drm/i915: Remove a duplicated assignment
[dragonfly.git] / sys / vm / vm_object.c
blob213555617ad682ffed6172dc6ec5366e1f43fa63
1 /*
2 * Copyright (c) 1991, 1993, 2013
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 * Carnegie Mellon requests users of this software to return to
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
60 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
64 * Virtual memory object module.
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h> /* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
92 #include <vm/vm_page2.h>
94 #include <machine/specialreg.h>
96 #define EASY_SCAN_FACTOR 8
98 static void vm_object_qcollapse(vm_object_t object,
99 vm_object_t backing_object);
100 static void vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 int pagerflags);
102 static void vm_object_lock_init(vm_object_t);
106 * Virtual memory objects maintain the actual data
107 * associated with allocated virtual memory. A given
108 * page of memory exists within exactly one object.
110 * An object is only deallocated when all "references"
111 * are given up. Only one "reference" to a given
112 * region of an object should be writeable.
114 * Associated with each object is a list of all resident
115 * memory pages belonging to that object; this list is
116 * maintained by the "vm_page" module, and locked by the object's
117 * lock.
119 * Each object also records a "pager" routine which is
120 * used to retrieve (and store) pages to the proper backing
121 * storage. In addition, objects may be backed by other
122 * objects from which they were virtual-copied.
124 * The only items within the object structure which are
125 * modified after time of creation are:
126 * reference count locked by object's lock
127 * pager routine locked by object's lock
131 struct vm_object kernel_object;
133 static long vm_object_count;
135 static long object_collapses;
136 static long object_bypasses;
137 static int next_index;
138 static vm_zone_t obj_zone;
139 static struct vm_zone obj_zone_store;
140 #define VM_OBJECTS_INIT 256
141 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
143 struct object_q vm_object_lists[VMOBJ_HSIZE];
144 struct lwkt_token vmobj_tokens[VMOBJ_HSIZE];
146 #if defined(DEBUG_LOCKS)
148 #define vm_object_vndeallocate(obj, vpp) \
149 debugvm_object_vndeallocate(obj, vpp, __FILE__, __LINE__)
152 * Debug helper to track hold/drop/ref/deallocate calls.
154 static void
155 debugvm_object_add(vm_object_t obj, char *file, int line, int addrem)
157 int i;
159 i = atomic_fetchadd_int(&obj->debug_index, 1);
160 i = i & (VMOBJ_DEBUG_ARRAY_SIZE - 1);
161 ksnprintf(obj->debug_hold_thrs[i],
162 sizeof(obj->debug_hold_thrs[i]),
163 "%c%d:(%d):%s",
164 (addrem == -1 ? '-' : (addrem == 1 ? '+' : '=')),
165 (curthread->td_proc ? curthread->td_proc->p_pid : -1),
166 obj->ref_count,
167 curthread->td_comm);
168 obj->debug_hold_file[i] = file;
169 obj->debug_hold_line[i] = line;
170 #if 0
171 /* Uncomment for debugging obj refs/derefs in reproducable cases */
172 if (strcmp(curthread->td_comm, "sshd") == 0) {
173 kprintf("%d %p refs=%d ar=%d file: %s/%d\n",
174 (curthread->td_proc ? curthread->td_proc->p_pid : -1),
175 obj, obj->ref_count, addrem, file, line);
177 #endif
180 #endif
183 * Misc low level routines
185 static void
186 vm_object_lock_init(vm_object_t obj)
188 #if defined(DEBUG_LOCKS)
189 int i;
191 obj->debug_index = 0;
192 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
193 obj->debug_hold_thrs[i][0] = 0;
194 obj->debug_hold_file[i] = NULL;
195 obj->debug_hold_line[i] = 0;
197 #endif
200 void
201 vm_object_lock_swap(void)
203 lwkt_token_swap();
206 void
207 vm_object_lock(vm_object_t obj)
209 lwkt_gettoken(&obj->token);
213 * Returns TRUE on sucesss
215 static int
216 vm_object_lock_try(vm_object_t obj)
218 return(lwkt_trytoken(&obj->token));
221 void
222 vm_object_lock_shared(vm_object_t obj)
224 lwkt_gettoken_shared(&obj->token);
227 void
228 vm_object_unlock(vm_object_t obj)
230 lwkt_reltoken(&obj->token);
233 void
234 vm_object_upgrade(vm_object_t obj)
236 lwkt_reltoken(&obj->token);
237 lwkt_gettoken(&obj->token);
240 void
241 vm_object_downgrade(vm_object_t obj)
243 lwkt_reltoken(&obj->token);
244 lwkt_gettoken_shared(&obj->token);
247 static __inline void
248 vm_object_assert_held(vm_object_t obj)
250 ASSERT_LWKT_TOKEN_HELD(&obj->token);
253 void
254 VMOBJDEBUG(vm_object_hold)(vm_object_t obj VMOBJDBARGS)
256 KKASSERT(obj != NULL);
259 * Object must be held (object allocation is stable due to callers
260 * context, typically already holding the token on a parent object)
261 * prior to potentially blocking on the lock, otherwise the object
262 * can get ripped away from us.
264 refcount_acquire(&obj->hold_count);
265 vm_object_lock(obj);
267 #if defined(DEBUG_LOCKS)
268 debugvm_object_add(obj, file, line, 1);
269 #endif
273 VMOBJDEBUG(vm_object_hold_try)(vm_object_t obj VMOBJDBARGS)
275 KKASSERT(obj != NULL);
278 * Object must be held (object allocation is stable due to callers
279 * context, typically already holding the token on a parent object)
280 * prior to potentially blocking on the lock, otherwise the object
281 * can get ripped away from us.
283 refcount_acquire(&obj->hold_count);
284 if (vm_object_lock_try(obj) == 0) {
285 if (refcount_release(&obj->hold_count)) {
286 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
287 zfree(obj_zone, obj);
289 return(0);
292 #if defined(DEBUG_LOCKS)
293 debugvm_object_add(obj, file, line, 1);
294 #endif
295 return(1);
298 void
299 VMOBJDEBUG(vm_object_hold_shared)(vm_object_t obj VMOBJDBARGS)
301 KKASSERT(obj != NULL);
304 * Object must be held (object allocation is stable due to callers
305 * context, typically already holding the token on a parent object)
306 * prior to potentially blocking on the lock, otherwise the object
307 * can get ripped away from us.
309 refcount_acquire(&obj->hold_count);
310 vm_object_lock_shared(obj);
312 #if defined(DEBUG_LOCKS)
313 debugvm_object_add(obj, file, line, 1);
314 #endif
318 * Drop the token and hold_count on the object.
320 * WARNING! Token might be shared.
322 void
323 VMOBJDEBUG(vm_object_drop)(vm_object_t obj VMOBJDBARGS)
325 if (obj == NULL)
326 return;
329 * No new holders should be possible once we drop hold_count 1->0 as
330 * there is no longer any way to reference the object.
332 KKASSERT(obj->hold_count > 0);
333 if (refcount_release(&obj->hold_count)) {
334 #if defined(DEBUG_LOCKS)
335 debugvm_object_add(obj, file, line, -1);
336 #endif
338 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
339 vm_object_unlock(obj);
340 zfree(obj_zone, obj);
341 } else {
342 vm_object_unlock(obj);
344 } else {
345 #if defined(DEBUG_LOCKS)
346 debugvm_object_add(obj, file, line, -1);
347 #endif
348 vm_object_unlock(obj);
353 * Initialize a freshly allocated object, returning a held object.
355 * Used only by vm_object_allocate() and zinitna().
357 * No requirements.
359 void
360 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
362 int incr;
363 int n;
365 RB_INIT(&object->rb_memq);
366 LIST_INIT(&object->shadow_head);
367 lwkt_token_init(&object->token, "vmobj");
369 object->type = type;
370 object->size = size;
371 object->ref_count = 1;
372 object->memattr = VM_MEMATTR_DEFAULT;
373 object->hold_count = 0;
374 object->flags = 0;
375 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
376 vm_object_set_flag(object, OBJ_ONEMAPPING);
377 object->paging_in_progress = 0;
378 object->resident_page_count = 0;
379 object->agg_pv_list_count = 0;
380 object->shadow_count = 0;
381 /* cpu localization twist */
382 object->pg_color = (int)(intptr_t)curthread;
383 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
384 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
385 else
386 incr = size;
387 next_index = (next_index + incr) & PQ_L2_MASK;
388 object->handle = NULL;
389 object->backing_object = NULL;
390 object->backing_object_offset = (vm_ooffset_t)0;
392 object->generation++;
393 object->swblock_count = 0;
394 RB_INIT(&object->swblock_root);
395 vm_object_lock_init(object);
396 pmap_object_init(object);
398 vm_object_hold(object);
400 n = VMOBJ_HASH(object);
401 atomic_add_long(&vm_object_count, 1);
402 lwkt_gettoken(&vmobj_tokens[n]);
403 TAILQ_INSERT_TAIL(&vm_object_lists[n], object, object_list);
404 lwkt_reltoken(&vmobj_tokens[n]);
408 * Initialize the VM objects module.
410 * Called from the low level boot code only.
412 void
413 vm_object_init(void)
415 int i;
417 for (i = 0; i < VMOBJ_HSIZE; ++i) {
418 TAILQ_INIT(&vm_object_lists[i]);
419 lwkt_token_init(&vmobj_tokens[i], "vmobjlst");
422 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
423 &kernel_object);
424 vm_object_drop(&kernel_object);
426 obj_zone = &obj_zone_store;
427 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
428 vm_objects_init, VM_OBJECTS_INIT);
431 void
432 vm_object_init2(void)
434 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
438 * Allocate and return a new object of the specified type and size.
440 * No requirements.
442 vm_object_t
443 vm_object_allocate(objtype_t type, vm_pindex_t size)
445 vm_object_t result;
447 result = (vm_object_t) zalloc(obj_zone);
449 _vm_object_allocate(type, size, result);
450 vm_object_drop(result);
452 return (result);
456 * This version returns a held object, allowing further atomic initialization
457 * of the object.
459 vm_object_t
460 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
462 vm_object_t result;
464 result = (vm_object_t) zalloc(obj_zone);
466 _vm_object_allocate(type, size, result);
468 return (result);
472 * Add an additional reference to a vm_object. The object must already be
473 * held. The original non-lock version is no longer supported. The object
474 * must NOT be chain locked by anyone at the time the reference is added.
476 * Referencing a chain-locked object can blow up the fairly sensitive
477 * ref_count and shadow_count tests in the deallocator. Most callers
478 * will call vm_object_chain_wait() prior to calling
479 * vm_object_reference_locked() to avoid the case.
481 * The object must be held, but may be held shared if desired (hence why
482 * we use an atomic op).
484 void
485 VMOBJDEBUG(vm_object_reference_locked)(vm_object_t object VMOBJDBARGS)
487 KKASSERT(object != NULL);
488 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
489 KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
490 atomic_add_int(&object->ref_count, 1);
491 if (object->type == OBJT_VNODE) {
492 vref(object->handle);
493 /* XXX what if the vnode is being destroyed? */
495 #if defined(DEBUG_LOCKS)
496 debugvm_object_add(object, file, line, 1);
497 #endif
501 * This version is only allowed for vnode objects.
503 void
504 VMOBJDEBUG(vm_object_reference_quick)(vm_object_t object VMOBJDBARGS)
506 KKASSERT(object->type == OBJT_VNODE);
507 atomic_add_int(&object->ref_count, 1);
508 vref(object->handle);
509 #if defined(DEBUG_LOCKS)
510 debugvm_object_add(object, file, line, 1);
511 #endif
515 * Object OBJ_CHAINLOCK lock handling.
517 * The caller can chain-lock backing objects recursively and then
518 * use vm_object_chain_release_all() to undo the whole chain.
520 * Chain locks are used to prevent collapses and are only applicable
521 * to OBJT_DEFAULT and OBJT_SWAP objects. Chain locking operations
522 * on other object types are ignored. This is also important because
523 * it allows e.g. the vnode underlying a memory mapping to take concurrent
524 * faults.
526 * The object must usually be held on entry, though intermediate
527 * objects need not be held on release. The object must be held exclusively,
528 * NOT shared. Note that the prefault path checks the shared state and
529 * avoids using the chain functions.
531 void
532 vm_object_chain_wait(vm_object_t object, int shared)
534 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
535 for (;;) {
536 uint32_t chainlk = object->chainlk;
538 cpu_ccfence();
539 if (shared) {
540 if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
541 tsleep_interlock(object, 0);
542 if (atomic_cmpset_int(&object->chainlk,
543 chainlk,
544 chainlk | CHAINLK_WAIT)) {
545 tsleep(object, PINTERLOCKED,
546 "objchns", 0);
548 /* retry */
549 } else {
550 break;
552 /* retry */
553 } else {
554 if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
555 tsleep_interlock(object, 0);
556 if (atomic_cmpset_int(&object->chainlk,
557 chainlk,
558 chainlk | CHAINLK_WAIT))
560 tsleep(object, PINTERLOCKED,
561 "objchnx", 0);
563 /* retry */
564 } else {
565 if (atomic_cmpset_int(&object->chainlk,
566 chainlk,
567 chainlk & ~CHAINLK_WAIT))
569 if (chainlk & CHAINLK_WAIT)
570 wakeup(object);
571 break;
573 /* retry */
576 /* retry */
580 void
581 vm_object_chain_acquire(vm_object_t object, int shared)
583 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
584 return;
585 if (vm_shared_fault == 0)
586 shared = 0;
588 for (;;) {
589 uint32_t chainlk = object->chainlk;
591 cpu_ccfence();
592 if (shared) {
593 if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
594 tsleep_interlock(object, 0);
595 if (atomic_cmpset_int(&object->chainlk,
596 chainlk,
597 chainlk | CHAINLK_WAIT)) {
598 tsleep(object, PINTERLOCKED,
599 "objchns", 0);
601 /* retry */
602 } else if (atomic_cmpset_int(&object->chainlk,
603 chainlk, chainlk + 1)) {
604 break;
606 /* retry */
607 } else {
608 if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
609 tsleep_interlock(object, 0);
610 if (atomic_cmpset_int(&object->chainlk,
611 chainlk,
612 chainlk |
613 CHAINLK_WAIT |
614 CHAINLK_EXCLREQ)) {
615 tsleep(object, PINTERLOCKED,
616 "objchnx", 0);
618 /* retry */
619 } else {
620 if (atomic_cmpset_int(&object->chainlk,
621 chainlk,
622 (chainlk | CHAINLK_EXCL) &
623 ~(CHAINLK_EXCLREQ |
624 CHAINLK_WAIT))) {
625 if (chainlk & CHAINLK_WAIT)
626 wakeup(object);
627 break;
629 /* retry */
632 /* retry */
636 void
637 vm_object_chain_release(vm_object_t object)
639 /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
640 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
641 return;
642 KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
643 for (;;) {
644 uint32_t chainlk = object->chainlk;
646 cpu_ccfence();
647 if (chainlk & CHAINLK_MASK) {
648 if ((chainlk & CHAINLK_MASK) == 1 &&
649 atomic_cmpset_int(&object->chainlk,
650 chainlk,
651 (chainlk - 1) & ~CHAINLK_WAIT)) {
652 if (chainlk & CHAINLK_WAIT)
653 wakeup(object);
654 break;
656 if ((chainlk & CHAINLK_MASK) > 1 &&
657 atomic_cmpset_int(&object->chainlk,
658 chainlk, chainlk - 1)) {
659 break;
661 /* retry */
662 } else {
663 KKASSERT(chainlk & CHAINLK_EXCL);
664 if (atomic_cmpset_int(&object->chainlk,
665 chainlk,
666 chainlk & ~(CHAINLK_EXCL |
667 CHAINLK_WAIT))) {
668 if (chainlk & CHAINLK_WAIT)
669 wakeup(object);
670 break;
677 * Release the chain from first_object through and including stopobj.
678 * The caller is typically holding the first and last object locked
679 * (shared or exclusive) to prevent destruction races.
681 * We release stopobj first as an optimization as this object is most
682 * likely to be shared across multiple processes.
684 void
685 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
687 vm_object_t backing_object;
688 vm_object_t object;
690 vm_object_chain_release(stopobj);
691 object = first_object;
693 while (object != stopobj) {
694 KKASSERT(object);
695 backing_object = object->backing_object;
696 vm_object_chain_release(object);
697 object = backing_object;
702 * Dereference an object and its underlying vnode. The object may be
703 * held shared. On return the object will remain held.
705 * This function may return a vnode in *vpp which the caller must release
706 * after the caller drops its own lock. If vpp is NULL, we assume that
707 * the caller was holding an exclusive lock on the object and we vrele()
708 * the vp ourselves.
710 static void
711 VMOBJDEBUG(vm_object_vndeallocate)(vm_object_t object, struct vnode **vpp
712 VMOBJDBARGS)
714 struct vnode *vp = (struct vnode *) object->handle;
716 KASSERT(object->type == OBJT_VNODE,
717 ("vm_object_vndeallocate: not a vnode object"));
718 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
719 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
720 #ifdef INVARIANTS
721 if (object->ref_count == 0) {
722 vprint("vm_object_vndeallocate", vp);
723 panic("vm_object_vndeallocate: bad object reference count");
725 #endif
726 for (;;) {
727 int count = object->ref_count;
728 cpu_ccfence();
729 if (count == 1) {
730 vm_object_upgrade(object);
731 if (atomic_cmpset_int(&object->ref_count, count, 0)) {
732 vclrflags(vp, VTEXT);
733 break;
735 } else {
736 if (atomic_cmpset_int(&object->ref_count,
737 count, count - 1)) {
738 break;
741 /* retry */
743 #if defined(DEBUG_LOCKS)
744 debugvm_object_add(object, file, line, -1);
745 #endif
748 * vrele or return the vp to vrele. We can only safely vrele(vp)
749 * if the object was locked exclusively. But there are two races
750 * here.
752 * We had to upgrade the object above to safely clear VTEXT
753 * but the alternative path where the shared lock is retained
754 * can STILL race to 0 in other paths and cause our own vrele()
755 * to terminate the vnode. We can't allow that if the VM object
756 * is still locked shared.
758 if (vpp)
759 *vpp = vp;
760 else
761 vrele(vp);
765 * Release a reference to the specified object, gained either through a
766 * vm_object_allocate or a vm_object_reference call. When all references
767 * are gone, storage associated with this object may be relinquished.
769 * The caller does not have to hold the object locked but must have control
770 * over the reference in question in order to guarantee that the object
771 * does not get ripped out from under us.
773 * XXX Currently all deallocations require an exclusive lock.
775 void
776 VMOBJDEBUG(vm_object_deallocate)(vm_object_t object VMOBJDBARGS)
778 struct vnode *vp;
779 int count;
781 if (object == NULL)
782 return;
784 for (;;) {
785 count = object->ref_count;
786 cpu_ccfence();
789 * If decrementing the count enters into special handling
790 * territory (0, 1, or 2) we have to do it the hard way.
791 * Fortunate though, objects with only a few refs like this
792 * are not likely to be heavily contended anyway.
794 * For vnode objects we only care about 1->0 transitions.
796 if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
797 #if defined(DEBUG_LOCKS)
798 debugvm_object_add(object, file, line, 0);
799 #endif
800 vm_object_hold(object);
801 vm_object_deallocate_locked(object);
802 vm_object_drop(object);
803 break;
807 * Try to decrement ref_count without acquiring a hold on
808 * the object. This is particularly important for the exec*()
809 * and exit*() code paths because the program binary may
810 * have a great deal of sharing and an exclusive lock will
811 * crowbar performance in those circumstances.
813 if (object->type == OBJT_VNODE) {
814 vp = (struct vnode *)object->handle;
815 if (atomic_cmpset_int(&object->ref_count,
816 count, count - 1)) {
817 #if defined(DEBUG_LOCKS)
818 debugvm_object_add(object, file, line, -1);
819 #endif
821 vrele(vp);
822 break;
824 /* retry */
825 } else {
826 if (atomic_cmpset_int(&object->ref_count,
827 count, count - 1)) {
828 #if defined(DEBUG_LOCKS)
829 debugvm_object_add(object, file, line, -1);
830 #endif
831 break;
833 /* retry */
835 /* retry */
839 void
840 VMOBJDEBUG(vm_object_deallocate_locked)(vm_object_t object VMOBJDBARGS)
842 struct vm_object_dealloc_list *dlist = NULL;
843 struct vm_object_dealloc_list *dtmp;
844 vm_object_t temp;
845 int must_drop = 0;
848 * We may chain deallocate object, but additional objects may
849 * collect on the dlist which also have to be deallocated. We
850 * must avoid a recursion, vm_object chains can get deep.
853 again:
854 while (object != NULL) {
856 * vnode case, caller either locked the object exclusively
857 * or this is a recursion with must_drop != 0 and the vnode
858 * object will be locked shared.
860 * If locked shared we have to drop the object before we can
861 * call vrele() or risk a shared/exclusive livelock.
863 if (object->type == OBJT_VNODE) {
864 ASSERT_LWKT_TOKEN_HELD(&object->token);
865 if (must_drop) {
866 struct vnode *tmp_vp;
868 vm_object_vndeallocate(object, &tmp_vp);
869 vm_object_drop(object);
870 must_drop = 0;
871 object = NULL;
872 vrele(tmp_vp);
873 } else {
874 vm_object_vndeallocate(object, NULL);
876 break;
878 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
881 * Normal case (object is locked exclusively)
883 if (object->ref_count == 0) {
884 panic("vm_object_deallocate: object deallocated "
885 "too many times: %d", object->type);
887 if (object->ref_count > 2) {
888 atomic_add_int(&object->ref_count, -1);
889 #if defined(DEBUG_LOCKS)
890 debugvm_object_add(object, file, line, -1);
891 #endif
892 break;
896 * Here on ref_count of one or two, which are special cases for
897 * objects.
899 * Nominal ref_count > 1 case if the second ref is not from
900 * a shadow.
902 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
904 if (object->ref_count == 2 && object->shadow_count == 0) {
905 if (object->type == OBJT_DEFAULT ||
906 object->type == OBJT_SWAP) {
907 vm_object_set_flag(object, OBJ_ONEMAPPING);
909 atomic_add_int(&object->ref_count, -1);
910 #if defined(DEBUG_LOCKS)
911 debugvm_object_add(object, file, line, -1);
912 #endif
913 break;
917 * If the second ref is from a shadow we chain along it
918 * upwards if object's handle is exhausted.
920 * We have to decrement object->ref_count before potentially
921 * collapsing the first shadow object or the collapse code
922 * will not be able to handle the degenerate case to remove
923 * object. However, if we do it too early the object can
924 * get ripped out from under us.
926 if (object->ref_count == 2 && object->shadow_count == 1 &&
927 object->handle == NULL && (object->type == OBJT_DEFAULT ||
928 object->type == OBJT_SWAP)) {
929 temp = LIST_FIRST(&object->shadow_head);
930 KKASSERT(temp != NULL);
931 vm_object_hold(temp);
934 * Wait for any paging to complete so the collapse
935 * doesn't (or isn't likely to) qcollapse. pip
936 * waiting must occur before we acquire the
937 * chainlock.
939 while (
940 temp->paging_in_progress ||
941 object->paging_in_progress
943 vm_object_pip_wait(temp, "objde1");
944 vm_object_pip_wait(object, "objde2");
948 * If the parent is locked we have to give up, as
949 * otherwise we would be acquiring locks in the
950 * wrong order and potentially deadlock.
952 if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
953 vm_object_drop(temp);
954 goto skip;
956 vm_object_chain_acquire(temp, 0);
959 * Recheck/retry after the hold and the paging
960 * wait, both of which can block us.
962 if (object->ref_count != 2 ||
963 object->shadow_count != 1 ||
964 object->handle ||
965 LIST_FIRST(&object->shadow_head) != temp ||
966 (object->type != OBJT_DEFAULT &&
967 object->type != OBJT_SWAP)) {
968 vm_object_chain_release(temp);
969 vm_object_drop(temp);
970 continue;
974 * We can safely drop object's ref_count now.
976 KKASSERT(object->ref_count == 2);
977 atomic_add_int(&object->ref_count, -1);
978 #if defined(DEBUG_LOCKS)
979 debugvm_object_add(object, file, line, -1);
980 #endif
983 * If our single parent is not collapseable just
984 * decrement ref_count (2->1) and stop.
986 if (temp->handle || (temp->type != OBJT_DEFAULT &&
987 temp->type != OBJT_SWAP)) {
988 vm_object_chain_release(temp);
989 vm_object_drop(temp);
990 break;
994 * At this point we have already dropped object's
995 * ref_count so it is possible for a race to
996 * deallocate obj out from under us. Any collapse
997 * will re-check the situation. We must not block
998 * until we are able to collapse.
1000 * Bump temp's ref_count to avoid an unwanted
1001 * degenerate recursion (can't call
1002 * vm_object_reference_locked() because it asserts
1003 * that CHAINLOCK is not set).
1005 atomic_add_int(&temp->ref_count, 1);
1006 KKASSERT(temp->ref_count > 1);
1009 * Collapse temp, then deallocate the extra ref
1010 * formally.
1012 vm_object_collapse(temp, &dlist);
1013 vm_object_chain_release(temp);
1014 if (must_drop) {
1015 vm_object_lock_swap();
1016 vm_object_drop(object);
1018 object = temp;
1019 must_drop = 1;
1020 continue;
1024 * Drop the ref and handle termination on the 1->0 transition.
1025 * We may have blocked above so we have to recheck.
1027 skip:
1028 KKASSERT(object->ref_count != 0);
1029 if (object->ref_count >= 2) {
1030 atomic_add_int(&object->ref_count, -1);
1031 #if defined(DEBUG_LOCKS)
1032 debugvm_object_add(object, file, line, -1);
1033 #endif
1034 break;
1036 KKASSERT(object->ref_count == 1);
1039 * 1->0 transition. Chain through the backing_object.
1040 * Maintain the ref until we've located the backing object,
1041 * then re-check.
1043 while ((temp = object->backing_object) != NULL) {
1044 if (temp->type == OBJT_VNODE)
1045 vm_object_hold_shared(temp);
1046 else
1047 vm_object_hold(temp);
1048 if (temp == object->backing_object)
1049 break;
1050 vm_object_drop(temp);
1054 * 1->0 transition verified, retry if ref_count is no longer
1055 * 1. Otherwise disconnect the backing_object (temp) and
1056 * clean up.
1058 if (object->ref_count != 1) {
1059 vm_object_drop(temp);
1060 continue;
1064 * It shouldn't be possible for the object to be chain locked
1065 * if we're removing the last ref on it.
1067 * Removing object from temp's shadow list requires dropping
1068 * temp, which we will do on loop.
1070 * NOTE! vnodes do not use the shadow list, but still have
1071 * the backing_object reference.
1073 KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1075 if (temp) {
1076 if (object->flags & OBJ_ONSHADOW) {
1077 LIST_REMOVE(object, shadow_list);
1078 temp->shadow_count--;
1079 temp->generation++;
1080 vm_object_clear_flag(object, OBJ_ONSHADOW);
1082 object->backing_object = NULL;
1085 atomic_add_int(&object->ref_count, -1);
1086 if ((object->flags & OBJ_DEAD) == 0)
1087 vm_object_terminate(object);
1088 if (must_drop && temp)
1089 vm_object_lock_swap();
1090 if (must_drop)
1091 vm_object_drop(object);
1092 object = temp;
1093 must_drop = 1;
1096 if (must_drop && object)
1097 vm_object_drop(object);
1100 * Additional tail recursion on dlist. Avoid a recursion. Objects
1101 * on the dlist have a hold count but are not locked.
1103 if ((dtmp = dlist) != NULL) {
1104 dlist = dtmp->next;
1105 object = dtmp->object;
1106 kfree(dtmp, M_TEMP);
1108 vm_object_lock(object); /* already held, add lock */
1109 must_drop = 1; /* and we're responsible for it */
1110 goto again;
1115 * Destroy the specified object, freeing up related resources.
1117 * The object must have zero references.
1119 * The object must held. The caller is responsible for dropping the object
1120 * after terminate returns. Terminate does NOT drop the object.
1122 static int vm_object_terminate_callback(vm_page_t p, void *data);
1124 void
1125 vm_object_terminate(vm_object_t object)
1127 int n;
1130 * Make sure no one uses us. Once we set OBJ_DEAD we should be
1131 * able to safely block.
1133 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1134 KKASSERT((object->flags & OBJ_DEAD) == 0);
1135 vm_object_set_flag(object, OBJ_DEAD);
1138 * Wait for the pageout daemon to be done with the object
1140 vm_object_pip_wait(object, "objtrm1");
1142 KASSERT(!object->paging_in_progress,
1143 ("vm_object_terminate: pageout in progress"));
1146 * Clean and free the pages, as appropriate. All references to the
1147 * object are gone, so we don't need to lock it.
1149 if (object->type == OBJT_VNODE) {
1150 struct vnode *vp;
1153 * Clean pages and flush buffers.
1155 * NOTE! TMPFS buffer flushes do not typically flush the
1156 * actual page to swap as this would be highly
1157 * inefficient, and normal filesystems usually wrap
1158 * page flushes with buffer cache buffers.
1160 * To deal with this we have to call vinvalbuf() both
1161 * before and after the vm_object_page_clean().
1163 vp = (struct vnode *) object->handle;
1164 vinvalbuf(vp, V_SAVE, 0, 0);
1165 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1166 vinvalbuf(vp, V_SAVE, 0, 0);
1170 * Wait for any I/O to complete, after which there had better not
1171 * be any references left on the object.
1173 vm_object_pip_wait(object, "objtrm2");
1175 if (object->ref_count != 0) {
1176 panic("vm_object_terminate: object with references, "
1177 "ref_count=%d", object->ref_count);
1181 * Cleanup any shared pmaps associated with this object.
1183 pmap_object_free(object);
1186 * Now free any remaining pages. For internal objects, this also
1187 * removes them from paging queues. Don't free wired pages, just
1188 * remove them from the object.
1190 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1191 vm_object_terminate_callback, NULL);
1194 * Let the pager know object is dead.
1196 vm_pager_deallocate(object);
1199 * Wait for the object hold count to hit 1, clean out pages as
1200 * we go. vmobj_token interlocks any race conditions that might
1201 * pick the object up from the vm_object_list after we have cleared
1202 * rb_memq.
1204 for (;;) {
1205 if (RB_ROOT(&object->rb_memq) == NULL)
1206 break;
1207 kprintf("vm_object_terminate: Warning, object %p "
1208 "still has %d pages\n",
1209 object, object->resident_page_count);
1210 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1211 vm_object_terminate_callback, NULL);
1215 * There had better not be any pages left
1217 KKASSERT(object->resident_page_count == 0);
1220 * Remove the object from the global object list.
1222 n = VMOBJ_HASH(object);
1223 lwkt_gettoken(&vmobj_tokens[n]);
1224 TAILQ_REMOVE(&vm_object_lists[n], object, object_list);
1225 lwkt_reltoken(&vmobj_tokens[n]);
1226 atomic_add_long(&vm_object_count, -1);
1228 if (object->ref_count != 0) {
1229 panic("vm_object_terminate2: object with references, "
1230 "ref_count=%d", object->ref_count);
1234 * NOTE: The object hold_count is at least 1, so we cannot zfree()
1235 * the object here. See vm_object_drop().
1240 * The caller must hold the object.
1242 static int
1243 vm_object_terminate_callback(vm_page_t p, void *data __unused)
1245 vm_object_t object;
1247 object = p->object;
1248 vm_page_busy_wait(p, TRUE, "vmpgtrm");
1249 if (object != p->object) {
1250 kprintf("vm_object_terminate: Warning: Encountered "
1251 "busied page %p on queue %d\n", p, p->queue);
1252 vm_page_wakeup(p);
1253 } else if (p->wire_count == 0) {
1255 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1257 vm_page_free(p);
1258 mycpu->gd_cnt.v_pfree++;
1259 } else {
1260 if (p->queue != PQ_NONE)
1261 kprintf("vm_object_terminate: Warning: Encountered "
1262 "wired page %p on queue %d\n", p, p->queue);
1263 vm_page_remove(p);
1264 vm_page_wakeup(p);
1266 lwkt_yield();
1267 return(0);
1271 * Clean all dirty pages in the specified range of object. Leaves page
1272 * on whatever queue it is currently on. If NOSYNC is set then do not
1273 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1274 * leaving the object dirty.
1276 * When stuffing pages asynchronously, allow clustering. XXX we need a
1277 * synchronous clustering mode implementation.
1279 * Odd semantics: if start == end, we clean everything.
1281 * The object must be locked? XXX
1283 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1284 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1286 void
1287 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1288 int flags)
1290 struct rb_vm_page_scan_info info;
1291 struct vnode *vp;
1292 int wholescan;
1293 int pagerflags;
1294 int generation;
1296 vm_object_hold(object);
1297 if (object->type != OBJT_VNODE ||
1298 (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1299 vm_object_drop(object);
1300 return;
1303 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1304 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1305 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1307 vp = object->handle;
1310 * Interlock other major object operations. This allows us to
1311 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1313 vm_object_set_flag(object, OBJ_CLEANING);
1316 * Handle 'entire object' case
1318 info.start_pindex = start;
1319 if (end == 0) {
1320 info.end_pindex = object->size - 1;
1321 } else {
1322 info.end_pindex = end - 1;
1324 wholescan = (start == 0 && info.end_pindex == object->size - 1);
1325 info.limit = flags;
1326 info.pagerflags = pagerflags;
1327 info.object = object;
1330 * If cleaning the entire object do a pass to mark the pages read-only.
1331 * If everything worked out ok, clear OBJ_WRITEABLE and
1332 * OBJ_MIGHTBEDIRTY.
1334 if (wholescan) {
1335 info.error = 0;
1336 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1337 vm_object_page_clean_pass1, &info);
1338 if (info.error == 0) {
1339 vm_object_clear_flag(object,
1340 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1341 if (object->type == OBJT_VNODE &&
1342 (vp = (struct vnode *)object->handle) != NULL) {
1344 * Use new-style interface to clear VISDIRTY
1345 * because the vnode is not necessarily removed
1346 * from the syncer list(s) as often as it was
1347 * under the old interface, which can leave
1348 * the vnode on the syncer list after reclaim.
1350 vclrobjdirty(vp);
1356 * Do a pass to clean all the dirty pages we find.
1358 do {
1359 info.error = 0;
1360 generation = object->generation;
1361 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1362 vm_object_page_clean_pass2, &info);
1363 } while (info.error || generation != object->generation);
1365 vm_object_clear_flag(object, OBJ_CLEANING);
1366 vm_object_drop(object);
1370 * The caller must hold the object.
1372 static
1374 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1376 struct rb_vm_page_scan_info *info = data;
1378 vm_page_flag_set(p, PG_CLEANCHK);
1379 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1380 info->error = 1;
1381 } else if (vm_page_busy_try(p, FALSE) == 0) {
1382 vm_page_protect(p, VM_PROT_READ); /* must not block */
1383 vm_page_wakeup(p);
1384 } else {
1385 info->error = 1;
1387 lwkt_yield();
1388 return(0);
1392 * The caller must hold the object
1394 static
1396 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1398 struct rb_vm_page_scan_info *info = data;
1399 int generation;
1402 * Do not mess with pages that were inserted after we started
1403 * the cleaning pass.
1405 if ((p->flags & PG_CLEANCHK) == 0)
1406 goto done;
1408 generation = info->object->generation;
1409 vm_page_busy_wait(p, TRUE, "vpcwai");
1410 if (p->object != info->object ||
1411 info->object->generation != generation) {
1412 info->error = 1;
1413 vm_page_wakeup(p);
1414 goto done;
1418 * Before wasting time traversing the pmaps, check for trivial
1419 * cases where the page cannot be dirty.
1421 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1422 KKASSERT((p->dirty & p->valid) == 0 &&
1423 (p->flags & PG_NEED_COMMIT) == 0);
1424 vm_page_wakeup(p);
1425 goto done;
1429 * Check whether the page is dirty or not. The page has been set
1430 * to be read-only so the check will not race a user dirtying the
1431 * page.
1433 vm_page_test_dirty(p);
1434 if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1435 vm_page_flag_clear(p, PG_CLEANCHK);
1436 vm_page_wakeup(p);
1437 goto done;
1441 * If we have been asked to skip nosync pages and this is a
1442 * nosync page, skip it. Note that the object flags were
1443 * not cleared in this case (because pass1 will have returned an
1444 * error), so we do not have to set them.
1446 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1447 vm_page_flag_clear(p, PG_CLEANCHK);
1448 vm_page_wakeup(p);
1449 goto done;
1453 * Flush as many pages as we can. PG_CLEANCHK will be cleared on
1454 * the pages that get successfully flushed. Set info->error if
1455 * we raced an object modification.
1457 vm_object_page_collect_flush(info->object, p, info->pagerflags);
1458 /* vm_wait_nominal(); this can deadlock the system in syncer/pageout */
1459 done:
1460 lwkt_yield();
1461 return(0);
1465 * Collect the specified page and nearby pages and flush them out.
1466 * The number of pages flushed is returned. The passed page is busied
1467 * by the caller and we are responsible for its disposition.
1469 * The caller must hold the object.
1471 static void
1472 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1474 int error;
1475 int is;
1476 int ib;
1477 int i;
1478 int page_base;
1479 vm_pindex_t pi;
1480 vm_page_t ma[BLIST_MAX_ALLOC];
1482 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1484 pi = p->pindex;
1485 page_base = pi % BLIST_MAX_ALLOC;
1486 ma[page_base] = p;
1487 ib = page_base - 1;
1488 is = page_base + 1;
1490 while (ib >= 0) {
1491 vm_page_t tp;
1493 tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1494 TRUE, &error);
1495 if (error)
1496 break;
1497 if (tp == NULL)
1498 break;
1499 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1500 (tp->flags & PG_CLEANCHK) == 0) {
1501 vm_page_wakeup(tp);
1502 break;
1504 if ((tp->queue - tp->pc) == PQ_CACHE) {
1505 vm_page_flag_clear(tp, PG_CLEANCHK);
1506 vm_page_wakeup(tp);
1507 break;
1509 vm_page_test_dirty(tp);
1510 if ((tp->dirty & tp->valid) == 0 &&
1511 (tp->flags & PG_NEED_COMMIT) == 0) {
1512 vm_page_flag_clear(tp, PG_CLEANCHK);
1513 vm_page_wakeup(tp);
1514 break;
1516 ma[ib] = tp;
1517 --ib;
1519 ++ib; /* fixup */
1521 while (is < BLIST_MAX_ALLOC &&
1522 pi - page_base + is < object->size) {
1523 vm_page_t tp;
1525 tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1526 TRUE, &error);
1527 if (error)
1528 break;
1529 if (tp == NULL)
1530 break;
1531 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1532 (tp->flags & PG_CLEANCHK) == 0) {
1533 vm_page_wakeup(tp);
1534 break;
1536 if ((tp->queue - tp->pc) == PQ_CACHE) {
1537 vm_page_flag_clear(tp, PG_CLEANCHK);
1538 vm_page_wakeup(tp);
1539 break;
1541 vm_page_test_dirty(tp);
1542 if ((tp->dirty & tp->valid) == 0 &&
1543 (tp->flags & PG_NEED_COMMIT) == 0) {
1544 vm_page_flag_clear(tp, PG_CLEANCHK);
1545 vm_page_wakeup(tp);
1546 break;
1548 ma[is] = tp;
1549 ++is;
1553 * All pages in the ma[] array are busied now
1555 for (i = ib; i < is; ++i) {
1556 vm_page_flag_clear(ma[i], PG_CLEANCHK);
1557 vm_page_hold(ma[i]); /* XXX need this any more? */
1559 vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1560 for (i = ib; i < is; ++i) /* XXX need this any more? */
1561 vm_page_unhold(ma[i]);
1565 * Same as vm_object_pmap_copy, except range checking really
1566 * works, and is meant for small sections of an object.
1568 * This code protects resident pages by making them read-only
1569 * and is typically called on a fork or split when a page
1570 * is converted to copy-on-write.
1572 * NOTE: If the page is already at VM_PROT_NONE, calling
1573 * vm_page_protect will have no effect.
1575 void
1576 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1578 vm_pindex_t idx;
1579 vm_page_t p;
1581 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1582 return;
1584 vm_object_hold(object);
1585 for (idx = start; idx < end; idx++) {
1586 p = vm_page_lookup(object, idx);
1587 if (p == NULL)
1588 continue;
1589 vm_page_protect(p, VM_PROT_READ);
1591 vm_object_drop(object);
1595 * Removes all physical pages in the specified object range from all
1596 * physical maps.
1598 * The object must *not* be locked.
1601 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1603 void
1604 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1606 struct rb_vm_page_scan_info info;
1608 if (object == NULL)
1609 return;
1610 info.start_pindex = start;
1611 info.end_pindex = end - 1;
1613 vm_object_hold(object);
1614 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1615 vm_object_pmap_remove_callback, &info);
1616 if (start == 0 && end == object->size)
1617 vm_object_clear_flag(object, OBJ_WRITEABLE);
1618 vm_object_drop(object);
1622 * The caller must hold the object
1624 static int
1625 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1627 vm_page_protect(p, VM_PROT_NONE);
1628 return(0);
1632 * Implements the madvise function at the object/page level.
1634 * MADV_WILLNEED (any object)
1636 * Activate the specified pages if they are resident.
1638 * MADV_DONTNEED (any object)
1640 * Deactivate the specified pages if they are resident.
1642 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1644 * Deactivate and clean the specified pages if they are
1645 * resident. This permits the process to reuse the pages
1646 * without faulting or the kernel to reclaim the pages
1647 * without I/O.
1649 * No requirements.
1651 void
1652 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1654 vm_pindex_t end, tpindex;
1655 vm_object_t tobject;
1656 vm_object_t xobj;
1657 vm_page_t m;
1658 int error;
1660 if (object == NULL)
1661 return;
1663 end = pindex + count;
1665 vm_object_hold(object);
1666 tobject = object;
1669 * Locate and adjust resident pages
1671 for (; pindex < end; pindex += 1) {
1672 relookup:
1673 if (tobject != object)
1674 vm_object_drop(tobject);
1675 tobject = object;
1676 tpindex = pindex;
1677 shadowlookup:
1679 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1680 * and those pages must be OBJ_ONEMAPPING.
1682 if (advise == MADV_FREE) {
1683 if ((tobject->type != OBJT_DEFAULT &&
1684 tobject->type != OBJT_SWAP) ||
1685 (tobject->flags & OBJ_ONEMAPPING) == 0) {
1686 continue;
1690 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1692 if (error) {
1693 vm_page_sleep_busy(m, TRUE, "madvpo");
1694 goto relookup;
1696 if (m == NULL) {
1698 * There may be swap even if there is no backing page
1700 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1701 swap_pager_freespace(tobject, tpindex, 1);
1704 * next object
1706 while ((xobj = tobject->backing_object) != NULL) {
1707 KKASSERT(xobj != object);
1708 vm_object_hold(xobj);
1709 if (xobj == tobject->backing_object)
1710 break;
1711 vm_object_drop(xobj);
1713 if (xobj == NULL)
1714 continue;
1715 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1716 if (tobject != object) {
1717 vm_object_lock_swap();
1718 vm_object_drop(tobject);
1720 tobject = xobj;
1721 goto shadowlookup;
1725 * If the page is not in a normal active state, we skip it.
1726 * If the page is not managed there are no page queues to
1727 * mess with. Things can break if we mess with pages in
1728 * any of the below states.
1730 if (m->wire_count ||
1731 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1732 m->valid != VM_PAGE_BITS_ALL
1734 vm_page_wakeup(m);
1735 continue;
1739 * Theoretically once a page is known not to be busy, an
1740 * interrupt cannot come along and rip it out from under us.
1743 if (advise == MADV_WILLNEED) {
1744 vm_page_activate(m);
1745 } else if (advise == MADV_DONTNEED) {
1746 vm_page_dontneed(m);
1747 } else if (advise == MADV_FREE) {
1749 * Mark the page clean. This will allow the page
1750 * to be freed up by the system. However, such pages
1751 * are often reused quickly by malloc()/free()
1752 * so we do not do anything that would cause
1753 * a page fault if we can help it.
1755 * Specifically, we do not try to actually free
1756 * the page now nor do we try to put it in the
1757 * cache (which would cause a page fault on reuse).
1759 * But we do make the page is freeable as we
1760 * can without actually taking the step of unmapping
1761 * it.
1763 pmap_clear_modify(m);
1764 m->dirty = 0;
1765 m->act_count = 0;
1766 vm_page_dontneed(m);
1767 if (tobject->type == OBJT_SWAP)
1768 swap_pager_freespace(tobject, tpindex, 1);
1770 vm_page_wakeup(m);
1772 if (tobject != object)
1773 vm_object_drop(tobject);
1774 vm_object_drop(object);
1778 * Create a new object which is backed by the specified existing object
1779 * range. Replace the pointer and offset that was pointing at the existing
1780 * object with the pointer/offset for the new object.
1782 * If addref is non-zero the returned object is given an additional reference.
1783 * This mechanic exists to avoid the situation where refs might be 1 and
1784 * race against a collapse when the caller intends to bump it. So the
1785 * caller cannot add the ref after the fact. Used when the caller is
1786 * duplicating a vm_map_entry.
1788 * No other requirements.
1790 void
1791 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1792 int addref)
1794 vm_object_t source;
1795 vm_object_t result;
1796 int useshadowlist;
1798 source = *objectp;
1801 * Don't create the new object if the old object isn't shared.
1802 * We have to chain wait before adding the reference to avoid
1803 * racing a collapse or deallocation.
1805 * Clear OBJ_ONEMAPPING flag when shadowing.
1807 * The caller owns a ref on source via *objectp which we are going
1808 * to replace. This ref is inherited by the backing_object assignment.
1809 * from nobject and does not need to be incremented here.
1811 * However, we add a temporary extra reference to the original source
1812 * prior to holding nobject in case we block, to avoid races where
1813 * someone else might believe that the source can be collapsed.
1815 useshadowlist = 0;
1816 if (source) {
1817 if (source->type != OBJT_VNODE) {
1818 useshadowlist = 1;
1819 vm_object_hold(source);
1820 vm_object_chain_wait(source, 0);
1821 if (source->ref_count == 1 &&
1822 source->handle == NULL &&
1823 (source->type == OBJT_DEFAULT ||
1824 source->type == OBJT_SWAP)) {
1825 if (addref) {
1826 vm_object_reference_locked(source);
1827 vm_object_clear_flag(source,
1828 OBJ_ONEMAPPING);
1830 vm_object_drop(source);
1831 return;
1833 vm_object_reference_locked(source);
1834 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1835 } else {
1836 vm_object_reference_quick(source);
1837 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1842 * Allocate a new object with the given length. The new object
1843 * is returned referenced but we may have to add another one.
1844 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1845 * (typically because the caller is about to clone a vm_map_entry).
1847 * The source object currently has an extra reference to prevent
1848 * collapses into it while we mess with its shadow list, which
1849 * we will remove later in this routine.
1851 * The target object may require a second reference if asked for one
1852 * by the caller.
1854 result = vm_object_allocate(OBJT_DEFAULT, length);
1855 if (result == NULL)
1856 panic("vm_object_shadow: no object for shadowing");
1857 vm_object_hold(result);
1858 if (addref) {
1859 vm_object_reference_locked(result);
1860 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1864 * The new object shadows the source object. Chain wait before
1865 * adjusting shadow_count or the shadow list to avoid races.
1867 * Try to optimize the result object's page color when shadowing
1868 * in order to maintain page coloring consistency in the combined
1869 * shadowed object.
1871 * The backing_object reference to source requires adding a ref to
1872 * source. We simply inherit the ref from the original *objectp
1873 * (which we are replacing) so no additional refs need to be added.
1874 * (we must still clean up the extra ref we had to prevent collapse
1875 * races).
1877 * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1879 KKASSERT(result->backing_object == NULL);
1880 result->backing_object = source;
1881 if (source) {
1882 if (useshadowlist) {
1883 vm_object_chain_wait(source, 0);
1884 LIST_INSERT_HEAD(&source->shadow_head,
1885 result, shadow_list);
1886 source->shadow_count++;
1887 source->generation++;
1888 vm_object_set_flag(result, OBJ_ONSHADOW);
1890 /* cpu localization twist */
1891 result->pg_color = (int)(intptr_t)curthread;
1895 * Adjust the return storage. Drop the ref on source before
1896 * returning.
1898 result->backing_object_offset = *offset;
1899 vm_object_drop(result);
1900 *offset = 0;
1901 if (source) {
1902 if (useshadowlist) {
1903 vm_object_deallocate_locked(source);
1904 vm_object_drop(source);
1905 } else {
1906 vm_object_deallocate(source);
1911 * Return the new things
1913 *objectp = result;
1916 #define OBSC_TEST_ALL_SHADOWED 0x0001
1917 #define OBSC_COLLAPSE_NOWAIT 0x0002
1918 #define OBSC_COLLAPSE_WAIT 0x0004
1920 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1923 * The caller must hold the object.
1925 static __inline int
1926 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1928 struct rb_vm_page_scan_info info;
1929 int n;
1931 vm_object_assert_held(object);
1932 vm_object_assert_held(backing_object);
1934 KKASSERT(backing_object == object->backing_object);
1935 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1938 * Initial conditions
1940 if (op & OBSC_TEST_ALL_SHADOWED) {
1942 * We do not want to have to test for the existence of
1943 * swap pages in the backing object. XXX but with the
1944 * new swapper this would be pretty easy to do.
1946 * XXX what about anonymous MAP_SHARED memory that hasn't
1947 * been ZFOD faulted yet? If we do not test for this, the
1948 * shadow test may succeed! XXX
1950 if (backing_object->type != OBJT_DEFAULT)
1951 return(0);
1953 if (op & OBSC_COLLAPSE_WAIT) {
1954 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1955 vm_object_set_flag(backing_object, OBJ_DEAD);
1957 n = VMOBJ_HASH(backing_object);
1958 lwkt_gettoken(&vmobj_tokens[n]);
1959 TAILQ_REMOVE(&vm_object_lists[n], backing_object, object_list);
1960 lwkt_reltoken(&vmobj_tokens[n]);
1961 atomic_add_long(&vm_object_count, -1);
1965 * Our scan. We have to retry if a negative error code is returned,
1966 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that
1967 * the scan had to be stopped because the parent does not completely
1968 * shadow the child.
1970 info.object = object;
1971 info.backing_object = backing_object;
1972 info.limit = op;
1973 do {
1974 info.error = 1;
1975 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1976 vm_object_backing_scan_callback,
1977 &info);
1978 } while (info.error < 0);
1980 return(info.error);
1984 * The caller must hold the object.
1986 static int
1987 vm_object_backing_scan_callback(vm_page_t p, void *data)
1989 struct rb_vm_page_scan_info *info = data;
1990 vm_object_t backing_object;
1991 vm_object_t object;
1992 vm_pindex_t pindex;
1993 vm_pindex_t new_pindex;
1994 vm_pindex_t backing_offset_index;
1995 int op;
1997 pindex = p->pindex;
1998 new_pindex = pindex - info->backing_offset_index;
1999 op = info->limit;
2000 object = info->object;
2001 backing_object = info->backing_object;
2002 backing_offset_index = info->backing_offset_index;
2004 if (op & OBSC_TEST_ALL_SHADOWED) {
2005 vm_page_t pp;
2008 * Ignore pages outside the parent object's range
2009 * and outside the parent object's mapping of the
2010 * backing object.
2012 * note that we do not busy the backing object's
2013 * page.
2015 if (pindex < backing_offset_index ||
2016 new_pindex >= object->size
2018 return(0);
2022 * See if the parent has the page or if the parent's
2023 * object pager has the page. If the parent has the
2024 * page but the page is not valid, the parent's
2025 * object pager must have the page.
2027 * If this fails, the parent does not completely shadow
2028 * the object and we might as well give up now.
2030 pp = vm_page_lookup(object, new_pindex);
2031 if ((pp == NULL || pp->valid == 0) &&
2032 !vm_pager_has_page(object, new_pindex)
2034 info->error = 0; /* problemo */
2035 return(-1); /* stop the scan */
2040 * Check for busy page. Note that we may have lost (p) when we
2041 * possibly blocked above.
2043 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2044 vm_page_t pp;
2046 if (vm_page_busy_try(p, TRUE)) {
2047 if (op & OBSC_COLLAPSE_NOWAIT) {
2048 return(0);
2049 } else {
2051 * If we slept, anything could have
2052 * happened. Ask that the scan be restarted.
2054 * Since the object is marked dead, the
2055 * backing offset should not have changed.
2057 vm_page_sleep_busy(p, TRUE, "vmocol");
2058 info->error = -1;
2059 return(-1);
2064 * If (p) is no longer valid restart the scan.
2066 if (p->object != backing_object || p->pindex != pindex) {
2067 kprintf("vm_object_backing_scan: Warning: page "
2068 "%p ripped out from under us\n", p);
2069 vm_page_wakeup(p);
2070 info->error = -1;
2071 return(-1);
2074 if (op & OBSC_COLLAPSE_NOWAIT) {
2075 if (p->valid == 0 ||
2076 p->wire_count ||
2077 (p->flags & PG_NEED_COMMIT)) {
2078 vm_page_wakeup(p);
2079 return(0);
2081 } else {
2082 /* XXX what if p->valid == 0 , hold_count, etc? */
2085 KASSERT(
2086 p->object == backing_object,
2087 ("vm_object_qcollapse(): object mismatch")
2091 * Destroy any associated swap
2093 if (backing_object->type == OBJT_SWAP)
2094 swap_pager_freespace(backing_object, p->pindex, 1);
2096 if (
2097 p->pindex < backing_offset_index ||
2098 new_pindex >= object->size
2101 * Page is out of the parent object's range, we
2102 * can simply destroy it.
2104 vm_page_protect(p, VM_PROT_NONE);
2105 vm_page_free(p);
2106 return(0);
2109 pp = vm_page_lookup(object, new_pindex);
2110 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2112 * page already exists in parent OR swap exists
2113 * for this location in the parent. Destroy
2114 * the original page from the backing object.
2116 * Leave the parent's page alone
2118 vm_page_protect(p, VM_PROT_NONE);
2119 vm_page_free(p);
2120 return(0);
2124 * Page does not exist in parent, rename the
2125 * page from the backing object to the main object.
2127 * If the page was mapped to a process, it can remain
2128 * mapped through the rename.
2130 if ((p->queue - p->pc) == PQ_CACHE)
2131 vm_page_deactivate(p);
2133 vm_page_rename(p, object, new_pindex);
2134 vm_page_wakeup(p);
2135 /* page automatically made dirty by rename */
2137 return(0);
2141 * This version of collapse allows the operation to occur earlier and
2142 * when paging_in_progress is true for an object... This is not a complete
2143 * operation, but should plug 99.9% of the rest of the leaks.
2145 * The caller must hold the object and backing_object and both must be
2146 * chainlocked.
2148 * (only called from vm_object_collapse)
2150 static void
2151 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2153 if (backing_object->ref_count == 1) {
2154 atomic_add_int(&backing_object->ref_count, 2);
2155 #if defined(DEBUG_LOCKS)
2156 debugvm_object_add(backing_object, "qcollapse", 1, 2);
2157 #endif
2158 vm_object_backing_scan(object, backing_object,
2159 OBSC_COLLAPSE_NOWAIT);
2160 atomic_add_int(&backing_object->ref_count, -2);
2161 #if defined(DEBUG_LOCKS)
2162 debugvm_object_add(backing_object, "qcollapse", 2, -2);
2163 #endif
2168 * Collapse an object with the object backing it. Pages in the backing
2169 * object are moved into the parent, and the backing object is deallocated.
2170 * Any conflict is resolved in favor of the parent's existing pages.
2172 * object must be held and chain-locked on call.
2174 * The caller must have an extra ref on object to prevent a race from
2175 * destroying it during the collapse.
2177 void
2178 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2180 struct vm_object_dealloc_list *dlist = NULL;
2181 vm_object_t backing_object;
2184 * Only one thread is attempting a collapse at any given moment.
2185 * There are few restrictions for (object) that callers of this
2186 * function check so reentrancy is likely.
2188 KKASSERT(object != NULL);
2189 vm_object_assert_held(object);
2190 KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2192 for (;;) {
2193 vm_object_t bbobj;
2194 int dodealloc;
2197 * We can only collapse a DEFAULT/SWAP object with a
2198 * DEFAULT/SWAP object.
2200 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2201 backing_object = NULL;
2202 break;
2205 backing_object = object->backing_object;
2206 if (backing_object == NULL)
2207 break;
2208 if (backing_object->type != OBJT_DEFAULT &&
2209 backing_object->type != OBJT_SWAP) {
2210 backing_object = NULL;
2211 break;
2215 * Hold the backing_object and check for races
2217 vm_object_hold(backing_object);
2218 if (backing_object != object->backing_object ||
2219 (backing_object->type != OBJT_DEFAULT &&
2220 backing_object->type != OBJT_SWAP)) {
2221 vm_object_drop(backing_object);
2222 continue;
2226 * Chain-lock the backing object too because if we
2227 * successfully merge its pages into the top object we
2228 * will collapse backing_object->backing_object as the
2229 * new backing_object. Re-check that it is still our
2230 * backing object.
2232 vm_object_chain_acquire(backing_object, 0);
2233 if (backing_object != object->backing_object) {
2234 vm_object_chain_release(backing_object);
2235 vm_object_drop(backing_object);
2236 continue;
2240 * we check the backing object first, because it is most likely
2241 * not collapsable.
2243 if (backing_object->handle != NULL ||
2244 (backing_object->type != OBJT_DEFAULT &&
2245 backing_object->type != OBJT_SWAP) ||
2246 (backing_object->flags & OBJ_DEAD) ||
2247 object->handle != NULL ||
2248 (object->type != OBJT_DEFAULT &&
2249 object->type != OBJT_SWAP) ||
2250 (object->flags & OBJ_DEAD)) {
2251 break;
2255 * If paging is in progress we can't do a normal collapse.
2257 if (
2258 object->paging_in_progress != 0 ||
2259 backing_object->paging_in_progress != 0
2261 vm_object_qcollapse(object, backing_object);
2262 break;
2266 * We know that we can either collapse the backing object (if
2267 * the parent is the only reference to it) or (perhaps) have
2268 * the parent bypass the object if the parent happens to shadow
2269 * all the resident pages in the entire backing object.
2271 * This is ignoring pager-backed pages such as swap pages.
2272 * vm_object_backing_scan fails the shadowing test in this
2273 * case.
2275 if (backing_object->ref_count == 1) {
2277 * If there is exactly one reference to the backing
2278 * object, we can collapse it into the parent.
2280 KKASSERT(object->backing_object == backing_object);
2281 vm_object_backing_scan(object, backing_object,
2282 OBSC_COLLAPSE_WAIT);
2285 * Move the pager from backing_object to object.
2287 if (backing_object->type == OBJT_SWAP) {
2288 vm_object_pip_add(backing_object, 1);
2291 * scrap the paging_offset junk and do a
2292 * discrete copy. This also removes major
2293 * assumptions about how the swap-pager
2294 * works from where it doesn't belong. The
2295 * new swapper is able to optimize the
2296 * destroy-source case.
2298 vm_object_pip_add(object, 1);
2299 swap_pager_copy(backing_object, object,
2300 OFF_TO_IDX(object->backing_object_offset),
2301 TRUE);
2302 vm_object_pip_wakeup(object);
2303 vm_object_pip_wakeup(backing_object);
2307 * Object now shadows whatever backing_object did.
2308 * Remove object from backing_object's shadow_list.
2310 * Removing object from backing_objects shadow list
2311 * requires releasing object, which we will do below.
2313 KKASSERT(object->backing_object == backing_object);
2314 if (object->flags & OBJ_ONSHADOW) {
2315 LIST_REMOVE(object, shadow_list);
2316 backing_object->shadow_count--;
2317 backing_object->generation++;
2318 vm_object_clear_flag(object, OBJ_ONSHADOW);
2322 * backing_object->backing_object moves from within
2323 * backing_object to within object.
2325 * OBJT_VNODE bbobj's should have empty shadow lists.
2327 while ((bbobj = backing_object->backing_object) != NULL) {
2328 if (bbobj->type == OBJT_VNODE)
2329 vm_object_hold_shared(bbobj);
2330 else
2331 vm_object_hold(bbobj);
2332 if (bbobj == backing_object->backing_object)
2333 break;
2334 vm_object_drop(bbobj);
2338 * We are removing backing_object from bbobj's
2339 * shadow list and adding object to bbobj's shadow
2340 * list, so the ref_count on bbobj is unchanged.
2342 if (bbobj) {
2343 if (backing_object->flags & OBJ_ONSHADOW) {
2344 /* not locked exclusively if vnode */
2345 KKASSERT(bbobj->type != OBJT_VNODE);
2346 LIST_REMOVE(backing_object,
2347 shadow_list);
2348 bbobj->shadow_count--;
2349 bbobj->generation++;
2350 vm_object_clear_flag(backing_object,
2351 OBJ_ONSHADOW);
2353 backing_object->backing_object = NULL;
2355 object->backing_object = bbobj;
2356 if (bbobj) {
2357 if (bbobj->type != OBJT_VNODE) {
2358 LIST_INSERT_HEAD(&bbobj->shadow_head,
2359 object, shadow_list);
2360 bbobj->shadow_count++;
2361 bbobj->generation++;
2362 vm_object_set_flag(object,
2363 OBJ_ONSHADOW);
2367 object->backing_object_offset +=
2368 backing_object->backing_object_offset;
2370 vm_object_drop(bbobj);
2373 * Discard the old backing_object. Nothing should be
2374 * able to ref it, other than a vm_map_split(),
2375 * and vm_map_split() will stall on our chain lock.
2376 * And we control the parent so it shouldn't be
2377 * possible for it to go away either.
2379 * Since the backing object has no pages, no pager
2380 * left, and no object references within it, all
2381 * that is necessary is to dispose of it.
2383 KASSERT(backing_object->ref_count == 1,
2384 ("backing_object %p was somehow "
2385 "re-referenced during collapse!",
2386 backing_object));
2387 KASSERT(RB_EMPTY(&backing_object->rb_memq),
2388 ("backing_object %p somehow has left "
2389 "over pages during collapse!",
2390 backing_object));
2393 * The object can be destroyed.
2395 * XXX just fall through and dodealloc instead
2396 * of forcing destruction?
2398 atomic_add_int(&backing_object->ref_count, -1);
2399 #if defined(DEBUG_LOCKS)
2400 debugvm_object_add(backing_object, "collapse", 1, -1);
2401 #endif
2402 if ((backing_object->flags & OBJ_DEAD) == 0)
2403 vm_object_terminate(backing_object);
2404 object_collapses++;
2405 dodealloc = 0;
2406 } else {
2408 * If we do not entirely shadow the backing object,
2409 * there is nothing we can do so we give up.
2411 if (vm_object_backing_scan(object, backing_object,
2412 OBSC_TEST_ALL_SHADOWED) == 0) {
2413 break;
2417 * bbobj is backing_object->backing_object. Since
2418 * object completely shadows backing_object we can
2419 * bypass it and become backed by bbobj instead.
2421 * The shadow list for vnode backing objects is not
2422 * used and a shared hold is allowed.
2424 while ((bbobj = backing_object->backing_object) != NULL) {
2425 if (bbobj->type == OBJT_VNODE)
2426 vm_object_hold_shared(bbobj);
2427 else
2428 vm_object_hold(bbobj);
2429 if (bbobj == backing_object->backing_object)
2430 break;
2431 vm_object_drop(bbobj);
2435 * Make object shadow bbobj instead of backing_object.
2436 * Remove object from backing_object's shadow list.
2438 * Deallocating backing_object will not remove
2439 * it, since its reference count is at least 2.
2441 * Removing object from backing_object's shadow
2442 * list requires releasing a ref, which we do
2443 * below by setting dodealloc to 1.
2445 KKASSERT(object->backing_object == backing_object);
2446 if (object->flags & OBJ_ONSHADOW) {
2447 LIST_REMOVE(object, shadow_list);
2448 backing_object->shadow_count--;
2449 backing_object->generation++;
2450 vm_object_clear_flag(object, OBJ_ONSHADOW);
2454 * Add a ref to bbobj, bbobj now shadows object.
2456 * NOTE: backing_object->backing_object still points
2457 * to bbobj. That relationship remains intact
2458 * because backing_object has > 1 ref, so
2459 * someone else is pointing to it (hence why
2460 * we can't collapse it into object and can
2461 * only handle the all-shadowed bypass case).
2463 if (bbobj) {
2464 if (bbobj->type != OBJT_VNODE) {
2465 vm_object_chain_wait(bbobj, 0);
2466 vm_object_reference_locked(bbobj);
2467 LIST_INSERT_HEAD(&bbobj->shadow_head,
2468 object, shadow_list);
2469 bbobj->shadow_count++;
2470 bbobj->generation++;
2471 vm_object_set_flag(object,
2472 OBJ_ONSHADOW);
2473 } else {
2474 vm_object_reference_quick(bbobj);
2476 object->backing_object_offset +=
2477 backing_object->backing_object_offset;
2478 object->backing_object = bbobj;
2479 vm_object_drop(bbobj);
2480 } else {
2481 object->backing_object = NULL;
2485 * Drop the reference count on backing_object. To
2486 * handle ref_count races properly we can't assume
2487 * that the ref_count is still at least 2 so we
2488 * have to actually call vm_object_deallocate()
2489 * (after clearing the chainlock).
2491 object_bypasses++;
2492 dodealloc = 1;
2496 * Ok, we want to loop on the new object->bbobj association,
2497 * possibly collapsing it further. However if dodealloc is
2498 * non-zero we have to deallocate the backing_object which
2499 * itself can potentially undergo a collapse, creating a
2500 * recursion depth issue with the LWKT token subsystem.
2502 * In the case where we must deallocate the backing_object
2503 * it is possible now that the backing_object has a single
2504 * shadow count on some other object (not represented here
2505 * as yet), since it no longer shadows us. Thus when we
2506 * call vm_object_deallocate() it may attempt to collapse
2507 * itself into its remaining parent.
2509 if (dodealloc) {
2510 struct vm_object_dealloc_list *dtmp;
2512 vm_object_chain_release(backing_object);
2513 vm_object_unlock(backing_object);
2514 /* backing_object remains held */
2517 * Auto-deallocation list for caller convenience.
2519 if (dlistp == NULL)
2520 dlistp = &dlist;
2522 dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2523 dtmp->object = backing_object;
2524 dtmp->next = *dlistp;
2525 *dlistp = dtmp;
2526 } else {
2527 vm_object_chain_release(backing_object);
2528 vm_object_drop(backing_object);
2530 /* backing_object = NULL; not needed */
2531 /* loop */
2535 * Clean up any left over backing_object
2537 if (backing_object) {
2538 vm_object_chain_release(backing_object);
2539 vm_object_drop(backing_object);
2543 * Clean up any auto-deallocation list. This is a convenience
2544 * for top-level callers so they don't have to pass &dlist.
2545 * Do not clean up any caller-passed dlistp, the caller will
2546 * do that.
2548 if (dlist)
2549 vm_object_deallocate_list(&dlist);
2554 * vm_object_collapse() may collect additional objects in need of
2555 * deallocation. This routine deallocates these objects. The
2556 * deallocation itself can trigger additional collapses (which the
2557 * deallocate function takes care of). This procedure is used to
2558 * reduce procedural recursion since these vm_object shadow chains
2559 * can become quite long.
2561 void
2562 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2564 struct vm_object_dealloc_list *dlist;
2566 while ((dlist = *dlistp) != NULL) {
2567 *dlistp = dlist->next;
2568 vm_object_lock(dlist->object);
2569 vm_object_deallocate_locked(dlist->object);
2570 vm_object_drop(dlist->object);
2571 kfree(dlist, M_TEMP);
2576 * Removes all physical pages in the specified object range from the
2577 * object's list of pages.
2579 * No requirements.
2581 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2583 void
2584 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2585 boolean_t clean_only)
2587 struct rb_vm_page_scan_info info;
2588 int all;
2591 * Degenerate cases and assertions
2593 vm_object_hold(object);
2594 if (object == NULL ||
2595 (object->resident_page_count == 0 && object->swblock_count == 0)) {
2596 vm_object_drop(object);
2597 return;
2599 KASSERT(object->type != OBJT_PHYS,
2600 ("attempt to remove pages from a physical object"));
2603 * Indicate that paging is occuring on the object
2605 vm_object_pip_add(object, 1);
2608 * Figure out the actual removal range and whether we are removing
2609 * the entire contents of the object or not. If removing the entire
2610 * contents, be sure to get all pages, even those that might be
2611 * beyond the end of the object.
2613 info.start_pindex = start;
2614 if (end == 0)
2615 info.end_pindex = (vm_pindex_t)-1;
2616 else
2617 info.end_pindex = end - 1;
2618 info.limit = clean_only;
2619 all = (start == 0 && info.end_pindex >= object->size - 1);
2622 * Loop until we are sure we have gotten them all.
2624 do {
2625 info.error = 0;
2626 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2627 vm_object_page_remove_callback, &info);
2628 } while (info.error);
2631 * Remove any related swap if throwing away pages, or for
2632 * non-swap objects (the swap is a clean copy in that case).
2634 if (object->type != OBJT_SWAP || clean_only == FALSE) {
2635 if (all)
2636 swap_pager_freespace_all(object);
2637 else
2638 swap_pager_freespace(object, info.start_pindex,
2639 info.end_pindex - info.start_pindex + 1);
2643 * Cleanup
2645 vm_object_pip_wakeup(object);
2646 vm_object_drop(object);
2650 * The caller must hold the object
2652 static int
2653 vm_object_page_remove_callback(vm_page_t p, void *data)
2655 struct rb_vm_page_scan_info *info = data;
2657 if (vm_page_busy_try(p, TRUE)) {
2658 vm_page_sleep_busy(p, TRUE, "vmopar");
2659 info->error = 1;
2660 return(0);
2664 * Wired pages cannot be destroyed, but they can be invalidated
2665 * and we do so if clean_only (limit) is not set.
2667 * WARNING! The page may be wired due to being part of a buffer
2668 * cache buffer, and the buffer might be marked B_CACHE.
2669 * This is fine as part of a truncation but VFSs must be
2670 * sure to fix the buffer up when re-extending the file.
2672 * NOTE! PG_NEED_COMMIT is ignored.
2674 if (p->wire_count != 0) {
2675 vm_page_protect(p, VM_PROT_NONE);
2676 if (info->limit == 0)
2677 p->valid = 0;
2678 vm_page_wakeup(p);
2679 return(0);
2683 * limit is our clean_only flag. If set and the page is dirty or
2684 * requires a commit, do not free it. If set and the page is being
2685 * held by someone, do not free it.
2687 if (info->limit && p->valid) {
2688 vm_page_test_dirty(p);
2689 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2690 vm_page_wakeup(p);
2691 return(0);
2696 * Destroy the page
2698 vm_page_protect(p, VM_PROT_NONE);
2699 vm_page_free(p);
2700 return(0);
2704 * Coalesces two objects backing up adjoining regions of memory into a
2705 * single object.
2707 * returns TRUE if objects were combined.
2709 * NOTE: Only works at the moment if the second object is NULL -
2710 * if it's not, which object do we lock first?
2712 * Parameters:
2713 * prev_object First object to coalesce
2714 * prev_offset Offset into prev_object
2715 * next_object Second object into coalesce
2716 * next_offset Offset into next_object
2718 * prev_size Size of reference to prev_object
2719 * next_size Size of reference to next_object
2721 * The caller does not need to hold (prev_object) but must have a stable
2722 * pointer to it (typically by holding the vm_map locked).
2724 boolean_t
2725 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2726 vm_size_t prev_size, vm_size_t next_size)
2728 vm_pindex_t next_pindex;
2730 if (prev_object == NULL)
2731 return (TRUE);
2733 vm_object_hold(prev_object);
2735 if (prev_object->type != OBJT_DEFAULT &&
2736 prev_object->type != OBJT_SWAP) {
2737 vm_object_drop(prev_object);
2738 return (FALSE);
2742 * Try to collapse the object first
2744 vm_object_chain_acquire(prev_object, 0);
2745 vm_object_collapse(prev_object, NULL);
2748 * Can't coalesce if: . more than one reference . paged out . shadows
2749 * another object . has a copy elsewhere (any of which mean that the
2750 * pages not mapped to prev_entry may be in use anyway)
2753 if (prev_object->backing_object != NULL) {
2754 vm_object_chain_release(prev_object);
2755 vm_object_drop(prev_object);
2756 return (FALSE);
2759 prev_size >>= PAGE_SHIFT;
2760 next_size >>= PAGE_SHIFT;
2761 next_pindex = prev_pindex + prev_size;
2763 if ((prev_object->ref_count > 1) &&
2764 (prev_object->size != next_pindex)) {
2765 vm_object_chain_release(prev_object);
2766 vm_object_drop(prev_object);
2767 return (FALSE);
2771 * Remove any pages that may still be in the object from a previous
2772 * deallocation.
2774 if (next_pindex < prev_object->size) {
2775 vm_object_page_remove(prev_object,
2776 next_pindex,
2777 next_pindex + next_size, FALSE);
2778 if (prev_object->type == OBJT_SWAP)
2779 swap_pager_freespace(prev_object,
2780 next_pindex, next_size);
2784 * Extend the object if necessary.
2786 if (next_pindex + next_size > prev_object->size)
2787 prev_object->size = next_pindex + next_size;
2789 vm_object_chain_release(prev_object);
2790 vm_object_drop(prev_object);
2791 return (TRUE);
2795 * Make the object writable and flag is being possibly dirty.
2797 * The object might not be held (or might be held but held shared),
2798 * the related vnode is probably not held either. Object and vnode are
2799 * stable by virtue of the vm_page busied by the caller preventing
2800 * destruction.
2802 * If the related mount is flagged MNTK_THR_SYNC we need to call
2803 * vsetobjdirty(). Filesystems using this option usually shortcut
2804 * synchronization by only scanning the syncer list.
2806 void
2807 vm_object_set_writeable_dirty(vm_object_t object)
2809 struct vnode *vp;
2811 /*vm_object_assert_held(object);*/
2813 * Avoid contention in vm fault path by checking the state before
2814 * issuing an atomic op on it.
2816 if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2817 (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2818 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2820 if (object->type == OBJT_VNODE &&
2821 (vp = (struct vnode *)object->handle) != NULL) {
2822 if ((vp->v_flag & VOBJDIRTY) == 0) {
2823 if (vp->v_mount &&
2824 (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2826 * New style THR_SYNC places vnodes on the
2827 * syncer list more deterministically.
2829 vsetobjdirty(vp);
2830 } else {
2832 * Old style scan would not necessarily place
2833 * a vnode on the syncer list when possibly
2834 * modified via mmap.
2836 vsetflags(vp, VOBJDIRTY);
2842 #include "opt_ddb.h"
2843 #ifdef DDB
2844 #include <sys/kernel.h>
2846 #include <sys/cons.h>
2848 #include <ddb/ddb.h>
2850 static int _vm_object_in_map (vm_map_t map, vm_object_t object,
2851 vm_map_entry_t entry);
2852 static int vm_object_in_map (vm_object_t object);
2855 * The caller must hold the object.
2857 static int
2858 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2860 vm_map_t tmpm;
2861 vm_map_entry_t tmpe;
2862 vm_object_t obj, nobj;
2863 int entcount;
2865 if (map == 0)
2866 return 0;
2867 if (entry == 0) {
2868 tmpe = map->header.next;
2869 entcount = map->nentries;
2870 while (entcount-- && (tmpe != &map->header)) {
2871 if( _vm_object_in_map(map, object, tmpe)) {
2872 return 1;
2874 tmpe = tmpe->next;
2876 return (0);
2878 switch(entry->maptype) {
2879 case VM_MAPTYPE_SUBMAP:
2880 tmpm = entry->object.sub_map;
2881 tmpe = tmpm->header.next;
2882 entcount = tmpm->nentries;
2883 while (entcount-- && tmpe != &tmpm->header) {
2884 if( _vm_object_in_map(tmpm, object, tmpe)) {
2885 return 1;
2887 tmpe = tmpe->next;
2889 break;
2890 case VM_MAPTYPE_NORMAL:
2891 case VM_MAPTYPE_VPAGETABLE:
2892 obj = entry->object.vm_object;
2893 while (obj) {
2894 if (obj == object) {
2895 if (obj != entry->object.vm_object)
2896 vm_object_drop(obj);
2897 return 1;
2899 while ((nobj = obj->backing_object) != NULL) {
2900 vm_object_hold(nobj);
2901 if (nobj == obj->backing_object)
2902 break;
2903 vm_object_drop(nobj);
2905 if (obj != entry->object.vm_object) {
2906 if (nobj)
2907 vm_object_lock_swap();
2908 vm_object_drop(obj);
2910 obj = nobj;
2912 break;
2913 default:
2914 break;
2916 return 0;
2919 static int vm_object_in_map_callback(struct proc *p, void *data);
2921 struct vm_object_in_map_info {
2922 vm_object_t object;
2923 int rv;
2927 * Debugging only
2929 static int
2930 vm_object_in_map(vm_object_t object)
2932 struct vm_object_in_map_info info;
2934 info.rv = 0;
2935 info.object = object;
2937 allproc_scan(vm_object_in_map_callback, &info);
2938 if (info.rv)
2939 return 1;
2940 if( _vm_object_in_map(&kernel_map, object, 0))
2941 return 1;
2942 if( _vm_object_in_map(&pager_map, object, 0))
2943 return 1;
2944 if( _vm_object_in_map(&buffer_map, object, 0))
2945 return 1;
2946 return 0;
2950 * Debugging only
2952 static int
2953 vm_object_in_map_callback(struct proc *p, void *data)
2955 struct vm_object_in_map_info *info = data;
2957 if (p->p_vmspace) {
2958 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2959 info->rv = 1;
2960 return -1;
2963 return (0);
2966 DB_SHOW_COMMAND(vmochk, vm_object_check)
2968 vm_object_t object;
2969 int n;
2972 * make sure that internal objs are in a map somewhere
2973 * and none have zero ref counts.
2975 for (n = 0; n < VMOBJ_HSIZE; ++n) {
2976 for (object = TAILQ_FIRST(&vm_object_lists[n]);
2977 object != NULL;
2978 object = TAILQ_NEXT(object, object_list)) {
2979 if (object->type == OBJT_MARKER)
2980 continue;
2981 if (object->handle != NULL ||
2982 (object->type != OBJT_DEFAULT &&
2983 object->type != OBJT_SWAP)) {
2984 continue;
2986 if (object->ref_count == 0) {
2987 db_printf("vmochk: internal obj has "
2988 "zero ref count: %ld\n",
2989 (long)object->size);
2991 if (vm_object_in_map(object))
2992 continue;
2993 db_printf("vmochk: internal obj is not in a map: "
2994 "ref: %d, size: %lu: 0x%lx, "
2995 "backing_object: %p\n",
2996 object->ref_count, (u_long)object->size,
2997 (u_long)object->size,
2998 (void *)object->backing_object);
3004 * Debugging only
3006 DB_SHOW_COMMAND(object, vm_object_print_static)
3008 /* XXX convert args. */
3009 vm_object_t object = (vm_object_t)addr;
3010 boolean_t full = have_addr;
3012 vm_page_t p;
3014 /* XXX count is an (unused) arg. Avoid shadowing it. */
3015 #define count was_count
3017 int count;
3019 if (object == NULL)
3020 return;
3022 db_iprintf(
3023 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
3024 object, (int)object->type, (u_long)object->size,
3025 object->resident_page_count, object->ref_count, object->flags);
3027 * XXX no %qd in kernel. Truncate object->backing_object_offset.
3029 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
3030 object->shadow_count,
3031 object->backing_object ? object->backing_object->ref_count : 0,
3032 object->backing_object, (long)object->backing_object_offset);
3034 if (!full)
3035 return;
3037 db_indent += 2;
3038 count = 0;
3039 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3040 if (count == 0)
3041 db_iprintf("memory:=");
3042 else if (count == 6) {
3043 db_printf("\n");
3044 db_iprintf(" ...");
3045 count = 0;
3046 } else
3047 db_printf(",");
3048 count++;
3050 db_printf("(off=0x%lx,page=0x%lx)",
3051 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3053 if (count != 0)
3054 db_printf("\n");
3055 db_indent -= 2;
3058 /* XXX. */
3059 #undef count
3062 * XXX need this non-static entry for calling from vm_map_print.
3064 * Debugging only
3066 void
3067 vm_object_print(/* db_expr_t */ long addr,
3068 boolean_t have_addr,
3069 /* db_expr_t */ long count,
3070 char *modif)
3072 vm_object_print_static(addr, have_addr, count, modif);
3076 * Debugging only
3078 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3080 vm_object_t object;
3081 int nl = 0;
3082 int c;
3083 int n;
3085 for (n = 0; n < VMOBJ_HSIZE; ++n) {
3086 for (object = TAILQ_FIRST(&vm_object_lists[n]);
3087 object != NULL;
3088 object = TAILQ_NEXT(object, object_list)) {
3089 vm_pindex_t idx, fidx;
3090 vm_pindex_t osize;
3091 vm_paddr_t pa = -1, padiff;
3092 int rcount;
3093 vm_page_t m;
3095 if (object->type == OBJT_MARKER)
3096 continue;
3097 db_printf("new object: %p\n", (void *)object);
3098 if ( nl > 18) {
3099 c = cngetc();
3100 if (c != ' ')
3101 return;
3102 nl = 0;
3104 nl++;
3105 rcount = 0;
3106 fidx = 0;
3107 osize = object->size;
3108 if (osize > 128)
3109 osize = 128;
3110 for (idx = 0; idx < osize; idx++) {
3111 m = vm_page_lookup(object, idx);
3112 if (m == NULL) {
3113 if (rcount) {
3114 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3115 (long)fidx, rcount, (long)pa);
3116 if ( nl > 18) {
3117 c = cngetc();
3118 if (c != ' ')
3119 return;
3120 nl = 0;
3122 nl++;
3123 rcount = 0;
3125 continue;
3128 if (rcount &&
3129 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3130 ++rcount;
3131 continue;
3133 if (rcount) {
3134 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3135 padiff >>= PAGE_SHIFT;
3136 padiff &= PQ_L2_MASK;
3137 if (padiff == 0) {
3138 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3139 ++rcount;
3140 continue;
3142 db_printf(" index(%ld)run(%d)pa(0x%lx)",
3143 (long)fidx, rcount, (long)pa);
3144 db_printf("pd(%ld)\n", (long)padiff);
3145 if ( nl > 18) {
3146 c = cngetc();
3147 if (c != ' ')
3148 return;
3149 nl = 0;
3151 nl++;
3153 fidx = idx;
3154 pa = VM_PAGE_TO_PHYS(m);
3155 rcount = 1;
3157 if (rcount) {
3158 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3159 (long)fidx, rcount, (long)pa);
3160 if ( nl > 18) {
3161 c = cngetc();
3162 if (c != ' ')
3163 return;
3164 nl = 0;
3166 nl++;
3171 #endif /* DDB */