original expr is found.
6013 INSN - current insn traversed, EXPR - the corresponding expr found.
6014 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
6015 is static parameters of move_op. */
6016 static void
6017 move_op_orig_expr_found (insn_t insn, expr_t expr,
6018 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6019 void *static_params)
6021 bool only_disconnect;
6022 moveop_static_params_p params = (moveop_static_params_p) static_params;
6024 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6025 track_scheduled_insns_and_blocks (insn);
6026 handle_emitting_transformations (insn, expr, params);
6027 only_disconnect = params->uid == INSN_UID (insn);
6029 /* Mark that we've disconnected an insn. */
6030 if (only_disconnect)
6031 params->uid = -1;
6032 remove_insn_from_stream (insn, only_disconnect);
6035 /* The function is called when original expr is found.
6036 INSN - current insn traversed, EXPR - the corresponding expr found,
6037 crosses_call and original_insns in STATIC_PARAMS are updated. */
6038 static void
6039 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6040 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6041 void *static_params)
6043 fur_static_params_p params = (fur_static_params_p) static_params;
6044 regset tmp;
6046 if (CALL_P (insn))
6047 params->crosses_call = true;
6049 def_list_add (params->original_insns, insn, params->crosses_call);
6051 /* Mark the registers that do not meet the following condition:
6052 (2) not among the live registers of the point
6053 immediately following the first original operation on
6054 a given downward path, except for the original target
6055 register of the operation. */
6056 tmp = get_clear_regset_from_pool ();
6057 compute_live_below_insn (insn, tmp);
6058 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6059 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6060 IOR_REG_SET (params->used_regs, tmp);
6061 return_regset_to_pool (tmp);
6063 /* (*1) We need to add to USED_REGS registers that are read by
6064 INSN's lhs. This may lead to choosing wrong src register.
6065 E.g. (scheduling const expr enabled):
6067 429: ax=0x0 <- Can't use AX for this expr (0x0)
6068 433: dx=[bp-0x18]
6069 427: [ax+dx+0x1]=ax
6070 REG_DEAD: ax
6071 168: di=dx
6072 REG_DEAD: dx
6074 /* FIXME: see comment above and enable MEM_P
6075 in vinsn_separable_p. */
6076 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6077 || !MEM_P (INSN_LHS (insn)));
6080 /* This function is called on the ascending pass, before returning from
6081 current basic block. */
6082 static void
6083 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6084 void *static_params)
6086 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6087 basic_block book_block = NULL;
6089 /* When we have removed the boundary insn for scheduling, which also
6090 happened to be the end insn in its bb, we don't need to update sets. */
6091 if (!lparams->removed_last_insn
6092 && lparams->e1
6093 && sel_bb_head_p (insn))
6095 /* We should generate bookkeeping code only if we are not at the
6096 top level of the move_op. */
6097 if (sel_num_cfg_preds_gt_1 (insn))
6098 book_block = generate_bookkeeping_insn (sparams->c_expr,
6099 lparams->e1, lparams->e2);
6100 /* Update data sets for the current insn. */
6101 update_data_sets (insn);
6104 /* If bookkeeping code was inserted, we need to update av sets of basic
6105 block that received bookkeeping. After generation of bookkeeping insn,
6106 bookkeeping block does not contain valid av set because we are not following
6107 the original algorithm in every detail with regards to e.g. renaming
6108 simple reg-reg copies. Consider example:
6110 bookkeeping block scheduling fence
6112 \ join /
6113 ----------
6115 ----------
6118 r1 := r2 r1 := r3
6120 We try to schedule insn "r1 := r3" on the current
6121 scheduling fence. Also, note that av set of bookkeeping block
6122 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6123 been scheduled, the CFG is as follows:
6125 r1 := r3 r1 := r3
6126 bookkeeping block scheduling fence
6128 \ join /
6129 ----------
6131 ----------
6134 r1 := r2
6136 Here, insn "r1 := r3" was scheduled at the current scheduling point
6137 and bookkeeping code was generated at the bookeeping block. This
6138 way insn "r1 := r2" is no longer available as a whole instruction
6139 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6140 This situation is handled by calling update_data_sets.
6142 Since update_data_sets is called only on the bookkeeping block, and
6143 it also may have predecessors with av_sets, containing instructions that
6144 are no longer available, we save all such expressions that become
6145 unavailable during data sets update on the bookkeeping block in
6146 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6147 expressions for scheduling. This allows us to avoid recomputation of
6148 av_sets outside the code motion path. */
6150 if (book_block)
6151 update_and_record_unavailable_insns (book_block);
6153 /* If INSN was previously marked for deletion, it's time to do it. */
6154 if (lparams->removed_last_insn)
6155 insn = PREV_INSN (insn);
6157 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6158 kill a block with a single nop in which the insn should be emitted. */
6159 if (lparams->e1)
6160 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6163 /* This function is called on the ascending pass, before returning from the
6164 current basic block. */
6165 static void
6166 fur_at_first_insn (insn_t insn,
6167 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6168 void *static_params ATTRIBUTE_UNUSED)
6170 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6171 || AV_LEVEL (insn) == -1);
6174 /* Called on the backward stage of recursion to call moveup_expr for insn
6175 and sparams->c_expr. */
6176 static void
6177 move_op_ascend (insn_t insn, void *static_params)
6179 enum MOVEUP_EXPR_CODE res;
6180 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6182 if (! INSN_NOP_P (insn))
6184 res = moveup_expr_cached (sparams->c_expr, insn, false);
6185 gcc_assert (res != MOVEUP_EXPR_NULL);
6188 /* Update liveness for this insn as it was invalidated. */
6189 update_liveness_on_insn (insn);
6192 /* This function is called on enter to the basic block.
6193 Returns TRUE if this block already have been visited and
6194 code_motion_path_driver should return 1, FALSE otherwise. */
6195 static int
6196 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6197 void *static_params, bool visited_p)
6199 fur_static_params_p sparams = (fur_static_params_p) static_params;
6201 if (visited_p)
6203 /* If we have found something below this block, there should be at
6204 least one insn in ORIGINAL_INSNS. */
6205 gcc_assert (*sparams->original_insns);
6207 /* Adjust CROSSES_CALL, since we may have come to this block along
6208 different path. */
6209 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6210 |= sparams->crosses_call;
6212 else
6213 local_params->old_original_insns = *sparams->original_insns;
6215 return 1;
6218 /* Same as above but for move_op. */
6219 static int
6220 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6221 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6222 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6224 if (visited_p)
6225 return -1;
6226 return 1;
6229 /* This function is called while descending current basic block if current
6230 insn is not the original EXPR we're searching for.
6232 Return value: FALSE, if code_motion_path_driver should perform a local
6233 cleanup and return 0 itself;
6234 TRUE, if code_motion_path_driver should continue. */
6235 static bool
6236 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6237 void *static_params)
6239 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6241 #ifdef ENABLE_CHECKING
6242 sparams->failed_insn = insn;
6243 #endif
6245 /* If we're scheduling separate expr, in order to generate correct code
6246 we need to stop the search at bookkeeping code generated with the
6247 same destination register or memory. */
6248 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6249 return false;
6250 return true;
6253 /* This function is called while descending current basic block if current
6254 insn is not the original EXPR we're searching for.
6256 Return value: TRUE (code_motion_path_driver should continue). */
6257 static bool
6258 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6260 bool mutexed;
6261 expr_t r;
6262 av_set_iterator avi;
6263 fur_static_params_p sparams = (fur_static_params_p) static_params;
6265 if (CALL_P (insn))
6266 sparams->crosses_call = true;
6267 else if (DEBUG_INSN_P (insn))
6268 return true;
6270 /* If current insn we are looking at cannot be executed together
6271 with original insn, then we can skip it safely.
6273 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6274 INSN = (!p6) r14 = r14 + 1;
6276 Here we can schedule ORIG_OP with lhs = r14, though only
6277 looking at the set of used and set registers of INSN we must
6278 forbid it. So, add set/used in INSN registers to the
6279 untouchable set only if there is an insn in ORIG_OPS that can
6280 affect INSN. */
6281 mutexed = true;
6282 FOR_EACH_EXPR (r, avi, orig_ops)
6283 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6285 mutexed = false;
6286 break;
6289 /* Mark all registers that do not meet the following condition:
6290 (1) Not set or read on any path from xi to an instance of the
6291 original operation. */
6292 if (!mutexed)
6294 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6295 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6296 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6299 return true;
6302 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6303 struct code_motion_path_driver_info_def move_op_hooks = {
6304 move_op_on_enter,
6305 move_op_orig_expr_found,
6306 move_op_orig_expr_not_found,
6307 move_op_merge_succs,
6308 move_op_after_merge_succs,
6309 move_op_ascend,
6310 move_op_at_first_insn,
6311 SUCCS_NORMAL,
6312 "move_op"
6315 /* Hooks and data to perform find_used_regs operations
6316 with code_motion_path_driver. */
6317 struct code_motion_path_driver_info_def fur_hooks = {
6318 fur_on_enter,
6319 fur_orig_expr_found,
6320 fur_orig_expr_not_found,
6321 fur_merge_succs,
6322 NULL, /* fur_after_merge_succs */
6323 NULL, /* fur_ascend */
6324 fur_at_first_insn,
6325 SUCCS_ALL,
6326 "find_used_regs"
6329 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6330 code_motion_path_driver is called recursively. Original operation
6331 was found at least on one path that is starting with one of INSN's
6332 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6333 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6334 of either move_op or find_used_regs depending on the caller.
6336 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6337 know for sure at this point. */
6338 static int
6339 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6340 ilist_t path, void *static_params)
6342 int res = 0;
6343 succ_iterator succ_i;
6344 insn_t succ;
6345 basic_block bb;
6346 int old_index;
6347 unsigned old_succs;
6349 struct cmpd_local_params lparams;
6350 expr_def _x;
6352 lparams.c_expr_local = &_x;
6353 lparams.c_expr_merged = NULL;
6355 /* We need to process only NORMAL succs for move_op, and collect live
6356 registers from ALL branches (including those leading out of the
6357 region) for find_used_regs.
6359 In move_op, there can be a case when insn's bb number has changed
6360 due to created bookkeeping. This happens very rare, as we need to
6361 move expression from the beginning to the end of the same block.
6362 Rescan successors in this case. */
6364 rescan:
6365 bb = BLOCK_FOR_INSN (insn);
6366 old_index = bb->index;
6367 old_succs = EDGE_COUNT (bb->succs);
6369 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6371 int b;
6373 lparams.e1 = succ_i.e1;
6374 lparams.e2 = succ_i.e2;
6376 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6377 current region). */
6378 if (succ_i.current_flags == SUCCS_NORMAL)
6379 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6380 static_params);
6381 else
6382 b = 0;
6384 /* Merge c_expres found or unify live register sets from different
6385 successors. */
6386 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6387 static_params);
6388 if (b == 1)
6389 res = b;
6390 else if (b == -1 && res != 1)
6391 res = b;
6393 /* We have simplified the control flow below this point. In this case,
6394 the iterator becomes invalid. We need to try again.
6395 If we have removed the insn itself, it could be only an
6396 unconditional jump. Thus, do not rescan but break immediately --
6397 we have already visited the only successor block. */
6398 if (!BLOCK_FOR_INSN (insn))
6400 if (sched_verbose >= 6)
6401 sel_print ("Not doing rescan: already visited the only successor"
6402 " of block %d\n", old_index);
6403 break;
6405 if (BLOCK_FOR_INSN (insn)->index != old_index
6406 || EDGE_COUNT (bb->succs) != old_succs)
6408 if (sched_verbose >= 6)
6409 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6410 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6411 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6412 goto rescan;
6416 #ifdef ENABLE_CHECKING
6417 /* Here, RES==1 if original expr was found at least for one of the
6418 successors. After the loop, RES may happen to have zero value
6419 only if at some point the expr searched is present in av_set, but is
6420 not found below. In most cases, this situation is an error.
6421 The exception is when the original operation is blocked by
6422 bookkeeping generated for another fence or for another path in current
6423 move_op. */
6424 gcc_assert (res == 1
6425 || (res == 0
6426 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6427 static_params))
6428 || res == -1);
6429 #endif
6431 /* Merge data, clean up, etc. */
6432 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6433 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6435 return res;
6439 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6440 is the pointer to the av set with expressions we were looking for,
6441 PATH_P is the pointer to the traversed path. */
6442 static inline void
6443 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6445 ilist_remove (path_p);
6446 av_set_clear (orig_ops_p);
6449 /* The driver function that implements move_op or find_used_regs
6450 functionality dependent whether code_motion_path_driver_INFO is set to
6451 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6452 of code (CFG traversal etc) that are shared among both functions. INSN
6453 is the insn we're starting the search from, ORIG_OPS are the expressions
6454 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6455 parameters of the driver, and STATIC_PARAMS are static parameters of
6456 the caller.
6458 Returns whether original instructions were found. Note that top-level
6459 code_motion_path_driver always returns true. */
6460 static int
6461 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6462 cmpd_local_params_p local_params_in,
6463 void *static_params)
6465 expr_t expr = NULL;
6466 basic_block bb = BLOCK_FOR_INSN (insn);
6467 insn_t first_insn, bb_tail, before_first;
6468 bool removed_last_insn = false;
6470 if (sched_verbose >= 6)
6472 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6473 dump_insn (insn);
6474 sel_print (",");
6475 dump_av_set (orig_ops);
6476 sel_print (")\n");
6479 gcc_assert (orig_ops);
6481 /* If no original operations exist below this insn, return immediately. */
6482 if (is_ineligible_successor (insn, path))
6484 if (sched_verbose >= 6)
6485 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6486 return false;
6489 /* The block can have invalid av set, in which case it was created earlier
6490 during move_op. Return immediately. */
6491 if (sel_bb_head_p (insn))
6493 if (! AV_SET_VALID_P (insn))
6495 if (sched_verbose >= 6)
6496 sel_print ("Returned from block %d as it had invalid av set\n",
6497 bb->index);
6498 return false;
6501 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6503 /* We have already found an original operation on this branch, do not
6504 go any further and just return TRUE here. If we don't stop here,
6505 function can have exponential behaviour even on the small code
6506 with many different paths (e.g. with data speculation and
6507 recovery blocks). */
6508 if (sched_verbose >= 6)
6509 sel_print ("Block %d already visited in this traversal\n", bb->index);
6510 if (code_motion_path_driver_info->on_enter)
6511 return code_motion_path_driver_info->on_enter (insn,
6512 local_params_in,
6513 static_params,
6514 true);
6518 if (code_motion_path_driver_info->on_enter)
6519 code_motion_path_driver_info->on_enter (insn, local_params_in,
6520 static_params, false);
6521 orig_ops = av_set_copy (orig_ops);
6523 /* Filter the orig_ops set. */
6524 if (AV_SET_VALID_P (insn))
6525 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6527 /* If no more original ops, return immediately. */
6528 if (!orig_ops)
6530 if (sched_verbose >= 6)
6531 sel_print ("No intersection with av set of block %d\n", bb->index);
6532 return false;
6535 /* For non-speculative insns we have to leave only one form of the
6536 original operation, because if we don't, we may end up with
6537 different C_EXPRes and, consequently, with bookkeepings for different
6538 expression forms along the same code motion path. That may lead to
6539 generation of incorrect code. So for each code motion we stick to
6540 the single form of the instruction, except for speculative insns
6541 which we need to keep in different forms with all speculation
6542 types. */
6543 av_set_leave_one_nonspec (&orig_ops);
6545 /* It is not possible that all ORIG_OPS are filtered out. */
6546 gcc_assert (orig_ops);
6548 /* It is enough to place only heads and tails of visited basic blocks into
6549 the PATH. */
6550 ilist_add (&path, insn);
6551 first_insn = insn;
6552 bb_tail = sel_bb_end (bb);
6554 /* Descend the basic block in search of the original expr; this part
6555 corresponds to the part of the original move_op procedure executed
6556 before the recursive call. */
6557 for (;;)
6559 /* Look at the insn and decide if it could be an ancestor of currently
6560 scheduling operation. If it is so, then the insn "dest = op" could
6561 either be replaced with "dest = reg", because REG now holds the result
6562 of OP, or just removed, if we've scheduled the insn as a whole.
6564 If this insn doesn't contain currently scheduling OP, then proceed
6565 with searching and look at its successors. Operations we're searching
6566 for could have changed when moving up through this insn via
6567 substituting. In this case, perform unsubstitution on them first.
6569 When traversing the DAG below this insn is finished, insert
6570 bookkeeping code, if the insn is a joint point, and remove
6571 leftovers. */
6573 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6574 if (expr)
6576 insn_t last_insn = PREV_INSN (insn);
6578 /* We have found the original operation. */
6579 if (sched_verbose >= 6)
6580 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6582 code_motion_path_driver_info->orig_expr_found
6583 (insn, expr, local_params_in, static_params);
6585 /* Step back, so on the way back we'll start traversing from the
6586 previous insn (or we'll see that it's bb_note and skip that
6587 loop). */
6588 if (insn == first_insn)
6590 first_insn = NEXT_INSN (last_insn);
6591 removed_last_insn = sel_bb_end_p (last_insn);
6593 insn = last_insn;
6594 break;
6596 else
6598 /* We haven't found the original expr, continue descending the basic
6599 block. */
6600 if (code_motion_path_driver_info->orig_expr_not_found
6601 (insn, orig_ops, static_params))
6603 /* Av set ops could have been changed when moving through this
6604 insn. To find them below it, we have to un-substitute them. */
6605 undo_transformations (&orig_ops, insn);
6607 else
6609 /* Clean up and return, if the hook tells us to do so. It may
6610 happen if we've encountered the previously created
6611 bookkeeping. */
6612 code_motion_path_driver_cleanup (&orig_ops, &path);
6613 return -1;
6616 gcc_assert (orig_ops);
6619 /* Stop at insn if we got to the end of BB. */
6620 if (insn == bb_tail)
6621 break;
6623 insn = NEXT_INSN (insn);
6626 /* Here INSN either points to the insn before the original insn (may be
6627 bb_note, if original insn was a bb_head) or to the bb_end. */
6628 if (!expr)
6630 int res;
6631 rtx_insn *last_insn = PREV_INSN (insn);
6632 bool added_to_path;
6634 gcc_assert (insn == sel_bb_end (bb));
6636 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6637 it's already in PATH then). */
6638 if (insn != first_insn)
6640 ilist_add (&path, insn);
6641 added_to_path = true;
6643 else
6644 added_to_path = false;
6646 /* Process_successors should be able to find at least one
6647 successor for which code_motion_path_driver returns TRUE. */
6648 res = code_motion_process_successors (insn, orig_ops,
6649 path, static_params);
6651 /* Jump in the end of basic block could have been removed or replaced
6652 during code_motion_process_successors, so recompute insn as the
6653 last insn in bb. */
6654 if (NEXT_INSN (last_insn) != insn)
6656 insn = sel_bb_end (bb);
6657 first_insn = sel_bb_head (bb);
6660 /* Remove bb tail from path. */
6661 if (added_to_path)
6662 ilist_remove (&path);
6664 if (res != 1)
6666 /* This is the case when one of the original expr is no longer available
6667 due to bookkeeping created on this branch with the same register.
6668 In the original algorithm, which doesn't have update_data_sets call
6669 on a bookkeeping block, it would simply result in returning
6670 FALSE when we've encountered a previously generated bookkeeping
6671 insn in moveop_orig_expr_not_found. */
6672 code_motion_path_driver_cleanup (&orig_ops, &path);
6673 return res;
6677 /* Don't need it any more. */
6678 av_set_clear (&orig_ops);
6680 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6681 the beginning of the basic block. */
6682 before_first = PREV_INSN (first_insn);
6683 while (insn != before_first)
6685 if (code_motion_path_driver_info->ascend)
6686 code_motion_path_driver_info->ascend (insn, static_params);
6688 insn = PREV_INSN (insn);
6691 /* Now we're at the bb head. */
6692 insn = first_insn;
6693 ilist_remove (&path);
6694 local_params_in->removed_last_insn = removed_last_insn;
6695 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6697 /* This should be the very last operation as at bb head we could change
6698 the numbering by creating bookkeeping blocks. */
6699 if (removed_last_insn)
6700 insn = PREV_INSN (insn);
6702 /* If we have simplified the control flow and removed the first jump insn,
6703 there's no point in marking this block in the visited blocks bitmap. */
6704 if (BLOCK_FOR_INSN (insn))
6705 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6706 return true;
6709 /* Move up the operations from ORIG_OPS set traversing the dag starting
6710 from INSN. PATH represents the edges traversed so far.
6711 DEST is the register chosen for scheduling the current expr. Insert
6712 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6713 C_EXPR is how it looks like at the given cfg point.
6714 Set *SHOULD_MOVE to indicate whether we have only disconnected
6715 one of the insns found.
6717 Returns whether original instructions were found, which is asserted
6718 to be true in the caller. */
6719 static bool
6720 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6721 rtx dest, expr_t c_expr, bool *should_move)
6723 struct moveop_static_params sparams;
6724 struct cmpd_local_params lparams;
6725 int res;
6727 /* Init params for code_motion_path_driver. */
6728 sparams.dest = dest;
6729 sparams.c_expr = c_expr;
6730 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6731 #ifdef ENABLE_CHECKING
6732 sparams.failed_insn = NULL;
6733 #endif
6734 sparams.was_renamed = false;
6735 lparams.e1 = NULL;
6737 /* We haven't visited any blocks yet. */
6738 bitmap_clear (code_motion_visited_blocks);
6740 /* Set appropriate hooks and data. */
6741 code_motion_path_driver_info = &move_op_hooks;
6742 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6744 gcc_assert (res != -1);
6746 if (sparams.was_renamed)
6747 EXPR_WAS_RENAMED (expr_vliw) = true;
6749 *should_move = (sparams.uid == -1);
6751 return res;
6755 /* Functions that work with regions. */
6757 /* Current number of seqno used in init_seqno and init_seqno_1. */
6758 static int cur_seqno;
6760 /* A helper for init_seqno. Traverse the region starting from BB and
6761 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6762 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6763 static void
6764 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6766 int bbi = BLOCK_TO_BB (bb->index);
6767 insn_t insn, note = bb_note (bb);
6768 insn_t succ_insn;
6769 succ_iterator si;
6771 bitmap_set_bit (visited_bbs, bbi);
6772 if (blocks_to_reschedule)
6773 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6775 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6776 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6778 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6779 int succ_bbi = BLOCK_TO_BB (succ->index);
6781 gcc_assert (in_current_region_p (succ));
6783 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6785 gcc_assert (succ_bbi > bbi);
6787 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6789 else if (blocks_to_reschedule)
6790 bitmap_set_bit (forced_ebb_heads, succ->index);
6793 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6794 INSN_SEQNO (insn) = cur_seqno--;
6797 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6798 blocks on which we're rescheduling when pipelining, FROM is the block where
6799 traversing region begins (it may not be the head of the region when
6800 pipelining, but the head of the loop instead).
6802 Returns the maximal seqno found. */
6803 static int
6804 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6806 sbitmap visited_bbs;
6807 bitmap_iterator bi;
6808 unsigned bbi;
6810 visited_bbs = sbitmap_alloc (current_nr_blocks);
6812 if (blocks_to_reschedule)
6814 bitmap_ones (visited_bbs);
6815 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6817 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6818 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6821 else
6823 bitmap_clear (visited_bbs);
6824 from = EBB_FIRST_BB (0);
6827 cur_seqno = sched_max_luid - 1;
6828 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6830 /* cur_seqno may be positive if the number of instructions is less than
6831 sched_max_luid - 1 (when rescheduling or if some instructions have been
6832 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6833 gcc_assert (cur_seqno >= 0);
6835 sbitmap_free (visited_bbs);
6836 return sched_max_luid - 1;
6839 /* Initialize scheduling parameters for current region. */
6840 static void
6841 sel_setup_region_sched_flags (void)
6843 enable_schedule_as_rhs_p = 1;
6844 bookkeeping_p = 1;
6845 pipelining_p = (bookkeeping_p
6846 && (flag_sel_sched_pipelining != 0)
6847 && current_loop_nest != NULL
6848 && loop_has_exit_edges (current_loop_nest));
6849 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6850 max_ws = MAX_WS;
6853 /* Return true if all basic blocks of current region are empty. */
6854 static bool
6855 current_region_empty_p (void)
6857 int i;
6858 for (i = 0; i < current_nr_blocks; i++)
6859 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6860 return false;
6862 return true;
6865 /* Prepare and verify loop nest for pipelining. */
6866 static void
6867 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6869 current_loop_nest = get_loop_nest_for_rgn (rgn);
6871 if (!current_loop_nest)
6872 return;
6874 /* If this loop has any saved loop preheaders from nested loops,
6875 add these basic blocks to the current region. */
6876 sel_add_loop_preheaders (bbs);
6878 /* Check that we're starting with a valid information. */
6879 gcc_assert (loop_latch_edge (current_loop_nest));
6880 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6883 /* Compute instruction priorities for current region. */
6884 static void
6885 sel_compute_priorities (int rgn)
6887 sched_rgn_compute_dependencies (rgn);
6889 /* Compute insn priorities in haifa style. Then free haifa style
6890 dependencies that we've calculated for this. */
6891 compute_priorities ();
6893 if (sched_verbose >= 5)
6894 debug_rgn_dependencies (0);
6896 free_rgn_deps ();
6899 /* Init scheduling data for RGN. Returns true when this region should not
6900 be scheduled. */
6901 static bool
6902 sel_region_init (int rgn)
6904 int i;
6905 bb_vec_t bbs;
6907 rgn_setup_region (rgn);
6909 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6910 do region initialization here so the region can be bundled correctly,
6911 but we'll skip the scheduling in sel_sched_region (). */
6912 if (current_region_empty_p ())
6913 return true;
6915 bbs.create (current_nr_blocks);
6917 for (i = 0; i < current_nr_blocks; i++)
6918 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6920 sel_init_bbs (bbs);
6922 if (flag_sel_sched_pipelining)
6923 setup_current_loop_nest (rgn, &bbs);
6925 sel_setup_region_sched_flags ();
6927 /* Initialize luids and dependence analysis which both sel-sched and haifa
6928 need. */
6929 sched_init_luids (bbs);
6930 sched_deps_init (false);
6932 /* Initialize haifa data. */
6933 rgn_setup_sched_infos ();
6934 sel_set_sched_flags ();
6935 haifa_init_h_i_d (bbs);
6937 sel_compute_priorities (rgn);
6938 init_deps_global ();
6940 /* Main initialization. */
6941 sel_setup_sched_infos ();
6942 sel_init_global_and_expr (bbs);
6944 bbs.release ();
6946 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6948 /* Init correct liveness sets on each instruction of a single-block loop.
6949 This is the only situation when we can't update liveness when calling
6950 compute_live for the first insn of the loop. */
6951 if (current_loop_nest)
6953 int header =
6954 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6956 : 0);
6958 if (current_nr_blocks == header + 1)
6959 update_liveness_on_insn
6960 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6963 /* Set hooks so that no newly generated insn will go out unnoticed. */
6964 sel_register_cfg_hooks ();
6966 /* !!! We call target.sched.init () for the whole region, but we invoke
6967 targetm.sched.finish () for every ebb. */
6968 if (targetm.sched.init)
6969 /* None of the arguments are actually used in any target. */
6970 targetm.sched.init (sched_dump, sched_verbose, -1);
6972 first_emitted_uid = get_max_uid () + 1;
6973 preheader_removed = false;
6975 /* Reset register allocation ticks array. */
6976 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6977 reg_rename_this_tick = 0;
6979 bitmap_initialize (forced_ebb_heads, 0);
6980 bitmap_clear (forced_ebb_heads);
6982 setup_nop_vinsn ();
6983 current_copies = BITMAP_ALLOC (NULL);
6984 current_originators = BITMAP_ALLOC (NULL);
6985 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6987 return false;
6990 /* Simplify insns after the scheduling. */
6991 static void
6992 simplify_changed_insns (void)
6994 int i;
6996 for (i = 0; i < current_nr_blocks; i++)
6998 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6999 rtx_insn *insn;
7001 FOR_BB_INSNS (bb, insn)
7002 if (INSN_P (insn))
7004 expr_t expr = INSN_EXPR (insn);
7006 if (EXPR_WAS_SUBSTITUTED (expr))
7007 validate_simplify_insn (insn);
7012 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
7013 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
7014 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
7015 static void
7016 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
7018 rtx_insn *head, *tail;
7019 basic_block bb1 = bb;
7020 if (sched_verbose >= 2)
7021 sel_print ("Finishing schedule in bbs: ");
7025 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7027 if (sched_verbose >= 2)
7028 sel_print ("%d; ", bb1->index);
7030 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7032 if (sched_verbose >= 2)
7033 sel_print ("\n");
7035 get_ebb_head_tail (bb, bb1, &head, &tail);
7037 current_sched_info->head = head;
7038 current_sched_info->tail = tail;
7039 current_sched_info->prev_head = PREV_INSN (head);
7040 current_sched_info->next_tail = NEXT_INSN (tail);
7043 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7044 static void
7045 reset_sched_cycles_in_current_ebb (void)
7047 int last_clock = 0;
7048 int haifa_last_clock = -1;
7049 int haifa_clock = 0;
7050 int issued_insns = 0;
7051 insn_t insn;
7053 if (targetm.sched.init)
7055 /* None of the arguments are actually used in any target.
7056 NB: We should have md_reset () hook for cases like this. */
7057 targetm.sched.init (sched_dump, sched_verbose, -1);
7060 state_reset (curr_state);
7061 advance_state (curr_state);
7063 for (insn = current_sched_info->head;
7064 insn != current_sched_info->next_tail;
7065 insn = NEXT_INSN (insn))
7067 int cost, haifa_cost;
7068 int sort_p;
7069 bool asm_p, real_insn, after_stall, all_issued;
7070 int clock;
7072 if (!INSN_P (insn))
7073 continue;
7075 asm_p = false;
7076 real_insn = recog_memoized (insn) >= 0;
7077 clock = INSN_SCHED_CYCLE (insn);
7079 cost = clock - last_clock;
7081 /* Initialize HAIFA_COST. */
7082 if (! real_insn)
7084 asm_p = INSN_ASM_P (insn);
7086 if (asm_p)
7087 /* This is asm insn which *had* to be scheduled first
7088 on the cycle. */
7089 haifa_cost = 1;
7090 else
7091 /* This is a use/clobber insn. It should not change
7092 cost. */
7093 haifa_cost = 0;
7095 else
7096 haifa_cost = estimate_insn_cost (insn, curr_state);
7098 /* Stall for whatever cycles we've stalled before. */
7099 after_stall = 0;
7100 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7102 haifa_cost = cost;
7103 after_stall = 1;
7105 all_issued = issued_insns == issue_rate;
7106 if (haifa_cost == 0 && all_issued)
7107 haifa_cost = 1;
7108 if (haifa_cost > 0)
7110 int i = 0;
7112 while (haifa_cost--)
7114 advance_state (curr_state);
7115 issued_insns = 0;
7116 i++;
7118 if (sched_verbose >= 2)
7120 sel_print ("advance_state (state_transition)\n");
7121 debug_state (curr_state);
7124 /* The DFA may report that e.g. insn requires 2 cycles to be
7125 issued, but on the next cycle it says that insn is ready
7126 to go. Check this here. */
7127 if (!after_stall
7128 && real_insn
7129 && haifa_cost > 0
7130 && estimate_insn_cost (insn, curr_state) == 0)
7131 break;
7133 /* When the data dependency stall is longer than the DFA stall,
7134 and when we have issued exactly issue_rate insns and stalled,
7135 it could be that after this longer stall the insn will again
7136 become unavailable to the DFA restrictions. Looks strange
7137 but happens e.g. on x86-64. So recheck DFA on the last
7138 iteration. */
7139 if ((after_stall || all_issued)
7140 && real_insn
7141 && haifa_cost == 0)
7142 haifa_cost = estimate_insn_cost (insn, curr_state);
7145 haifa_clock += i;
7146 if (sched_verbose >= 2)
7147 sel_print ("haifa clock: %d\n", haifa_clock);
7149 else
7150 gcc_assert (haifa_cost == 0);
7152 if (sched_verbose >= 2)
7153 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7155 if (targetm.sched.dfa_new_cycle)
7156 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7157 haifa_last_clock, haifa_clock,
7158 &sort_p))
7160 advance_state (curr_state);
7161 issued_insns = 0;
7162 haifa_clock++;
7163 if (sched_verbose >= 2)
7165 sel_print ("advance_state (dfa_new_cycle)\n");
7166 debug_state (curr_state);
7167 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7171 if (real_insn)
7173 static state_t temp = NULL;
7175 if (!temp)
7176 temp = xmalloc (dfa_state_size);
7177 memcpy (temp, curr_state, dfa_state_size);
7179 cost = state_transition (curr_state, insn);
7180 if (memcmp (temp, curr_state, dfa_state_size))
7181 issued_insns++;
7183 if (sched_verbose >= 2)
7185 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7186 haifa_clock + 1);
7187 debug_state (curr_state);
7189 gcc_assert (cost < 0);
7192 if (targetm.sched.variable_issue)
7193 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7195 INSN_SCHED_CYCLE (insn) = haifa_clock;
7197 last_clock = clock;
7198 haifa_last_clock = haifa_clock;
7202 /* Put TImode markers on insns starting a new issue group. */
7203 static void
7204 put_TImodes (void)
7206 int last_clock = -1;
7207 insn_t insn;
7209 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7210 insn = NEXT_INSN (insn))
7212 int cost, clock;
7214 if (!INSN_P (insn))
7215 continue;
7217 clock = INSN_SCHED_CYCLE (insn);
7218 cost = (last_clock == -1) ? 1 : clock - last_clock;
7220 gcc_assert (cost >= 0);
7222 if (issue_rate > 1
7223 && GET_CODE (PATTERN (insn)) != USE
7224 && GET_CODE (PATTERN (insn)) != CLOBBER)
7226 if (reload_completed && cost > 0)
7227 PUT_MODE (insn, TImode);
7229 last_clock = clock;
7232 if (sched_verbose >= 2)
7233 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7237 /* Perform MD_FINISH on EBBs comprising current region. When
7238 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7239 to produce correct sched cycles on insns. */
7240 static void
7241 sel_region_target_finish (bool reset_sched_cycles_p)
7243 int i;
7244 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7246 for (i = 0; i < current_nr_blocks; i++)
7248 if (bitmap_bit_p (scheduled_blocks, i))
7249 continue;
7251 /* While pipelining outer loops, skip bundling for loop
7252 preheaders. Those will be rescheduled in the outer loop. */
7253 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7254 continue;
7256 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7258 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7259 continue;
7261 if (reset_sched_cycles_p)
7262 reset_sched_cycles_in_current_ebb ();
7264 if (targetm.sched.init)
7265 targetm.sched.init (sched_dump, sched_verbose, -1);
7267 put_TImodes ();
7269 if (targetm.sched.finish)
7271 targetm.sched.finish (sched_dump, sched_verbose);
7273 /* Extend luids so that insns generated by the target will
7274 get zero luid. */
7275 sched_extend_luids ();
7279 BITMAP_FREE (scheduled_blocks);
7282 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7283 is true, make an additional pass emulating scheduler to get correct insn
7284 cycles for md_finish calls. */
7285 static void
7286 sel_region_finish (bool reset_sched_cycles_p)
7288 simplify_changed_insns ();
7289 sched_finish_ready_list ();
7290 free_nop_pool ();
7292 /* Free the vectors. */
7293 vec_av_set.release ();
7294 BITMAP_FREE (current_copies);
7295 BITMAP_FREE (current_originators);
7296 BITMAP_FREE (code_motion_visited_blocks);
7297 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7298 vinsn_vec_free (vec_target_unavailable_vinsns);
7300 /* If LV_SET of the region head should be updated, do it now because
7301 there will be no other chance. */
7303 succ_iterator si;
7304 insn_t insn;
7306 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7307 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7309 basic_block bb = BLOCK_FOR_INSN (insn);
7311 if (!BB_LV_SET_VALID_P (bb))
7312 compute_live (insn);
7316 /* Emulate the Haifa scheduler for bundling. */
7317 if (reload_completed)
7318 sel_region_target_finish (reset_sched_cycles_p);
7320 sel_finish_global_and_expr ();
7322 bitmap_clear (forced_ebb_heads);
7324 free_nop_vinsn ();
7326 finish_deps_global ();
7327 sched_finish_luids ();
7328 h_d_i_d.release ();
7330 sel_finish_bbs ();
7331 BITMAP_FREE (blocks_to_reschedule);
7333 sel_unregister_cfg_hooks ();
7335 max_issue_size = 0;
7339 /* Functions that implement the scheduler driver. */
7341 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7342 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7343 of insns scheduled -- these would be postprocessed later. */
7344 static void
7345 schedule_on_fences (flist_t fences, int max_seqno,
7346 ilist_t **scheduled_insns_tailpp)
7348 flist_t old_fences = fences;
7350 if (sched_verbose >= 1)
7352 sel_print ("\nScheduling on fences: ");
7353 dump_flist (fences);
7354 sel_print ("\n");
7357 scheduled_something_on_previous_fence = false;
7358 for (; fences; fences = FLIST_NEXT (fences))
7360 fence_t fence = NULL;
7361 int seqno = 0;
7362 flist_t fences2;
7363 bool first_p = true;
7365 /* Choose the next fence group to schedule.
7366 The fact that insn can be scheduled only once
7367 on the cycle is guaranteed by two properties:
7368 1. seqnos of parallel groups decrease with each iteration.
7369 2. If is_ineligible_successor () sees the larger seqno, it
7370 checks if candidate insn is_in_current_fence_p (). */
7371 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7373 fence_t f = FLIST_FENCE (fences2);
7375 if (!FENCE_PROCESSED_P (f))
7377 int i = INSN_SEQNO (FENCE_INSN (f));
7379 if (first_p || i > seqno)
7381 seqno = i;
7382 fence = f;
7383 first_p = false;
7385 else
7386 /* ??? Seqnos of different groups should be different. */
7387 gcc_assert (1 || i != seqno);
7391 gcc_assert (fence);
7393 /* As FENCE is nonnull, SEQNO is initialized. */
7394 seqno -= max_seqno + 1;
7395 fill_insns (fence, seqno, scheduled_insns_tailpp);
7396 FENCE_PROCESSED_P (fence) = true;
7399 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7400 don't need to keep bookkeeping-invalidated and target-unavailable
7401 vinsns any more. */
7402 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7403 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7406 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7407 static void
7408 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7410 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7412 /* The first element is already processed. */
7413 while ((fences = FLIST_NEXT (fences)))
7415 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7417 if (*min_seqno > seqno)
7418 *min_seqno = seqno;
7419 else if (*max_seqno < seqno)
7420 *max_seqno = seqno;
7424 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7425 static flist_t
7426 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7428 flist_t old_fences = fences;
7429 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7430 int max_time = 0;
7432 flist_tail_init (new_fences);
7433 for (; fences; fences = FLIST_NEXT (fences))
7435 fence_t fence = FLIST_FENCE (fences);
7436 insn_t insn;
7438 if (!FENCE_BNDS (fence))
7440 /* This fence doesn't have any successors. */
7441 if (!FENCE_SCHEDULED_P (fence))
7443 /* Nothing was scheduled on this fence. */
7444 int seqno;
7446 insn = FENCE_INSN (fence);
7447 seqno = INSN_SEQNO (insn);
7448 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7450 if (sched_verbose >= 1)
7451 sel_print ("Fence %d[%d] has not changed\n",
7452 INSN_UID (insn),
7453 BLOCK_NUM (insn));
7454 move_fence_to_fences (fences, new_fences);
7457 else
7458 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7459 max_time = MAX (max_time, FENCE_CYCLE (fence));
7462 flist_clear (&old_fences);
7463 *ptime = max_time;
7464 return FLIST_TAIL_HEAD (new_fences);
7467 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7468 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7469 the highest seqno used in a region. Return the updated highest seqno. */
7470 static int
7471 update_seqnos_and_stage (int min_seqno, int max_seqno,
7472 int highest_seqno_in_use,
7473 ilist_t *pscheduled_insns)
7475 int new_hs;
7476 ilist_iterator ii;
7477 insn_t insn;
7479 /* Actually, new_hs is the seqno of the instruction, that was
7480 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7481 if (*pscheduled_insns)
7483 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7484 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7485 gcc_assert (new_hs > highest_seqno_in_use);
7487 else
7488 new_hs = highest_seqno_in_use;
7490 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7492 gcc_assert (INSN_SEQNO (insn) < 0);
7493 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7494 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7496 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7497 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7498 require > 1GB of memory e.g. on limit-fnargs.c. */
7499 if (! pipelining_p)
7500 free_data_for_scheduled_insn (insn);
7503 ilist_clear (pscheduled_insns);
7504 global_level++;
7506 return new_hs;
7509 /* The main driver for scheduling a region. This function is responsible
7510 for correct propagation of fences (i.e. scheduling points) and creating
7511 a group of parallel insns at each of them. It also supports
7512 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7513 of scheduling. */
7514 static void
7515 sel_sched_region_2 (int orig_max_seqno)
7517 int highest_seqno_in_use = orig_max_seqno;
7518 int max_time = 0;
7520 stat_bookkeeping_copies = 0;
7521 stat_insns_needed_bookkeeping = 0;
7522 stat_renamed_scheduled = 0;
7523 stat_substitutions_total = 0;
7524 num_insns_scheduled = 0;
7526 while (fences)
7528 int min_seqno, max_seqno;
7529 ilist_t scheduled_insns = NULL;
7530 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7532 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7533 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7534 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7535 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7536 highest_seqno_in_use,
7537 &scheduled_insns);
7540 if (sched_verbose >= 1)
7542 sel_print ("Total scheduling time: %d cycles\n", max_time);
7543 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7544 "bookkeeping, %d insns renamed, %d insns substituted\n",
7545 stat_bookkeeping_copies,
7546 stat_insns_needed_bookkeeping,
7547 stat_renamed_scheduled,
7548 stat_substitutions_total);
7552 /* Schedule a region. When pipelining, search for possibly never scheduled
7553 bookkeeping code and schedule it. Reschedule pipelined code without
7554 pipelining after. */
7555 static void
7556 sel_sched_region_1 (void)
7558 int orig_max_seqno;
7560 /* Remove empty blocks that might be in the region from the beginning. */
7561 purge_empty_blocks ();
7563 orig_max_seqno = init_seqno (NULL, NULL);
7564 gcc_assert (orig_max_seqno >= 1);
7566 /* When pipelining outer loops, create fences on the loop header,
7567 not preheader. */
7568 fences = NULL;
7569 if (current_loop_nest)
7570 init_fences (BB_END (EBB_FIRST_BB (0)));
7571 else
7572 init_fences (bb_note (EBB_FIRST_BB (0)));
7573 global_level = 1;
7575 sel_sched_region_2 (orig_max_seqno);
7577 gcc_assert (fences == NULL);
7579 if (pipelining_p)
7581 int i;
7582 basic_block bb;
7583 struct flist_tail_def _new_fences;
7584 flist_tail_t new_fences = &_new_fences;
7585 bool do_p = true;
7587 pipelining_p = false;
7588 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7589 bookkeeping_p = false;
7590 enable_schedule_as_rhs_p = false;
7592 /* Schedule newly created code, that has not been scheduled yet. */
7593 do_p = true;
7595 while (do_p)
7597 do_p = false;
7599 for (i = 0; i < current_nr_blocks; i++)
7601 basic_block bb = EBB_FIRST_BB (i);
7603 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7605 if (! bb_ends_ebb_p (bb))
7606 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7607 if (sel_bb_empty_p (bb))
7609 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7610 continue;
7612 clear_outdated_rtx_info (bb);
7613 if (sel_insn_is_speculation_check (BB_END (bb))
7614 && JUMP_P (BB_END (bb)))
7615 bitmap_set_bit (blocks_to_reschedule,
7616 BRANCH_EDGE (bb)->dest->index);
7618 else if (! sel_bb_empty_p (bb)
7619 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7620 bitmap_set_bit (blocks_to_reschedule, bb->index);
7623 for (i = 0; i < current_nr_blocks; i++)
7625 bb = EBB_FIRST_BB (i);
7627 /* While pipelining outer loops, skip bundling for loop
7628 preheaders. Those will be rescheduled in the outer
7629 loop. */
7630 if (sel_is_loop_preheader_p (bb))
7632 clear_outdated_rtx_info (bb);
7633 continue;
7636 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7638 flist_tail_init (new_fences);
7640 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7642 /* Mark BB as head of the new ebb. */
7643 bitmap_set_bit (forced_ebb_heads, bb->index);
7645 gcc_assert (fences == NULL);
7647 init_fences (bb_note (bb));
7649 sel_sched_region_2 (orig_max_seqno);
7651 do_p = true;
7652 break;
7659 /* Schedule the RGN region. */
7660 void
7661 sel_sched_region (int rgn)
7663 bool schedule_p;
7664 bool reset_sched_cycles_p;
7666 if (sel_region_init (rgn))
7667 return;
7669 if (sched_verbose >= 1)
7670 sel_print ("Scheduling region %d\n", rgn);
7672 schedule_p = (!sched_is_disabled_for_current_region_p ()
7673 && dbg_cnt (sel_sched_region_cnt));
7674 reset_sched_cycles_p = pipelining_p;
7675 if (schedule_p)
7676 sel_sched_region_1 ();
7677 else
7678 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7679 reset_sched_cycles_p = true;
7681 sel_region_finish (reset_sched_cycles_p);
7684 /* Perform global init for the scheduler. */
7685 static void
7686 sel_global_init (void)
7688 calculate_dominance_info (CDI_DOMINATORS);
7689 alloc_sched_pools ();
7691 /* Setup the infos for sched_init. */
7692 sel_setup_sched_infos ();
7693 setup_sched_dump ();
7695 sched_rgn_init (false);
7696 sched_init ();
7698 sched_init_bbs ();
7699 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7700 after_recovery = 0;
7701 can_issue_more = issue_rate;
7703 sched_extend_target ();
7704 sched_deps_init (true);
7705 setup_nop_and_exit_insns ();
7706 sel_extend_global_bb_info ();
7707 init_lv_sets ();
7708 init_hard_regs_data ();
7711 /* Free the global data of the scheduler. */
7712 static void
7713 sel_global_finish (void)
7715 free_bb_note_pool ();
7716 free_lv_sets ();
7717 sel_finish_global_bb_info ();
7719 free_regset_pool ();
7720 free_nop_and_exit_insns ();
7722 sched_rgn_finish ();
7723 sched_deps_finish ();
7724 sched_finish ();
7726 if (current_loops)
7727 sel_finish_pipelining ();
7729 free_sched_pools ();
7730 free_dominance_info (CDI_DOMINATORS);
7733 /* Return true when we need to skip selective scheduling. Used for debugging. */
7734 bool
7735 maybe_skip_selective_scheduling (void)
7737 return ! dbg_cnt (sel_sched_cnt);
7740 /* The entry point. */
7741 void
7742 run_selective_scheduling (void)
7744 int rgn;
7746 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7747 return;
7749 sel_global_init ();
7751 for (rgn = 0; rgn < nr_regions; rgn++)
7752 sel_sched_region (rgn);
7754 sel_global_finish ();
7757 #endif