drm/i915: Remove a duplicated assignment
[dragonfly.git] / sys / vm / vm_page.c
blob54643a7930d534cb27319ff30926c6484587fbe0
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
65 * Resident memory management module. The module manipulates 'VM pages'.
66 * A VM page is the core building block for memory management.
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 #include <sys/alist.h>
77 #include <sys/sysctl.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/swap_pager.h>
92 #include <machine/inttypes.h>
93 #include <machine/md_var.h>
94 #include <machine/specialreg.h>
96 #include <vm/vm_page2.h>
97 #include <sys/spinlock2.h>
99 #define VMACTION_HSIZE 256
100 #define VMACTION_HMASK (VMACTION_HSIZE - 1)
102 static void vm_page_queue_init(void);
103 static void vm_page_free_wakeup(void);
104 static vm_page_t vm_page_select_cache(u_short pg_color);
105 static vm_page_t _vm_page_list_find2(int basequeue, int index);
106 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
109 * Array of tailq lists
111 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
113 LIST_HEAD(vm_page_action_list, vm_page_action);
114 struct vm_page_action_list action_list[VMACTION_HSIZE];
115 static volatile int vm_pages_waiting;
117 static struct alist vm_contig_alist;
118 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
119 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
121 static u_long vm_dma_reserved = 0;
122 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
123 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
124 "Memory reserved for DMA");
125 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
126 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
128 static int vm_contig_verbose = 0;
129 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
131 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
132 vm_pindex_t, pindex);
134 static void
135 vm_page_queue_init(void)
137 int i;
139 for (i = 0; i < PQ_L2_SIZE; i++)
140 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
141 for (i = 0; i < PQ_L2_SIZE; i++)
142 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
143 for (i = 0; i < PQ_L2_SIZE; i++)
144 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
145 for (i = 0; i < PQ_L2_SIZE; i++)
146 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
147 for (i = 0; i < PQ_L2_SIZE; i++)
148 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
149 /* PQ_NONE has no queue */
151 for (i = 0; i < PQ_COUNT; i++) {
152 TAILQ_INIT(&vm_page_queues[i].pl);
153 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
156 for (i = 0; i < VMACTION_HSIZE; i++)
157 LIST_INIT(&action_list[i]);
161 * note: place in initialized data section? Is this necessary?
163 long first_page = 0;
164 int vm_page_array_size = 0;
165 int vm_page_zero_count = 0;
166 vm_page_t vm_page_array = NULL;
167 vm_paddr_t vm_low_phys_reserved;
170 * (low level boot)
172 * Sets the page size, perhaps based upon the memory size.
173 * Must be called before any use of page-size dependent functions.
175 void
176 vm_set_page_size(void)
178 if (vmstats.v_page_size == 0)
179 vmstats.v_page_size = PAGE_SIZE;
180 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
181 panic("vm_set_page_size: page size not a power of two");
185 * (low level boot)
187 * Add a new page to the freelist for use by the system. New pages
188 * are added to both the head and tail of the associated free page
189 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
190 * requests pull 'recent' adds (higher physical addresses) first.
192 * Beware that the page zeroing daemon will also be running soon after
193 * boot, moving pages from the head to the tail of the PQ_FREE queues.
195 * Must be called in a critical section.
197 static void
198 vm_add_new_page(vm_paddr_t pa)
200 struct vpgqueues *vpq;
201 vm_page_t m;
203 m = PHYS_TO_VM_PAGE(pa);
204 m->phys_addr = pa;
205 m->flags = 0;
206 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
207 m->pat_mode = PAT_WRITE_BACK;
209 * Twist for cpu localization in addition to page coloring, so
210 * different cpus selecting by m->queue get different page colors.
212 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
213 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
215 * Reserve a certain number of contiguous low memory pages for
216 * contigmalloc() to use.
218 if (pa < vm_low_phys_reserved) {
219 atomic_add_int(&vmstats.v_page_count, 1);
220 atomic_add_int(&vmstats.v_dma_pages, 1);
221 m->queue = PQ_NONE;
222 m->wire_count = 1;
223 atomic_add_int(&vmstats.v_wire_count, 1);
224 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
225 return;
229 * General page
231 m->queue = m->pc + PQ_FREE;
232 KKASSERT(m->dirty == 0);
234 atomic_add_int(&vmstats.v_page_count, 1);
235 atomic_add_int(&vmstats.v_free_count, 1);
236 vpq = &vm_page_queues[m->queue];
237 if ((vpq->flipflop & 15) == 0) {
238 pmap_zero_page(VM_PAGE_TO_PHYS(m));
239 m->flags |= PG_ZERO;
240 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
241 atomic_add_int(&vm_page_zero_count, 1);
242 } else {
243 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
245 ++vpq->flipflop;
246 ++vpq->lcnt;
250 * (low level boot)
252 * Initializes the resident memory module.
254 * Preallocates memory for critical VM structures and arrays prior to
255 * kernel_map becoming available.
257 * Memory is allocated from (virtual2_start, virtual2_end) if available,
258 * otherwise memory is allocated from (virtual_start, virtual_end).
260 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
261 * large enough to hold vm_page_array & other structures for machines with
262 * large amounts of ram, so we want to use virtual2* when available.
264 void
265 vm_page_startup(void)
267 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
268 vm_offset_t mapped;
269 vm_size_t npages;
270 vm_paddr_t page_range;
271 vm_paddr_t new_end;
272 int i;
273 vm_paddr_t pa;
274 int nblocks;
275 vm_paddr_t last_pa;
276 vm_paddr_t end;
277 vm_paddr_t biggestone, biggestsize;
278 vm_paddr_t total;
280 total = 0;
281 biggestsize = 0;
282 biggestone = 0;
283 nblocks = 0;
284 vaddr = round_page(vaddr);
286 for (i = 0; phys_avail[i + 1]; i += 2) {
287 phys_avail[i] = round_page64(phys_avail[i]);
288 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
291 for (i = 0; phys_avail[i + 1]; i += 2) {
292 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
294 if (size > biggestsize) {
295 biggestone = i;
296 biggestsize = size;
298 ++nblocks;
299 total += size;
302 end = phys_avail[biggestone+1];
303 end = trunc_page(end);
306 * Initialize the queue headers for the free queue, the active queue
307 * and the inactive queue.
309 vm_page_queue_init();
311 #if !defined(_KERNEL_VIRTUAL)
313 * VKERNELs don't support minidumps and as such don't need
314 * vm_page_dump
316 * Allocate a bitmap to indicate that a random physical page
317 * needs to be included in a minidump.
319 * The amd64 port needs this to indicate which direct map pages
320 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
322 * However, i386 still needs this workspace internally within the
323 * minidump code. In theory, they are not needed on i386, but are
324 * included should the sf_buf code decide to use them.
326 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
327 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
328 end -= vm_page_dump_size;
329 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
330 VM_PROT_READ | VM_PROT_WRITE);
331 bzero((void *)vm_page_dump, vm_page_dump_size);
332 #endif
334 * Compute the number of pages of memory that will be available for
335 * use (taking into account the overhead of a page structure per
336 * page).
338 first_page = phys_avail[0] / PAGE_SIZE;
339 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
340 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
342 #ifndef _KERNEL_VIRTUAL
344 * (only applies to real kernels)
346 * Reserve a large amount of low memory for potential 32-bit DMA
347 * space allocations. Once device initialization is complete we
348 * release most of it, but keep (vm_dma_reserved) memory reserved
349 * for later use. Typically for X / graphics. Through trial and
350 * error we find that GPUs usually requires ~60-100MB or so.
352 * By default, 128M is left in reserve on machines with 2G+ of ram.
354 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
355 if (vm_low_phys_reserved > total / 4)
356 vm_low_phys_reserved = total / 4;
357 if (vm_dma_reserved == 0) {
358 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */
359 if (vm_dma_reserved > total / 16)
360 vm_dma_reserved = total / 16;
362 #endif
363 alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
364 ALIST_RECORDS_65536);
367 * Initialize the mem entry structures now, and put them in the free
368 * queue.
370 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
371 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
372 vm_page_array = (vm_page_t)mapped;
374 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
376 * since pmap_map on amd64 returns stuff out of a direct-map region,
377 * we have to manually add these pages to the minidump tracking so
378 * that they can be dumped, including the vm_page_array.
380 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
381 dump_add_page(pa);
382 #endif
385 * Clear all of the page structures
387 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
388 vm_page_array_size = page_range;
391 * Construct the free queue(s) in ascending order (by physical
392 * address) so that the first 16MB of physical memory is allocated
393 * last rather than first. On large-memory machines, this avoids
394 * the exhaustion of low physical memory before isa_dmainit has run.
396 vmstats.v_page_count = 0;
397 vmstats.v_free_count = 0;
398 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
399 pa = phys_avail[i];
400 if (i == biggestone)
401 last_pa = new_end;
402 else
403 last_pa = phys_avail[i + 1];
404 while (pa < last_pa && npages-- > 0) {
405 vm_add_new_page(pa);
406 pa += PAGE_SIZE;
409 if (virtual2_start)
410 virtual2_start = vaddr;
411 else
412 virtual_start = vaddr;
416 * We tended to reserve a ton of memory for contigmalloc(). Now that most
417 * drivers have initialized we want to return most the remaining free
418 * reserve back to the VM page queues so they can be used for normal
419 * allocations.
421 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
423 static void
424 vm_page_startup_finish(void *dummy __unused)
426 alist_blk_t blk;
427 alist_blk_t rblk;
428 alist_blk_t count;
429 alist_blk_t xcount;
430 alist_blk_t bfree;
431 vm_page_t m;
433 spin_lock(&vm_contig_spin);
434 for (;;) {
435 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
436 if (bfree <= vm_dma_reserved / PAGE_SIZE)
437 break;
438 if (count == 0)
439 break;
442 * Figure out how much of the initial reserve we have to
443 * free in order to reach our target.
445 bfree -= vm_dma_reserved / PAGE_SIZE;
446 if (count > bfree) {
447 blk += count - bfree;
448 count = bfree;
452 * Calculate the nearest power of 2 <= count.
454 for (xcount = 1; xcount <= count; xcount <<= 1)
456 xcount >>= 1;
457 blk += count - xcount;
458 count = xcount;
461 * Allocate the pages from the alist, then free them to
462 * the normal VM page queues.
464 * Pages allocated from the alist are wired. We have to
465 * busy, unwire, and free them. We must also adjust
466 * vm_low_phys_reserved before freeing any pages to prevent
467 * confusion.
469 rblk = alist_alloc(&vm_contig_alist, blk, count);
470 if (rblk != blk) {
471 kprintf("vm_page_startup_finish: Unable to return "
472 "dma space @0x%08x/%d -> 0x%08x\n",
473 blk, count, rblk);
474 break;
476 atomic_add_int(&vmstats.v_dma_pages, -count);
477 spin_unlock(&vm_contig_spin);
479 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
480 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
481 while (count) {
482 vm_page_busy_wait(m, FALSE, "cpgfr");
483 vm_page_unwire(m, 0);
484 vm_page_free(m);
485 --count;
486 ++m;
488 spin_lock(&vm_contig_spin);
490 spin_unlock(&vm_contig_spin);
493 * Print out how much DMA space drivers have already allocated and
494 * how much is left over.
496 kprintf("DMA space used: %jdk, remaining available: %jdk\n",
497 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
498 (PAGE_SIZE / 1024),
499 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
501 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
502 vm_page_startup_finish, NULL);
506 * Scan comparison function for Red-Black tree scans. An inclusive
507 * (start,end) is expected. Other fields are not used.
510 rb_vm_page_scancmp(struct vm_page *p, void *data)
512 struct rb_vm_page_scan_info *info = data;
514 if (p->pindex < info->start_pindex)
515 return(-1);
516 if (p->pindex > info->end_pindex)
517 return(1);
518 return(0);
522 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
524 if (p1->pindex < p2->pindex)
525 return(-1);
526 if (p1->pindex > p2->pindex)
527 return(1);
528 return(0);
531 void
532 vm_page_init(vm_page_t m)
534 /* do nothing for now. Called from pmap_page_init() */
538 * Each page queue has its own spin lock, which is fairly optimal for
539 * allocating and freeing pages at least.
541 * The caller must hold the vm_page_spin_lock() before locking a vm_page's
542 * queue spinlock via this function. Also note that m->queue cannot change
543 * unless both the page and queue are locked.
545 static __inline
546 void
547 _vm_page_queue_spin_lock(vm_page_t m)
549 u_short queue;
551 queue = m->queue;
552 if (queue != PQ_NONE) {
553 spin_lock(&vm_page_queues[queue].spin);
554 KKASSERT(queue == m->queue);
558 static __inline
559 void
560 _vm_page_queue_spin_unlock(vm_page_t m)
562 u_short queue;
564 queue = m->queue;
565 cpu_ccfence();
566 if (queue != PQ_NONE)
567 spin_unlock(&vm_page_queues[queue].spin);
570 static __inline
571 void
572 _vm_page_queues_spin_lock(u_short queue)
574 cpu_ccfence();
575 if (queue != PQ_NONE)
576 spin_lock(&vm_page_queues[queue].spin);
580 static __inline
581 void
582 _vm_page_queues_spin_unlock(u_short queue)
584 cpu_ccfence();
585 if (queue != PQ_NONE)
586 spin_unlock(&vm_page_queues[queue].spin);
589 void
590 vm_page_queue_spin_lock(vm_page_t m)
592 _vm_page_queue_spin_lock(m);
595 void
596 vm_page_queues_spin_lock(u_short queue)
598 _vm_page_queues_spin_lock(queue);
601 void
602 vm_page_queue_spin_unlock(vm_page_t m)
604 _vm_page_queue_spin_unlock(m);
607 void
608 vm_page_queues_spin_unlock(u_short queue)
610 _vm_page_queues_spin_unlock(queue);
614 * This locks the specified vm_page and its queue in the proper order
615 * (page first, then queue). The queue may change so the caller must
616 * recheck on return.
618 static __inline
619 void
620 _vm_page_and_queue_spin_lock(vm_page_t m)
622 vm_page_spin_lock(m);
623 _vm_page_queue_spin_lock(m);
626 static __inline
627 void
628 _vm_page_and_queue_spin_unlock(vm_page_t m)
630 _vm_page_queues_spin_unlock(m->queue);
631 vm_page_spin_unlock(m);
634 void
635 vm_page_and_queue_spin_unlock(vm_page_t m)
637 _vm_page_and_queue_spin_unlock(m);
640 void
641 vm_page_and_queue_spin_lock(vm_page_t m)
643 _vm_page_and_queue_spin_lock(m);
647 * Helper function removes vm_page from its current queue.
648 * Returns the base queue the page used to be on.
650 * The vm_page and the queue must be spinlocked.
651 * This function will unlock the queue but leave the page spinlocked.
653 static __inline u_short
654 _vm_page_rem_queue_spinlocked(vm_page_t m)
656 struct vpgqueues *pq;
657 u_short queue;
659 queue = m->queue;
660 if (queue != PQ_NONE) {
661 pq = &vm_page_queues[queue];
662 TAILQ_REMOVE(&pq->pl, m, pageq);
663 atomic_add_int(pq->cnt, -1);
664 pq->lcnt--;
665 m->queue = PQ_NONE;
666 vm_page_queues_spin_unlock(queue);
667 if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO))
668 atomic_subtract_int(&vm_page_zero_count, 1);
669 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
670 return (queue - m->pc);
672 return queue;
676 * Helper function places the vm_page on the specified queue.
678 * The vm_page must be spinlocked.
679 * This function will return with both the page and the queue locked.
681 static __inline void
682 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
684 struct vpgqueues *pq;
686 KKASSERT(m->queue == PQ_NONE);
688 if (queue != PQ_NONE) {
689 vm_page_queues_spin_lock(queue);
690 pq = &vm_page_queues[queue];
691 ++pq->lcnt;
692 atomic_add_int(pq->cnt, 1);
693 m->queue = queue;
696 * Put zero'd pages on the end ( where we look for zero'd pages
697 * first ) and non-zerod pages at the head.
699 if (queue - m->pc == PQ_FREE) {
700 if (m->flags & PG_ZERO) {
701 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
702 atomic_add_int(&vm_page_zero_count, 1);
703 } else {
704 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
706 } else if (athead) {
707 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
708 } else {
709 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
711 /* leave the queue spinlocked */
716 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
717 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we
718 * did not. Only one sleep call will be made before returning.
720 * This function does NOT busy the page and on return the page is not
721 * guaranteed to be available.
723 void
724 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
726 u_int32_t flags;
728 for (;;) {
729 flags = m->flags;
730 cpu_ccfence();
732 if ((flags & PG_BUSY) == 0 &&
733 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
734 break;
736 tsleep_interlock(m, 0);
737 if (atomic_cmpset_int(&m->flags, flags,
738 flags | PG_WANTED | PG_REFERENCED)) {
739 tsleep(m, PINTERLOCKED, msg, 0);
740 break;
746 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we
747 * also wait for m->busy to become 0 before setting PG_BUSY.
749 void
750 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
751 int also_m_busy, const char *msg
752 VM_PAGE_DEBUG_ARGS)
754 u_int32_t flags;
756 for (;;) {
757 flags = m->flags;
758 cpu_ccfence();
759 if (flags & PG_BUSY) {
760 tsleep_interlock(m, 0);
761 if (atomic_cmpset_int(&m->flags, flags,
762 flags | PG_WANTED | PG_REFERENCED)) {
763 tsleep(m, PINTERLOCKED, msg, 0);
765 } else if (also_m_busy && (flags & PG_SBUSY)) {
766 tsleep_interlock(m, 0);
767 if (atomic_cmpset_int(&m->flags, flags,
768 flags | PG_WANTED | PG_REFERENCED)) {
769 tsleep(m, PINTERLOCKED, msg, 0);
771 } else {
772 if (atomic_cmpset_int(&m->flags, flags,
773 flags | PG_BUSY)) {
774 #ifdef VM_PAGE_DEBUG
775 m->busy_func = func;
776 m->busy_line = lineno;
777 #endif
778 break;
785 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy
786 * is also 0.
788 * Returns non-zero on failure.
791 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
792 VM_PAGE_DEBUG_ARGS)
794 u_int32_t flags;
796 for (;;) {
797 flags = m->flags;
798 cpu_ccfence();
799 if (flags & PG_BUSY)
800 return TRUE;
801 if (also_m_busy && (flags & PG_SBUSY))
802 return TRUE;
803 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
804 #ifdef VM_PAGE_DEBUG
805 m->busy_func = func;
806 m->busy_line = lineno;
807 #endif
808 return FALSE;
814 * Clear the PG_BUSY flag and return non-zero to indicate to the caller
815 * that a wakeup() should be performed.
817 * The vm_page must be spinlocked and will remain spinlocked on return.
818 * The related queue must NOT be spinlocked (which could deadlock us).
820 * (inline version)
822 static __inline
824 _vm_page_wakeup(vm_page_t m)
826 u_int32_t flags;
828 for (;;) {
829 flags = m->flags;
830 cpu_ccfence();
831 if (atomic_cmpset_int(&m->flags, flags,
832 flags & ~(PG_BUSY | PG_WANTED))) {
833 break;
836 return(flags & PG_WANTED);
840 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This
841 * is typically the last call you make on a page before moving onto
842 * other things.
844 void
845 vm_page_wakeup(vm_page_t m)
847 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
848 vm_page_spin_lock(m);
849 if (_vm_page_wakeup(m)) {
850 vm_page_spin_unlock(m);
851 wakeup(m);
852 } else {
853 vm_page_spin_unlock(m);
858 * Holding a page keeps it from being reused. Other parts of the system
859 * can still disassociate the page from its current object and free it, or
860 * perform read or write I/O on it and/or otherwise manipulate the page,
861 * but if the page is held the VM system will leave the page and its data
862 * intact and not reuse the page for other purposes until the last hold
863 * reference is released. (see vm_page_wire() if you want to prevent the
864 * page from being disassociated from its object too).
866 * The caller must still validate the contents of the page and, if necessary,
867 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
868 * before manipulating the page.
870 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
872 void
873 vm_page_hold(vm_page_t m)
875 vm_page_spin_lock(m);
876 atomic_add_int(&m->hold_count, 1);
877 if (m->queue - m->pc == PQ_FREE) {
878 _vm_page_queue_spin_lock(m);
879 _vm_page_rem_queue_spinlocked(m);
880 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
881 _vm_page_queue_spin_unlock(m);
883 vm_page_spin_unlock(m);
887 * The opposite of vm_page_hold(). If the page is on the HOLD queue
888 * it was freed while held and must be moved back to the FREE queue.
890 void
891 vm_page_unhold(vm_page_t m)
893 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
894 ("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
895 m, m->hold_count, m->queue - m->pc));
896 vm_page_spin_lock(m);
897 atomic_add_int(&m->hold_count, -1);
898 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
899 _vm_page_queue_spin_lock(m);
900 _vm_page_rem_queue_spinlocked(m);
901 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
902 _vm_page_queue_spin_unlock(m);
904 vm_page_spin_unlock(m);
908 * vm_page_getfake:
910 * Create a fictitious page with the specified physical address and
911 * memory attribute. The memory attribute is the only the machine-
912 * dependent aspect of a fictitious page that must be initialized.
915 void
916 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
919 if ((m->flags & PG_FICTITIOUS) != 0) {
921 * The page's memattr might have changed since the
922 * previous initialization. Update the pmap to the
923 * new memattr.
925 goto memattr;
927 m->phys_addr = paddr;
928 m->queue = PQ_NONE;
929 /* Fictitious pages don't use "segind". */
930 /* Fictitious pages don't use "order" or "pool". */
931 m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
932 m->wire_count = 1;
933 pmap_page_init(m);
934 memattr:
935 pmap_page_set_memattr(m, memattr);
939 * Inserts the given vm_page into the object and object list.
941 * The pagetables are not updated but will presumably fault the page
942 * in if necessary, or if a kernel page the caller will at some point
943 * enter the page into the kernel's pmap. We are not allowed to block
944 * here so we *can't* do this anyway.
946 * This routine may not block.
947 * This routine must be called with the vm_object held.
948 * This routine must be called with a critical section held.
950 * This routine returns TRUE if the page was inserted into the object
951 * successfully, and FALSE if the page already exists in the object.
954 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
956 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
957 if (m->object != NULL)
958 panic("vm_page_insert: already inserted");
960 object->generation++;
963 * Record the object/offset pair in this page and add the
964 * pv_list_count of the page to the object.
966 * The vm_page spin lock is required for interactions with the pmap.
968 vm_page_spin_lock(m);
969 m->object = object;
970 m->pindex = pindex;
971 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
972 m->object = NULL;
973 m->pindex = 0;
974 vm_page_spin_unlock(m);
975 return FALSE;
977 ++object->resident_page_count;
978 ++mycpu->gd_vmtotal.t_rm;
979 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
980 vm_page_spin_unlock(m);
983 * Since we are inserting a new and possibly dirty page,
984 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
986 if ((m->valid & m->dirty) ||
987 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
988 vm_object_set_writeable_dirty(object);
991 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
993 swap_pager_page_inserted(m);
994 return TRUE;
998 * Removes the given vm_page_t from the (object,index) table
1000 * The underlying pmap entry (if any) is NOT removed here.
1001 * This routine may not block.
1003 * The page must be BUSY and will remain BUSY on return.
1004 * No other requirements.
1006 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave
1007 * it busy.
1009 void
1010 vm_page_remove(vm_page_t m)
1012 vm_object_t object;
1014 if (m->object == NULL) {
1015 return;
1018 if ((m->flags & PG_BUSY) == 0)
1019 panic("vm_page_remove: page not busy");
1021 object = m->object;
1023 vm_object_hold(object);
1026 * Remove the page from the object and update the object.
1028 * The vm_page spin lock is required for interactions with the pmap.
1030 vm_page_spin_lock(m);
1031 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1032 --object->resident_page_count;
1033 --mycpu->gd_vmtotal.t_rm;
1034 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
1035 m->object = NULL;
1036 vm_page_spin_unlock(m);
1038 object->generation++;
1040 vm_object_drop(object);
1044 * Locate and return the page at (object, pindex), or NULL if the
1045 * page could not be found.
1047 * The caller must hold the vm_object token.
1049 vm_page_t
1050 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1052 vm_page_t m;
1055 * Search the hash table for this object/offset pair
1057 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1058 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1059 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1060 return(m);
1063 vm_page_t
1064 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1065 vm_pindex_t pindex,
1066 int also_m_busy, const char *msg
1067 VM_PAGE_DEBUG_ARGS)
1069 u_int32_t flags;
1070 vm_page_t m;
1072 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1073 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1074 while (m) {
1075 KKASSERT(m->object == object && m->pindex == pindex);
1076 flags = m->flags;
1077 cpu_ccfence();
1078 if (flags & PG_BUSY) {
1079 tsleep_interlock(m, 0);
1080 if (atomic_cmpset_int(&m->flags, flags,
1081 flags | PG_WANTED | PG_REFERENCED)) {
1082 tsleep(m, PINTERLOCKED, msg, 0);
1083 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1084 pindex);
1086 } else if (also_m_busy && (flags & PG_SBUSY)) {
1087 tsleep_interlock(m, 0);
1088 if (atomic_cmpset_int(&m->flags, flags,
1089 flags | PG_WANTED | PG_REFERENCED)) {
1090 tsleep(m, PINTERLOCKED, msg, 0);
1091 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1092 pindex);
1094 } else if (atomic_cmpset_int(&m->flags, flags,
1095 flags | PG_BUSY)) {
1096 #ifdef VM_PAGE_DEBUG
1097 m->busy_func = func;
1098 m->busy_line = lineno;
1099 #endif
1100 break;
1103 return m;
1107 * Attempt to lookup and busy a page.
1109 * Returns NULL if the page could not be found
1111 * Returns a vm_page and error == TRUE if the page exists but could not
1112 * be busied.
1114 * Returns a vm_page and error == FALSE on success.
1116 vm_page_t
1117 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1118 vm_pindex_t pindex,
1119 int also_m_busy, int *errorp
1120 VM_PAGE_DEBUG_ARGS)
1122 u_int32_t flags;
1123 vm_page_t m;
1125 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1126 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1127 *errorp = FALSE;
1128 while (m) {
1129 KKASSERT(m->object == object && m->pindex == pindex);
1130 flags = m->flags;
1131 cpu_ccfence();
1132 if (flags & PG_BUSY) {
1133 *errorp = TRUE;
1134 break;
1136 if (also_m_busy && (flags & PG_SBUSY)) {
1137 *errorp = TRUE;
1138 break;
1140 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1141 #ifdef VM_PAGE_DEBUG
1142 m->busy_func = func;
1143 m->busy_line = lineno;
1144 #endif
1145 break;
1148 return m;
1152 * Caller must hold the related vm_object
1154 vm_page_t
1155 vm_page_next(vm_page_t m)
1157 vm_page_t next;
1159 next = vm_page_rb_tree_RB_NEXT(m);
1160 if (next && next->pindex != m->pindex + 1)
1161 next = NULL;
1162 return (next);
1166 * vm_page_rename()
1168 * Move the given vm_page from its current object to the specified
1169 * target object/offset. The page must be busy and will remain so
1170 * on return.
1172 * new_object must be held.
1173 * This routine might block. XXX ?
1175 * NOTE: Swap associated with the page must be invalidated by the move. We
1176 * have to do this for several reasons: (1) we aren't freeing the
1177 * page, (2) we are dirtying the page, (3) the VM system is probably
1178 * moving the page from object A to B, and will then later move
1179 * the backing store from A to B and we can't have a conflict.
1181 * NOTE: We *always* dirty the page. It is necessary both for the
1182 * fact that we moved it, and because we may be invalidating
1183 * swap. If the page is on the cache, we have to deactivate it
1184 * or vm_page_dirty() will panic. Dirty pages are not allowed
1185 * on the cache.
1187 void
1188 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1190 KKASSERT(m->flags & PG_BUSY);
1191 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1192 if (m->object) {
1193 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1194 vm_page_remove(m);
1196 if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1197 panic("vm_page_rename: target exists (%p,%"PRIu64")",
1198 new_object, new_pindex);
1200 if (m->queue - m->pc == PQ_CACHE)
1201 vm_page_deactivate(m);
1202 vm_page_dirty(m);
1206 * vm_page_unqueue() without any wakeup. This routine is used when a page
1207 * is to remain BUSYied by the caller.
1209 * This routine may not block.
1211 void
1212 vm_page_unqueue_nowakeup(vm_page_t m)
1214 vm_page_and_queue_spin_lock(m);
1215 (void)_vm_page_rem_queue_spinlocked(m);
1216 vm_page_spin_unlock(m);
1220 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1221 * if necessary.
1223 * This routine may not block.
1225 void
1226 vm_page_unqueue(vm_page_t m)
1228 u_short queue;
1230 vm_page_and_queue_spin_lock(m);
1231 queue = _vm_page_rem_queue_spinlocked(m);
1232 if (queue == PQ_FREE || queue == PQ_CACHE) {
1233 vm_page_spin_unlock(m);
1234 pagedaemon_wakeup();
1235 } else {
1236 vm_page_spin_unlock(m);
1241 * vm_page_list_find()
1243 * Find a page on the specified queue with color optimization.
1245 * The page coloring optimization attempts to locate a page that does
1246 * not overload other nearby pages in the object in the cpu's L1 or L2
1247 * caches. We need this optimization because cpu caches tend to be
1248 * physical caches, while object spaces tend to be virtual.
1250 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1251 * and the algorithm is adjusted to localize allocations on a per-core basis.
1252 * This is done by 'twisting' the colors.
1254 * The page is returned spinlocked and removed from its queue (it will
1255 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller
1256 * is responsible for dealing with the busy-page case (usually by
1257 * deactivating the page and looping).
1259 * NOTE: This routine is carefully inlined. A non-inlined version
1260 * is available for outside callers but the only critical path is
1261 * from within this source file.
1263 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1264 * represent stable storage, allowing us to order our locks vm_page
1265 * first, then queue.
1267 static __inline
1268 vm_page_t
1269 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1271 vm_page_t m;
1273 for (;;) {
1274 if (prefer_zero)
1275 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
1276 else
1277 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1278 if (m == NULL) {
1279 m = _vm_page_list_find2(basequeue, index);
1280 return(m);
1282 vm_page_and_queue_spin_lock(m);
1283 if (m->queue == basequeue + index) {
1284 _vm_page_rem_queue_spinlocked(m);
1285 /* vm_page_t spin held, no queue spin */
1286 break;
1288 vm_page_and_queue_spin_unlock(m);
1290 return(m);
1293 static vm_page_t
1294 _vm_page_list_find2(int basequeue, int index)
1296 int i;
1297 vm_page_t m = NULL;
1298 struct vpgqueues *pq;
1300 pq = &vm_page_queues[basequeue];
1303 * Note that for the first loop, index+i and index-i wind up at the
1304 * same place. Even though this is not totally optimal, we've already
1305 * blown it by missing the cache case so we do not care.
1307 for (i = PQ_L2_SIZE / 2; i > 0; --i) {
1308 for (;;) {
1309 m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl);
1310 if (m) {
1311 _vm_page_and_queue_spin_lock(m);
1312 if (m->queue ==
1313 basequeue + ((index + i) & PQ_L2_MASK)) {
1314 _vm_page_rem_queue_spinlocked(m);
1315 return(m);
1317 _vm_page_and_queue_spin_unlock(m);
1318 continue;
1320 m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl);
1321 if (m) {
1322 _vm_page_and_queue_spin_lock(m);
1323 if (m->queue ==
1324 basequeue + ((index - i) & PQ_L2_MASK)) {
1325 _vm_page_rem_queue_spinlocked(m);
1326 return(m);
1328 _vm_page_and_queue_spin_unlock(m);
1329 continue;
1331 break; /* next i */
1334 return(m);
1338 * Returns a vm_page candidate for allocation. The page is not busied so
1339 * it can move around. The caller must busy the page (and typically
1340 * deactivate it if it cannot be busied!)
1342 * Returns a spinlocked vm_page that has been removed from its queue.
1344 vm_page_t
1345 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1347 return(_vm_page_list_find(basequeue, index, prefer_zero));
1351 * Find a page on the cache queue with color optimization, remove it
1352 * from the queue, and busy it. The returned page will not be spinlocked.
1354 * A candidate failure will be deactivated. Candidates can fail due to
1355 * being busied by someone else, in which case they will be deactivated.
1357 * This routine may not block.
1360 static vm_page_t
1361 vm_page_select_cache(u_short pg_color)
1363 vm_page_t m;
1365 for (;;) {
1366 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1367 if (m == NULL)
1368 break;
1370 * (m) has been removed from its queue and spinlocked
1372 if (vm_page_busy_try(m, TRUE)) {
1373 _vm_page_deactivate_locked(m, 0);
1374 vm_page_spin_unlock(m);
1375 } else {
1377 * We successfully busied the page
1379 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1380 m->hold_count == 0 &&
1381 m->wire_count == 0 &&
1382 (m->dirty & m->valid) == 0) {
1383 vm_page_spin_unlock(m);
1384 pagedaemon_wakeup();
1385 return(m);
1389 * The page cannot be recycled, deactivate it.
1391 _vm_page_deactivate_locked(m, 0);
1392 if (_vm_page_wakeup(m)) {
1393 vm_page_spin_unlock(m);
1394 wakeup(m);
1395 } else {
1396 vm_page_spin_unlock(m);
1400 return (m);
1404 * Find a free or zero page, with specified preference. We attempt to
1405 * inline the nominal case and fall back to _vm_page_select_free()
1406 * otherwise. A busied page is removed from the queue and returned.
1408 * This routine may not block.
1410 static __inline vm_page_t
1411 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1413 vm_page_t m;
1415 for (;;) {
1416 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1417 prefer_zero);
1418 if (m == NULL)
1419 break;
1420 if (vm_page_busy_try(m, TRUE)) {
1422 * Various mechanisms such as a pmap_collect can
1423 * result in a busy page on the free queue. We
1424 * have to move the page out of the way so we can
1425 * retry the allocation. If the other thread is not
1426 * allocating the page then m->valid will remain 0 and
1427 * the pageout daemon will free the page later on.
1429 * Since we could not busy the page, however, we
1430 * cannot make assumptions as to whether the page
1431 * will be allocated by the other thread or not,
1432 * so all we can do is deactivate it to move it out
1433 * of the way. In particular, if the other thread
1434 * wires the page it may wind up on the inactive
1435 * queue and the pageout daemon will have to deal
1436 * with that case too.
1438 _vm_page_deactivate_locked(m, 0);
1439 vm_page_spin_unlock(m);
1440 } else {
1442 * Theoretically if we are able to busy the page
1443 * atomic with the queue removal (using the vm_page
1444 * lock) nobody else should be able to mess with the
1445 * page before us.
1447 KKASSERT((m->flags & (PG_UNMANAGED |
1448 PG_NEED_COMMIT)) == 0);
1449 KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1450 "pg %p q=%d flags=%08x hold=%d wire=%d",
1451 m, m->queue, m->flags, m->hold_count, m->wire_count));
1452 KKASSERT(m->wire_count == 0);
1453 vm_page_spin_unlock(m);
1454 pagedaemon_wakeup();
1456 /* return busied and removed page */
1457 return(m);
1460 return(m);
1464 * This implements a per-cpu cache of free, zero'd, ready-to-go pages.
1465 * The idea is to populate this cache prior to acquiring any locks so
1466 * we don't wind up potentially zeroing VM pages (under heavy loads) while
1467 * holding potentialy contending locks.
1469 * Note that we allocate the page uninserted into anything and use a pindex
1470 * of 0, the vm_page_alloc() will effectively add gd_cpuid so these
1471 * allocations should wind up being uncontended. However, we still want
1472 * to rove across PQ_L2_SIZE.
1474 void
1475 vm_page_pcpu_cache(void)
1477 #if 0
1478 globaldata_t gd = mycpu;
1479 vm_page_t m;
1481 if (gd->gd_vmpg_count < GD_MINVMPG) {
1482 crit_enter_gd(gd);
1483 while (gd->gd_vmpg_count < GD_MAXVMPG) {
1484 m = vm_page_alloc(NULL, ticks & ~ncpus2_mask,
1485 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1486 VM_ALLOC_NULL_OK | VM_ALLOC_ZERO);
1487 if (gd->gd_vmpg_count < GD_MAXVMPG) {
1488 if ((m->flags & PG_ZERO) == 0) {
1489 pmap_zero_page(VM_PAGE_TO_PHYS(m));
1490 vm_page_flag_set(m, PG_ZERO);
1492 gd->gd_vmpg_array[gd->gd_vmpg_count++] = m;
1493 } else {
1494 vm_page_free(m);
1497 crit_exit_gd(gd);
1499 #endif
1503 * vm_page_alloc()
1505 * Allocate and return a memory cell associated with this VM object/offset
1506 * pair. If object is NULL an unassociated page will be allocated.
1508 * The returned page will be busied and removed from its queues. This
1509 * routine can block and may return NULL if a race occurs and the page
1510 * is found to already exist at the specified (object, pindex).
1512 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
1513 * VM_ALLOC_QUICK like normal but cannot use cache
1514 * VM_ALLOC_SYSTEM greater free drain
1515 * VM_ALLOC_INTERRUPT allow free list to be completely drained
1516 * VM_ALLOC_ZERO advisory request for pre-zero'd page only
1517 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only
1518 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision
1519 * (see vm_page_grab())
1520 * VM_ALLOC_USE_GD ok to use per-gd cache
1522 * The object must be held if not NULL
1523 * This routine may not block
1525 * Additional special handling is required when called from an interrupt
1526 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
1527 * in this case.
1529 vm_page_t
1530 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1532 globaldata_t gd = mycpu;
1533 vm_object_t obj;
1534 vm_page_t m;
1535 u_short pg_color;
1537 #if 0
1539 * Special per-cpu free VM page cache. The pages are pre-busied
1540 * and pre-zerod for us.
1542 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1543 crit_enter_gd(gd);
1544 if (gd->gd_vmpg_count) {
1545 m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1546 crit_exit_gd(gd);
1547 goto done;
1549 crit_exit_gd(gd);
1551 #endif
1552 m = NULL;
1555 * Cpu twist - cpu localization algorithm
1557 if (object) {
1558 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) +
1559 (object->pg_color & ~ncpus_fit_mask);
1560 } else {
1561 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask);
1563 KKASSERT(page_req &
1564 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1565 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1568 * Certain system threads (pageout daemon, buf_daemon's) are
1569 * allowed to eat deeper into the free page list.
1571 if (curthread->td_flags & TDF_SYSTHREAD)
1572 page_req |= VM_ALLOC_SYSTEM;
1575 * Impose various limitations. Note that the v_free_reserved test
1576 * must match the opposite of vm_page_count_target() to avoid
1577 * livelocks, be careful.
1579 loop:
1580 if (vmstats.v_free_count >= vmstats.v_free_reserved ||
1581 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1582 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1583 vmstats.v_free_count > vmstats.v_interrupt_free_min)
1586 * The free queue has sufficient free pages to take one out.
1588 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1589 m = vm_page_select_free(pg_color, TRUE);
1590 else
1591 m = vm_page_select_free(pg_color, FALSE);
1592 } else if (page_req & VM_ALLOC_NORMAL) {
1594 * Allocatable from the cache (non-interrupt only). On
1595 * success, we must free the page and try again, thus
1596 * ensuring that vmstats.v_*_free_min counters are replenished.
1598 #ifdef INVARIANTS
1599 if (curthread->td_preempted) {
1600 kprintf("vm_page_alloc(): warning, attempt to allocate"
1601 " cache page from preempting interrupt\n");
1602 m = NULL;
1603 } else {
1604 m = vm_page_select_cache(pg_color);
1606 #else
1607 m = vm_page_select_cache(pg_color);
1608 #endif
1610 * On success move the page into the free queue and loop.
1612 * Only do this if we can safely acquire the vm_object lock,
1613 * because this is effectively a random page and the caller
1614 * might be holding the lock shared, we don't want to
1615 * deadlock.
1617 if (m != NULL) {
1618 KASSERT(m->dirty == 0,
1619 ("Found dirty cache page %p", m));
1620 if ((obj = m->object) != NULL) {
1621 if (vm_object_hold_try(obj)) {
1622 vm_page_protect(m, VM_PROT_NONE);
1623 vm_page_free(m);
1624 /* m->object NULL here */
1625 vm_object_drop(obj);
1626 } else {
1627 vm_page_deactivate(m);
1628 vm_page_wakeup(m);
1630 } else {
1631 vm_page_protect(m, VM_PROT_NONE);
1632 vm_page_free(m);
1634 goto loop;
1638 * On failure return NULL
1640 #if defined(DIAGNOSTIC)
1641 if (vmstats.v_cache_count > 0)
1642 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1643 #endif
1644 vm_pageout_deficit++;
1645 pagedaemon_wakeup();
1646 return (NULL);
1647 } else {
1649 * No pages available, wakeup the pageout daemon and give up.
1651 vm_pageout_deficit++;
1652 pagedaemon_wakeup();
1653 return (NULL);
1657 * v_free_count can race so loop if we don't find the expected
1658 * page.
1660 if (m == NULL)
1661 goto loop;
1664 * Good page found. The page has already been busied for us and
1665 * removed from its queues.
1667 KASSERT(m->dirty == 0,
1668 ("vm_page_alloc: free/cache page %p was dirty", m));
1669 KKASSERT(m->queue == PQ_NONE);
1671 #if 0
1672 done:
1673 #endif
1675 * Initialize the structure, inheriting some flags but clearing
1676 * all the rest. The page has already been busied for us.
1678 vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY));
1679 KKASSERT(m->wire_count == 0);
1680 KKASSERT(m->busy == 0);
1681 m->act_count = 0;
1682 m->valid = 0;
1685 * Caller must be holding the object lock (asserted by
1686 * vm_page_insert()).
1688 * NOTE: Inserting a page here does not insert it into any pmaps
1689 * (which could cause us to block allocating memory).
1691 * NOTE: If no object an unassociated page is allocated, m->pindex
1692 * can be used by the caller for any purpose.
1694 if (object) {
1695 if (vm_page_insert(m, object, pindex) == FALSE) {
1696 vm_page_free(m);
1697 if ((page_req & VM_ALLOC_NULL_OK) == 0)
1698 panic("PAGE RACE %p[%ld]/%p",
1699 object, (long)pindex, m);
1700 m = NULL;
1702 } else {
1703 m->pindex = pindex;
1707 * Don't wakeup too often - wakeup the pageout daemon when
1708 * we would be nearly out of memory.
1710 pagedaemon_wakeup();
1713 * A PG_BUSY page is returned.
1715 return (m);
1719 * Returns number of pages available in our DMA memory reserve
1720 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1722 vm_size_t
1723 vm_contig_avail_pages(void)
1725 alist_blk_t blk;
1726 alist_blk_t count;
1727 alist_blk_t bfree;
1728 spin_lock(&vm_contig_spin);
1729 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
1730 spin_unlock(&vm_contig_spin);
1732 return bfree;
1736 * Attempt to allocate contiguous physical memory with the specified
1737 * requirements.
1739 vm_page_t
1740 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1741 unsigned long alignment, unsigned long boundary,
1742 unsigned long size, vm_memattr_t memattr)
1744 alist_blk_t blk;
1745 vm_page_t m;
1746 int i;
1748 alignment >>= PAGE_SHIFT;
1749 if (alignment == 0)
1750 alignment = 1;
1751 boundary >>= PAGE_SHIFT;
1752 if (boundary == 0)
1753 boundary = 1;
1754 size = (size + PAGE_MASK) >> PAGE_SHIFT;
1756 spin_lock(&vm_contig_spin);
1757 blk = alist_alloc(&vm_contig_alist, 0, size);
1758 if (blk == ALIST_BLOCK_NONE) {
1759 spin_unlock(&vm_contig_spin);
1760 if (bootverbose) {
1761 kprintf("vm_page_alloc_contig: %ldk nospace\n",
1762 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
1764 return(NULL);
1766 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1767 alist_free(&vm_contig_alist, blk, size);
1768 spin_unlock(&vm_contig_spin);
1769 if (bootverbose) {
1770 kprintf("vm_page_alloc_contig: %ldk high "
1771 "%016jx failed\n",
1772 (size + PAGE_MASK) * (PAGE_SIZE / 1024),
1773 (intmax_t)high);
1775 return(NULL);
1777 spin_unlock(&vm_contig_spin);
1778 if (vm_contig_verbose) {
1779 kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1780 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1781 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
1784 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
1785 if (memattr != VM_MEMATTR_DEFAULT)
1786 for (i = 0;i < size;i++)
1787 pmap_page_set_memattr(&m[i], memattr);
1788 return m;
1792 * Free contiguously allocated pages. The pages will be wired but not busy.
1793 * When freeing to the alist we leave them wired and not busy.
1795 void
1796 vm_page_free_contig(vm_page_t m, unsigned long size)
1798 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1799 vm_pindex_t start = pa >> PAGE_SHIFT;
1800 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1802 if (vm_contig_verbose) {
1803 kprintf("vm_page_free_contig: %016jx/%ldk\n",
1804 (intmax_t)pa, size / 1024);
1806 if (pa < vm_low_phys_reserved) {
1807 KKASSERT(pa + size <= vm_low_phys_reserved);
1808 spin_lock(&vm_contig_spin);
1809 alist_free(&vm_contig_alist, start, pages);
1810 spin_unlock(&vm_contig_spin);
1811 } else {
1812 while (pages) {
1813 vm_page_busy_wait(m, FALSE, "cpgfr");
1814 vm_page_unwire(m, 0);
1815 vm_page_free(m);
1816 --pages;
1817 ++m;
1825 * Wait for sufficient free memory for nominal heavy memory use kernel
1826 * operations.
1828 * WARNING! Be sure never to call this in any vm_pageout code path, which
1829 * will trivially deadlock the system.
1831 void
1832 vm_wait_nominal(void)
1834 while (vm_page_count_min(0))
1835 vm_wait(0);
1839 * Test if vm_wait_nominal() would block.
1842 vm_test_nominal(void)
1844 if (vm_page_count_min(0))
1845 return(1);
1846 return(0);
1850 * Block until free pages are available for allocation, called in various
1851 * places before memory allocations.
1853 * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1854 * more generous then that.
1856 void
1857 vm_wait(int timo)
1860 * never wait forever
1862 if (timo == 0)
1863 timo = hz;
1864 lwkt_gettoken(&vm_token);
1866 if (curthread == pagethread) {
1868 * The pageout daemon itself needs pages, this is bad.
1870 if (vm_page_count_min(0)) {
1871 vm_pageout_pages_needed = 1;
1872 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1874 } else {
1876 * Wakeup the pageout daemon if necessary and wait.
1878 * Do not wait indefinitely for the target to be reached,
1879 * as load might prevent it from being reached any time soon.
1880 * But wait a little to try to slow down page allocations
1881 * and to give more important threads (the pagedaemon)
1882 * allocation priority.
1884 if (vm_page_count_target()) {
1885 if (vm_pages_needed == 0) {
1886 vm_pages_needed = 1;
1887 wakeup(&vm_pages_needed);
1889 ++vm_pages_waiting; /* SMP race ok */
1890 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
1893 lwkt_reltoken(&vm_token);
1897 * Block until free pages are available for allocation
1899 * Called only from vm_fault so that processes page faulting can be
1900 * easily tracked.
1902 void
1903 vm_wait_pfault(void)
1906 * Wakeup the pageout daemon if necessary and wait.
1908 * Do not wait indefinitely for the target to be reached,
1909 * as load might prevent it from being reached any time soon.
1910 * But wait a little to try to slow down page allocations
1911 * and to give more important threads (the pagedaemon)
1912 * allocation priority.
1914 if (vm_page_count_min(0)) {
1915 lwkt_gettoken(&vm_token);
1916 while (vm_page_count_severe()) {
1917 if (vm_page_count_target()) {
1918 if (vm_pages_needed == 0) {
1919 vm_pages_needed = 1;
1920 wakeup(&vm_pages_needed);
1922 ++vm_pages_waiting; /* SMP race ok */
1923 tsleep(&vmstats.v_free_count, 0, "pfault", hz);
1926 lwkt_reltoken(&vm_token);
1931 * Put the specified page on the active list (if appropriate). Ensure
1932 * that act_count is at least ACT_INIT but do not otherwise mess with it.
1934 * The caller should be holding the page busied ? XXX
1935 * This routine may not block.
1937 void
1938 vm_page_activate(vm_page_t m)
1940 u_short oqueue;
1942 vm_page_spin_lock(m);
1943 if (m->queue - m->pc != PQ_ACTIVE) {
1944 _vm_page_queue_spin_lock(m);
1945 oqueue = _vm_page_rem_queue_spinlocked(m);
1946 /* page is left spinlocked, queue is unlocked */
1948 if (oqueue == PQ_CACHE)
1949 mycpu->gd_cnt.v_reactivated++;
1950 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1951 if (m->act_count < ACT_INIT)
1952 m->act_count = ACT_INIT;
1953 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
1955 _vm_page_and_queue_spin_unlock(m);
1956 if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
1957 pagedaemon_wakeup();
1958 } else {
1959 if (m->act_count < ACT_INIT)
1960 m->act_count = ACT_INIT;
1961 vm_page_spin_unlock(m);
1966 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
1967 * routine is called when a page has been added to the cache or free
1968 * queues.
1970 * This routine may not block.
1972 static __inline void
1973 vm_page_free_wakeup(void)
1976 * If the pageout daemon itself needs pages, then tell it that
1977 * there are some free.
1979 if (vm_pageout_pages_needed &&
1980 vmstats.v_cache_count + vmstats.v_free_count >=
1981 vmstats.v_pageout_free_min
1983 vm_pageout_pages_needed = 0;
1984 wakeup(&vm_pageout_pages_needed);
1988 * Wakeup processes that are waiting on memory.
1990 * Generally speaking we want to wakeup stuck processes as soon as
1991 * possible. !vm_page_count_min(0) is the absolute minimum point
1992 * where we can do this. Wait a bit longer to reduce degenerate
1993 * re-blocking (vm_page_free_hysteresis). The target check is just
1994 * to make sure the min-check w/hysteresis does not exceed the
1995 * normal target.
1997 if (vm_pages_waiting) {
1998 if (!vm_page_count_min(vm_page_free_hysteresis) ||
1999 !vm_page_count_target()) {
2000 vm_pages_waiting = 0;
2001 wakeup(&vmstats.v_free_count);
2002 ++mycpu->gd_cnt.v_ppwakeups;
2004 #if 0
2005 if (!vm_page_count_target()) {
2007 * Plenty of pages are free, wakeup everyone.
2009 vm_pages_waiting = 0;
2010 wakeup(&vmstats.v_free_count);
2011 ++mycpu->gd_cnt.v_ppwakeups;
2012 } else if (!vm_page_count_min(0)) {
2014 * Some pages are free, wakeup someone.
2016 int wcount = vm_pages_waiting;
2017 if (wcount > 0)
2018 --wcount;
2019 vm_pages_waiting = wcount;
2020 wakeup_one(&vmstats.v_free_count);
2021 ++mycpu->gd_cnt.v_ppwakeups;
2023 #endif
2028 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2029 * it from its VM object.
2031 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on
2032 * return (the page will have been freed).
2034 void
2035 vm_page_free_toq(vm_page_t m)
2037 mycpu->gd_cnt.v_tfree++;
2038 KKASSERT((m->flags & PG_MAPPED) == 0);
2039 KKASSERT(m->flags & PG_BUSY);
2041 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2042 kprintf("vm_page_free: pindex(%lu), busy(%d), "
2043 "PG_BUSY(%d), hold(%d)\n",
2044 (u_long)m->pindex, m->busy,
2045 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2046 if ((m->queue - m->pc) == PQ_FREE)
2047 panic("vm_page_free: freeing free page");
2048 else
2049 panic("vm_page_free: freeing busy page");
2053 * Remove from object, spinlock the page and its queues and
2054 * remove from any queue. No queue spinlock will be held
2055 * after this section (because the page was removed from any
2056 * queue).
2058 vm_page_remove(m);
2059 vm_page_and_queue_spin_lock(m);
2060 _vm_page_rem_queue_spinlocked(m);
2063 * No further management of fictitious pages occurs beyond object
2064 * and queue removal.
2066 if ((m->flags & PG_FICTITIOUS) != 0) {
2067 vm_page_spin_unlock(m);
2068 vm_page_wakeup(m);
2069 return;
2072 m->valid = 0;
2073 vm_page_undirty(m);
2075 if (m->wire_count != 0) {
2076 if (m->wire_count > 1) {
2077 panic(
2078 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2079 m->wire_count, (long)m->pindex);
2081 panic("vm_page_free: freeing wired page");
2085 * Clear the UNMANAGED flag when freeing an unmanaged page.
2086 * Clear the NEED_COMMIT flag
2088 if (m->flags & PG_UNMANAGED)
2089 vm_page_flag_clear(m, PG_UNMANAGED);
2090 if (m->flags & PG_NEED_COMMIT)
2091 vm_page_flag_clear(m, PG_NEED_COMMIT);
2093 if (m->hold_count != 0) {
2094 vm_page_flag_clear(m, PG_ZERO);
2095 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2096 } else {
2097 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2101 * This sequence allows us to clear PG_BUSY while still holding
2102 * its spin lock, which reduces contention vs allocators. We
2103 * must not leave the queue locked or _vm_page_wakeup() may
2104 * deadlock.
2106 _vm_page_queue_spin_unlock(m);
2107 if (_vm_page_wakeup(m)) {
2108 vm_page_spin_unlock(m);
2109 wakeup(m);
2110 } else {
2111 vm_page_spin_unlock(m);
2113 vm_page_free_wakeup();
2117 * vm_page_free_fromq_fast()
2119 * Remove a non-zero page from one of the free queues; the page is removed for
2120 * zeroing, so do not issue a wakeup.
2122 vm_page_t
2123 vm_page_free_fromq_fast(void)
2125 static int qi;
2126 vm_page_t m;
2127 int i;
2129 for (i = 0; i < PQ_L2_SIZE; ++i) {
2130 m = vm_page_list_find(PQ_FREE, qi, FALSE);
2131 /* page is returned spinlocked and removed from its queue */
2132 if (m) {
2133 if (vm_page_busy_try(m, TRUE)) {
2135 * We were unable to busy the page, deactivate
2136 * it and loop.
2138 _vm_page_deactivate_locked(m, 0);
2139 vm_page_spin_unlock(m);
2140 } else if (m->flags & PG_ZERO) {
2142 * The page is already PG_ZERO, requeue it and loop
2144 _vm_page_add_queue_spinlocked(m,
2145 PQ_FREE + m->pc,
2147 vm_page_queue_spin_unlock(m);
2148 if (_vm_page_wakeup(m)) {
2149 vm_page_spin_unlock(m);
2150 wakeup(m);
2151 } else {
2152 vm_page_spin_unlock(m);
2154 } else {
2156 * The page is not PG_ZERO'd so return it.
2158 KKASSERT((m->flags & (PG_UNMANAGED |
2159 PG_NEED_COMMIT)) == 0);
2160 KKASSERT(m->hold_count == 0);
2161 KKASSERT(m->wire_count == 0);
2162 vm_page_spin_unlock(m);
2163 break;
2165 m = NULL;
2167 qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
2169 return (m);
2173 * vm_page_unmanage()
2175 * Prevent PV management from being done on the page. The page is
2176 * removed from the paging queues as if it were wired, and as a
2177 * consequence of no longer being managed the pageout daemon will not
2178 * touch it (since there is no way to locate the pte mappings for the
2179 * page). madvise() calls that mess with the pmap will also no longer
2180 * operate on the page.
2182 * Beyond that the page is still reasonably 'normal'. Freeing the page
2183 * will clear the flag.
2185 * This routine is used by OBJT_PHYS objects - objects using unswappable
2186 * physical memory as backing store rather then swap-backed memory and
2187 * will eventually be extended to support 4MB unmanaged physical
2188 * mappings.
2190 * Caller must be holding the page busy.
2192 void
2193 vm_page_unmanage(vm_page_t m)
2195 KKASSERT(m->flags & PG_BUSY);
2196 if ((m->flags & PG_UNMANAGED) == 0) {
2197 if (m->wire_count == 0)
2198 vm_page_unqueue(m);
2200 vm_page_flag_set(m, PG_UNMANAGED);
2204 * Mark this page as wired down by yet another map, removing it from
2205 * paging queues as necessary.
2207 * Caller must be holding the page busy.
2209 void
2210 vm_page_wire(vm_page_t m)
2213 * Only bump the wire statistics if the page is not already wired,
2214 * and only unqueue the page if it is on some queue (if it is unmanaged
2215 * it is already off the queues). Don't do anything with fictitious
2216 * pages because they are always wired.
2218 KKASSERT(m->flags & PG_BUSY);
2219 if ((m->flags & PG_FICTITIOUS) == 0) {
2220 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2221 if ((m->flags & PG_UNMANAGED) == 0)
2222 vm_page_unqueue(m);
2223 atomic_add_int(&vmstats.v_wire_count, 1);
2225 KASSERT(m->wire_count != 0,
2226 ("vm_page_wire: wire_count overflow m=%p", m));
2231 * Release one wiring of this page, potentially enabling it to be paged again.
2233 * Many pages placed on the inactive queue should actually go
2234 * into the cache, but it is difficult to figure out which. What
2235 * we do instead, if the inactive target is well met, is to put
2236 * clean pages at the head of the inactive queue instead of the tail.
2237 * This will cause them to be moved to the cache more quickly and
2238 * if not actively re-referenced, freed more quickly. If we just
2239 * stick these pages at the end of the inactive queue, heavy filesystem
2240 * meta-data accesses can cause an unnecessary paging load on memory bound
2241 * processes. This optimization causes one-time-use metadata to be
2242 * reused more quickly.
2244 * Pages marked PG_NEED_COMMIT are always activated and never placed on
2245 * the inactive queue. This helps the pageout daemon determine memory
2246 * pressure and act on out-of-memory situations more quickly.
2248 * BUT, if we are in a low-memory situation we have no choice but to
2249 * put clean pages on the cache queue.
2251 * A number of routines use vm_page_unwire() to guarantee that the page
2252 * will go into either the inactive or active queues, and will NEVER
2253 * be placed in the cache - for example, just after dirtying a page.
2254 * dirty pages in the cache are not allowed.
2256 * This routine may not block.
2258 void
2259 vm_page_unwire(vm_page_t m, int activate)
2261 KKASSERT(m->flags & PG_BUSY);
2262 if (m->flags & PG_FICTITIOUS) {
2263 /* do nothing */
2264 } else if (m->wire_count <= 0) {
2265 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2266 } else {
2267 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2268 atomic_add_int(&vmstats.v_wire_count, -1);
2269 if (m->flags & PG_UNMANAGED) {
2271 } else if (activate || (m->flags & PG_NEED_COMMIT)) {
2272 vm_page_spin_lock(m);
2273 _vm_page_add_queue_spinlocked(m,
2274 PQ_ACTIVE + m->pc, 0);
2275 _vm_page_and_queue_spin_unlock(m);
2276 } else {
2277 vm_page_spin_lock(m);
2278 vm_page_flag_clear(m, PG_WINATCFLS);
2279 _vm_page_add_queue_spinlocked(m,
2280 PQ_INACTIVE + m->pc, 0);
2281 ++vm_swapcache_inactive_heuristic;
2282 _vm_page_and_queue_spin_unlock(m);
2289 * Move the specified page to the inactive queue. If the page has
2290 * any associated swap, the swap is deallocated.
2292 * Normally athead is 0 resulting in LRU operation. athead is set
2293 * to 1 if we want this page to be 'as if it were placed in the cache',
2294 * except without unmapping it from the process address space.
2296 * vm_page's spinlock must be held on entry and will remain held on return.
2297 * This routine may not block.
2299 static void
2300 _vm_page_deactivate_locked(vm_page_t m, int athead)
2302 u_short oqueue;
2305 * Ignore if already inactive.
2307 if (m->queue - m->pc == PQ_INACTIVE)
2308 return;
2309 _vm_page_queue_spin_lock(m);
2310 oqueue = _vm_page_rem_queue_spinlocked(m);
2312 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2313 if (oqueue == PQ_CACHE)
2314 mycpu->gd_cnt.v_reactivated++;
2315 vm_page_flag_clear(m, PG_WINATCFLS);
2316 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2317 if (athead == 0)
2318 ++vm_swapcache_inactive_heuristic;
2320 /* NOTE: PQ_NONE if condition not taken */
2321 _vm_page_queue_spin_unlock(m);
2322 /* leaves vm_page spinlocked */
2326 * Attempt to deactivate a page.
2328 * No requirements.
2330 void
2331 vm_page_deactivate(vm_page_t m)
2333 vm_page_spin_lock(m);
2334 _vm_page_deactivate_locked(m, 0);
2335 vm_page_spin_unlock(m);
2338 void
2339 vm_page_deactivate_locked(vm_page_t m)
2341 _vm_page_deactivate_locked(m, 0);
2345 * Attempt to move a page to PQ_CACHE.
2347 * Returns 0 on failure, 1 on success
2349 * The page should NOT be busied by the caller. This function will validate
2350 * whether the page can be safely moved to the cache.
2353 vm_page_try_to_cache(vm_page_t m)
2355 vm_page_spin_lock(m);
2356 if (vm_page_busy_try(m, TRUE)) {
2357 vm_page_spin_unlock(m);
2358 return(0);
2360 if (m->dirty || m->hold_count || m->wire_count ||
2361 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2362 if (_vm_page_wakeup(m)) {
2363 vm_page_spin_unlock(m);
2364 wakeup(m);
2365 } else {
2366 vm_page_spin_unlock(m);
2368 return(0);
2370 vm_page_spin_unlock(m);
2373 * Page busied by us and no longer spinlocked. Dirty pages cannot
2374 * be moved to the cache.
2376 vm_page_test_dirty(m);
2377 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2378 vm_page_wakeup(m);
2379 return(0);
2381 vm_page_cache(m);
2382 return(1);
2386 * Attempt to free the page. If we cannot free it, we do nothing.
2387 * 1 is returned on success, 0 on failure.
2389 * No requirements.
2392 vm_page_try_to_free(vm_page_t m)
2394 vm_page_spin_lock(m);
2395 if (vm_page_busy_try(m, TRUE)) {
2396 vm_page_spin_unlock(m);
2397 return(0);
2401 * The page can be in any state, including already being on the free
2402 * queue. Check to see if it really can be freed.
2404 if (m->dirty || /* can't free if it is dirty */
2405 m->hold_count || /* or held (XXX may be wrong) */
2406 m->wire_count || /* or wired */
2407 (m->flags & (PG_UNMANAGED | /* or unmanaged */
2408 PG_NEED_COMMIT)) || /* or needs a commit */
2409 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */
2410 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */
2411 if (_vm_page_wakeup(m)) {
2412 vm_page_spin_unlock(m);
2413 wakeup(m);
2414 } else {
2415 vm_page_spin_unlock(m);
2417 return(0);
2419 vm_page_spin_unlock(m);
2422 * We can probably free the page.
2424 * Page busied by us and no longer spinlocked. Dirty pages will
2425 * not be freed by this function. We have to re-test the
2426 * dirty bit after cleaning out the pmaps.
2428 vm_page_test_dirty(m);
2429 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2430 vm_page_wakeup(m);
2431 return(0);
2433 vm_page_protect(m, VM_PROT_NONE);
2434 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2435 vm_page_wakeup(m);
2436 return(0);
2438 vm_page_free(m);
2439 return(1);
2443 * vm_page_cache
2445 * Put the specified page onto the page cache queue (if appropriate).
2447 * The page must be busy, and this routine will release the busy and
2448 * possibly even free the page.
2450 void
2451 vm_page_cache(vm_page_t m)
2453 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2454 m->busy || m->wire_count || m->hold_count) {
2455 kprintf("vm_page_cache: attempting to cache busy/held page\n");
2456 vm_page_wakeup(m);
2457 return;
2461 * Already in the cache (and thus not mapped)
2463 if ((m->queue - m->pc) == PQ_CACHE) {
2464 KKASSERT((m->flags & PG_MAPPED) == 0);
2465 vm_page_wakeup(m);
2466 return;
2470 * Caller is required to test m->dirty, but note that the act of
2471 * removing the page from its maps can cause it to become dirty
2472 * on an SMP system due to another cpu running in usermode.
2474 if (m->dirty) {
2475 panic("vm_page_cache: caching a dirty page, pindex: %ld",
2476 (long)m->pindex);
2480 * Remove all pmaps and indicate that the page is not
2481 * writeable or mapped. Our vm_page_protect() call may
2482 * have blocked (especially w/ VM_PROT_NONE), so recheck
2483 * everything.
2485 vm_page_protect(m, VM_PROT_NONE);
2486 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2487 m->busy || m->wire_count || m->hold_count) {
2488 vm_page_wakeup(m);
2489 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2490 vm_page_deactivate(m);
2491 vm_page_wakeup(m);
2492 } else {
2493 _vm_page_and_queue_spin_lock(m);
2494 _vm_page_rem_queue_spinlocked(m);
2495 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2496 _vm_page_queue_spin_unlock(m);
2497 if (_vm_page_wakeup(m)) {
2498 vm_page_spin_unlock(m);
2499 wakeup(m);
2500 } else {
2501 vm_page_spin_unlock(m);
2503 vm_page_free_wakeup();
2508 * vm_page_dontneed()
2510 * Cache, deactivate, or do nothing as appropriate. This routine
2511 * is typically used by madvise() MADV_DONTNEED.
2513 * Generally speaking we want to move the page into the cache so
2514 * it gets reused quickly. However, this can result in a silly syndrome
2515 * due to the page recycling too quickly. Small objects will not be
2516 * fully cached. On the otherhand, if we move the page to the inactive
2517 * queue we wind up with a problem whereby very large objects
2518 * unnecessarily blow away our inactive and cache queues.
2520 * The solution is to move the pages based on a fixed weighting. We
2521 * either leave them alone, deactivate them, or move them to the cache,
2522 * where moving them to the cache has the highest weighting.
2523 * By forcing some pages into other queues we eventually force the
2524 * system to balance the queues, potentially recovering other unrelated
2525 * space from active. The idea is to not force this to happen too
2526 * often.
2528 * The page must be busied.
2530 void
2531 vm_page_dontneed(vm_page_t m)
2533 static int dnweight;
2534 int dnw;
2535 int head;
2537 dnw = ++dnweight;
2540 * occassionally leave the page alone
2542 if ((dnw & 0x01F0) == 0 ||
2543 m->queue - m->pc == PQ_INACTIVE ||
2544 m->queue - m->pc == PQ_CACHE
2546 if (m->act_count >= ACT_INIT)
2547 --m->act_count;
2548 return;
2552 * If vm_page_dontneed() is inactivating a page, it must clear
2553 * the referenced flag; otherwise the pagedaemon will see references
2554 * on the page in the inactive queue and reactivate it. Until the
2555 * page can move to the cache queue, madvise's job is not done.
2557 vm_page_flag_clear(m, PG_REFERENCED);
2558 pmap_clear_reference(m);
2560 if (m->dirty == 0)
2561 vm_page_test_dirty(m);
2563 if (m->dirty || (dnw & 0x0070) == 0) {
2565 * Deactivate the page 3 times out of 32.
2567 head = 0;
2568 } else {
2570 * Cache the page 28 times out of every 32. Note that
2571 * the page is deactivated instead of cached, but placed
2572 * at the head of the queue instead of the tail.
2574 head = 1;
2576 vm_page_spin_lock(m);
2577 _vm_page_deactivate_locked(m, head);
2578 vm_page_spin_unlock(m);
2582 * These routines manipulate the 'soft busy' count for a page. A soft busy
2583 * is almost like PG_BUSY except that it allows certain compatible operations
2584 * to occur on the page while it is busy. For example, a page undergoing a
2585 * write can still be mapped read-only.
2587 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only
2588 * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2589 * busy bit is cleared.
2591 void
2592 vm_page_io_start(vm_page_t m)
2594 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2595 atomic_add_char(&m->busy, 1);
2596 vm_page_flag_set(m, PG_SBUSY);
2599 void
2600 vm_page_io_finish(vm_page_t m)
2602 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2603 atomic_subtract_char(&m->busy, 1);
2604 if (m->busy == 0)
2605 vm_page_flag_clear(m, PG_SBUSY);
2609 * Indicate that a clean VM page requires a filesystem commit and cannot
2610 * be reused. Used by tmpfs.
2612 void
2613 vm_page_need_commit(vm_page_t m)
2615 vm_page_flag_set(m, PG_NEED_COMMIT);
2616 vm_object_set_writeable_dirty(m->object);
2619 void
2620 vm_page_clear_commit(vm_page_t m)
2622 vm_page_flag_clear(m, PG_NEED_COMMIT);
2626 * Grab a page, blocking if it is busy and allocating a page if necessary.
2627 * A busy page is returned or NULL. The page may or may not be valid and
2628 * might not be on a queue (the caller is responsible for the disposition of
2629 * the page).
2631 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2632 * page will be zero'd and marked valid.
2634 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2635 * valid even if it already exists.
2637 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also
2638 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2639 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2641 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2642 * always returned if we had blocked.
2644 * This routine may not be called from an interrupt.
2646 * PG_ZERO is *ALWAYS* cleared by this routine.
2648 * No other requirements.
2650 vm_page_t
2651 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2653 vm_page_t m;
2654 int error;
2655 int shared = 1;
2657 KKASSERT(allocflags &
2658 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2659 vm_object_hold_shared(object);
2660 for (;;) {
2661 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2662 if (error) {
2663 vm_page_sleep_busy(m, TRUE, "pgrbwt");
2664 if ((allocflags & VM_ALLOC_RETRY) == 0) {
2665 m = NULL;
2666 break;
2668 /* retry */
2669 } else if (m == NULL) {
2670 if (shared) {
2671 vm_object_upgrade(object);
2672 shared = 0;
2674 if (allocflags & VM_ALLOC_RETRY)
2675 allocflags |= VM_ALLOC_NULL_OK;
2676 m = vm_page_alloc(object, pindex,
2677 allocflags & ~VM_ALLOC_RETRY);
2678 if (m)
2679 break;
2680 vm_wait(0);
2681 if ((allocflags & VM_ALLOC_RETRY) == 0)
2682 goto failed;
2683 } else {
2684 /* m found */
2685 break;
2690 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2692 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2693 * valid even if already valid.
2695 if (m->valid == 0) {
2696 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2697 if ((m->flags & PG_ZERO) == 0)
2698 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2699 m->valid = VM_PAGE_BITS_ALL;
2701 } else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2702 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2703 m->valid = VM_PAGE_BITS_ALL;
2705 vm_page_flag_clear(m, PG_ZERO);
2706 failed:
2707 vm_object_drop(object);
2708 return(m);
2712 * Mapping function for valid bits or for dirty bits in
2713 * a page. May not block.
2715 * Inputs are required to range within a page.
2717 * No requirements.
2718 * Non blocking.
2721 vm_page_bits(int base, int size)
2723 int first_bit;
2724 int last_bit;
2726 KASSERT(
2727 base + size <= PAGE_SIZE,
2728 ("vm_page_bits: illegal base/size %d/%d", base, size)
2731 if (size == 0) /* handle degenerate case */
2732 return(0);
2734 first_bit = base >> DEV_BSHIFT;
2735 last_bit = (base + size - 1) >> DEV_BSHIFT;
2737 return ((2 << last_bit) - (1 << first_bit));
2741 * Sets portions of a page valid and clean. The arguments are expected
2742 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2743 * of any partial chunks touched by the range. The invalid portion of
2744 * such chunks will be zero'd.
2746 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2747 * align base to DEV_BSIZE so as not to mark clean a partially
2748 * truncated device block. Otherwise the dirty page status might be
2749 * lost.
2751 * This routine may not block.
2753 * (base + size) must be less then or equal to PAGE_SIZE.
2755 static void
2756 _vm_page_zero_valid(vm_page_t m, int base, int size)
2758 int frag;
2759 int endoff;
2761 if (size == 0) /* handle degenerate case */
2762 return;
2765 * If the base is not DEV_BSIZE aligned and the valid
2766 * bit is clear, we have to zero out a portion of the
2767 * first block.
2770 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2771 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2773 pmap_zero_page_area(
2774 VM_PAGE_TO_PHYS(m),
2775 frag,
2776 base - frag
2781 * If the ending offset is not DEV_BSIZE aligned and the
2782 * valid bit is clear, we have to zero out a portion of
2783 * the last block.
2786 endoff = base + size;
2788 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2789 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2791 pmap_zero_page_area(
2792 VM_PAGE_TO_PHYS(m),
2793 endoff,
2794 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2800 * Set valid, clear dirty bits. If validating the entire
2801 * page we can safely clear the pmap modify bit. We also
2802 * use this opportunity to clear the PG_NOSYNC flag. If a process
2803 * takes a write fault on a MAP_NOSYNC memory area the flag will
2804 * be set again.
2806 * We set valid bits inclusive of any overlap, but we can only
2807 * clear dirty bits for DEV_BSIZE chunks that are fully within
2808 * the range.
2810 * Page must be busied?
2811 * No other requirements.
2813 void
2814 vm_page_set_valid(vm_page_t m, int base, int size)
2816 _vm_page_zero_valid(m, base, size);
2817 m->valid |= vm_page_bits(base, size);
2822 * Set valid bits and clear dirty bits.
2824 * NOTE: This function does not clear the pmap modified bit.
2825 * Also note that e.g. NFS may use a byte-granular base
2826 * and size.
2828 * WARNING: Page must be busied? But vfs_clean_one_page() will call
2829 * this without necessarily busying the page (via bdwrite()).
2830 * So for now vm_token must also be held.
2832 * No other requirements.
2834 void
2835 vm_page_set_validclean(vm_page_t m, int base, int size)
2837 int pagebits;
2839 _vm_page_zero_valid(m, base, size);
2840 pagebits = vm_page_bits(base, size);
2841 m->valid |= pagebits;
2842 m->dirty &= ~pagebits;
2843 if (base == 0 && size == PAGE_SIZE) {
2844 /*pmap_clear_modify(m);*/
2845 vm_page_flag_clear(m, PG_NOSYNC);
2850 * Set valid & dirty. Used by buwrite()
2852 * WARNING: Page must be busied? But vfs_dirty_one_page() will
2853 * call this function in buwrite() so for now vm_token must
2854 * be held.
2856 * No other requirements.
2858 void
2859 vm_page_set_validdirty(vm_page_t m, int base, int size)
2861 int pagebits;
2863 pagebits = vm_page_bits(base, size);
2864 m->valid |= pagebits;
2865 m->dirty |= pagebits;
2866 if (m->object)
2867 vm_object_set_writeable_dirty(m->object);
2871 * Clear dirty bits.
2873 * NOTE: This function does not clear the pmap modified bit.
2874 * Also note that e.g. NFS may use a byte-granular base
2875 * and size.
2877 * Page must be busied?
2878 * No other requirements.
2880 void
2881 vm_page_clear_dirty(vm_page_t m, int base, int size)
2883 m->dirty &= ~vm_page_bits(base, size);
2884 if (base == 0 && size == PAGE_SIZE) {
2885 /*pmap_clear_modify(m);*/
2886 vm_page_flag_clear(m, PG_NOSYNC);
2891 * Make the page all-dirty.
2893 * Also make sure the related object and vnode reflect the fact that the
2894 * object may now contain a dirty page.
2896 * Page must be busied?
2897 * No other requirements.
2899 void
2900 vm_page_dirty(vm_page_t m)
2902 #ifdef INVARIANTS
2903 int pqtype = m->queue - m->pc;
2904 #endif
2905 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
2906 ("vm_page_dirty: page in free/cache queue!"));
2907 if (m->dirty != VM_PAGE_BITS_ALL) {
2908 m->dirty = VM_PAGE_BITS_ALL;
2909 if (m->object)
2910 vm_object_set_writeable_dirty(m->object);
2915 * Invalidates DEV_BSIZE'd chunks within a page. Both the
2916 * valid and dirty bits for the effected areas are cleared.
2918 * Page must be busied?
2919 * Does not block.
2920 * No other requirements.
2922 void
2923 vm_page_set_invalid(vm_page_t m, int base, int size)
2925 int bits;
2927 bits = vm_page_bits(base, size);
2928 m->valid &= ~bits;
2929 m->dirty &= ~bits;
2930 m->object->generation++;
2934 * The kernel assumes that the invalid portions of a page contain
2935 * garbage, but such pages can be mapped into memory by user code.
2936 * When this occurs, we must zero out the non-valid portions of the
2937 * page so user code sees what it expects.
2939 * Pages are most often semi-valid when the end of a file is mapped
2940 * into memory and the file's size is not page aligned.
2942 * Page must be busied?
2943 * No other requirements.
2945 void
2946 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2948 int b;
2949 int i;
2952 * Scan the valid bits looking for invalid sections that
2953 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
2954 * valid bit may be set ) have already been zerod by
2955 * vm_page_set_validclean().
2957 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2958 if (i == (PAGE_SIZE / DEV_BSIZE) ||
2959 (m->valid & (1 << i))
2961 if (i > b) {
2962 pmap_zero_page_area(
2963 VM_PAGE_TO_PHYS(m),
2964 b << DEV_BSHIFT,
2965 (i - b) << DEV_BSHIFT
2968 b = i + 1;
2973 * setvalid is TRUE when we can safely set the zero'd areas
2974 * as being valid. We can do this if there are no cache consistency
2975 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
2977 if (setvalid)
2978 m->valid = VM_PAGE_BITS_ALL;
2982 * Is a (partial) page valid? Note that the case where size == 0
2983 * will return FALSE in the degenerate case where the page is entirely
2984 * invalid, and TRUE otherwise.
2986 * Does not block.
2987 * No other requirements.
2990 vm_page_is_valid(vm_page_t m, int base, int size)
2992 int bits = vm_page_bits(base, size);
2994 if (m->valid && ((m->valid & bits) == bits))
2995 return 1;
2996 else
2997 return 0;
3001 * update dirty bits from pmap/mmu. May not block.
3003 * Caller must hold the page busy
3005 void
3006 vm_page_test_dirty(vm_page_t m)
3008 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3009 vm_page_dirty(m);
3014 * Register an action, associating it with its vm_page
3016 void
3017 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
3019 struct vm_page_action_list *list;
3020 int hv;
3022 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3023 list = &action_list[hv];
3025 lwkt_gettoken(&vm_token);
3026 vm_page_flag_set(action->m, PG_ACTIONLIST);
3027 action->event = event;
3028 LIST_INSERT_HEAD(list, action, entry);
3029 lwkt_reltoken(&vm_token);
3033 * Unregister an action, disassociating it from its related vm_page
3035 void
3036 vm_page_unregister_action(vm_page_action_t action)
3038 struct vm_page_action_list *list;
3039 int hv;
3041 lwkt_gettoken(&vm_token);
3042 if (action->event != VMEVENT_NONE) {
3043 action->event = VMEVENT_NONE;
3044 LIST_REMOVE(action, entry);
3046 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3047 list = &action_list[hv];
3048 if (LIST_EMPTY(list))
3049 vm_page_flag_clear(action->m, PG_ACTIONLIST);
3051 lwkt_reltoken(&vm_token);
3055 * Issue an event on a VM page. Corresponding action structures are
3056 * removed from the page's list and called.
3058 * If the vm_page has no more pending action events we clear its
3059 * PG_ACTIONLIST flag.
3061 void
3062 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3064 struct vm_page_action_list *list;
3065 struct vm_page_action *scan;
3066 struct vm_page_action *next;
3067 int hv;
3068 int all;
3070 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
3071 list = &action_list[hv];
3072 all = 1;
3074 lwkt_gettoken(&vm_token);
3075 LIST_FOREACH_MUTABLE(scan, list, entry, next) {
3076 if (scan->m == m) {
3077 if (scan->event == event) {
3078 scan->event = VMEVENT_NONE;
3079 LIST_REMOVE(scan, entry);
3080 scan->func(m, scan);
3081 /* XXX */
3082 } else {
3083 all = 0;
3087 if (all)
3088 vm_page_flag_clear(m, PG_ACTIONLIST);
3089 lwkt_reltoken(&vm_token);
3092 #include "opt_ddb.h"
3093 #ifdef DDB
3094 #include <sys/kernel.h>
3096 #include <ddb/ddb.h>
3098 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3100 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3101 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3102 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3103 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3104 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3105 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3106 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3107 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3108 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3109 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3112 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3114 int i;
3115 db_printf("PQ_FREE:");
3116 for(i=0;i<PQ_L2_SIZE;i++) {
3117 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3119 db_printf("\n");
3121 db_printf("PQ_CACHE:");
3122 for(i=0;i<PQ_L2_SIZE;i++) {
3123 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3125 db_printf("\n");
3127 db_printf("PQ_ACTIVE:");
3128 for(i=0;i<PQ_L2_SIZE;i++) {
3129 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3131 db_printf("\n");
3133 db_printf("PQ_INACTIVE:");
3134 for(i=0;i<PQ_L2_SIZE;i++) {
3135 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3137 db_printf("\n");
3139 #endif /* DDB */