MFC: following 4 commits:
[dragonfly.git] / sys / vm / vm_fault.c
blobe075c2dce6b96f926379168c259590372bb842d9
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 * Carnegie Mellon requests users of this software to return to
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
69 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70 * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
74 * Page fault handling module.
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/sfbuf.h>
86 #include <sys/lock.h>
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
100 #include <sys/thread2.h>
101 #include <vm/vm_page2.h>
103 #define VM_FAULT_READ_AHEAD 8
104 #define VM_FAULT_READ_BEHIND 7
105 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
107 struct faultstate {
108 vm_page_t m;
109 vm_object_t object;
110 vm_pindex_t pindex;
111 vm_prot_t prot;
112 vm_page_t first_m;
113 vm_object_t first_object;
114 vm_prot_t first_prot;
115 vm_map_t map;
116 vm_map_entry_t entry;
117 int lookup_still_valid;
118 int didlimit;
119 int hardfault;
120 int fault_flags;
121 int map_generation;
122 boolean_t wired;
123 struct vnode *vp;
126 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
127 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
128 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
129 static int vm_fault_ratelimit(struct vmspace *);
131 static __inline void
132 release_page(struct faultstate *fs)
134 vm_page_deactivate(fs->m);
135 vm_page_wakeup(fs->m);
136 fs->m = NULL;
139 static __inline void
140 unlock_map(struct faultstate *fs)
142 if (fs->lookup_still_valid && fs->map) {
143 vm_map_lookup_done(fs->map, fs->entry, 0);
144 fs->lookup_still_valid = FALSE;
149 * Clean up after a successful call to vm_fault_object() so another call
150 * to vm_fault_object() can be made.
152 static void
153 _cleanup_successful_fault(struct faultstate *fs, int relock)
155 if (fs->object != fs->first_object) {
156 vm_page_free(fs->first_m);
157 vm_object_pip_wakeup(fs->object);
158 fs->first_m = NULL;
160 fs->object = fs->first_object;
161 if (relock && fs->lookup_still_valid == FALSE) {
162 if (fs->map)
163 vm_map_lock_read(fs->map);
164 fs->lookup_still_valid = TRUE;
168 static void
169 _unlock_things(struct faultstate *fs, int dealloc)
171 vm_object_pip_wakeup(fs->first_object);
172 _cleanup_successful_fault(fs, 0);
173 if (dealloc) {
174 vm_object_deallocate(fs->first_object);
176 unlock_map(fs);
177 if (fs->vp != NULL) {
178 vput(fs->vp);
179 fs->vp = NULL;
183 #define unlock_things(fs) _unlock_things(fs, 0)
184 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
185 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
188 * TRYPAGER
190 * Determine if the pager for the current object *might* contain the page.
192 * We only need to try the pager if this is not a default object (default
193 * objects are zero-fill and have no real pager), and if we are not taking
194 * a wiring fault or if the FS entry is wired.
196 #define TRYPAGER(fs) \
197 (fs->object->type != OBJT_DEFAULT && \
198 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
201 * vm_fault:
203 * Handle a page fault occuring at the given address, requiring the given
204 * permissions, in the map specified. If successful, the page is inserted
205 * into the associated physical map.
207 * NOTE: The given address should be truncated to the proper page address.
209 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
210 * a standard error specifying why the fault is fatal is returned.
212 * The map in question must be referenced, and remains so.
213 * The caller may hold no locks.
216 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
218 int result;
219 vm_pindex_t first_pindex;
220 struct faultstate fs;
222 mycpu->gd_cnt.v_vm_faults++;
224 fs.didlimit = 0;
225 fs.hardfault = 0;
226 fs.fault_flags = fault_flags;
228 RetryFault:
230 * Find the vm_map_entry representing the backing store and resolve
231 * the top level object and page index. This may have the side
232 * effect of executing a copy-on-write on the map entry and/or
233 * creating a shadow object, but will not COW any actual VM pages.
235 * On success fs.map is left read-locked and various other fields
236 * are initialized but not otherwise referenced or locked.
238 * NOTE! vm_map_lookup will try to upgrade the fault_type to
239 * VM_FAULT_WRITE if the map entry is a virtual page table and also
240 * writable, so we can set the 'A'accessed bit in the virtual page
241 * table entry.
243 fs.map = map;
244 result = vm_map_lookup(&fs.map, vaddr, fault_type,
245 &fs.entry, &fs.first_object,
246 &first_pindex, &fs.first_prot, &fs.wired);
249 * If the lookup failed or the map protections are incompatible,
250 * the fault generally fails. However, if the caller is trying
251 * to do a user wiring we have more work to do.
253 if (result != KERN_SUCCESS) {
254 if (result != KERN_PROTECTION_FAILURE)
255 return result;
256 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
257 return result;
260 * If we are user-wiring a r/w segment, and it is COW, then
261 * we need to do the COW operation. Note that we don't
262 * currently COW RO sections now, because it is NOT desirable
263 * to COW .text. We simply keep .text from ever being COW'ed
264 * and take the heat that one cannot debug wired .text sections.
266 result = vm_map_lookup(&fs.map, vaddr,
267 VM_PROT_READ|VM_PROT_WRITE|
268 VM_PROT_OVERRIDE_WRITE,
269 &fs.entry, &fs.first_object,
270 &first_pindex, &fs.first_prot,
271 &fs.wired);
272 if (result != KERN_SUCCESS)
273 return result;
276 * If we don't COW now, on a user wire, the user will never
277 * be able to write to the mapping. If we don't make this
278 * restriction, the bookkeeping would be nearly impossible.
280 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
281 fs.entry->max_protection &= ~VM_PROT_WRITE;
285 * fs.map is read-locked
287 * Misc checks. Save the map generation number to detect races.
289 fs.map_generation = fs.map->timestamp;
291 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
292 panic("vm_fault: fault on nofault entry, addr: %lx",
293 (u_long)vaddr);
297 * A system map entry may return a NULL object. No object means
298 * no pager means an unrecoverable kernel fault.
300 if (fs.first_object == NULL) {
301 panic("vm_fault: unrecoverable fault at %p in entry %p",
302 (void *)vaddr, fs.entry);
306 * Make a reference to this object to prevent its disposal while we
307 * are messing with it. Once we have the reference, the map is free
308 * to be diddled. Since objects reference their shadows (and copies),
309 * they will stay around as well.
311 * Bump the paging-in-progress count to prevent size changes (e.g.
312 * truncation operations) during I/O. This must be done after
313 * obtaining the vnode lock in order to avoid possible deadlocks.
315 vm_object_reference(fs.first_object);
316 fs.vp = vnode_pager_lock(fs.first_object);
317 vm_object_pip_add(fs.first_object, 1);
319 fs.lookup_still_valid = TRUE;
320 fs.first_m = NULL;
321 fs.object = fs.first_object; /* so unlock_and_deallocate works */
324 * If the entry is wired we cannot change the page protection.
326 if (fs.wired)
327 fault_type = fs.first_prot;
330 * The page we want is at (first_object, first_pindex), but if the
331 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
332 * page table to figure out the actual pindex.
334 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
335 * ONLY
337 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
338 result = vm_fault_vpagetable(&fs, &first_pindex,
339 fs.entry->aux.master_pde,
340 fault_type);
341 if (result == KERN_TRY_AGAIN)
342 goto RetryFault;
343 if (result != KERN_SUCCESS)
344 return (result);
348 * Now we have the actual (object, pindex), fault in the page. If
349 * vm_fault_object() fails it will unlock and deallocate the FS
350 * data. If it succeeds everything remains locked and fs->object
351 * will have an additinal PIP count if it is not equal to
352 * fs->first_object
354 * vm_fault_object will set fs->prot for the pmap operation. It is
355 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
356 * page can be safely written. However, it will force a read-only
357 * mapping for a read fault if the memory is managed by a virtual
358 * page table.
360 result = vm_fault_object(&fs, first_pindex, fault_type);
362 if (result == KERN_TRY_AGAIN)
363 goto RetryFault;
364 if (result != KERN_SUCCESS)
365 return (result);
368 * On success vm_fault_object() does not unlock or deallocate, and fs.m
369 * will contain a busied page.
371 * Enter the page into the pmap and do pmap-related adjustments.
373 unlock_things(&fs);
374 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
376 if (((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0) && (fs.wired == 0)) {
377 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
380 vm_page_flag_clear(fs.m, PG_ZERO);
381 vm_page_flag_set(fs.m, PG_REFERENCED);
384 * If the page is not wired down, then put it where the pageout daemon
385 * can find it.
387 if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
388 if (fs.wired)
389 vm_page_wire(fs.m);
390 else
391 vm_page_unwire(fs.m, 1);
392 } else {
393 vm_page_activate(fs.m);
396 if (curthread->td_lwp) {
397 if (fs.hardfault) {
398 curthread->td_lwp->lwp_ru.ru_majflt++;
399 } else {
400 curthread->td_lwp->lwp_ru.ru_minflt++;
405 * Unlock everything, and return
407 vm_page_wakeup(fs.m);
408 vm_object_deallocate(fs.first_object);
410 return (KERN_SUCCESS);
414 * Fault in the specified virtual address in the current process map,
415 * returning a held VM page or NULL. See vm_fault_page() for more
416 * information.
418 vm_page_t
419 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
421 struct lwp *lp = curthread->td_lwp;
422 vm_page_t m;
424 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
425 fault_type, VM_FAULT_NORMAL, errorp);
426 return(m);
430 * Fault in the specified virtual address in the specified map, doing all
431 * necessary manipulation of the object store and all necessary I/O. Return
432 * a held VM page or NULL, and set *errorp. The related pmap is not
433 * updated.
435 * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
436 * and marked PG_REFERENCED as well.
438 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
439 * error will be returned.
441 vm_page_t
442 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
443 int fault_flags, int *errorp)
445 vm_pindex_t first_pindex;
446 struct faultstate fs;
447 int result;
448 vm_prot_t orig_fault_type = fault_type;
450 mycpu->gd_cnt.v_vm_faults++;
452 fs.didlimit = 0;
453 fs.hardfault = 0;
454 fs.fault_flags = fault_flags;
455 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
457 RetryFault:
459 * Find the vm_map_entry representing the backing store and resolve
460 * the top level object and page index. This may have the side
461 * effect of executing a copy-on-write on the map entry and/or
462 * creating a shadow object, but will not COW any actual VM pages.
464 * On success fs.map is left read-locked and various other fields
465 * are initialized but not otherwise referenced or locked.
467 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
468 * if the map entry is a virtual page table and also writable,
469 * so we can set the 'A'accessed bit in the virtual page table entry.
471 fs.map = map;
472 result = vm_map_lookup(&fs.map, vaddr, fault_type,
473 &fs.entry, &fs.first_object,
474 &first_pindex, &fs.first_prot, &fs.wired);
476 if (result != KERN_SUCCESS) {
477 *errorp = result;
478 return (NULL);
482 * fs.map is read-locked
484 * Misc checks. Save the map generation number to detect races.
486 fs.map_generation = fs.map->timestamp;
488 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
489 panic("vm_fault: fault on nofault entry, addr: %lx",
490 (u_long)vaddr);
494 * A system map entry may return a NULL object. No object means
495 * no pager means an unrecoverable kernel fault.
497 if (fs.first_object == NULL) {
498 panic("vm_fault: unrecoverable fault at %p in entry %p",
499 (void *)vaddr, fs.entry);
503 * Make a reference to this object to prevent its disposal while we
504 * are messing with it. Once we have the reference, the map is free
505 * to be diddled. Since objects reference their shadows (and copies),
506 * they will stay around as well.
508 * Bump the paging-in-progress count to prevent size changes (e.g.
509 * truncation operations) during I/O. This must be done after
510 * obtaining the vnode lock in order to avoid possible deadlocks.
512 vm_object_reference(fs.first_object);
513 fs.vp = vnode_pager_lock(fs.first_object);
514 vm_object_pip_add(fs.first_object, 1);
516 fs.lookup_still_valid = TRUE;
517 fs.first_m = NULL;
518 fs.object = fs.first_object; /* so unlock_and_deallocate works */
521 * If the entry is wired we cannot change the page protection.
523 if (fs.wired)
524 fault_type = fs.first_prot;
527 * The page we want is at (first_object, first_pindex), but if the
528 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
529 * page table to figure out the actual pindex.
531 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
532 * ONLY
534 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
535 result = vm_fault_vpagetable(&fs, &first_pindex,
536 fs.entry->aux.master_pde,
537 fault_type);
538 if (result == KERN_TRY_AGAIN)
539 goto RetryFault;
540 if (result != KERN_SUCCESS) {
541 *errorp = result;
542 return (NULL);
547 * Now we have the actual (object, pindex), fault in the page. If
548 * vm_fault_object() fails it will unlock and deallocate the FS
549 * data. If it succeeds everything remains locked and fs->object
550 * will have an additinal PIP count if it is not equal to
551 * fs->first_object
553 result = vm_fault_object(&fs, first_pindex, fault_type);
555 if (result == KERN_TRY_AGAIN)
556 goto RetryFault;
557 if (result != KERN_SUCCESS) {
558 *errorp = result;
559 return(NULL);
562 if ((orig_fault_type & VM_PROT_WRITE) &&
563 (fs.prot & VM_PROT_WRITE) == 0) {
564 *errorp = KERN_PROTECTION_FAILURE;
565 unlock_and_deallocate(&fs);
566 return(NULL);
570 * On success vm_fault_object() does not unlock or deallocate, and fs.m
571 * will contain a busied page.
573 unlock_things(&fs);
576 * Return a held page. We are not doing any pmap manipulation so do
577 * not set PG_MAPPED. However, adjust the page flags according to
578 * the fault type because the caller may not use a managed pmapping
579 * (so we don't want to lose the fact that the page will be dirtied
580 * if a write fault was specified).
582 vm_page_hold(fs.m);
583 vm_page_flag_clear(fs.m, PG_ZERO);
584 if (fault_type & VM_PROT_WRITE)
585 vm_page_dirty(fs.m);
588 * Update the pmap. We really only have to do this if a COW
589 * occured to replace the read-only page with the new page. For
590 * now just do it unconditionally. XXX
592 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
593 vm_page_flag_set(fs.m, PG_REFERENCED);
596 * Unbusy the page by activating it. It remains held and will not
597 * be reclaimed.
599 vm_page_activate(fs.m);
601 if (curthread->td_lwp) {
602 if (fs.hardfault) {
603 curthread->td_lwp->lwp_ru.ru_majflt++;
604 } else {
605 curthread->td_lwp->lwp_ru.ru_minflt++;
610 * Unlock everything, and return the held page.
612 vm_page_wakeup(fs.m);
613 vm_object_deallocate(fs.first_object);
615 *errorp = 0;
616 return(fs.m);
620 * Fault in the specified (object,offset), dirty the returned page as
621 * needed. If the requested fault_type cannot be done NULL and an
622 * error is returned.
624 vm_page_t
625 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
626 vm_prot_t fault_type, int fault_flags, int *errorp)
628 int result;
629 vm_pindex_t first_pindex;
630 struct faultstate fs;
631 struct vm_map_entry entry;
633 bzero(&entry, sizeof(entry));
634 entry.object.vm_object = object;
635 entry.maptype = VM_MAPTYPE_NORMAL;
636 entry.protection = entry.max_protection = fault_type;
638 fs.didlimit = 0;
639 fs.hardfault = 0;
640 fs.fault_flags = fault_flags;
641 fs.map = NULL;
642 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
644 RetryFault:
646 fs.first_object = object;
647 first_pindex = OFF_TO_IDX(offset);
648 fs.entry = &entry;
649 fs.first_prot = fault_type;
650 fs.wired = 0;
651 /*fs.map_generation = 0; unused */
654 * Make a reference to this object to prevent its disposal while we
655 * are messing with it. Once we have the reference, the map is free
656 * to be diddled. Since objects reference their shadows (and copies),
657 * they will stay around as well.
659 * Bump the paging-in-progress count to prevent size changes (e.g.
660 * truncation operations) during I/O. This must be done after
661 * obtaining the vnode lock in order to avoid possible deadlocks.
663 vm_object_reference(fs.first_object);
664 fs.vp = vnode_pager_lock(fs.first_object);
665 vm_object_pip_add(fs.first_object, 1);
667 fs.lookup_still_valid = TRUE;
668 fs.first_m = NULL;
669 fs.object = fs.first_object; /* so unlock_and_deallocate works */
671 #if 0
672 /* XXX future - ability to operate on VM object using vpagetable */
673 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
674 result = vm_fault_vpagetable(&fs, &first_pindex,
675 fs.entry->aux.master_pde,
676 fault_type);
677 if (result == KERN_TRY_AGAIN)
678 goto RetryFault;
679 if (result != KERN_SUCCESS) {
680 *errorp = result;
681 return (NULL);
684 #endif
687 * Now we have the actual (object, pindex), fault in the page. If
688 * vm_fault_object() fails it will unlock and deallocate the FS
689 * data. If it succeeds everything remains locked and fs->object
690 * will have an additinal PIP count if it is not equal to
691 * fs->first_object
693 result = vm_fault_object(&fs, first_pindex, fault_type);
695 if (result == KERN_TRY_AGAIN)
696 goto RetryFault;
697 if (result != KERN_SUCCESS) {
698 *errorp = result;
699 return(NULL);
702 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
703 *errorp = KERN_PROTECTION_FAILURE;
704 unlock_and_deallocate(&fs);
705 return(NULL);
709 * On success vm_fault_object() does not unlock or deallocate, and fs.m
710 * will contain a busied page.
712 unlock_things(&fs);
715 * Return a held page. We are not doing any pmap manipulation so do
716 * not set PG_MAPPED. However, adjust the page flags according to
717 * the fault type because the caller may not use a managed pmapping
718 * (so we don't want to lose the fact that the page will be dirtied
719 * if a write fault was specified).
721 vm_page_hold(fs.m);
722 vm_page_flag_clear(fs.m, PG_ZERO);
723 if (fault_type & VM_PROT_WRITE)
724 vm_page_dirty(fs.m);
727 * Indicate that the page was accessed.
729 vm_page_flag_set(fs.m, PG_REFERENCED);
732 * Unbusy the page by activating it. It remains held and will not
733 * be reclaimed.
735 vm_page_activate(fs.m);
737 if (curthread->td_lwp) {
738 if (fs.hardfault) {
739 mycpu->gd_cnt.v_vm_faults++;
740 curthread->td_lwp->lwp_ru.ru_majflt++;
741 } else {
742 curthread->td_lwp->lwp_ru.ru_minflt++;
747 * Unlock everything, and return the held page.
749 vm_page_wakeup(fs.m);
750 vm_object_deallocate(fs.first_object);
752 *errorp = 0;
753 return(fs.m);
757 * Translate the virtual page number (first_pindex) that is relative
758 * to the address space into a logical page number that is relative to the
759 * backing object. Use the virtual page table pointed to by (vpte).
761 * This implements an N-level page table. Any level can terminate the
762 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
763 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
765 static
767 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
768 vpte_t vpte, int fault_type)
770 struct sf_buf *sf;
771 int vshift = 32 - PAGE_SHIFT; /* page index bits remaining */
772 int result = KERN_SUCCESS;
773 vpte_t *ptep;
775 for (;;) {
777 * We cannot proceed if the vpte is not valid, not readable
778 * for a read fault, or not writable for a write fault.
780 if ((vpte & VPTE_V) == 0) {
781 unlock_and_deallocate(fs);
782 return (KERN_FAILURE);
784 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
785 unlock_and_deallocate(fs);
786 return (KERN_FAILURE);
788 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
789 unlock_and_deallocate(fs);
790 return (KERN_FAILURE);
792 if ((vpte & VPTE_PS) || vshift == 0)
793 break;
794 KKASSERT(vshift >= VPTE_PAGE_BITS);
797 * Get the page table page. Nominally we only read the page
798 * table, but since we are actively setting VPTE_M and VPTE_A,
799 * tell vm_fault_object() that we are writing it.
801 * There is currently no real need to optimize this.
803 result = vm_fault_object(fs, vpte >> PAGE_SHIFT,
804 VM_PROT_READ|VM_PROT_WRITE);
805 if (result != KERN_SUCCESS)
806 return (result);
809 * Process the returned fs.m and look up the page table
810 * entry in the page table page.
812 vshift -= VPTE_PAGE_BITS;
813 sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
814 ptep = ((vpte_t *)sf_buf_kva(sf) +
815 ((*pindex >> vshift) & VPTE_PAGE_MASK));
816 vpte = *ptep;
819 * Page table write-back. If the vpte is valid for the
820 * requested operation, do a write-back to the page table.
822 * XXX VPTE_M is not set properly for page directory pages.
823 * It doesn't get set in the page directory if the page table
824 * is modified during a read access.
826 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
827 (vpte & VPTE_W)) {
828 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
829 atomic_set_int(ptep, VPTE_M|VPTE_A);
830 vm_page_dirty(fs->m);
833 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
834 (vpte & VPTE_R)) {
835 if ((vpte & VPTE_A) == 0) {
836 atomic_set_int(ptep, VPTE_A);
837 vm_page_dirty(fs->m);
840 sf_buf_free(sf);
841 vm_page_flag_set(fs->m, PG_REFERENCED);
842 vm_page_activate(fs->m);
843 vm_page_wakeup(fs->m);
844 cleanup_successful_fault(fs);
847 * Combine remaining address bits with the vpte.
849 *pindex = (vpte >> PAGE_SHIFT) +
850 (*pindex & ((1 << vshift) - 1));
851 return (KERN_SUCCESS);
856 * Do all operations required to fault-in (fs.first_object, pindex). Run
857 * through the shadow chain as necessary and do required COW or virtual
858 * copy operations. The caller has already fully resolved the vm_map_entry
859 * and, if appropriate, has created a copy-on-write layer. All we need to
860 * do is iterate the object chain.
862 * On failure (fs) is unlocked and deallocated and the caller may return or
863 * retry depending on the failure code. On success (fs) is NOT unlocked or
864 * deallocated, fs.m will contained a resolved, busied page, and fs.object
865 * will have an additional PIP count if it is not equal to fs.first_object.
867 static
869 vm_fault_object(struct faultstate *fs,
870 vm_pindex_t first_pindex, vm_prot_t fault_type)
872 vm_object_t next_object;
873 vm_page_t marray[VM_FAULT_READ];
874 vm_pindex_t pindex;
875 int faultcount;
877 fs->prot = fs->first_prot;
878 fs->object = fs->first_object;
879 pindex = first_pindex;
882 * If a read fault occurs we try to make the page writable if
883 * possible. There are three cases where we cannot make the
884 * page mapping writable:
886 * (1) The mapping is read-only or the VM object is read-only,
887 * fs->prot above will simply not have VM_PROT_WRITE set.
889 * (2) If the mapping is a virtual page table we need to be able
890 * to detect writes so we can set VPTE_M in the virtual page
891 * table.
893 * (3) If the VM page is read-only or copy-on-write, upgrading would
894 * just result in an unnecessary COW fault.
896 * VM_PROT_VPAGED is set if faulting via a virtual page table and
897 * causes adjustments to the 'M'odify bit to also turn off write
898 * access to force a re-fault.
900 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
901 if ((fault_type & VM_PROT_WRITE) == 0)
902 fs->prot &= ~VM_PROT_WRITE;
905 for (;;) {
907 * If the object is dead, we stop here
909 if (fs->object->flags & OBJ_DEAD) {
910 unlock_and_deallocate(fs);
911 return (KERN_PROTECTION_FAILURE);
915 * See if page is resident. spl protection is required
916 * to avoid an interrupt unbusy/free race against our
917 * lookup. We must hold the protection through a page
918 * allocation or busy.
920 crit_enter();
921 fs->m = vm_page_lookup(fs->object, pindex);
922 if (fs->m != NULL) {
923 int queue;
925 * Wait/Retry if the page is busy. We have to do this
926 * if the page is busy via either PG_BUSY or
927 * vm_page_t->busy because the vm_pager may be using
928 * vm_page_t->busy for pageouts ( and even pageins if
929 * it is the vnode pager ), and we could end up trying
930 * to pagein and pageout the same page simultaneously.
932 * We can theoretically allow the busy case on a read
933 * fault if the page is marked valid, but since such
934 * pages are typically already pmap'd, putting that
935 * special case in might be more effort then it is
936 * worth. We cannot under any circumstances mess
937 * around with a vm_page_t->busy page except, perhaps,
938 * to pmap it.
940 if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
941 unlock_things(fs);
942 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
943 mycpu->gd_cnt.v_intrans++;
944 vm_object_deallocate(fs->first_object);
945 crit_exit();
946 return (KERN_TRY_AGAIN);
950 * If reactivating a page from PQ_CACHE we may have
951 * to rate-limit.
953 queue = fs->m->queue;
954 vm_page_unqueue_nowakeup(fs->m);
956 if ((queue - fs->m->pc) == PQ_CACHE &&
957 vm_page_count_severe()) {
958 vm_page_activate(fs->m);
959 unlock_and_deallocate(fs);
960 vm_waitpfault();
961 crit_exit();
962 return (KERN_TRY_AGAIN);
966 * Mark page busy for other processes, and the
967 * pagedaemon. If it still isn't completely valid
968 * (readable), jump to readrest, else we found the
969 * page and can return.
971 * We can release the spl once we have marked the
972 * page busy.
974 vm_page_busy(fs->m);
975 crit_exit();
977 if (((fs->m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
978 fs->m->object != &kernel_object) {
979 goto readrest;
981 break; /* break to PAGE HAS BEEN FOUND */
985 * Page is not resident, If this is the search termination
986 * or the pager might contain the page, allocate a new page.
988 * NOTE: We are still in a critical section.
990 if (TRYPAGER(fs) || fs->object == fs->first_object) {
992 * If the page is beyond the object size we fail
994 if (pindex >= fs->object->size) {
995 crit_exit();
996 unlock_and_deallocate(fs);
997 return (KERN_PROTECTION_FAILURE);
1001 * Ratelimit.
1003 if (fs->didlimit == 0 && curproc != NULL) {
1004 int limticks;
1006 limticks = vm_fault_ratelimit(curproc->p_vmspace);
1007 if (limticks) {
1008 crit_exit();
1009 unlock_and_deallocate(fs);
1010 tsleep(curproc, 0, "vmrate", limticks);
1011 fs->didlimit = 1;
1012 return (KERN_TRY_AGAIN);
1017 * Allocate a new page for this object/offset pair.
1019 fs->m = NULL;
1020 if (!vm_page_count_severe()) {
1021 fs->m = vm_page_alloc(fs->object, pindex,
1022 (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1024 if (fs->m == NULL) {
1025 crit_exit();
1026 unlock_and_deallocate(fs);
1027 vm_waitpfault();
1028 return (KERN_TRY_AGAIN);
1031 crit_exit();
1033 readrest:
1035 * We have found a valid page or we have allocated a new page.
1036 * The page thus may not be valid or may not be entirely
1037 * valid.
1039 * Attempt to fault-in the page if there is a chance that the
1040 * pager has it, and potentially fault in additional pages
1041 * at the same time.
1043 * We are NOT in splvm here and if TRYPAGER is true then
1044 * fs.m will be non-NULL and will be PG_BUSY for us.
1047 if (TRYPAGER(fs)) {
1048 int rv;
1049 int reqpage;
1050 int ahead, behind;
1051 u_char behavior = vm_map_entry_behavior(fs->entry);
1053 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
1054 ahead = 0;
1055 behind = 0;
1056 } else {
1057 behind = pindex;
1058 if (behind > VM_FAULT_READ_BEHIND)
1059 behind = VM_FAULT_READ_BEHIND;
1061 ahead = fs->object->size - pindex;
1062 if (ahead < 1)
1063 ahead = 1;
1064 if (ahead > VM_FAULT_READ_AHEAD)
1065 ahead = VM_FAULT_READ_AHEAD;
1068 if ((fs->first_object->type != OBJT_DEVICE) &&
1069 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1070 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1071 pindex >= fs->entry->lastr &&
1072 pindex < fs->entry->lastr + VM_FAULT_READ))
1074 vm_pindex_t firstpindex, tmppindex;
1076 if (first_pindex < 2 * VM_FAULT_READ)
1077 firstpindex = 0;
1078 else
1079 firstpindex = first_pindex - 2 * VM_FAULT_READ;
1082 * note: partially valid pages cannot be
1083 * included in the lookahead - NFS piecemeal
1084 * writes will barf on it badly.
1086 * spl protection is required to avoid races
1087 * between the lookup and an interrupt
1088 * unbusy/free sequence occuring prior to
1089 * our busy check.
1091 crit_enter();
1092 for (tmppindex = first_pindex - 1;
1093 tmppindex >= firstpindex;
1094 --tmppindex
1096 vm_page_t mt;
1098 mt = vm_page_lookup(fs->first_object, tmppindex);
1099 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
1100 break;
1101 if (mt->busy ||
1102 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1103 mt->hold_count ||
1104 mt->wire_count)
1105 continue;
1106 if (mt->dirty == 0)
1107 vm_page_test_dirty(mt);
1108 if (mt->dirty) {
1109 vm_page_busy(mt);
1110 vm_page_protect(mt, VM_PROT_NONE);
1111 vm_page_deactivate(mt);
1112 vm_page_wakeup(mt);
1113 } else {
1114 vm_page_cache(mt);
1117 crit_exit();
1119 ahead += behind;
1120 behind = 0;
1124 * now we find out if any other pages should be paged
1125 * in at this time this routine checks to see if the
1126 * pages surrounding this fault reside in the same
1127 * object as the page for this fault. If they do,
1128 * then they are faulted in also into the object. The
1129 * array "marray" returned contains an array of
1130 * vm_page_t structs where one of them is the
1131 * vm_page_t passed to the routine. The reqpage
1132 * return value is the index into the marray for the
1133 * vm_page_t passed to the routine.
1135 * fs.m plus the additional pages are PG_BUSY'd.
1137 faultcount = vm_fault_additional_pages(
1138 fs->m, behind, ahead, marray, &reqpage);
1141 * update lastr imperfectly (we do not know how much
1142 * getpages will actually read), but good enough.
1144 fs->entry->lastr = pindex + faultcount - behind;
1147 * Call the pager to retrieve the data, if any, after
1148 * releasing the lock on the map. We hold a ref on
1149 * fs.object and the pages are PG_BUSY'd.
1151 unlock_map(fs);
1153 if (faultcount) {
1154 rv = vm_pager_get_pages(fs->object, marray,
1155 faultcount, reqpage);
1156 } else {
1157 rv = VM_PAGER_FAIL;
1160 if (rv == VM_PAGER_OK) {
1162 * Found the page. Leave it busy while we play
1163 * with it.
1167 * Relookup in case pager changed page. Pager
1168 * is responsible for disposition of old page
1169 * if moved.
1171 * XXX other code segments do relookups too.
1172 * It's a bad abstraction that needs to be
1173 * fixed/removed.
1175 fs->m = vm_page_lookup(fs->object, pindex);
1176 if (fs->m == NULL) {
1177 unlock_and_deallocate(fs);
1178 return (KERN_TRY_AGAIN);
1181 ++fs->hardfault;
1182 break; /* break to PAGE HAS BEEN FOUND */
1186 * Remove the bogus page (which does not exist at this
1187 * object/offset); before doing so, we must get back
1188 * our object lock to preserve our invariant.
1190 * Also wake up any other process that may want to bring
1191 * in this page.
1193 * If this is the top-level object, we must leave the
1194 * busy page to prevent another process from rushing
1195 * past us, and inserting the page in that object at
1196 * the same time that we are.
1198 if (rv == VM_PAGER_ERROR) {
1199 if (curproc)
1200 kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1201 else
1202 kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1205 * Data outside the range of the pager or an I/O error
1207 * The page may have been wired during the pagein,
1208 * e.g. by the buffer cache, and cannot simply be
1209 * freed. Call vnode_pager_freepag() to deal with it.
1212 * XXX - the check for kernel_map is a kludge to work
1213 * around having the machine panic on a kernel space
1214 * fault w/ I/O error.
1216 if (((fs->map != &kernel_map) && (rv == VM_PAGER_ERROR)) ||
1217 (rv == VM_PAGER_BAD)) {
1218 vnode_pager_freepage(fs->m);
1219 fs->m = NULL;
1220 unlock_and_deallocate(fs);
1221 if (rv == VM_PAGER_ERROR)
1222 return (KERN_FAILURE);
1223 else
1224 return (KERN_PROTECTION_FAILURE);
1225 /* NOT REACHED */
1227 if (fs->object != fs->first_object) {
1228 vnode_pager_freepage(fs->m);
1229 fs->m = NULL;
1231 * XXX - we cannot just fall out at this
1232 * point, m has been freed and is invalid!
1238 * We get here if the object has a default pager (or unwiring)
1239 * or the pager doesn't have the page.
1241 if (fs->object == fs->first_object)
1242 fs->first_m = fs->m;
1245 * Move on to the next object. Lock the next object before
1246 * unlocking the current one.
1248 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1249 next_object = fs->object->backing_object;
1250 if (next_object == NULL) {
1252 * If there's no object left, fill the page in the top
1253 * object with zeros.
1255 if (fs->object != fs->first_object) {
1256 vm_object_pip_wakeup(fs->object);
1258 fs->object = fs->first_object;
1259 pindex = first_pindex;
1260 fs->m = fs->first_m;
1262 fs->first_m = NULL;
1265 * Zero the page if necessary and mark it valid.
1267 if ((fs->m->flags & PG_ZERO) == 0) {
1268 vm_page_zero_fill(fs->m);
1269 } else {
1270 mycpu->gd_cnt.v_ozfod++;
1272 mycpu->gd_cnt.v_zfod++;
1273 fs->m->valid = VM_PAGE_BITS_ALL;
1274 break; /* break to PAGE HAS BEEN FOUND */
1275 } else {
1276 if (fs->object != fs->first_object) {
1277 vm_object_pip_wakeup(fs->object);
1279 KASSERT(fs->object != next_object, ("object loop %p", next_object));
1280 fs->object = next_object;
1281 vm_object_pip_add(fs->object, 1);
1285 KASSERT((fs->m->flags & PG_BUSY) != 0,
1286 ("vm_fault: not busy after main loop"));
1289 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1290 * is held.]
1294 * If the page is being written, but isn't already owned by the
1295 * top-level object, we have to copy it into a new page owned by the
1296 * top-level object.
1298 if (fs->object != fs->first_object) {
1300 * We only really need to copy if we want to write it.
1302 if (fault_type & VM_PROT_WRITE) {
1304 * This allows pages to be virtually copied from a
1305 * backing_object into the first_object, where the
1306 * backing object has no other refs to it, and cannot
1307 * gain any more refs. Instead of a bcopy, we just
1308 * move the page from the backing object to the
1309 * first object. Note that we must mark the page
1310 * dirty in the first object so that it will go out
1311 * to swap when needed.
1313 if (
1315 * Map, if present, has not changed
1317 (fs->map == NULL ||
1318 fs->map_generation == fs->map->timestamp) &&
1320 * Only one shadow object
1322 (fs->object->shadow_count == 1) &&
1324 * No COW refs, except us
1326 (fs->object->ref_count == 1) &&
1328 * No one else can look this object up
1330 (fs->object->handle == NULL) &&
1332 * No other ways to look the object up
1334 ((fs->object->type == OBJT_DEFAULT) ||
1335 (fs->object->type == OBJT_SWAP)) &&
1337 * We don't chase down the shadow chain
1339 (fs->object == fs->first_object->backing_object) &&
1342 * grab the lock if we need to
1344 (fs->lookup_still_valid ||
1345 fs->map == NULL ||
1346 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1349 fs->lookup_still_valid = 1;
1351 * get rid of the unnecessary page
1353 vm_page_protect(fs->first_m, VM_PROT_NONE);
1354 vm_page_free(fs->first_m);
1355 fs->first_m = NULL;
1358 * grab the page and put it into the
1359 * process'es object. The page is
1360 * automatically made dirty.
1362 vm_page_rename(fs->m, fs->first_object, first_pindex);
1363 fs->first_m = fs->m;
1364 vm_page_busy(fs->first_m);
1365 fs->m = NULL;
1366 mycpu->gd_cnt.v_cow_optim++;
1367 } else {
1369 * Oh, well, lets copy it.
1371 vm_page_copy(fs->m, fs->first_m);
1372 vm_page_event(fs->m, VMEVENT_COW);
1375 if (fs->m) {
1377 * We no longer need the old page or object.
1379 release_page(fs);
1383 * fs->object != fs->first_object due to above
1384 * conditional
1386 vm_object_pip_wakeup(fs->object);
1389 * Only use the new page below...
1392 mycpu->gd_cnt.v_cow_faults++;
1393 fs->m = fs->first_m;
1394 fs->object = fs->first_object;
1395 pindex = first_pindex;
1396 } else {
1398 * If it wasn't a write fault avoid having to copy
1399 * the page by mapping it read-only.
1401 fs->prot &= ~VM_PROT_WRITE;
1406 * We may have had to unlock a map to do I/O. If we did then
1407 * lookup_still_valid will be FALSE. If the map generation count
1408 * also changed then all sorts of things could have happened while
1409 * we were doing the I/O and we need to retry.
1412 if (!fs->lookup_still_valid &&
1413 fs->map != NULL &&
1414 (fs->map->timestamp != fs->map_generation)) {
1415 release_page(fs);
1416 unlock_and_deallocate(fs);
1417 return (KERN_TRY_AGAIN);
1421 * If the fault is a write, we know that this page is being
1422 * written NOW so dirty it explicitly to save on pmap_is_modified()
1423 * calls later.
1425 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1426 * if the page is already dirty to prevent data written with
1427 * the expectation of being synced from not being synced.
1428 * Likewise if this entry does not request NOSYNC then make
1429 * sure the page isn't marked NOSYNC. Applications sharing
1430 * data should use the same flags to avoid ping ponging.
1432 * Also tell the backing pager, if any, that it should remove
1433 * any swap backing since the page is now dirty.
1435 if (fs->prot & VM_PROT_WRITE) {
1436 vm_object_set_writeable_dirty(fs->m->object);
1437 if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1438 if (fs->m->dirty == 0)
1439 vm_page_flag_set(fs->m, PG_NOSYNC);
1440 } else {
1441 vm_page_flag_clear(fs->m, PG_NOSYNC);
1443 if (fs->fault_flags & VM_FAULT_DIRTY) {
1444 crit_enter();
1445 vm_page_dirty(fs->m);
1446 vm_pager_page_unswapped(fs->m);
1447 crit_exit();
1452 * Page had better still be busy. We are still locked up and
1453 * fs->object will have another PIP reference if it is not equal
1454 * to fs->first_object.
1456 KASSERT(fs->m->flags & PG_BUSY,
1457 ("vm_fault: page %p not busy!", fs->m));
1460 * Sanity check: page must be completely valid or it is not fit to
1461 * map into user space. vm_pager_get_pages() ensures this.
1463 if (fs->m->valid != VM_PAGE_BITS_ALL) {
1464 vm_page_zero_invalid(fs->m, TRUE);
1465 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1468 return (KERN_SUCCESS);
1472 * Wire down a range of virtual addresses in a map. The entry in question
1473 * should be marked in-transition and the map must be locked. We must
1474 * release the map temporarily while faulting-in the page to avoid a
1475 * deadlock. Note that the entry may be clipped while we are blocked but
1476 * will never be freed.
1479 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1481 boolean_t fictitious;
1482 vm_offset_t start;
1483 vm_offset_t end;
1484 vm_offset_t va;
1485 vm_paddr_t pa;
1486 pmap_t pmap;
1487 int rv;
1489 pmap = vm_map_pmap(map);
1490 start = entry->start;
1491 end = entry->end;
1492 fictitious = entry->object.vm_object &&
1493 (entry->object.vm_object->type == OBJT_DEVICE);
1495 vm_map_unlock(map);
1496 map->timestamp++;
1499 * We simulate a fault to get the page and enter it in the physical
1500 * map.
1502 for (va = start; va < end; va += PAGE_SIZE) {
1503 if (user_wire) {
1504 rv = vm_fault(map, va, VM_PROT_READ,
1505 VM_FAULT_USER_WIRE);
1506 } else {
1507 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1508 VM_FAULT_CHANGE_WIRING);
1510 if (rv) {
1511 while (va > start) {
1512 va -= PAGE_SIZE;
1513 if ((pa = pmap_extract(pmap, va)) == 0)
1514 continue;
1515 pmap_change_wiring(pmap, va, FALSE);
1516 if (!fictitious)
1517 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1519 vm_map_lock(map);
1520 return (rv);
1523 vm_map_lock(map);
1524 return (KERN_SUCCESS);
1528 * Unwire a range of virtual addresses in a map. The map should be
1529 * locked.
1531 void
1532 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1534 boolean_t fictitious;
1535 vm_offset_t start;
1536 vm_offset_t end;
1537 vm_offset_t va;
1538 vm_paddr_t pa;
1539 pmap_t pmap;
1541 pmap = vm_map_pmap(map);
1542 start = entry->start;
1543 end = entry->end;
1544 fictitious = entry->object.vm_object &&
1545 (entry->object.vm_object->type == OBJT_DEVICE);
1548 * Since the pages are wired down, we must be able to get their
1549 * mappings from the physical map system.
1551 for (va = start; va < end; va += PAGE_SIZE) {
1552 pa = pmap_extract(pmap, va);
1553 if (pa != 0) {
1554 pmap_change_wiring(pmap, va, FALSE);
1555 if (!fictitious)
1556 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1562 * Reduce the rate at which memory is allocated to a process based
1563 * on the perceived load on the VM system. As the load increases
1564 * the allocation burst rate goes down and the delay increases.
1566 * Rate limiting does not apply when faulting active or inactive
1567 * pages. When faulting 'cache' pages, rate limiting only applies
1568 * if the system currently has a severe page deficit.
1570 * XXX vm_pagesupply should be increased when a page is freed.
1572 * We sleep up to 1/10 of a second.
1574 static int
1575 vm_fault_ratelimit(struct vmspace *vmspace)
1577 if (vm_load_enable == 0)
1578 return(0);
1579 if (vmspace->vm_pagesupply > 0) {
1580 --vmspace->vm_pagesupply;
1581 return(0);
1583 #ifdef INVARIANTS
1584 if (vm_load_debug) {
1585 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1586 vm_load,
1587 (1000 - vm_load ) / 10, vm_load * hz / 10000,
1588 curproc->p_pid, curproc->p_comm);
1590 #endif
1591 vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1592 return(vm_load * hz / 10000);
1596 * Routine:
1597 * vm_fault_copy_entry
1598 * Function:
1599 * Copy all of the pages from a wired-down map entry to another.
1601 * In/out conditions:
1602 * The source and destination maps must be locked for write.
1603 * The source map entry must be wired down (or be a sharing map
1604 * entry corresponding to a main map entry that is wired down).
1607 void
1608 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1609 vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1611 vm_object_t dst_object;
1612 vm_object_t src_object;
1613 vm_ooffset_t dst_offset;
1614 vm_ooffset_t src_offset;
1615 vm_prot_t prot;
1616 vm_offset_t vaddr;
1617 vm_page_t dst_m;
1618 vm_page_t src_m;
1620 #ifdef lint
1621 src_map++;
1622 #endif /* lint */
1624 src_object = src_entry->object.vm_object;
1625 src_offset = src_entry->offset;
1628 * Create the top-level object for the destination entry. (Doesn't
1629 * actually shadow anything - we copy the pages directly.)
1631 vm_map_entry_allocate_object(dst_entry);
1632 dst_object = dst_entry->object.vm_object;
1634 prot = dst_entry->max_protection;
1637 * Loop through all of the pages in the entry's range, copying each
1638 * one from the source object (it should be there) to the destination
1639 * object.
1641 for (vaddr = dst_entry->start, dst_offset = 0;
1642 vaddr < dst_entry->end;
1643 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1646 * Allocate a page in the destination object
1648 do {
1649 dst_m = vm_page_alloc(dst_object,
1650 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1651 if (dst_m == NULL) {
1652 vm_wait(0);
1654 } while (dst_m == NULL);
1657 * Find the page in the source object, and copy it in.
1658 * (Because the source is wired down, the page will be in
1659 * memory.)
1661 src_m = vm_page_lookup(src_object,
1662 OFF_TO_IDX(dst_offset + src_offset));
1663 if (src_m == NULL)
1664 panic("vm_fault_copy_wired: page missing");
1666 vm_page_copy(src_m, dst_m);
1667 vm_page_event(src_m, VMEVENT_COW);
1670 * Enter it in the pmap...
1673 vm_page_flag_clear(dst_m, PG_ZERO);
1674 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1677 * Mark it no longer busy, and put it on the active list.
1679 vm_page_activate(dst_m);
1680 vm_page_wakeup(dst_m);
1686 * This routine checks around the requested page for other pages that
1687 * might be able to be faulted in. This routine brackets the viable
1688 * pages for the pages to be paged in.
1690 * Inputs:
1691 * m, rbehind, rahead
1693 * Outputs:
1694 * marray (array of vm_page_t), reqpage (index of requested page)
1696 * Return value:
1697 * number of pages in marray
1699 static int
1700 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1701 vm_page_t *marray, int *reqpage)
1703 int i,j;
1704 vm_object_t object;
1705 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1706 vm_page_t rtm;
1707 int cbehind, cahead;
1709 object = m->object;
1710 pindex = m->pindex;
1713 * we don't fault-ahead for device pager
1715 if (object->type == OBJT_DEVICE) {
1716 *reqpage = 0;
1717 marray[0] = m;
1718 return 1;
1722 * if the requested page is not available, then give up now
1724 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1725 *reqpage = 0; /* not used by caller, fix compiler warn */
1726 return 0;
1729 if ((cbehind == 0) && (cahead == 0)) {
1730 *reqpage = 0;
1731 marray[0] = m;
1732 return 1;
1735 if (rahead > cahead) {
1736 rahead = cahead;
1739 if (rbehind > cbehind) {
1740 rbehind = cbehind;
1744 * try to do any readahead that we might have free pages for.
1746 if ((rahead + rbehind) >
1747 ((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1748 pagedaemon_wakeup();
1749 marray[0] = m;
1750 *reqpage = 0;
1751 return 1;
1755 * scan backward for the read behind pages -- in memory
1757 * Assume that if the page is not found an interrupt will not
1758 * create it. Theoretically interrupts can only remove (busy)
1759 * pages, not create new associations.
1761 if (pindex > 0) {
1762 if (rbehind > pindex) {
1763 rbehind = pindex;
1764 startpindex = 0;
1765 } else {
1766 startpindex = pindex - rbehind;
1769 crit_enter();
1770 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1771 if (vm_page_lookup( object, tpindex)) {
1772 startpindex = tpindex + 1;
1773 break;
1775 if (tpindex == 0)
1776 break;
1779 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1781 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1782 if (rtm == NULL) {
1783 crit_exit();
1784 for (j = 0; j < i; j++) {
1785 vm_page_free(marray[j]);
1787 marray[0] = m;
1788 *reqpage = 0;
1789 return 1;
1792 marray[i] = rtm;
1794 crit_exit();
1795 } else {
1796 startpindex = 0;
1797 i = 0;
1800 marray[i] = m;
1801 /* page offset of the required page */
1802 *reqpage = i;
1804 tpindex = pindex + 1;
1805 i++;
1808 * scan forward for the read ahead pages
1810 endpindex = tpindex + rahead;
1811 if (endpindex > object->size)
1812 endpindex = object->size;
1814 crit_enter();
1815 for( ; tpindex < endpindex; i++, tpindex++) {
1817 if (vm_page_lookup(object, tpindex)) {
1818 break;
1821 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1822 if (rtm == NULL) {
1823 break;
1826 marray[i] = rtm;
1828 crit_exit();
1830 /* return number of bytes of pages */
1831 return i;