Update gcc-50 to SVN version 231263 (gcc-5-branch)
[dragonfly.git] / contrib / gcc-5.0 / gcc / lra.c
blob2efc28600512c84e9cdce08018b95fc1a0fab183
1 /* LRA (local register allocator) driver and LRA utilities.
2 Copyright (C) 2010-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* The Local Register Allocator (LRA) is a replacement of former
23 reload pass. It is focused to simplify code solving the reload
24 pass tasks, to make the code maintenance easier, and to implement new
25 perspective optimizations.
27 The major LRA design solutions are:
28 o division small manageable, separated sub-tasks
29 o reflection of all transformations and decisions in RTL as more
30 as possible
31 o insn constraints as a primary source of the info (minimizing
32 number of target-depended macros/hooks)
34 In brief LRA works by iterative insn process with the final goal is
35 to satisfy all insn and address constraints:
36 o New reload insns (in brief reloads) and reload pseudos might be
37 generated;
38 o Some pseudos might be spilled to assign hard registers to
39 new reload pseudos;
40 o Recalculating spilled pseudo values (rematerialization);
41 o Changing spilled pseudos to stack memory or their equivalences;
42 o Allocation stack memory changes the address displacement and
43 new iteration is needed.
45 Here is block diagram of LRA passes:
47 ------------------------
48 --------------- | Undo inheritance for | ---------------
49 | Memory-memory | | spilled pseudos, | | New (and old) |
50 | move coalesce |<---| splits for pseudos got |<-- | pseudos |
51 --------------- | the same hard regs, | | assignment |
52 Start | | and optional reloads | ---------------
53 | | ------------------------ ^
54 V | ---------------- |
55 ----------- V | Update virtual | |
56 | Remove |----> ------------>| register | |
57 | scratches | ^ | displacements | |
58 ----------- | ---------------- |
59 | | |
60 | V New |
61 | ------------ pseudos -------------------
62 | |Constraints:| or insns | Inheritance/split |
63 | | RTL |--------->| transformations |
64 | | transfor- | | in EBB scope |
65 | substi- | mations | -------------------
66 | tutions ------------
67 | | No change
68 ---------------- V
69 | Spilled pseudo | -------------------
70 | to memory |<----| Rematerialization |
71 | substitution | -------------------
72 ----------------
73 | No susbtitions
75 -------------------------
76 | Hard regs substitution, |
77 | devirtalization, and |------> Finish
78 | restoring scratches got |
79 | memory |
80 -------------------------
82 To speed up the process:
83 o We process only insns affected by changes on previous
84 iterations;
85 o We don't use DFA-infrastructure because it results in much slower
86 compiler speed than a special IR described below does;
87 o We use a special insn representation for quick access to insn
88 info which is always *synchronized* with the current RTL;
89 o Insn IR is minimized by memory. It is divided on three parts:
90 o one specific for each insn in RTL (only operand locations);
91 o one common for all insns in RTL with the same insn code
92 (different operand attributes from machine descriptions);
93 o one oriented for maintenance of live info (list of pseudos).
94 o Pseudo data:
95 o all insns where the pseudo is referenced;
96 o live info (conflicting hard regs, live ranges, # of
97 references etc);
98 o data used for assigning (preferred hard regs, costs etc).
100 This file contains LRA driver, LRA utility functions and data, and
101 code for dealing with scratches. */
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "tm.h"
107 #include "hard-reg-set.h"
108 #include "rtl.h"
109 #include "tm_p.h"
110 #include "regs.h"
111 #include "insn-config.h"
112 #include "insn-codes.h"
113 #include "recog.h"
114 #include "output.h"
115 #include "addresses.h"
116 #include "flags.h"
117 #include "hashtab.h"
118 #include "hash-set.h"
119 #include "vec.h"
120 #include "machmode.h"
121 #include "input.h"
122 #include "function.h"
123 #include "symtab.h"
124 #include "wide-int.h"
125 #include "inchash.h"
126 #include "tree.h"
127 #include "optabs.h"
128 #include "statistics.h"
129 #include "double-int.h"
130 #include "real.h"
131 #include "fixed-value.h"
132 #include "alias.h"
133 #include "expmed.h"
134 #include "dojump.h"
135 #include "explow.h"
136 #include "calls.h"
137 #include "emit-rtl.h"
138 #include "varasm.h"
139 #include "stmt.h"
140 #include "expr.h"
141 #include "predict.h"
142 #include "dominance.h"
143 #include "cfg.h"
144 #include "cfgrtl.h"
145 #include "cfgbuild.h"
146 #include "basic-block.h"
147 #include "except.h"
148 #include "tree-pass.h"
149 #include "timevar.h"
150 #include "target.h"
151 #include "ira.h"
152 #include "lra-int.h"
153 #include "df.h"
155 /* Dump bitmap SET with TITLE and BB INDEX. */
156 void
157 lra_dump_bitmap_with_title (const char *title, bitmap set, int index)
159 unsigned int i;
160 int count;
161 bitmap_iterator bi;
162 static const int max_nums_on_line = 10;
164 if (bitmap_empty_p (set))
165 return;
166 fprintf (lra_dump_file, " %s %d:", title, index);
167 fprintf (lra_dump_file, "\n");
168 count = max_nums_on_line + 1;
169 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
171 if (count > max_nums_on_line)
173 fprintf (lra_dump_file, "\n ");
174 count = 0;
176 fprintf (lra_dump_file, " %4u", i);
177 count++;
179 fprintf (lra_dump_file, "\n");
182 /* Hard registers currently not available for allocation. It can
183 changed after some hard registers become not eliminable. */
184 HARD_REG_SET lra_no_alloc_regs;
186 static int get_new_reg_value (void);
187 static void expand_reg_info (void);
188 static void invalidate_insn_recog_data (int);
189 static int get_insn_freq (rtx_insn *);
190 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t,
191 rtx_insn *, int);
193 /* Expand all regno related info needed for LRA. */
194 static void
195 expand_reg_data (int old)
197 resize_reg_info ();
198 expand_reg_info ();
199 ira_expand_reg_equiv ();
200 for (int i = (int) max_reg_num () - 1; i >= old; i--)
201 lra_change_class (i, ALL_REGS, " Set", true);
204 /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
205 or of VOIDmode, use MD_MODE for the new reg. Initialize its
206 register class to RCLASS. Print message about assigning class
207 RCLASS containing new register name TITLE unless it is NULL. Use
208 attributes of ORIGINAL if it is a register. The created register
209 will have unique held value. */
211 lra_create_new_reg_with_unique_value (machine_mode md_mode, rtx original,
212 enum reg_class rclass, const char *title)
214 machine_mode mode;
215 rtx new_reg;
217 if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
218 mode = md_mode;
219 lra_assert (mode != VOIDmode);
220 new_reg = gen_reg_rtx (mode);
221 if (original == NULL_RTX || ! REG_P (original))
223 if (lra_dump_file != NULL)
224 fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg));
226 else
228 if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
229 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
230 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
231 REG_POINTER (new_reg) = REG_POINTER (original);
232 REG_ATTRS (new_reg) = REG_ATTRS (original);
233 if (lra_dump_file != NULL)
234 fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i",
235 REGNO (new_reg), REGNO (original));
237 if (lra_dump_file != NULL)
239 if (title != NULL)
240 fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
241 reg_class_names[rclass], *title == '\0' ? "" : " ",
242 title, REGNO (new_reg));
243 fprintf (lra_dump_file, "\n");
245 expand_reg_data (max_reg_num ());
246 setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
247 return new_reg;
250 /* Analogous to the previous function but also inherits value of
251 ORIGINAL. */
253 lra_create_new_reg (machine_mode md_mode, rtx original,
254 enum reg_class rclass, const char *title)
256 rtx new_reg;
258 new_reg
259 = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
260 if (original != NULL_RTX && REG_P (original))
261 lra_assign_reg_val (REGNO (original), REGNO (new_reg));
262 return new_reg;
265 /* Set up for REGNO unique hold value. */
266 void
267 lra_set_regno_unique_value (int regno)
269 lra_reg_info[regno].val = get_new_reg_value ();
272 /* Invalidate INSN related info used by LRA. The info should never be
273 used after that. */
274 void
275 lra_invalidate_insn_data (rtx_insn *insn)
277 lra_invalidate_insn_regno_info (insn);
278 invalidate_insn_recog_data (INSN_UID (insn));
281 /* Mark INSN deleted and invalidate the insn related info used by
282 LRA. */
283 void
284 lra_set_insn_deleted (rtx_insn *insn)
286 lra_invalidate_insn_data (insn);
287 SET_INSN_DELETED (insn);
290 /* Delete an unneeded INSN and any previous insns who sole purpose is
291 loading data that is dead in INSN. */
292 void
293 lra_delete_dead_insn (rtx_insn *insn)
295 rtx_insn *prev = prev_real_insn (insn);
296 rtx prev_dest;
298 /* If the previous insn sets a register that dies in our insn,
299 delete it too. */
300 if (prev && GET_CODE (PATTERN (prev)) == SET
301 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
302 && reg_mentioned_p (prev_dest, PATTERN (insn))
303 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
304 && ! side_effects_p (SET_SRC (PATTERN (prev))))
305 lra_delete_dead_insn (prev);
307 lra_set_insn_deleted (insn);
310 /* Emit insn x = y + z. Return NULL if we failed to do it.
311 Otherwise, return the insn. We don't use gen_add3_insn as it might
312 clobber CC. */
313 static rtx
314 emit_add3_insn (rtx x, rtx y, rtx z)
316 rtx_insn *last;
318 last = get_last_insn ();
320 if (have_addptr3_insn (x, y, z))
322 rtx insn = gen_addptr3_insn (x, y, z);
324 /* If the target provides an "addptr" pattern it hopefully does
325 for a reason. So falling back to the normal add would be
326 a bug. */
327 lra_assert (insn != NULL_RTX);
328 emit_insn (insn);
329 return insn;
332 rtx_insn *insn = emit_insn (gen_rtx_SET (VOIDmode, x,
333 gen_rtx_PLUS (GET_MODE (y), y, z)));
334 if (recog_memoized (insn) < 0)
336 delete_insns_since (last);
337 insn = NULL;
339 return insn;
342 /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
343 last resort. */
344 static rtx
345 emit_add2_insn (rtx x, rtx y)
347 rtx insn;
349 insn = emit_add3_insn (x, x, y);
350 if (insn == NULL_RTX)
352 insn = gen_add2_insn (x, y);
353 if (insn != NULL_RTX)
354 emit_insn (insn);
356 return insn;
359 /* Target checks operands through operand predicates to recognize an
360 insn. We should have a special precaution to generate add insns
361 which are frequent results of elimination.
363 Emit insns for x = y + z. X can be used to store intermediate
364 values and should be not in Y and Z when we use X to store an
365 intermediate value. Y + Z should form [base] [+ index[ * scale]] [
366 + disp] where base and index are registers, disp and scale are
367 constants. Y should contain base if it is present, Z should
368 contain disp if any. index[*scale] can be part of Y or Z. */
369 void
370 lra_emit_add (rtx x, rtx y, rtx z)
372 int old;
373 rtx_insn *last;
374 rtx a1, a2, base, index, disp, scale, index_scale;
375 bool ok_p;
377 rtx add3_insn = emit_add3_insn (x, y, z);
378 old = max_reg_num ();
379 if (add3_insn != NULL)
381 else
383 disp = a2 = NULL_RTX;
384 if (GET_CODE (y) == PLUS)
386 a1 = XEXP (y, 0);
387 a2 = XEXP (y, 1);
388 disp = z;
390 else
392 a1 = y;
393 if (CONSTANT_P (z))
394 disp = z;
395 else
396 a2 = z;
398 index_scale = scale = NULL_RTX;
399 if (GET_CODE (a1) == MULT)
401 index_scale = a1;
402 index = XEXP (a1, 0);
403 scale = XEXP (a1, 1);
404 base = a2;
406 else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
408 index_scale = a2;
409 index = XEXP (a2, 0);
410 scale = XEXP (a2, 1);
411 base = a1;
413 else
415 base = a1;
416 index = a2;
418 if (! (REG_P (base) || GET_CODE (base) == SUBREG)
419 || (index != NULL_RTX
420 && ! (REG_P (index) || GET_CODE (index) == SUBREG))
421 || (disp != NULL_RTX && ! CONSTANT_P (disp))
422 || (scale != NULL_RTX && ! CONSTANT_P (scale)))
424 /* Probably we have no 3 op add. Last chance is to use 2-op
425 add insn. To succeed, don't move Z to X as an address
426 segment always comes in Y. Otherwise, we might fail when
427 adding the address segment to register. */
428 lra_assert (x != y && x != z);
429 emit_move_insn (x, y);
430 rtx insn = emit_add2_insn (x, z);
431 lra_assert (insn != NULL_RTX);
433 else
435 if (index_scale == NULL_RTX)
436 index_scale = index;
437 if (disp == NULL_RTX)
439 /* Generate x = index_scale; x = x + base. */
440 lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
441 emit_move_insn (x, index_scale);
442 rtx insn = emit_add2_insn (x, base);
443 lra_assert (insn != NULL_RTX);
445 else if (scale == NULL_RTX)
447 /* Try x = base + disp. */
448 lra_assert (base != NULL_RTX);
449 last = get_last_insn ();
450 rtx_insn *move_insn =
451 emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp));
452 if (recog_memoized (move_insn) < 0)
454 delete_insns_since (last);
455 /* Generate x = disp; x = x + base. */
456 emit_move_insn (x, disp);
457 rtx add2_insn = emit_add2_insn (x, base);
458 lra_assert (add2_insn != NULL_RTX);
460 /* Generate x = x + index. */
461 if (index != NULL_RTX)
463 rtx insn = emit_add2_insn (x, index);
464 lra_assert (insn != NULL_RTX);
467 else
469 /* Try x = index_scale; x = x + disp; x = x + base. */
470 last = get_last_insn ();
471 rtx_insn *move_insn = emit_move_insn (x, index_scale);
472 ok_p = false;
473 if (recog_memoized (move_insn) >= 0)
475 rtx insn = emit_add2_insn (x, disp);
476 if (insn != NULL_RTX)
478 insn = emit_add2_insn (x, base);
479 if (insn != NULL_RTX)
480 ok_p = true;
483 if (! ok_p)
485 delete_insns_since (last);
486 /* Generate x = disp; x = x + base; x = x + index_scale. */
487 emit_move_insn (x, disp);
488 rtx insn = emit_add2_insn (x, base);
489 lra_assert (insn != NULL_RTX);
490 insn = emit_add2_insn (x, index_scale);
491 lra_assert (insn != NULL_RTX);
496 /* Functions emit_... can create pseudos -- so expand the pseudo
497 data. */
498 if (old != max_reg_num ())
499 expand_reg_data (old);
502 /* The number of emitted reload insns so far. */
503 int lra_curr_reload_num;
505 /* Emit x := y, processing special case when y = u + v or y = u + v *
506 scale + w through emit_add (Y can be an address which is base +
507 index reg * scale + displacement in general case). X may be used
508 as intermediate result therefore it should be not in Y. */
509 void
510 lra_emit_move (rtx x, rtx y)
512 int old;
514 if (GET_CODE (y) != PLUS)
516 if (rtx_equal_p (x, y))
517 return;
518 old = max_reg_num ();
519 emit_move_insn (x, y);
520 if (REG_P (x))
521 lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
522 /* Function emit_move can create pseudos -- so expand the pseudo
523 data. */
524 if (old != max_reg_num ())
525 expand_reg_data (old);
526 return;
528 lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
531 /* Update insn operands which are duplication of operands whose
532 numbers are in array of NOPS (with end marker -1). The insn is
533 represented by its LRA internal representation ID. */
534 void
535 lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
537 int i, j, nop;
538 struct lra_static_insn_data *static_id = id->insn_static_data;
540 for (i = 0; i < static_id->n_dups; i++)
541 for (j = 0; (nop = nops[j]) >= 0; j++)
542 if (static_id->dup_num[i] == nop)
543 *id->dup_loc[i] = *id->operand_loc[nop];
548 /* This page contains code dealing with info about registers in the
549 insns. */
551 /* Pools for insn reg info. */
552 static alloc_pool insn_reg_pool;
554 /* Initiate pool for insn reg info. */
555 static void
556 init_insn_regs (void)
558 insn_reg_pool
559 = create_alloc_pool ("insn regs", sizeof (struct lra_insn_reg), 100);
562 /* Create LRA insn related info about a reference to REGNO in INSN with
563 TYPE (in/out/inout), biggest reference mode MODE, flag that it is
564 reference through subreg (SUBREG_P), flag that is early clobbered
565 in the insn (EARLY_CLOBBER), and reference to the next insn reg
566 info (NEXT). */
567 static struct lra_insn_reg *
568 new_insn_reg (rtx_insn *insn, int regno, enum op_type type,
569 machine_mode mode,
570 bool subreg_p, bool early_clobber, struct lra_insn_reg *next)
572 struct lra_insn_reg *ir;
574 ir = (struct lra_insn_reg *) pool_alloc (insn_reg_pool);
575 ir->type = type;
576 ir->biggest_mode = mode;
577 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (lra_reg_info[regno].biggest_mode)
578 && NONDEBUG_INSN_P (insn))
579 lra_reg_info[regno].biggest_mode = mode;
580 ir->subreg_p = subreg_p;
581 ir->early_clobber = early_clobber;
582 ir->regno = regno;
583 ir->next = next;
584 return ir;
587 /* Free insn reg info IR. */
588 static void
589 free_insn_reg (struct lra_insn_reg *ir)
591 pool_free (insn_reg_pool, ir);
594 /* Free insn reg info list IR. */
595 static void
596 free_insn_regs (struct lra_insn_reg *ir)
598 struct lra_insn_reg *next_ir;
600 for (; ir != NULL; ir = next_ir)
602 next_ir = ir->next;
603 free_insn_reg (ir);
607 /* Finish pool for insn reg info. */
608 static void
609 finish_insn_regs (void)
611 free_alloc_pool (insn_reg_pool);
616 /* This page contains code dealing LRA insn info (or in other words
617 LRA internal insn representation). */
619 /* Map INSN_CODE -> the static insn data. This info is valid during
620 all translation unit. */
621 struct lra_static_insn_data *insn_code_data[LAST_INSN_CODE];
623 /* Debug insns are represented as a special insn with one input
624 operand which is RTL expression in var_location. */
626 /* The following data are used as static insn operand data for all
627 debug insns. If structure lra_operand_data is changed, the
628 initializer should be changed too. */
629 static struct lra_operand_data debug_operand_data =
631 NULL, /* alternative */
632 VOIDmode, /* We are not interesting in the operand mode. */
633 OP_IN,
634 0, 0, 0, 0
637 /* The following data are used as static insn data for all debug
638 insns. If structure lra_static_insn_data is changed, the
639 initializer should be changed too. */
640 static struct lra_static_insn_data debug_insn_static_data =
642 &debug_operand_data,
643 0, /* Duplication operands #. */
644 -1, /* Commutative operand #. */
645 1, /* Operands #. There is only one operand which is debug RTL
646 expression. */
647 0, /* Duplications #. */
648 0, /* Alternatives #. We are not interesting in alternatives
649 because we does not proceed debug_insns for reloads. */
650 NULL, /* Hard registers referenced in machine description. */
651 NULL /* Descriptions of operands in alternatives. */
654 /* Called once per compiler work to initialize some LRA data related
655 to insns. */
656 static void
657 init_insn_code_data_once (void)
659 memset (insn_code_data, 0, sizeof (insn_code_data));
662 /* Called once per compiler work to finalize some LRA data related to
663 insns. */
664 static void
665 finish_insn_code_data_once (void)
667 int i;
669 for (i = 0; i < LAST_INSN_CODE; i++)
671 if (insn_code_data[i] != NULL)
672 free (insn_code_data[i]);
676 /* Return static insn data, allocate and setup if necessary. Although
677 dup_num is static data (it depends only on icode), to set it up we
678 need to extract insn first. So recog_data should be valid for
679 normal insn (ICODE >= 0) before the call. */
680 static struct lra_static_insn_data *
681 get_static_insn_data (int icode, int nop, int ndup, int nalt)
683 struct lra_static_insn_data *data;
684 size_t n_bytes;
686 lra_assert (icode < LAST_INSN_CODE);
687 if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
688 return data;
689 lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
690 n_bytes = sizeof (struct lra_static_insn_data)
691 + sizeof (struct lra_operand_data) * nop
692 + sizeof (int) * ndup;
693 data = XNEWVAR (struct lra_static_insn_data, n_bytes);
694 data->operand_alternative = NULL;
695 data->n_operands = nop;
696 data->n_dups = ndup;
697 data->n_alternatives = nalt;
698 data->operand = ((struct lra_operand_data *)
699 ((char *) data + sizeof (struct lra_static_insn_data)));
700 data->dup_num = ((int *) ((char *) data->operand
701 + sizeof (struct lra_operand_data) * nop));
702 if (icode >= 0)
704 int i;
706 insn_code_data[icode] = data;
707 for (i = 0; i < nop; i++)
709 data->operand[i].constraint
710 = insn_data[icode].operand[i].constraint;
711 data->operand[i].mode = insn_data[icode].operand[i].mode;
712 data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
713 data->operand[i].is_operator
714 = insn_data[icode].operand[i].is_operator;
715 data->operand[i].type
716 = (data->operand[i].constraint[0] == '=' ? OP_OUT
717 : data->operand[i].constraint[0] == '+' ? OP_INOUT
718 : OP_IN);
719 data->operand[i].is_address = false;
721 for (i = 0; i < ndup; i++)
722 data->dup_num[i] = recog_data.dup_num[i];
724 return data;
727 /* The current length of the following array. */
728 int lra_insn_recog_data_len;
730 /* Map INSN_UID -> the insn recog data (NULL if unknown). */
731 lra_insn_recog_data_t *lra_insn_recog_data;
733 /* Initialize LRA data about insns. */
734 static void
735 init_insn_recog_data (void)
737 lra_insn_recog_data_len = 0;
738 lra_insn_recog_data = NULL;
739 init_insn_regs ();
742 /* Expand, if necessary, LRA data about insns. */
743 static void
744 check_and_expand_insn_recog_data (int index)
746 int i, old;
748 if (lra_insn_recog_data_len > index)
749 return;
750 old = lra_insn_recog_data_len;
751 lra_insn_recog_data_len = index * 3 / 2 + 1;
752 lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
753 lra_insn_recog_data,
754 lra_insn_recog_data_len);
755 for (i = old; i < lra_insn_recog_data_len; i++)
756 lra_insn_recog_data[i] = NULL;
759 /* Finish LRA DATA about insn. */
760 static void
761 free_insn_recog_data (lra_insn_recog_data_t data)
763 if (data->operand_loc != NULL)
764 free (data->operand_loc);
765 if (data->dup_loc != NULL)
766 free (data->dup_loc);
767 if (data->arg_hard_regs != NULL)
768 free (data->arg_hard_regs);
769 if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
771 if (data->insn_static_data->operand_alternative != NULL)
772 free (const_cast <operand_alternative *>
773 (data->insn_static_data->operand_alternative));
774 free_insn_regs (data->insn_static_data->hard_regs);
775 free (data->insn_static_data);
777 free_insn_regs (data->regs);
778 data->regs = NULL;
779 free (data);
782 /* Finish LRA data about all insns. */
783 static void
784 finish_insn_recog_data (void)
786 int i;
787 lra_insn_recog_data_t data;
789 for (i = 0; i < lra_insn_recog_data_len; i++)
790 if ((data = lra_insn_recog_data[i]) != NULL)
791 free_insn_recog_data (data);
792 finish_insn_regs ();
793 free (lra_insn_recog_data);
796 /* Setup info about operands in alternatives of LRA DATA of insn. */
797 static void
798 setup_operand_alternative (lra_insn_recog_data_t data,
799 const operand_alternative *op_alt)
801 int i, j, nop, nalt;
802 int icode = data->icode;
803 struct lra_static_insn_data *static_data = data->insn_static_data;
805 static_data->commutative = -1;
806 nop = static_data->n_operands;
807 nalt = static_data->n_alternatives;
808 static_data->operand_alternative = op_alt;
809 for (i = 0; i < nop; i++)
811 static_data->operand[i].early_clobber = false;
812 static_data->operand[i].is_address = false;
813 if (static_data->operand[i].constraint[0] == '%')
815 /* We currently only support one commutative pair of operands. */
816 if (static_data->commutative < 0)
817 static_data->commutative = i;
818 else
819 lra_assert (icode < 0); /* Asm */
820 /* The last operand should not be marked commutative. */
821 lra_assert (i != nop - 1);
824 for (j = 0; j < nalt; j++)
825 for (i = 0; i < nop; i++, op_alt++)
827 static_data->operand[i].early_clobber |= op_alt->earlyclobber;
828 static_data->operand[i].is_address |= op_alt->is_address;
832 /* Recursively process X and collect info about registers, which are
833 not the insn operands, in X with TYPE (in/out/inout) and flag that
834 it is early clobbered in the insn (EARLY_CLOBBER) and add the info
835 to LIST. X is a part of insn given by DATA. Return the result
836 list. */
837 static struct lra_insn_reg *
838 collect_non_operand_hard_regs (rtx *x, lra_insn_recog_data_t data,
839 struct lra_insn_reg *list,
840 enum op_type type, bool early_clobber)
842 int i, j, regno, last;
843 bool subreg_p;
844 machine_mode mode;
845 struct lra_insn_reg *curr;
846 rtx op = *x;
847 enum rtx_code code = GET_CODE (op);
848 const char *fmt = GET_RTX_FORMAT (code);
850 for (i = 0; i < data->insn_static_data->n_operands; i++)
851 if (x == data->operand_loc[i])
852 /* It is an operand loc. Stop here. */
853 return list;
854 for (i = 0; i < data->insn_static_data->n_dups; i++)
855 if (x == data->dup_loc[i])
856 /* It is a dup loc. Stop here. */
857 return list;
858 mode = GET_MODE (op);
859 subreg_p = false;
860 if (code == SUBREG)
862 op = SUBREG_REG (op);
863 code = GET_CODE (op);
864 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (op)))
866 mode = GET_MODE (op);
867 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
868 subreg_p = true;
871 if (REG_P (op))
873 if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
874 return list;
875 /* Process all regs even unallocatable ones as we need info
876 about all regs for rematerialization pass. */
877 for (last = regno + hard_regno_nregs[regno][mode];
878 regno < last;
879 regno++)
881 for (curr = list; curr != NULL; curr = curr->next)
882 if (curr->regno == regno && curr->subreg_p == subreg_p
883 && curr->biggest_mode == mode)
885 if (curr->type != type)
886 curr->type = OP_INOUT;
887 if (curr->early_clobber != early_clobber)
888 curr->early_clobber = true;
889 break;
891 if (curr == NULL)
893 /* This is a new hard regno or the info can not be
894 integrated into the found structure. */
895 #ifdef STACK_REGS
896 early_clobber
897 = (early_clobber
898 /* This clobber is to inform popping floating
899 point stack only. */
900 && ! (FIRST_STACK_REG <= regno
901 && regno <= LAST_STACK_REG));
902 #endif
903 list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
904 early_clobber, list);
907 return list;
909 switch (code)
911 case SET:
912 list = collect_non_operand_hard_regs (&SET_DEST (op), data,
913 list, OP_OUT, false);
914 list = collect_non_operand_hard_regs (&SET_SRC (op), data,
915 list, OP_IN, false);
916 break;
917 case CLOBBER:
918 /* We treat clobber of non-operand hard registers as early
919 clobber (the behavior is expected from asm). */
920 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
921 list, OP_OUT, true);
922 break;
923 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
924 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
925 list, OP_INOUT, false);
926 break;
927 case PRE_MODIFY: case POST_MODIFY:
928 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
929 list, OP_INOUT, false);
930 list = collect_non_operand_hard_regs (&XEXP (op, 1), data,
931 list, OP_IN, false);
932 break;
933 default:
934 fmt = GET_RTX_FORMAT (code);
935 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
937 if (fmt[i] == 'e')
938 list = collect_non_operand_hard_regs (&XEXP (op, i), data,
939 list, OP_IN, false);
940 else if (fmt[i] == 'E')
941 for (j = XVECLEN (op, i) - 1; j >= 0; j--)
942 list = collect_non_operand_hard_regs (&XVECEXP (op, i, j), data,
943 list, OP_IN, false);
946 return list;
949 /* Set up and return info about INSN. Set up the info if it is not set up
950 yet. */
951 lra_insn_recog_data_t
952 lra_set_insn_recog_data (rtx_insn *insn)
954 lra_insn_recog_data_t data;
955 int i, n, icode;
956 rtx **locs;
957 unsigned int uid = INSN_UID (insn);
958 struct lra_static_insn_data *insn_static_data;
960 check_and_expand_insn_recog_data (uid);
961 if (DEBUG_INSN_P (insn))
962 icode = -1;
963 else
965 icode = INSN_CODE (insn);
966 if (icode < 0)
967 /* It might be a new simple insn which is not recognized yet. */
968 INSN_CODE (insn) = icode = recog_memoized (insn);
970 data = XNEW (struct lra_insn_recog_data);
971 lra_insn_recog_data[uid] = data;
972 data->insn = insn;
973 data->used_insn_alternative = -1;
974 data->icode = icode;
975 data->regs = NULL;
976 if (DEBUG_INSN_P (insn))
978 data->insn_static_data = &debug_insn_static_data;
979 data->dup_loc = NULL;
980 data->arg_hard_regs = NULL;
981 data->preferred_alternatives = ALL_ALTERNATIVES;
982 data->operand_loc = XNEWVEC (rtx *, 1);
983 data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
984 return data;
986 if (icode < 0)
988 int nop, nalt;
989 machine_mode operand_mode[MAX_RECOG_OPERANDS];
990 const char *constraints[MAX_RECOG_OPERANDS];
992 nop = asm_noperands (PATTERN (insn));
993 data->operand_loc = data->dup_loc = NULL;
994 nalt = 1;
995 if (nop < 0)
997 /* It is a special insn like USE or CLOBBER. We should
998 recognize any regular insn otherwise LRA can do nothing
999 with this insn. */
1000 gcc_assert (GET_CODE (PATTERN (insn)) == USE
1001 || GET_CODE (PATTERN (insn)) == CLOBBER
1002 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
1003 data->insn_static_data = insn_static_data
1004 = get_static_insn_data (-1, 0, 0, nalt);
1006 else
1008 /* expand_asm_operands makes sure there aren't too many
1009 operands. */
1010 lra_assert (nop <= MAX_RECOG_OPERANDS);
1011 if (nop != 0)
1012 data->operand_loc = XNEWVEC (rtx *, nop);
1013 /* Now get the operand values and constraints out of the
1014 insn. */
1015 decode_asm_operands (PATTERN (insn), NULL,
1016 data->operand_loc,
1017 constraints, operand_mode, NULL);
1018 if (nop > 0)
1020 const char *p = recog_data.constraints[0];
1022 for (p = constraints[0]; *p; p++)
1023 nalt += *p == ',';
1025 data->insn_static_data = insn_static_data
1026 = get_static_insn_data (-1, nop, 0, nalt);
1027 for (i = 0; i < nop; i++)
1029 insn_static_data->operand[i].mode = operand_mode[i];
1030 insn_static_data->operand[i].constraint = constraints[i];
1031 insn_static_data->operand[i].strict_low = false;
1032 insn_static_data->operand[i].is_operator = false;
1033 insn_static_data->operand[i].is_address = false;
1036 for (i = 0; i < insn_static_data->n_operands; i++)
1037 insn_static_data->operand[i].type
1038 = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1039 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1040 : OP_IN);
1041 data->preferred_alternatives = ALL_ALTERNATIVES;
1042 if (nop > 0)
1044 operand_alternative *op_alt = XCNEWVEC (operand_alternative,
1045 nalt * nop);
1046 preprocess_constraints (nop, nalt, constraints, op_alt);
1047 setup_operand_alternative (data, op_alt);
1050 else
1052 insn_extract (insn);
1053 data->insn_static_data = insn_static_data
1054 = get_static_insn_data (icode, insn_data[icode].n_operands,
1055 insn_data[icode].n_dups,
1056 insn_data[icode].n_alternatives);
1057 n = insn_static_data->n_operands;
1058 if (n == 0)
1059 locs = NULL;
1060 else
1062 locs = XNEWVEC (rtx *, n);
1063 memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
1065 data->operand_loc = locs;
1066 n = insn_static_data->n_dups;
1067 if (n == 0)
1068 locs = NULL;
1069 else
1071 locs = XNEWVEC (rtx *, n);
1072 memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
1074 data->dup_loc = locs;
1075 data->preferred_alternatives = get_preferred_alternatives (insn);
1076 const operand_alternative *op_alt = preprocess_insn_constraints (icode);
1077 if (!insn_static_data->operand_alternative)
1078 setup_operand_alternative (data, op_alt);
1079 else if (op_alt != insn_static_data->operand_alternative)
1080 insn_static_data->operand_alternative = op_alt;
1082 if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
1083 insn_static_data->hard_regs = NULL;
1084 else
1085 insn_static_data->hard_regs
1086 = collect_non_operand_hard_regs (&PATTERN (insn), data,
1087 NULL, OP_IN, false);
1088 data->arg_hard_regs = NULL;
1089 if (CALL_P (insn))
1091 bool use_p;
1092 rtx link;
1093 int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
1095 n_hard_regs = 0;
1096 /* Finding implicit hard register usage. We believe it will be
1097 not changed whatever transformations are used. Call insns
1098 are such example. */
1099 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1100 link != NULL_RTX;
1101 link = XEXP (link, 1))
1102 if (((use_p = GET_CODE (XEXP (link, 0)) == USE)
1103 || GET_CODE (XEXP (link, 0)) == CLOBBER)
1104 && REG_P (XEXP (XEXP (link, 0), 0)))
1106 regno = REGNO (XEXP (XEXP (link, 0), 0));
1107 lra_assert (regno < FIRST_PSEUDO_REGISTER);
1108 /* It is an argument register. */
1109 for (i = (hard_regno_nregs
1110 [regno][GET_MODE (XEXP (XEXP (link, 0), 0))]) - 1;
1111 i >= 0;
1112 i--)
1113 arg_hard_regs[n_hard_regs++]
1114 = regno + i + (use_p ? 0 : FIRST_PSEUDO_REGISTER);
1116 if (n_hard_regs != 0)
1118 arg_hard_regs[n_hard_regs++] = -1;
1119 data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
1120 memcpy (data->arg_hard_regs, arg_hard_regs,
1121 sizeof (int) * n_hard_regs);
1124 /* Some output operand can be recognized only from the context not
1125 from the constraints which are empty in this case. Call insn may
1126 contain a hard register in set destination with empty constraint
1127 and extract_insn treats them as an input. */
1128 for (i = 0; i < insn_static_data->n_operands; i++)
1130 int j;
1131 rtx pat, set;
1132 struct lra_operand_data *operand = &insn_static_data->operand[i];
1134 /* ??? Should we treat 'X' the same way. It looks to me that
1135 'X' means anything and empty constraint means we do not
1136 care. */
1137 if (operand->type != OP_IN || *operand->constraint != '\0'
1138 || operand->is_operator)
1139 continue;
1140 pat = PATTERN (insn);
1141 if (GET_CODE (pat) == SET)
1143 if (data->operand_loc[i] != &SET_DEST (pat))
1144 continue;
1146 else if (GET_CODE (pat) == PARALLEL)
1148 for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
1150 set = XVECEXP (PATTERN (insn), 0, j);
1151 if (GET_CODE (set) == SET
1152 && &SET_DEST (set) == data->operand_loc[i])
1153 break;
1155 if (j < 0)
1156 continue;
1158 else
1159 continue;
1160 operand->type = OP_OUT;
1162 return data;
1165 /* Return info about insn give by UID. The info should be already set
1166 up. */
1167 static lra_insn_recog_data_t
1168 get_insn_recog_data_by_uid (int uid)
1170 lra_insn_recog_data_t data;
1172 data = lra_insn_recog_data[uid];
1173 lra_assert (data != NULL);
1174 return data;
1177 /* Invalidate all info about insn given by its UID. */
1178 static void
1179 invalidate_insn_recog_data (int uid)
1181 lra_insn_recog_data_t data;
1183 data = lra_insn_recog_data[uid];
1184 lra_assert (data != NULL);
1185 free_insn_recog_data (data);
1186 lra_insn_recog_data[uid] = NULL;
1189 /* Update all the insn info about INSN. It is usually called when
1190 something in the insn was changed. Return the updated info. */
1191 lra_insn_recog_data_t
1192 lra_update_insn_recog_data (rtx_insn *insn)
1194 lra_insn_recog_data_t data;
1195 int n;
1196 unsigned int uid = INSN_UID (insn);
1197 struct lra_static_insn_data *insn_static_data;
1198 HOST_WIDE_INT sp_offset = 0;
1200 check_and_expand_insn_recog_data (uid);
1201 if ((data = lra_insn_recog_data[uid]) != NULL
1202 && data->icode != INSN_CODE (insn))
1204 sp_offset = data->sp_offset;
1205 invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
1206 invalidate_insn_recog_data (uid);
1207 data = NULL;
1209 if (data == NULL)
1211 data = lra_get_insn_recog_data (insn);
1212 /* Initiate or restore SP offset. */
1213 data->sp_offset = sp_offset;
1214 return data;
1216 insn_static_data = data->insn_static_data;
1217 data->used_insn_alternative = -1;
1218 if (DEBUG_INSN_P (insn))
1219 return data;
1220 if (data->icode < 0)
1222 int nop;
1223 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1224 const char *constraints[MAX_RECOG_OPERANDS];
1226 nop = asm_noperands (PATTERN (insn));
1227 if (nop >= 0)
1229 lra_assert (nop == data->insn_static_data->n_operands);
1230 /* Now get the operand values and constraints out of the
1231 insn. */
1232 decode_asm_operands (PATTERN (insn), NULL,
1233 data->operand_loc,
1234 constraints, operand_mode, NULL);
1235 #ifdef ENABLE_CHECKING
1237 int i;
1239 for (i = 0; i < nop; i++)
1240 lra_assert
1241 (insn_static_data->operand[i].mode == operand_mode[i]
1242 && insn_static_data->operand[i].constraint == constraints[i]
1243 && ! insn_static_data->operand[i].is_operator);
1245 #endif
1247 #ifdef ENABLE_CHECKING
1249 int i;
1251 for (i = 0; i < insn_static_data->n_operands; i++)
1252 lra_assert
1253 (insn_static_data->operand[i].type
1254 == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1255 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1256 : OP_IN));
1258 #endif
1260 else
1262 insn_extract (insn);
1263 n = insn_static_data->n_operands;
1264 if (n != 0)
1265 memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
1266 n = insn_static_data->n_dups;
1267 if (n != 0)
1268 memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
1269 lra_assert (check_bool_attrs (insn));
1271 return data;
1274 /* Set up that INSN is using alternative ALT now. */
1275 void
1276 lra_set_used_insn_alternative (rtx_insn *insn, int alt)
1278 lra_insn_recog_data_t data;
1280 data = lra_get_insn_recog_data (insn);
1281 data->used_insn_alternative = alt;
1284 /* Set up that insn with UID is using alternative ALT now. The insn
1285 info should be already set up. */
1286 void
1287 lra_set_used_insn_alternative_by_uid (int uid, int alt)
1289 lra_insn_recog_data_t data;
1291 check_and_expand_insn_recog_data (uid);
1292 data = lra_insn_recog_data[uid];
1293 lra_assert (data != NULL);
1294 data->used_insn_alternative = alt;
1299 /* This page contains code dealing with common register info and
1300 pseudo copies. */
1302 /* The size of the following array. */
1303 static int reg_info_size;
1304 /* Common info about each register. */
1305 struct lra_reg *lra_reg_info;
1307 /* Last register value. */
1308 static int last_reg_value;
1310 /* Return new register value. */
1311 static int
1312 get_new_reg_value (void)
1314 return ++last_reg_value;
1317 /* Pools for copies. */
1318 static alloc_pool copy_pool;
1320 /* Vec referring to pseudo copies. */
1321 static vec<lra_copy_t> copy_vec;
1323 /* Initialize I-th element of lra_reg_info. */
1324 static inline void
1325 initialize_lra_reg_info_element (int i)
1327 bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
1328 #ifdef STACK_REGS
1329 lra_reg_info[i].no_stack_p = false;
1330 #endif
1331 CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
1332 CLEAR_HARD_REG_SET (lra_reg_info[i].actual_call_used_reg_set);
1333 lra_reg_info[i].preferred_hard_regno1 = -1;
1334 lra_reg_info[i].preferred_hard_regno2 = -1;
1335 lra_reg_info[i].preferred_hard_regno_profit1 = 0;
1336 lra_reg_info[i].preferred_hard_regno_profit2 = 0;
1337 lra_reg_info[i].biggest_mode = VOIDmode;
1338 lra_reg_info[i].live_ranges = NULL;
1339 lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
1340 lra_reg_info[i].last_reload = 0;
1341 lra_reg_info[i].restore_regno = -1;
1342 lra_reg_info[i].val = get_new_reg_value ();
1343 lra_reg_info[i].offset = 0;
1344 lra_reg_info[i].copies = NULL;
1347 /* Initialize common reg info and copies. */
1348 static void
1349 init_reg_info (void)
1351 int i;
1353 last_reg_value = 0;
1354 reg_info_size = max_reg_num () * 3 / 2 + 1;
1355 lra_reg_info = XNEWVEC (struct lra_reg, reg_info_size);
1356 for (i = 0; i < reg_info_size; i++)
1357 initialize_lra_reg_info_element (i);
1358 copy_pool
1359 = create_alloc_pool ("lra copies", sizeof (struct lra_copy), 100);
1360 copy_vec.create (100);
1364 /* Finish common reg info and copies. */
1365 static void
1366 finish_reg_info (void)
1368 int i;
1370 for (i = 0; i < reg_info_size; i++)
1371 bitmap_clear (&lra_reg_info[i].insn_bitmap);
1372 free (lra_reg_info);
1373 reg_info_size = 0;
1374 free_alloc_pool (copy_pool);
1375 copy_vec.release ();
1378 /* Expand common reg info if it is necessary. */
1379 static void
1380 expand_reg_info (void)
1382 int i, old = reg_info_size;
1384 if (reg_info_size > max_reg_num ())
1385 return;
1386 reg_info_size = max_reg_num () * 3 / 2 + 1;
1387 lra_reg_info = XRESIZEVEC (struct lra_reg, lra_reg_info, reg_info_size);
1388 for (i = old; i < reg_info_size; i++)
1389 initialize_lra_reg_info_element (i);
1392 /* Free all copies. */
1393 void
1394 lra_free_copies (void)
1396 lra_copy_t cp;
1398 while (copy_vec.length () != 0)
1400 cp = copy_vec.pop ();
1401 lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
1402 pool_free (copy_pool, cp);
1406 /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
1407 frequency is FREQ. */
1408 void
1409 lra_create_copy (int regno1, int regno2, int freq)
1411 bool regno1_dest_p;
1412 lra_copy_t cp;
1414 lra_assert (regno1 != regno2);
1415 regno1_dest_p = true;
1416 if (regno1 > regno2)
1418 int temp = regno2;
1420 regno1_dest_p = false;
1421 regno2 = regno1;
1422 regno1 = temp;
1424 cp = (lra_copy_t) pool_alloc (copy_pool);
1425 copy_vec.safe_push (cp);
1426 cp->regno1_dest_p = regno1_dest_p;
1427 cp->freq = freq;
1428 cp->regno1 = regno1;
1429 cp->regno2 = regno2;
1430 cp->regno1_next = lra_reg_info[regno1].copies;
1431 lra_reg_info[regno1].copies = cp;
1432 cp->regno2_next = lra_reg_info[regno2].copies;
1433 lra_reg_info[regno2].copies = cp;
1434 if (lra_dump_file != NULL)
1435 fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n",
1436 regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
1439 /* Return N-th (0, 1, ...) copy. If there is no copy, return
1440 NULL. */
1441 lra_copy_t
1442 lra_get_copy (int n)
1444 if (n >= (int) copy_vec.length ())
1445 return NULL;
1446 return copy_vec[n];
1451 /* This page contains code dealing with info about registers in
1452 insns. */
1454 /* Process X of insn UID recursively and add info (operand type is
1455 given by TYPE, flag of that it is early clobber is EARLY_CLOBBER)
1456 about registers in X to the insn DATA. */
1457 static void
1458 add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x, int uid,
1459 enum op_type type, bool early_clobber)
1461 int i, j, regno;
1462 bool subreg_p;
1463 machine_mode mode;
1464 const char *fmt;
1465 enum rtx_code code;
1466 struct lra_insn_reg *curr;
1468 code = GET_CODE (x);
1469 mode = GET_MODE (x);
1470 subreg_p = false;
1471 if (GET_CODE (x) == SUBREG)
1473 x = SUBREG_REG (x);
1474 code = GET_CODE (x);
1475 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1477 mode = GET_MODE (x);
1478 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
1479 subreg_p = true;
1482 if (REG_P (x))
1484 regno = REGNO (x);
1485 /* Process all regs even unallocatable ones as we need info about
1486 all regs for rematerialization pass. */
1487 expand_reg_info ();
1488 if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, uid))
1490 data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
1491 early_clobber, data->regs);
1492 return;
1494 else
1496 for (curr = data->regs; curr != NULL; curr = curr->next)
1497 if (curr->regno == regno)
1499 if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
1500 /* The info can not be integrated into the found
1501 structure. */
1502 data->regs = new_insn_reg (data->insn, regno, type, mode,
1503 subreg_p, early_clobber,
1504 data->regs);
1505 else
1507 if (curr->type != type)
1508 curr->type = OP_INOUT;
1509 if (curr->early_clobber != early_clobber)
1510 curr->early_clobber = true;
1512 return;
1514 gcc_unreachable ();
1518 switch (code)
1520 case SET:
1521 add_regs_to_insn_regno_info (data, SET_DEST (x), uid, OP_OUT, false);
1522 add_regs_to_insn_regno_info (data, SET_SRC (x), uid, OP_IN, false);
1523 break;
1524 case CLOBBER:
1525 /* We treat clobber of non-operand hard registers as early
1526 clobber (the behavior is expected from asm). */
1527 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_OUT, true);
1528 break;
1529 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1530 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1531 break;
1532 case PRE_MODIFY: case POST_MODIFY:
1533 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1534 add_regs_to_insn_regno_info (data, XEXP (x, 1), uid, OP_IN, false);
1535 break;
1536 default:
1537 if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
1538 /* Some targets place small structures in registers for return
1539 values of functions, and those registers are wrapped in
1540 PARALLEL that we may see as the destination of a SET. Here
1541 is an example:
1543 (call_insn 13 12 14 2 (set (parallel:BLK [
1544 (expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1545 (const_int 0 [0]))
1546 (expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1547 (const_int 8 [0x8]))
1549 (call (mem:QI (symbol_ref:DI (... */
1550 type = OP_IN;
1551 fmt = GET_RTX_FORMAT (code);
1552 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1554 if (fmt[i] == 'e')
1555 add_regs_to_insn_regno_info (data, XEXP (x, i), uid, type, false);
1556 else if (fmt[i] == 'E')
1558 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1559 add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), uid,
1560 type, false);
1566 /* Return execution frequency of INSN. */
1567 static int
1568 get_insn_freq (rtx_insn *insn)
1570 basic_block bb = BLOCK_FOR_INSN (insn);
1572 gcc_checking_assert (bb != NULL);
1573 return REG_FREQ_FROM_BB (bb);
1576 /* Invalidate all reg info of INSN with DATA and execution frequency
1577 FREQ. Update common info about the invalidated registers. */
1578 static void
1579 invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx_insn *insn,
1580 int freq)
1582 int uid;
1583 bool debug_p;
1584 unsigned int i;
1585 struct lra_insn_reg *ir, *next_ir;
1587 uid = INSN_UID (insn);
1588 debug_p = DEBUG_INSN_P (insn);
1589 for (ir = data->regs; ir != NULL; ir = next_ir)
1591 i = ir->regno;
1592 next_ir = ir->next;
1593 free_insn_reg (ir);
1594 bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
1595 if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
1597 lra_reg_info[i].nrefs--;
1598 lra_reg_info[i].freq -= freq;
1599 lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
1602 data->regs = NULL;
1605 /* Invalidate all reg info of INSN. Update common info about the
1606 invalidated registers. */
1607 void
1608 lra_invalidate_insn_regno_info (rtx_insn *insn)
1610 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
1611 get_insn_freq (insn));
1614 /* Update common reg info from reg info of insn given by its DATA and
1615 execution frequency FREQ. */
1616 static void
1617 setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
1619 unsigned int i;
1620 struct lra_insn_reg *ir;
1622 for (ir = data->regs; ir != NULL; ir = ir->next)
1623 if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
1625 lra_reg_info[i].nrefs++;
1626 lra_reg_info[i].freq += freq;
1630 /* Set up insn reg info of INSN. Update common reg info from reg info
1631 of INSN. */
1632 void
1633 lra_update_insn_regno_info (rtx_insn *insn)
1635 int i, uid, freq;
1636 lra_insn_recog_data_t data;
1637 struct lra_static_insn_data *static_data;
1638 enum rtx_code code;
1639 rtx link;
1641 if (! INSN_P (insn))
1642 return;
1643 data = lra_get_insn_recog_data (insn);
1644 static_data = data->insn_static_data;
1645 freq = get_insn_freq (insn);
1646 invalidate_insn_data_regno_info (data, insn, freq);
1647 uid = INSN_UID (insn);
1648 for (i = static_data->n_operands - 1; i >= 0; i--)
1649 add_regs_to_insn_regno_info (data, *data->operand_loc[i], uid,
1650 static_data->operand[i].type,
1651 static_data->operand[i].early_clobber);
1652 if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
1653 add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), uid,
1654 code == USE ? OP_IN : OP_OUT, false);
1655 if (CALL_P (insn))
1656 /* On some targets call insns can refer to pseudos in memory in
1657 CALL_INSN_FUNCTION_USAGE list. Process them in order to
1658 consider their occurrences in calls for different
1659 transformations (e.g. inheritance) with given pseudos. */
1660 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1661 link != NULL_RTX;
1662 link = XEXP (link, 1))
1663 if (((code = GET_CODE (XEXP (link, 0))) == USE || code == CLOBBER)
1664 && MEM_P (XEXP (XEXP (link, 0), 0)))
1665 add_regs_to_insn_regno_info (data, XEXP (XEXP (link, 0), 0), uid,
1666 code == USE ? OP_IN : OP_OUT, false);
1667 if (NONDEBUG_INSN_P (insn))
1668 setup_insn_reg_info (data, freq);
1671 /* Return reg info of insn given by it UID. */
1672 struct lra_insn_reg *
1673 lra_get_insn_regs (int uid)
1675 lra_insn_recog_data_t data;
1677 data = get_insn_recog_data_by_uid (uid);
1678 return data->regs;
1683 /* This page contains code dealing with stack of the insns which
1684 should be processed by the next constraint pass. */
1686 /* Bitmap used to put an insn on the stack only in one exemplar. */
1687 static sbitmap lra_constraint_insn_stack_bitmap;
1689 /* The stack itself. */
1690 vec<rtx_insn *> lra_constraint_insn_stack;
1692 /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
1693 info for INSN, otherwise only update it if INSN is not already on the
1694 stack. */
1695 static inline void
1696 lra_push_insn_1 (rtx_insn *insn, bool always_update)
1698 unsigned int uid = INSN_UID (insn);
1699 if (always_update)
1700 lra_update_insn_regno_info (insn);
1701 if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
1702 lra_constraint_insn_stack_bitmap =
1703 sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
1704 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
1705 return;
1706 bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
1707 if (! always_update)
1708 lra_update_insn_regno_info (insn);
1709 lra_constraint_insn_stack.safe_push (insn);
1712 /* Put INSN on the stack. */
1713 void
1714 lra_push_insn (rtx_insn *insn)
1716 lra_push_insn_1 (insn, false);
1719 /* Put INSN on the stack and update its reg info. */
1720 void
1721 lra_push_insn_and_update_insn_regno_info (rtx_insn *insn)
1723 lra_push_insn_1 (insn, true);
1726 /* Put insn with UID on the stack. */
1727 void
1728 lra_push_insn_by_uid (unsigned int uid)
1730 lra_push_insn (lra_insn_recog_data[uid]->insn);
1733 /* Take the last-inserted insns off the stack and return it. */
1734 rtx_insn *
1735 lra_pop_insn (void)
1737 rtx_insn *insn = lra_constraint_insn_stack.pop ();
1738 bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
1739 return insn;
1742 /* Return the current size of the insn stack. */
1743 unsigned int
1744 lra_insn_stack_length (void)
1746 return lra_constraint_insn_stack.length ();
1749 /* Push insns FROM to TO (excluding it) going in reverse order. */
1750 static void
1751 push_insns (rtx_insn *from, rtx_insn *to)
1753 rtx_insn *insn;
1755 if (from == NULL_RTX)
1756 return;
1757 for (insn = from; insn != to; insn = PREV_INSN (insn))
1758 if (INSN_P (insn))
1759 lra_push_insn (insn);
1762 /* Set up sp offset for insn in range [FROM, LAST]. The offset is
1763 taken from the next BB insn after LAST or zero if there in such
1764 insn. */
1765 static void
1766 setup_sp_offset (rtx_insn *from, rtx_insn *last)
1768 rtx_insn *before = next_nonnote_insn_bb (last);
1769 HOST_WIDE_INT offset = (before == NULL_RTX || ! INSN_P (before)
1770 ? 0 : lra_get_insn_recog_data (before)->sp_offset);
1772 for (rtx_insn *insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
1773 lra_get_insn_recog_data (insn)->sp_offset = offset;
1776 /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
1777 insns onto the stack. Print about emitting the insns with
1778 TITLE. */
1779 void
1780 lra_process_new_insns (rtx_insn *insn, rtx_insn *before, rtx_insn *after,
1781 const char *title)
1783 rtx_insn *last;
1785 if (before == NULL_RTX && after == NULL_RTX)
1786 return;
1787 if (lra_dump_file != NULL)
1789 dump_insn_slim (lra_dump_file, insn);
1790 if (before != NULL_RTX)
1792 fprintf (lra_dump_file," %s before:\n", title);
1793 dump_rtl_slim (lra_dump_file, before, NULL, -1, 0);
1795 if (after != NULL_RTX)
1797 fprintf (lra_dump_file, " %s after:\n", title);
1798 dump_rtl_slim (lra_dump_file, after, NULL, -1, 0);
1800 fprintf (lra_dump_file, "\n");
1802 if (before != NULL_RTX)
1804 emit_insn_before (before, insn);
1805 push_insns (PREV_INSN (insn), PREV_INSN (before));
1806 setup_sp_offset (before, PREV_INSN (insn));
1808 if (after != NULL_RTX)
1810 for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
1812 emit_insn_after (after, insn);
1813 push_insns (last, insn);
1814 setup_sp_offset (after, last);
1820 /* Replace all references to register OLD_REGNO in *LOC with pseudo
1821 register NEW_REG. Try to simplify subreg of constant if SUBREG_P.
1822 Return true if any change was made. */
1823 bool
1824 lra_substitute_pseudo (rtx *loc, int old_regno, rtx new_reg, bool subreg_p)
1826 rtx x = *loc;
1827 bool result = false;
1828 enum rtx_code code;
1829 const char *fmt;
1830 int i, j;
1832 if (x == NULL_RTX)
1833 return false;
1835 code = GET_CODE (x);
1836 if (code == SUBREG && subreg_p)
1838 rtx subst, inner = SUBREG_REG (x);
1839 /* Transform subreg of constant while we still have inner mode
1840 of the subreg. The subreg internal should not be an insn
1841 operand. */
1842 if (REG_P (inner) && (int) REGNO (inner) == old_regno
1843 && CONSTANT_P (new_reg)
1844 && (subst = simplify_subreg (GET_MODE (x), new_reg, GET_MODE (inner),
1845 SUBREG_BYTE (x))) != NULL_RTX)
1847 *loc = subst;
1848 return true;
1852 else if (code == REG && (int) REGNO (x) == old_regno)
1854 machine_mode mode = GET_MODE (x);
1855 machine_mode inner_mode = GET_MODE (new_reg);
1857 if (mode != inner_mode
1858 && ! (CONST_INT_P (new_reg) && SCALAR_INT_MODE_P (mode)))
1860 if (GET_MODE_SIZE (mode) >= GET_MODE_SIZE (inner_mode)
1861 || ! SCALAR_INT_MODE_P (inner_mode))
1862 new_reg = gen_rtx_SUBREG (mode, new_reg, 0);
1863 else
1864 new_reg = gen_lowpart_SUBREG (mode, new_reg);
1866 *loc = new_reg;
1867 return true;
1870 /* Scan all the operand sub-expressions. */
1871 fmt = GET_RTX_FORMAT (code);
1872 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1874 if (fmt[i] == 'e')
1876 if (lra_substitute_pseudo (&XEXP (x, i), old_regno,
1877 new_reg, subreg_p))
1878 result = true;
1880 else if (fmt[i] == 'E')
1882 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1883 if (lra_substitute_pseudo (&XVECEXP (x, i, j), old_regno,
1884 new_reg, subreg_p))
1885 result = true;
1888 return result;
1891 /* Call lra_substitute_pseudo within an insn. Try to simplify subreg
1892 of constant if SUBREG_P. This won't update the insn ptr, just the
1893 contents of the insn. */
1894 bool
1895 lra_substitute_pseudo_within_insn (rtx_insn *insn, int old_regno,
1896 rtx new_reg, bool subreg_p)
1898 rtx loc = insn;
1899 return lra_substitute_pseudo (&loc, old_regno, new_reg, subreg_p);
1904 /* This page contains code dealing with scratches (changing them onto
1905 pseudos and restoring them from the pseudos).
1907 We change scratches into pseudos at the beginning of LRA to
1908 simplify dealing with them (conflicts, hard register assignments).
1910 If the pseudo denoting scratch was spilled it means that we do need
1911 a hard register for it. Such pseudos are transformed back to
1912 scratches at the end of LRA. */
1914 /* Description of location of a former scratch operand. */
1915 struct sloc
1917 rtx_insn *insn; /* Insn where the scratch was. */
1918 int nop; /* Number of the operand which was a scratch. */
1921 typedef struct sloc *sloc_t;
1923 /* Locations of the former scratches. */
1924 static vec<sloc_t> scratches;
1926 /* Bitmap of scratch regnos. */
1927 static bitmap_head scratch_bitmap;
1929 /* Bitmap of scratch operands. */
1930 static bitmap_head scratch_operand_bitmap;
1932 /* Return true if pseudo REGNO is made of SCRATCH. */
1933 bool
1934 lra_former_scratch_p (int regno)
1936 return bitmap_bit_p (&scratch_bitmap, regno);
1939 /* Return true if the operand NOP of INSN is a former scratch. */
1940 bool
1941 lra_former_scratch_operand_p (rtx_insn *insn, int nop)
1943 return bitmap_bit_p (&scratch_operand_bitmap,
1944 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
1947 /* Register operand NOP in INSN as a former scratch. It will be
1948 changed to scratch back, if it is necessary, at the LRA end. */
1949 void
1950 lra_register_new_scratch_op (rtx_insn *insn, int nop)
1952 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
1953 rtx op = *id->operand_loc[nop];
1954 sloc_t loc = XNEW (struct sloc);
1955 lra_assert (REG_P (op));
1956 loc->insn = insn;
1957 loc->nop = nop;
1958 scratches.safe_push (loc);
1959 bitmap_set_bit (&scratch_bitmap, REGNO (op));
1960 bitmap_set_bit (&scratch_operand_bitmap,
1961 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
1962 add_reg_note (insn, REG_UNUSED, op);
1965 /* Change scratches onto pseudos and save their location. */
1966 static void
1967 remove_scratches (void)
1969 int i;
1970 bool insn_changed_p;
1971 basic_block bb;
1972 rtx_insn *insn;
1973 rtx reg;
1974 lra_insn_recog_data_t id;
1975 struct lra_static_insn_data *static_id;
1977 scratches.create (get_max_uid ());
1978 bitmap_initialize (&scratch_bitmap, &reg_obstack);
1979 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
1980 FOR_EACH_BB_FN (bb, cfun)
1981 FOR_BB_INSNS (bb, insn)
1982 if (INSN_P (insn))
1984 id = lra_get_insn_recog_data (insn);
1985 static_id = id->insn_static_data;
1986 insn_changed_p = false;
1987 for (i = 0; i < static_id->n_operands; i++)
1988 if (GET_CODE (*id->operand_loc[i]) == SCRATCH
1989 && GET_MODE (*id->operand_loc[i]) != VOIDmode)
1991 insn_changed_p = true;
1992 *id->operand_loc[i] = reg
1993 = lra_create_new_reg (static_id->operand[i].mode,
1994 *id->operand_loc[i], ALL_REGS, NULL);
1995 lra_register_new_scratch_op (insn, i);
1996 if (lra_dump_file != NULL)
1997 fprintf (lra_dump_file,
1998 "Removing SCRATCH in insn #%u (nop %d)\n",
1999 INSN_UID (insn), i);
2001 if (insn_changed_p)
2002 /* Because we might use DF right after caller-saves sub-pass
2003 we need to keep DF info up to date. */
2004 df_insn_rescan (insn);
2008 /* Changes pseudos created by function remove_scratches onto scratches. */
2009 static void
2010 restore_scratches (void)
2012 int regno;
2013 unsigned i;
2014 sloc_t loc;
2015 rtx_insn *last = NULL;
2016 lra_insn_recog_data_t id = NULL;
2018 for (i = 0; scratches.iterate (i, &loc); i++)
2020 if (last != loc->insn)
2022 last = loc->insn;
2023 id = lra_get_insn_recog_data (last);
2025 if (REG_P (*id->operand_loc[loc->nop])
2026 && ((regno = REGNO (*id->operand_loc[loc->nop]))
2027 >= FIRST_PSEUDO_REGISTER)
2028 && lra_get_regno_hard_regno (regno) < 0)
2030 /* It should be only case when scratch register with chosen
2031 constraint 'X' did not get memory or hard register. */
2032 lra_assert (lra_former_scratch_p (regno));
2033 *id->operand_loc[loc->nop]
2034 = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
2035 lra_update_dup (id, loc->nop);
2036 if (lra_dump_file != NULL)
2037 fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
2038 INSN_UID (loc->insn), loc->nop);
2041 for (i = 0; scratches.iterate (i, &loc); i++)
2042 free (loc);
2043 scratches.release ();
2044 bitmap_clear (&scratch_bitmap);
2045 bitmap_clear (&scratch_operand_bitmap);
2050 #ifdef ENABLE_CHECKING
2052 /* Function checks RTL for correctness. If FINAL_P is true, it is
2053 done at the end of LRA and the check is more rigorous. */
2054 static void
2055 check_rtl (bool final_p)
2057 basic_block bb;
2058 rtx_insn *insn;
2060 lra_assert (! final_p || reload_completed);
2061 FOR_EACH_BB_FN (bb, cfun)
2062 FOR_BB_INSNS (bb, insn)
2063 if (NONDEBUG_INSN_P (insn)
2064 && GET_CODE (PATTERN (insn)) != USE
2065 && GET_CODE (PATTERN (insn)) != CLOBBER
2066 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
2068 if (final_p)
2070 #ifdef ENABLED_CHECKING
2071 extract_constrain_insn (insn);
2072 #endif
2073 continue;
2075 /* LRA code is based on assumption that all addresses can be
2076 correctly decomposed. LRA can generate reloads for
2077 decomposable addresses. The decomposition code checks the
2078 correctness of the addresses. So we don't need to check
2079 the addresses here. Don't call insn_invalid_p here, it can
2080 change the code at this stage. */
2081 if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
2082 fatal_insn_not_found (insn);
2085 #endif /* #ifdef ENABLE_CHECKING */
2087 /* Determine if the current function has an exception receiver block
2088 that reaches the exit block via non-exceptional edges */
2089 static bool
2090 has_nonexceptional_receiver (void)
2092 edge e;
2093 edge_iterator ei;
2094 basic_block *tos, *worklist, bb;
2096 /* If we're not optimizing, then just err on the safe side. */
2097 if (!optimize)
2098 return true;
2100 /* First determine which blocks can reach exit via normal paths. */
2101 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
2103 FOR_EACH_BB_FN (bb, cfun)
2104 bb->flags &= ~BB_REACHABLE;
2106 /* Place the exit block on our worklist. */
2107 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
2108 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
2110 /* Iterate: find everything reachable from what we've already seen. */
2111 while (tos != worklist)
2113 bb = *--tos;
2115 FOR_EACH_EDGE (e, ei, bb->preds)
2116 if (e->flags & EDGE_ABNORMAL)
2118 free (worklist);
2119 return true;
2121 else
2123 basic_block src = e->src;
2125 if (!(src->flags & BB_REACHABLE))
2127 src->flags |= BB_REACHABLE;
2128 *tos++ = src;
2132 free (worklist);
2133 /* No exceptional block reached exit unexceptionally. */
2134 return false;
2137 #ifdef AUTO_INC_DEC
2139 /* Process recursively X of INSN and add REG_INC notes if necessary. */
2140 static void
2141 add_auto_inc_notes (rtx_insn *insn, rtx x)
2143 enum rtx_code code = GET_CODE (x);
2144 const char *fmt;
2145 int i, j;
2147 if (code == MEM && auto_inc_p (XEXP (x, 0)))
2149 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
2150 return;
2153 /* Scan all X sub-expressions. */
2154 fmt = GET_RTX_FORMAT (code);
2155 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2157 if (fmt[i] == 'e')
2158 add_auto_inc_notes (insn, XEXP (x, i));
2159 else if (fmt[i] == 'E')
2160 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2161 add_auto_inc_notes (insn, XVECEXP (x, i, j));
2165 #endif
2167 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2168 We change pseudos by hard registers without notification of DF and
2169 that can make the notes obsolete. DF-infrastructure does not deal
2170 with REG_INC notes -- so we should regenerate them here. */
2171 static void
2172 update_inc_notes (void)
2174 rtx *pnote;
2175 basic_block bb;
2176 rtx_insn *insn;
2178 FOR_EACH_BB_FN (bb, cfun)
2179 FOR_BB_INSNS (bb, insn)
2180 if (NONDEBUG_INSN_P (insn))
2182 pnote = &REG_NOTES (insn);
2183 while (*pnote != 0)
2185 if (REG_NOTE_KIND (*pnote) == REG_DEAD
2186 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2187 || REG_NOTE_KIND (*pnote) == REG_INC)
2188 *pnote = XEXP (*pnote, 1);
2189 else
2190 pnote = &XEXP (*pnote, 1);
2192 #ifdef AUTO_INC_DEC
2193 add_auto_inc_notes (insn, PATTERN (insn));
2194 #endif
2198 /* Set to 1 while in lra. */
2199 int lra_in_progress;
2201 /* Start of pseudo regnos before the LRA. */
2202 int lra_new_regno_start;
2204 /* Start of reload pseudo regnos before the new spill pass. */
2205 int lra_constraint_new_regno_start;
2207 /* Avoid spilling pseudos with regno more than the following value if
2208 it is possible. */
2209 int lra_bad_spill_regno_start;
2211 /* Inheritance pseudo regnos before the new spill pass. */
2212 bitmap_head lra_inheritance_pseudos;
2214 /* Split regnos before the new spill pass. */
2215 bitmap_head lra_split_regs;
2217 /* Reload pseudo regnos before the new assignmnet pass which still can
2218 be spilled after the assinment pass as memory is also accepted in
2219 insns for the reload pseudos. */
2220 bitmap_head lra_optional_reload_pseudos;
2222 /* Pseudo regnos used for subreg reloads before the new assignment
2223 pass. Such pseudos still can be spilled after the assinment
2224 pass. */
2225 bitmap_head lra_subreg_reload_pseudos;
2227 /* File used for output of LRA debug information. */
2228 FILE *lra_dump_file;
2230 /* True if we should try spill into registers of different classes
2231 instead of memory. */
2232 bool lra_reg_spill_p;
2234 /* Set up value LRA_REG_SPILL_P. */
2235 static void
2236 setup_reg_spill_flag (void)
2238 int cl, mode;
2240 if (targetm.spill_class != NULL)
2241 for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
2242 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
2243 if (targetm.spill_class ((enum reg_class) cl,
2244 (machine_mode) mode) != NO_REGS)
2246 lra_reg_spill_p = true;
2247 return;
2249 lra_reg_spill_p = false;
2252 /* True if the current function is too big to use regular algorithms
2253 in LRA. In other words, we should use simpler and faster algorithms
2254 in LRA. It also means we should not worry about generation code
2255 for caller saves. The value is set up in IRA. */
2256 bool lra_simple_p;
2258 /* Major LRA entry function. F is a file should be used to dump LRA
2259 debug info. */
2260 void
2261 lra (FILE *f)
2263 int i;
2264 bool live_p, scratch_p, inserted_p;
2266 lra_dump_file = f;
2268 timevar_push (TV_LRA);
2270 /* Make sure that the last insn is a note. Some subsequent passes
2271 need it. */
2272 emit_note (NOTE_INSN_DELETED);
2274 COPY_HARD_REG_SET (lra_no_alloc_regs, ira_no_alloc_regs);
2276 init_reg_info ();
2277 expand_reg_info ();
2279 init_insn_recog_data ();
2281 #ifdef ENABLE_CHECKING
2282 /* Some quick check on RTL generated by previous passes. */
2283 check_rtl (false);
2284 #endif
2286 lra_in_progress = 1;
2288 lra_live_range_iter = lra_coalesce_iter = lra_constraint_iter = 0;
2289 lra_assignment_iter = lra_assignment_iter_after_spill = 0;
2290 lra_inheritance_iter = lra_undo_inheritance_iter = 0;
2291 lra_rematerialization_iter = 0;
2293 setup_reg_spill_flag ();
2295 /* Function remove_scratches can creates new pseudos for clobbers --
2296 so set up lra_constraint_new_regno_start before its call to
2297 permit changing reg classes for pseudos created by this
2298 simplification. */
2299 lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
2300 lra_bad_spill_regno_start = INT_MAX;
2301 remove_scratches ();
2302 scratch_p = lra_constraint_new_regno_start != max_reg_num ();
2304 /* A function that has a non-local label that can reach the exit
2305 block via non-exceptional paths must save all call-saved
2306 registers. */
2307 if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
2308 crtl->saves_all_registers = 1;
2310 if (crtl->saves_all_registers)
2311 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2312 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
2313 df_set_regs_ever_live (i, true);
2315 /* We don't DF from now and avoid its using because it is to
2316 expensive when a lot of RTL changes are made. */
2317 df_set_flags (DF_NO_INSN_RESCAN);
2318 lra_constraint_insn_stack.create (get_max_uid ());
2319 lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
2320 bitmap_clear (lra_constraint_insn_stack_bitmap);
2321 lra_live_ranges_init ();
2322 lra_constraints_init ();
2323 lra_curr_reload_num = 0;
2324 push_insns (get_last_insn (), NULL);
2325 /* It is needed for the 1st coalescing. */
2326 bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
2327 bitmap_initialize (&lra_split_regs, &reg_obstack);
2328 bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
2329 bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
2330 live_p = false;
2331 if (get_frame_size () != 0 && crtl->stack_alignment_needed)
2332 /* If we have a stack frame, we must align it now. The stack size
2333 may be a part of the offset computation for register
2334 elimination. */
2335 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
2336 lra_init_equiv ();
2337 for (;;)
2339 for (;;)
2341 /* We should try to assign hard registers to scratches even
2342 if there were no RTL transformations in
2343 lra_constraints. */
2344 if (! lra_constraints (lra_constraint_iter == 0)
2345 && (lra_constraint_iter > 1
2346 || (! scratch_p && ! caller_save_needed)))
2347 break;
2348 /* Constraint transformations may result in that eliminable
2349 hard regs become uneliminable and pseudos which use them
2350 should be spilled. It is better to do it before pseudo
2351 assignments.
2353 For example, rs6000 can make
2354 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2355 to use a constant pool. */
2356 lra_eliminate (false, false);
2357 /* Do inheritance only for regular algorithms. */
2358 if (! lra_simple_p)
2360 if (flag_ipa_ra)
2362 if (live_p)
2363 lra_clear_live_ranges ();
2364 /* As a side-effect of lra_create_live_ranges, we calculate
2365 actual_call_used_reg_set, which is needed during
2366 lra_inheritance. */
2367 lra_create_live_ranges (true, true);
2368 live_p = true;
2370 lra_inheritance ();
2372 if (live_p)
2373 lra_clear_live_ranges ();
2374 /* We need live ranges for lra_assign -- so build them. But
2375 don't remove dead insns or change global live info as we
2376 can undo inheritance transformations after inheritance
2377 pseudo assigning. */
2378 lra_create_live_ranges (true, false);
2379 live_p = true;
2380 /* If we don't spill non-reload and non-inheritance pseudos,
2381 there is no sense to run memory-memory move coalescing.
2382 If inheritance pseudos were spilled, the memory-memory
2383 moves involving them will be removed by pass undoing
2384 inheritance. */
2385 if (lra_simple_p)
2386 lra_assign ();
2387 else
2389 bool spill_p = !lra_assign ();
2391 if (lra_undo_inheritance ())
2392 live_p = false;
2393 if (spill_p)
2395 if (! live_p)
2397 lra_create_live_ranges (true, true);
2398 live_p = true;
2400 if (lra_coalesce ())
2401 live_p = false;
2403 if (! live_p)
2404 lra_clear_live_ranges ();
2407 /* Don't clear optional reloads bitmap until all constraints are
2408 satisfied as we need to differ them from regular reloads. */
2409 bitmap_clear (&lra_optional_reload_pseudos);
2410 bitmap_clear (&lra_subreg_reload_pseudos);
2411 bitmap_clear (&lra_inheritance_pseudos);
2412 bitmap_clear (&lra_split_regs);
2413 if (! live_p)
2415 /* We need full live info for spilling pseudos into
2416 registers instead of memory. */
2417 lra_create_live_ranges (lra_reg_spill_p, true);
2418 live_p = true;
2420 /* We should check necessity for spilling here as the above live
2421 range pass can remove spilled pseudos. */
2422 if (! lra_need_for_spills_p ())
2423 break;
2424 /* Now we know what pseudos should be spilled. Try to
2425 rematerialize them first. */
2426 if (lra_remat ())
2428 /* We need full live info -- see the comment above. */
2429 lra_create_live_ranges (lra_reg_spill_p, true);
2430 live_p = true;
2431 if (! lra_need_for_spills_p ())
2432 break;
2434 lra_spill ();
2435 /* Assignment of stack slots changes elimination offsets for
2436 some eliminations. So update the offsets here. */
2437 lra_eliminate (false, false);
2438 lra_constraint_new_regno_start = max_reg_num ();
2439 if (lra_bad_spill_regno_start == INT_MAX
2440 && lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES
2441 && lra_rematerialization_iter > LRA_MAX_REMATERIALIZATION_PASSES)
2442 /* After switching off inheritance and rematerialization
2443 passes, avoid spilling reload pseudos will be created to
2444 prevent LRA cycling in some complicated cases. */
2445 lra_bad_spill_regno_start = lra_constraint_new_regno_start;
2446 lra_assignment_iter_after_spill = 0;
2448 restore_scratches ();
2449 lra_eliminate (true, false);
2450 lra_final_code_change ();
2451 lra_in_progress = 0;
2452 if (live_p)
2453 lra_clear_live_ranges ();
2454 lra_live_ranges_finish ();
2455 lra_constraints_finish ();
2456 finish_reg_info ();
2457 sbitmap_free (lra_constraint_insn_stack_bitmap);
2458 lra_constraint_insn_stack.release ();
2459 finish_insn_recog_data ();
2460 regstat_free_n_sets_and_refs ();
2461 regstat_free_ri ();
2462 reload_completed = 1;
2463 update_inc_notes ();
2465 inserted_p = fixup_abnormal_edges ();
2467 /* We've possibly turned single trapping insn into multiple ones. */
2468 if (cfun->can_throw_non_call_exceptions)
2470 sbitmap blocks;
2471 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2472 bitmap_ones (blocks);
2473 find_many_sub_basic_blocks (blocks);
2474 sbitmap_free (blocks);
2477 if (inserted_p)
2478 commit_edge_insertions ();
2480 /* Replacing pseudos with their memory equivalents might have
2481 created shared rtx. Subsequent passes would get confused
2482 by this, so unshare everything here. */
2483 unshare_all_rtl_again (get_insns ());
2485 #ifdef ENABLE_CHECKING
2486 check_rtl (true);
2487 #endif
2489 timevar_pop (TV_LRA);
2492 /* Called once per compiler to initialize LRA data once. */
2493 void
2494 lra_init_once (void)
2496 init_insn_code_data_once ();
2499 /* Called once per compiler to finish LRA data which are initialize
2500 once. */
2501 void
2502 lra_finish_once (void)
2504 finish_insn_code_data_once ();