2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
64 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65 * $DragonFly: src/sys/vm/vm_object.c,v 1.33 2008/05/09 07:24:48 dillon Exp $
69 * Virtual memory object module.
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h> /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
83 #include <vm/vm_param.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
95 #define EASY_SCAN_FACTOR 8
97 static void vm_object_qcollapse(vm_object_t object
);
98 static int vm_object_page_collect_flush(vm_object_t object
, vm_page_t p
,
102 * Virtual memory objects maintain the actual data
103 * associated with allocated virtual memory. A given
104 * page of memory exists within exactly one object.
106 * An object is only deallocated when all "references"
107 * are given up. Only one "reference" to a given
108 * region of an object should be writeable.
110 * Associated with each object is a list of all resident
111 * memory pages belonging to that object; this list is
112 * maintained by the "vm_page" module, and locked by the object's
115 * Each object also records a "pager" routine which is
116 * used to retrieve (and store) pages to the proper backing
117 * storage. In addition, objects may be backed by other
118 * objects from which they were virtual-copied.
120 * The only items within the object structure which are
121 * modified after time of creation are:
122 * reference count locked by object's lock
123 * pager routine locked by object's lock
127 struct object_q vm_object_list
;
128 struct vm_object kernel_object
;
130 static long vm_object_count
; /* count of all objects */
131 extern int vm_pageout_page_count
;
133 static long object_collapses
;
134 static long object_bypasses
;
135 static int next_index
;
136 static vm_zone_t obj_zone
;
137 static struct vm_zone obj_zone_store
;
138 static int object_hash_rand
;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init
[VM_OBJECTS_INIT
];
143 _vm_object_allocate(objtype_t type
, vm_size_t size
, vm_object_t object
)
146 RB_INIT(&object
->rb_memq
);
147 LIST_INIT(&object
->shadow_head
);
151 object
->ref_count
= 1;
153 if ((object
->type
== OBJT_DEFAULT
) || (object
->type
== OBJT_SWAP
))
154 vm_object_set_flag(object
, OBJ_ONEMAPPING
);
155 object
->paging_in_progress
= 0;
156 object
->resident_page_count
= 0;
157 object
->shadow_count
= 0;
158 object
->pg_color
= next_index
;
159 if ( size
> (PQ_L2_SIZE
/ 3 + PQ_PRIME1
))
160 incr
= PQ_L2_SIZE
/ 3 + PQ_PRIME1
;
163 next_index
= (next_index
+ incr
) & PQ_L2_MASK
;
164 object
->handle
= NULL
;
165 object
->backing_object
= NULL
;
166 object
->backing_object_offset
= (vm_ooffset_t
) 0;
168 * Try to generate a number that will spread objects out in the
169 * hash table. We 'wipe' new objects across the hash in 128 page
170 * increments plus 1 more to offset it a little more by the time
173 object
->hash_rand
= object_hash_rand
- 129;
175 object
->generation
++;
178 TAILQ_INSERT_TAIL(&vm_object_list
, object
, object_list
);
180 object_hash_rand
= object
->hash_rand
;
187 * Initialize the VM objects module.
192 TAILQ_INIT(&vm_object_list
);
194 _vm_object_allocate(OBJT_DEFAULT
, OFF_TO_IDX(KvaEnd
),
197 obj_zone
= &obj_zone_store
;
198 zbootinit(obj_zone
, "VM OBJECT", sizeof (struct vm_object
),
199 vm_objects_init
, VM_OBJECTS_INIT
);
203 vm_object_init2(void)
205 zinitna(obj_zone
, NULL
, NULL
, 0, 0, ZONE_PANICFAIL
, 1);
209 * vm_object_allocate:
211 * Returns a new object with the given size.
215 vm_object_allocate(objtype_t type
, vm_size_t size
)
219 result
= (vm_object_t
) zalloc(obj_zone
);
221 _vm_object_allocate(type
, size
, result
);
228 * vm_object_reference:
230 * Gets another reference to the given object.
233 vm_object_reference(vm_object_t object
)
239 if (object
->type
== OBJT_VNODE
) {
240 vref(object
->handle
);
241 /* XXX what if the vnode is being destroyed? */
246 vm_object_vndeallocate(vm_object_t object
)
248 struct vnode
*vp
= (struct vnode
*) object
->handle
;
250 KASSERT(object
->type
== OBJT_VNODE
,
251 ("vm_object_vndeallocate: not a vnode object"));
252 KASSERT(vp
!= NULL
, ("vm_object_vndeallocate: missing vp"));
254 if (object
->ref_count
== 0) {
255 vprint("vm_object_vndeallocate", vp
);
256 panic("vm_object_vndeallocate: bad object reference count");
261 if (object
->ref_count
== 0)
262 vp
->v_flag
&= ~VTEXT
;
267 * vm_object_deallocate:
269 * Release a reference to the specified object,
270 * gained either through a vm_object_allocate
271 * or a vm_object_reference call. When all references
272 * are gone, storage associated with this object
273 * may be relinquished.
275 * No object may be locked.
278 vm_object_deallocate(vm_object_t object
)
282 while (object
!= NULL
) {
283 if (object
->type
== OBJT_VNODE
) {
284 vm_object_vndeallocate(object
);
288 if (object
->ref_count
== 0) {
289 panic("vm_object_deallocate: object deallocated too many times: %d", object
->type
);
290 } else if (object
->ref_count
> 2) {
296 * Here on ref_count of one or two, which are special cases for
299 if ((object
->ref_count
== 2) && (object
->shadow_count
== 0)) {
300 vm_object_set_flag(object
, OBJ_ONEMAPPING
);
303 } else if ((object
->ref_count
== 2) && (object
->shadow_count
== 1)) {
305 if ((object
->handle
== NULL
) &&
306 (object
->type
== OBJT_DEFAULT
||
307 object
->type
== OBJT_SWAP
)) {
310 robject
= LIST_FIRST(&object
->shadow_head
);
311 KASSERT(robject
!= NULL
,
312 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
314 object
->shadow_count
));
315 if ((robject
->handle
== NULL
) &&
316 (robject
->type
== OBJT_DEFAULT
||
317 robject
->type
== OBJT_SWAP
)) {
319 robject
->ref_count
++;
322 robject
->paging_in_progress
||
323 object
->paging_in_progress
325 vm_object_pip_sleep(robject
, "objde1");
326 vm_object_pip_sleep(object
, "objde2");
329 if (robject
->ref_count
== 1) {
330 robject
->ref_count
--;
336 vm_object_collapse(object
);
345 if (object
->ref_count
!= 0)
351 temp
= object
->backing_object
;
353 LIST_REMOVE(object
, shadow_list
);
354 temp
->shadow_count
--;
356 object
->backing_object
= NULL
;
360 * Don't double-terminate, we could be in a termination
361 * recursion due to the terminate having to sync data
364 if ((object
->flags
& OBJ_DEAD
) == 0)
365 vm_object_terminate(object
);
371 * vm_object_terminate actually destroys the specified object, freeing
372 * up all previously used resources.
374 * The object must be locked.
375 * This routine may block.
377 static int vm_object_terminate_callback(vm_page_t p
, void *data
);
380 vm_object_terminate(vm_object_t object
)
383 * Make sure no one uses us.
385 vm_object_set_flag(object
, OBJ_DEAD
);
388 * wait for the pageout daemon to be done with the object
390 vm_object_pip_wait(object
, "objtrm");
392 KASSERT(!object
->paging_in_progress
,
393 ("vm_object_terminate: pageout in progress"));
396 * Clean and free the pages, as appropriate. All references to the
397 * object are gone, so we don't need to lock it.
399 if (object
->type
== OBJT_VNODE
) {
403 * Clean pages and flush buffers.
405 vm_object_page_clean(object
, 0, 0, OBJPC_SYNC
);
407 vp
= (struct vnode
*) object
->handle
;
408 vinvalbuf(vp
, V_SAVE
, 0, 0);
412 * Wait for any I/O to complete, after which there had better not
413 * be any references left on the object.
415 vm_object_pip_wait(object
, "objtrm");
417 if (object
->ref_count
!= 0)
418 panic("vm_object_terminate: object with references, ref_count=%d", object
->ref_count
);
421 * Now free any remaining pages. For internal objects, this also
422 * removes them from paging queues. Don't free wired pages, just
423 * remove them from the object.
426 vm_page_rb_tree_RB_SCAN(&object
->rb_memq
, NULL
,
427 vm_object_terminate_callback
, NULL
);
431 * Let the pager know object is dead.
433 vm_pager_deallocate(object
);
436 * Remove the object from the global object list.
439 TAILQ_REMOVE(&vm_object_list
, object
, object_list
);
443 vm_object_dead_wakeup(object
);
444 if (object
->ref_count
!= 0)
445 panic("vm_object_terminate2: object with references, ref_count=%d", object
->ref_count
);
448 * Free the space for the object.
450 zfree(obj_zone
, object
);
454 vm_object_terminate_callback(vm_page_t p
, void *data __unused
)
456 if (p
->busy
|| (p
->flags
& PG_BUSY
))
457 panic("vm_object_terminate: freeing busy page %p", p
);
458 if (p
->wire_count
== 0) {
461 mycpu
->gd_cnt
.v_pfree
++;
463 if (p
->queue
!= PQ_NONE
)
464 kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p
, p
->queue
);
473 * The object is dead but still has an object<->pager association. Sleep
474 * and return. The caller typically retests the association in a loop.
477 vm_object_dead_sleep(vm_object_t object
, const char *wmesg
)
480 if (object
->handle
) {
481 vm_object_set_flag(object
, OBJ_DEADWNT
);
482 tsleep(object
, 0, wmesg
, 0);
488 * Wakeup anyone waiting for the object<->pager disassociation on
492 vm_object_dead_wakeup(vm_object_t object
)
494 if (object
->flags
& OBJ_DEADWNT
) {
495 vm_object_clear_flag(object
, OBJ_DEADWNT
);
501 * vm_object_page_clean
503 * Clean all dirty pages in the specified range of object. Leaves page
504 * on whatever queue it is currently on. If NOSYNC is set then do not
505 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
506 * leaving the object dirty.
508 * When stuffing pages asynchronously, allow clustering. XXX we need a
509 * synchronous clustering mode implementation.
511 * Odd semantics: if start == end, we clean everything.
513 static int vm_object_page_clean_pass1(struct vm_page
*p
, void *data
);
514 static int vm_object_page_clean_pass2(struct vm_page
*p
, void *data
);
517 vm_object_page_clean(vm_object_t object
, vm_pindex_t start
, vm_pindex_t end
,
520 struct rb_vm_page_scan_info info
;
526 if (object
->type
!= OBJT_VNODE
||
527 (object
->flags
& OBJ_MIGHTBEDIRTY
) == 0)
530 pagerflags
= (flags
& (OBJPC_SYNC
| OBJPC_INVAL
)) ?
531 VM_PAGER_PUT_SYNC
: VM_PAGER_CLUSTER_OK
;
532 pagerflags
|= (flags
& OBJPC_INVAL
) ? VM_PAGER_PUT_INVAL
: 0;
537 * Interlock other major object operations. This allows us to
538 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
541 vm_object_set_flag(object
, OBJ_CLEANING
);
544 * Handle 'entire object' case
546 info
.start_pindex
= start
;
548 info
.end_pindex
= object
->size
- 1;
550 info
.end_pindex
= end
- 1;
552 wholescan
= (start
== 0 && info
.end_pindex
== object
->size
- 1);
554 info
.pagerflags
= pagerflags
;
555 info
.object
= object
;
558 * If cleaning the entire object do a pass to mark the pages read-only.
559 * If everything worked out ok, clear OBJ_WRITEABLE and
564 vm_page_rb_tree_RB_SCAN(&object
->rb_memq
, rb_vm_page_scancmp
,
565 vm_object_page_clean_pass1
, &info
);
566 if (info
.error
== 0) {
567 vm_object_clear_flag(object
,
568 OBJ_WRITEABLE
|OBJ_MIGHTBEDIRTY
);
569 if (object
->type
== OBJT_VNODE
&&
570 (vp
= (struct vnode
*)object
->handle
) != NULL
) {
571 if (vp
->v_flag
& VOBJDIRTY
)
572 vclrflags(vp
, VOBJDIRTY
);
578 * Do a pass to clean all the dirty pages we find.
582 curgeneration
= object
->generation
;
583 vm_page_rb_tree_RB_SCAN(&object
->rb_memq
, rb_vm_page_scancmp
,
584 vm_object_page_clean_pass2
, &info
);
585 } while (info
.error
|| curgeneration
!= object
->generation
);
587 vm_object_clear_flag(object
, OBJ_CLEANING
);
593 vm_object_page_clean_pass1(struct vm_page
*p
, void *data
)
595 struct rb_vm_page_scan_info
*info
= data
;
597 vm_page_flag_set(p
, PG_CLEANCHK
);
598 if ((info
->limit
& OBJPC_NOSYNC
) && (p
->flags
& PG_NOSYNC
))
601 vm_page_protect(p
, VM_PROT_READ
); /* must not block */
607 vm_object_page_clean_pass2(struct vm_page
*p
, void *data
)
609 struct rb_vm_page_scan_info
*info
= data
;
613 * Do not mess with pages that were inserted after we started
616 if ((p
->flags
& PG_CLEANCHK
) == 0)
620 * Before wasting time traversing the pmaps, check for trivial
621 * cases where the page cannot be dirty.
623 if (p
->valid
== 0 || (p
->queue
- p
->pc
) == PQ_CACHE
) {
624 KKASSERT((p
->dirty
& p
->valid
) == 0);
629 * Check whether the page is dirty or not. The page has been set
630 * to be read-only so the check will not race a user dirtying the
633 vm_page_test_dirty(p
);
634 if ((p
->dirty
& p
->valid
) == 0) {
635 vm_page_flag_clear(p
, PG_CLEANCHK
);
640 * If we have been asked to skip nosync pages and this is a
641 * nosync page, skip it. Note that the object flags were
642 * not cleared in this case (because pass1 will have returned an
643 * error), so we do not have to set them.
645 if ((info
->limit
& OBJPC_NOSYNC
) && (p
->flags
& PG_NOSYNC
)) {
646 vm_page_flag_clear(p
, PG_CLEANCHK
);
651 * Flush as many pages as we can. PG_CLEANCHK will be cleared on
652 * the pages that get successfully flushed. Set info->error if
653 * we raced an object modification.
655 n
= vm_object_page_collect_flush(info
->object
, p
, info
->pagerflags
);
662 * This routine must be called within a critical section to properly avoid
663 * an interrupt unbusy/free race that can occur prior to the busy check.
665 * Using the object generation number here to detect page ripout is not
666 * the best idea in the world. XXX
668 * NOTE: we operate under the assumption that a page found to not be busy
669 * will not be ripped out from under us by an interrupt. XXX we should
670 * recode this to explicitly busy the pages.
673 vm_object_page_collect_flush(vm_object_t object
, vm_page_t p
, int pagerflags
)
682 vm_page_t maf
[vm_pageout_page_count
];
683 vm_page_t mab
[vm_pageout_page_count
];
684 vm_page_t ma
[vm_pageout_page_count
];
686 curgeneration
= object
->generation
;
689 while (vm_page_sleep_busy(p
, TRUE
, "vpcwai")) {
690 if (object
->generation
!= curgeneration
) {
694 KKASSERT(p
->object
== object
&& p
->pindex
== pi
);
697 for(i
= 1; i
< vm_pageout_page_count
; i
++) {
700 if ((tp
= vm_page_lookup(object
, pi
+ i
)) != NULL
) {
701 if ((tp
->flags
& PG_BUSY
) ||
702 ((pagerflags
& VM_PAGER_IGNORE_CLEANCHK
) == 0 &&
703 (tp
->flags
& PG_CLEANCHK
) == 0) ||
706 if((tp
->queue
- tp
->pc
) == PQ_CACHE
) {
707 vm_page_flag_clear(tp
, PG_CLEANCHK
);
710 vm_page_test_dirty(tp
);
711 if ((tp
->dirty
& tp
->valid
) == 0) {
712 vm_page_flag_clear(tp
, PG_CLEANCHK
);
723 chkb
= vm_pageout_page_count
- maxf
;
725 for(i
= 1; i
< chkb
;i
++) {
728 if ((tp
= vm_page_lookup(object
, pi
- i
)) != NULL
) {
729 if ((tp
->flags
& PG_BUSY
) ||
730 ((pagerflags
& VM_PAGER_IGNORE_CLEANCHK
) == 0 &&
731 (tp
->flags
& PG_CLEANCHK
) == 0) ||
734 if((tp
->queue
- tp
->pc
) == PQ_CACHE
) {
735 vm_page_flag_clear(tp
, PG_CLEANCHK
);
738 vm_page_test_dirty(tp
);
739 if ((tp
->dirty
& tp
->valid
) == 0) {
740 vm_page_flag_clear(tp
, PG_CLEANCHK
);
751 for(i
= 0; i
< maxb
; i
++) {
752 int index
= (maxb
- i
) - 1;
754 vm_page_flag_clear(ma
[index
], PG_CLEANCHK
);
756 vm_page_flag_clear(p
, PG_CLEANCHK
);
758 for(i
= 0; i
< maxf
; i
++) {
759 int index
= (maxb
+ i
) + 1;
761 vm_page_flag_clear(ma
[index
], PG_CLEANCHK
);
763 runlen
= maxb
+ maxf
+ 1;
765 vm_pageout_flush(ma
, runlen
, pagerflags
);
766 for (i
= 0; i
< runlen
; i
++) {
767 if (ma
[i
]->valid
& ma
[i
]->dirty
) {
768 vm_page_protect(ma
[i
], VM_PROT_READ
);
769 vm_page_flag_set(ma
[i
], PG_CLEANCHK
);
772 * maxf will end up being the actual number of pages
773 * we wrote out contiguously, non-inclusive of the
774 * first page. We do not count look-behind pages.
776 if (i
>= maxb
+ 1 && (maxf
> i
- maxb
- 1))
784 /* XXX I cannot tell if this should be an exported symbol */
786 * vm_object_deactivate_pages
788 * Deactivate all pages in the specified object. (Keep its pages
789 * in memory even though it is no longer referenced.)
791 * The object must be locked.
793 static int vm_object_deactivate_pages_callback(vm_page_t p
, void *data
);
796 vm_object_deactivate_pages(vm_object_t object
)
799 vm_page_rb_tree_RB_SCAN(&object
->rb_memq
, NULL
,
800 vm_object_deactivate_pages_callback
, NULL
);
805 vm_object_deactivate_pages_callback(vm_page_t p
, void *data __unused
)
807 vm_page_deactivate(p
);
814 * Same as vm_object_pmap_copy, except range checking really
815 * works, and is meant for small sections of an object.
817 * This code protects resident pages by making them read-only
818 * and is typically called on a fork or split when a page
819 * is converted to copy-on-write.
821 * NOTE: If the page is already at VM_PROT_NONE, calling
822 * vm_page_protect will have no effect.
825 vm_object_pmap_copy_1(vm_object_t object
, vm_pindex_t start
, vm_pindex_t end
)
830 if (object
== NULL
|| (object
->flags
& OBJ_WRITEABLE
) == 0)
834 * spl protection needed to prevent races between the lookup,
835 * an interrupt unbusy/free, and our protect call.
838 for (idx
= start
; idx
< end
; idx
++) {
839 p
= vm_page_lookup(object
, idx
);
842 vm_page_protect(p
, VM_PROT_READ
);
848 * vm_object_pmap_remove:
850 * Removes all physical pages in the specified
851 * object range from all physical maps.
853 * The object must *not* be locked.
856 static int vm_object_pmap_remove_callback(vm_page_t p
, void *data
);
859 vm_object_pmap_remove(vm_object_t object
, vm_pindex_t start
, vm_pindex_t end
)
861 struct rb_vm_page_scan_info info
;
865 info
.start_pindex
= start
;
866 info
.end_pindex
= end
- 1;
868 vm_page_rb_tree_RB_SCAN(&object
->rb_memq
, rb_vm_page_scancmp
,
869 vm_object_pmap_remove_callback
, &info
);
870 if (start
== 0 && end
== object
->size
)
871 vm_object_clear_flag(object
, OBJ_WRITEABLE
);
876 vm_object_pmap_remove_callback(vm_page_t p
, void *data __unused
)
878 vm_page_protect(p
, VM_PROT_NONE
);
885 * Implements the madvise function at the object/page level.
887 * MADV_WILLNEED (any object)
889 * Activate the specified pages if they are resident.
891 * MADV_DONTNEED (any object)
893 * Deactivate the specified pages if they are resident.
895 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
896 * OBJ_ONEMAPPING only)
898 * Deactivate and clean the specified pages if they are
899 * resident. This permits the process to reuse the pages
900 * without faulting or the kernel to reclaim the pages
904 vm_object_madvise(vm_object_t object
, vm_pindex_t pindex
, int count
, int advise
)
906 vm_pindex_t end
, tpindex
;
913 end
= pindex
+ count
;
916 * Locate and adjust resident pages
919 for (; pindex
< end
; pindex
+= 1) {
925 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
926 * and those pages must be OBJ_ONEMAPPING.
928 if (advise
== MADV_FREE
) {
929 if ((tobject
->type
!= OBJT_DEFAULT
&&
930 tobject
->type
!= OBJT_SWAP
) ||
931 (tobject
->flags
& OBJ_ONEMAPPING
) == 0) {
937 * spl protection is required to avoid a race between the
938 * lookup, an interrupt unbusy/free, and our busy check.
942 m
= vm_page_lookup(tobject
, tpindex
);
946 * There may be swap even if there is no backing page
948 if (advise
== MADV_FREE
&& tobject
->type
== OBJT_SWAP
)
949 swap_pager_freespace(tobject
, tpindex
, 1);
955 if (tobject
->backing_object
== NULL
)
957 tpindex
+= OFF_TO_IDX(tobject
->backing_object_offset
);
958 tobject
= tobject
->backing_object
;
963 * If the page is busy or not in a normal active state,
964 * we skip it. If the page is not managed there are no
965 * page queues to mess with. Things can break if we mess
966 * with pages in any of the below states.
971 (m
->flags
& PG_UNMANAGED
) ||
972 m
->valid
!= VM_PAGE_BITS_ALL
978 if (vm_page_sleep_busy(m
, TRUE
, "madvpo")) {
985 * Theoretically once a page is known not to be busy, an
986 * interrupt cannot come along and rip it out from under us.
989 if (advise
== MADV_WILLNEED
) {
991 } else if (advise
== MADV_DONTNEED
) {
993 } else if (advise
== MADV_FREE
) {
995 * Mark the page clean. This will allow the page
996 * to be freed up by the system. However, such pages
997 * are often reused quickly by malloc()/free()
998 * so we do not do anything that would cause
999 * a page fault if we can help it.
1001 * Specifically, we do not try to actually free
1002 * the page now nor do we try to put it in the
1003 * cache (which would cause a page fault on reuse).
1005 * But we do make the page is freeable as we
1006 * can without actually taking the step of unmapping
1009 pmap_clear_modify(m
);
1012 vm_page_dontneed(m
);
1013 if (tobject
->type
== OBJT_SWAP
)
1014 swap_pager_freespace(tobject
, tpindex
, 1);
1022 * Create a new object which is backed by the
1023 * specified existing object range. The source
1024 * object reference is deallocated.
1026 * The new object and offset into that object
1027 * are returned in the source parameters.
1031 vm_object_shadow(vm_object_t
*object
, /* IN/OUT */
1032 vm_ooffset_t
*offset
, /* IN/OUT */
1041 * Don't create the new object if the old object isn't shared.
1044 if (source
!= NULL
&&
1045 source
->ref_count
== 1 &&
1046 source
->handle
== NULL
&&
1047 (source
->type
== OBJT_DEFAULT
||
1048 source
->type
== OBJT_SWAP
))
1052 * Allocate a new object with the given length
1055 if ((result
= vm_object_allocate(OBJT_DEFAULT
, length
)) == NULL
)
1056 panic("vm_object_shadow: no object for shadowing");
1059 * The new object shadows the source object, adding a reference to it.
1060 * Our caller changes his reference to point to the new object,
1061 * removing a reference to the source object. Net result: no change
1062 * of reference count.
1064 * Try to optimize the result object's page color when shadowing
1065 * in order to maintain page coloring consistency in the combined
1068 result
->backing_object
= source
;
1070 LIST_INSERT_HEAD(&source
->shadow_head
, result
, shadow_list
);
1071 source
->shadow_count
++;
1072 source
->generation
++;
1073 result
->pg_color
= (source
->pg_color
+ OFF_TO_IDX(*offset
)) & PQ_L2_MASK
;
1077 * Store the offset into the source object, and fix up the offset into
1081 result
->backing_object_offset
= *offset
;
1084 * Return the new things
1091 #define OBSC_TEST_ALL_SHADOWED 0x0001
1092 #define OBSC_COLLAPSE_NOWAIT 0x0002
1093 #define OBSC_COLLAPSE_WAIT 0x0004
1095 static int vm_object_backing_scan_callback(vm_page_t p
, void *data
);
1098 vm_object_backing_scan(vm_object_t object
, int op
)
1100 struct rb_vm_page_scan_info info
;
1101 vm_object_t backing_object
;
1104 * spl protection is required to avoid races between the memq/lookup,
1105 * an interrupt doing an unbusy/free, and our busy check. Amoung
1110 backing_object
= object
->backing_object
;
1111 info
.backing_offset_index
= OFF_TO_IDX(object
->backing_object_offset
);
1114 * Initial conditions
1117 if (op
& OBSC_TEST_ALL_SHADOWED
) {
1119 * We do not want to have to test for the existence of
1120 * swap pages in the backing object. XXX but with the
1121 * new swapper this would be pretty easy to do.
1123 * XXX what about anonymous MAP_SHARED memory that hasn't
1124 * been ZFOD faulted yet? If we do not test for this, the
1125 * shadow test may succeed! XXX
1127 if (backing_object
->type
!= OBJT_DEFAULT
) {
1132 if (op
& OBSC_COLLAPSE_WAIT
) {
1133 KKASSERT((backing_object
->flags
& OBJ_DEAD
) == 0);
1134 vm_object_set_flag(backing_object
, OBJ_DEAD
);
1138 * Our scan. We have to retry if a negative error code is returned,
1139 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that
1140 * the scan had to be stopped because the parent does not completely
1143 info
.object
= object
;
1144 info
.backing_object
= backing_object
;
1148 vm_page_rb_tree_RB_SCAN(&backing_object
->rb_memq
, NULL
,
1149 vm_object_backing_scan_callback
,
1151 } while (info
.error
< 0);
1157 vm_object_backing_scan_callback(vm_page_t p
, void *data
)
1159 struct rb_vm_page_scan_info
*info
= data
;
1160 vm_object_t backing_object
;
1162 vm_pindex_t new_pindex
;
1163 vm_pindex_t backing_offset_index
;
1166 new_pindex
= p
->pindex
- info
->backing_offset_index
;
1168 object
= info
->object
;
1169 backing_object
= info
->backing_object
;
1170 backing_offset_index
= info
->backing_offset_index
;
1172 if (op
& OBSC_TEST_ALL_SHADOWED
) {
1176 * Ignore pages outside the parent object's range
1177 * and outside the parent object's mapping of the
1180 * note that we do not busy the backing object's
1184 p
->pindex
< backing_offset_index
||
1185 new_pindex
>= object
->size
1191 * See if the parent has the page or if the parent's
1192 * object pager has the page. If the parent has the
1193 * page but the page is not valid, the parent's
1194 * object pager must have the page.
1196 * If this fails, the parent does not completely shadow
1197 * the object and we might as well give up now.
1200 pp
= vm_page_lookup(object
, new_pindex
);
1202 (pp
== NULL
|| pp
->valid
== 0) &&
1203 !vm_pager_has_page(object
, new_pindex
, NULL
, NULL
)
1205 info
->error
= 0; /* problemo */
1206 return(-1); /* stop the scan */
1211 * Check for busy page
1214 if (op
& (OBSC_COLLAPSE_WAIT
| OBSC_COLLAPSE_NOWAIT
)) {
1217 if (op
& OBSC_COLLAPSE_NOWAIT
) {
1219 (p
->flags
& PG_BUSY
) ||
1227 } else if (op
& OBSC_COLLAPSE_WAIT
) {
1228 if (vm_page_sleep_busy(p
, TRUE
, "vmocol")) {
1230 * If we slept, anything could have
1231 * happened. Ask that the scan be restarted.
1233 * Since the object is marked dead, the
1234 * backing offset should not have changed.
1247 p
->object
== backing_object
,
1248 ("vm_object_qcollapse(): object mismatch")
1252 * Destroy any associated swap
1254 if (backing_object
->type
== OBJT_SWAP
) {
1255 swap_pager_freespace(
1263 p
->pindex
< backing_offset_index
||
1264 new_pindex
>= object
->size
1267 * Page is out of the parent object's range, we
1268 * can simply destroy it.
1270 vm_page_protect(p
, VM_PROT_NONE
);
1275 pp
= vm_page_lookup(object
, new_pindex
);
1278 vm_pager_has_page(object
, new_pindex
, NULL
, NULL
)
1281 * page already exists in parent OR swap exists
1282 * for this location in the parent. Destroy
1283 * the original page from the backing object.
1285 * Leave the parent's page alone
1287 vm_page_protect(p
, VM_PROT_NONE
);
1293 * Page does not exist in parent, rename the
1294 * page from the backing object to the main object.
1296 * If the page was mapped to a process, it can remain
1297 * mapped through the rename.
1299 if ((p
->queue
- p
->pc
) == PQ_CACHE
)
1300 vm_page_deactivate(p
);
1302 vm_page_rename(p
, object
, new_pindex
);
1303 /* page automatically made dirty by rename */
1309 * this version of collapse allows the operation to occur earlier and
1310 * when paging_in_progress is true for an object... This is not a complete
1311 * operation, but should plug 99.9% of the rest of the leaks.
1314 vm_object_qcollapse(vm_object_t object
)
1316 vm_object_t backing_object
= object
->backing_object
;
1318 if (backing_object
->ref_count
!= 1)
1321 backing_object
->ref_count
+= 2;
1323 vm_object_backing_scan(object
, OBSC_COLLAPSE_NOWAIT
);
1325 backing_object
->ref_count
-= 2;
1329 * vm_object_collapse:
1331 * Collapse an object with the object backing it.
1332 * Pages in the backing object are moved into the
1333 * parent, and the backing object is deallocated.
1336 vm_object_collapse(vm_object_t object
)
1339 vm_object_t backing_object
;
1342 * Verify that the conditions are right for collapse:
1344 * The object exists and the backing object exists.
1349 if ((backing_object
= object
->backing_object
) == NULL
)
1353 * we check the backing object first, because it is most likely
1356 if (backing_object
->handle
!= NULL
||
1357 (backing_object
->type
!= OBJT_DEFAULT
&&
1358 backing_object
->type
!= OBJT_SWAP
) ||
1359 (backing_object
->flags
& OBJ_DEAD
) ||
1360 object
->handle
!= NULL
||
1361 (object
->type
!= OBJT_DEFAULT
&&
1362 object
->type
!= OBJT_SWAP
) ||
1363 (object
->flags
& OBJ_DEAD
)) {
1368 object
->paging_in_progress
!= 0 ||
1369 backing_object
->paging_in_progress
!= 0
1371 vm_object_qcollapse(object
);
1376 * We know that we can either collapse the backing object (if
1377 * the parent is the only reference to it) or (perhaps) have
1378 * the parent bypass the object if the parent happens to shadow
1379 * all the resident pages in the entire backing object.
1381 * This is ignoring pager-backed pages such as swap pages.
1382 * vm_object_backing_scan fails the shadowing test in this
1386 if (backing_object
->ref_count
== 1) {
1388 * If there is exactly one reference to the backing
1389 * object, we can collapse it into the parent.
1391 vm_object_backing_scan(object
, OBSC_COLLAPSE_WAIT
);
1394 * Move the pager from backing_object to object.
1397 if (backing_object
->type
== OBJT_SWAP
) {
1398 vm_object_pip_add(backing_object
, 1);
1401 * scrap the paging_offset junk and do a
1402 * discrete copy. This also removes major
1403 * assumptions about how the swap-pager
1404 * works from where it doesn't belong. The
1405 * new swapper is able to optimize the
1406 * destroy-source case.
1409 vm_object_pip_add(object
, 1);
1413 OFF_TO_IDX(object
->backing_object_offset
), TRUE
);
1414 vm_object_pip_wakeup(object
);
1416 vm_object_pip_wakeup(backing_object
);
1419 * Object now shadows whatever backing_object did.
1420 * Note that the reference to
1421 * backing_object->backing_object moves from within
1422 * backing_object to within object.
1425 LIST_REMOVE(object
, shadow_list
);
1426 object
->backing_object
->shadow_count
--;
1427 object
->backing_object
->generation
++;
1428 if (backing_object
->backing_object
) {
1429 LIST_REMOVE(backing_object
, shadow_list
);
1430 backing_object
->backing_object
->shadow_count
--;
1431 backing_object
->backing_object
->generation
++;
1433 object
->backing_object
= backing_object
->backing_object
;
1434 if (object
->backing_object
) {
1436 &object
->backing_object
->shadow_head
,
1440 object
->backing_object
->shadow_count
++;
1441 object
->backing_object
->generation
++;
1444 object
->backing_object_offset
+=
1445 backing_object
->backing_object_offset
;
1448 * Discard backing_object.
1450 * Since the backing object has no pages, no pager left,
1451 * and no object references within it, all that is
1452 * necessary is to dispose of it.
1455 KASSERT(backing_object
->ref_count
== 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object
));
1456 KASSERT(RB_EMPTY(&backing_object
->rb_memq
), ("backing_object %p somehow has left over pages during collapse!", backing_object
));
1466 zfree(obj_zone
, backing_object
);
1470 vm_object_t new_backing_object
;
1473 * If we do not entirely shadow the backing object,
1474 * there is nothing we can do so we give up.
1477 if (vm_object_backing_scan(object
, OBSC_TEST_ALL_SHADOWED
) == 0) {
1482 * Make the parent shadow the next object in the
1483 * chain. Deallocating backing_object will not remove
1484 * it, since its reference count is at least 2.
1487 LIST_REMOVE(object
, shadow_list
);
1488 backing_object
->shadow_count
--;
1489 backing_object
->generation
++;
1491 new_backing_object
= backing_object
->backing_object
;
1492 if ((object
->backing_object
= new_backing_object
) != NULL
) {
1493 vm_object_reference(new_backing_object
);
1495 &new_backing_object
->shadow_head
,
1499 new_backing_object
->shadow_count
++;
1500 new_backing_object
->generation
++;
1501 object
->backing_object_offset
+=
1502 backing_object
->backing_object_offset
;
1506 * Drop the reference count on backing_object. Since
1507 * its ref_count was at least 2, it will not vanish;
1508 * so we don't need to call vm_object_deallocate, but
1511 vm_object_deallocate(backing_object
);
1516 * Try again with this object's new backing object.
1522 * vm_object_page_remove: [internal]
1524 * Removes all physical pages in the specified
1525 * object range from the object's list of pages.
1527 static int vm_object_page_remove_callback(vm_page_t p
, void *data
);
1530 vm_object_page_remove(vm_object_t object
, vm_pindex_t start
, vm_pindex_t end
,
1531 boolean_t clean_only
)
1533 struct rb_vm_page_scan_info info
;
1537 * Degenerate cases and assertions
1539 if (object
== NULL
|| object
->resident_page_count
== 0)
1541 KASSERT(object
->type
!= OBJT_PHYS
,
1542 ("attempt to remove pages from a physical object"));
1545 * Indicate that paging is occuring on the object
1548 vm_object_pip_add(object
, 1);
1551 * Figure out the actual removal range and whether we are removing
1552 * the entire contents of the object or not. If removing the entire
1553 * contents, be sure to get all pages, even those that might be
1554 * beyond the end of the object.
1556 info
.start_pindex
= start
;
1558 info
.end_pindex
= (vm_pindex_t
)-1;
1560 info
.end_pindex
= end
- 1;
1561 info
.limit
= clean_only
;
1562 all
= (start
== 0 && info
.end_pindex
>= object
->size
- 1);
1565 * Loop until we are sure we have gotten them all.
1569 vm_page_rb_tree_RB_SCAN(&object
->rb_memq
, rb_vm_page_scancmp
,
1570 vm_object_page_remove_callback
, &info
);
1571 } while (info
.error
);
1576 vm_object_pip_wakeup(object
);
1581 vm_object_page_remove_callback(vm_page_t p
, void *data
)
1583 struct rb_vm_page_scan_info
*info
= data
;
1586 * Wired pages cannot be destroyed, but they can be invalidated
1587 * and we do so if clean_only (limit) is not set.
1589 if (p
->wire_count
!= 0) {
1590 vm_page_protect(p
, VM_PROT_NONE
);
1591 if (info
->limit
== 0)
1597 * The busy flags are only cleared at
1598 * interrupt -- minimize the spl transitions
1601 if (vm_page_sleep_busy(p
, TRUE
, "vmopar")) {
1607 * limit is our clean_only flag. If set and the page is dirty, do
1608 * not free it. If set and the page is being held by someone, do
1611 if (info
->limit
&& p
->valid
) {
1612 vm_page_test_dirty(p
);
1613 if (p
->valid
& p
->dirty
)
1623 vm_page_protect(p
, VM_PROT_NONE
);
1629 * Routine: vm_object_coalesce
1630 * Function: Coalesces two objects backing up adjoining
1631 * regions of memory into a single object.
1633 * returns TRUE if objects were combined.
1635 * NOTE: Only works at the moment if the second object is NULL -
1636 * if it's not, which object do we lock first?
1639 * prev_object First object to coalesce
1640 * prev_offset Offset into prev_object
1641 * next_object Second object into coalesce
1642 * next_offset Offset into next_object
1644 * prev_size Size of reference to prev_object
1645 * next_size Size of reference to next_object
1648 * The object must *not* be locked.
1651 vm_object_coalesce(vm_object_t prev_object
, vm_pindex_t prev_pindex
,
1652 vm_size_t prev_size
, vm_size_t next_size
)
1654 vm_pindex_t next_pindex
;
1656 if (prev_object
== NULL
) {
1660 if (prev_object
->type
!= OBJT_DEFAULT
&&
1661 prev_object
->type
!= OBJT_SWAP
) {
1666 * Try to collapse the object first
1668 vm_object_collapse(prev_object
);
1671 * Can't coalesce if: . more than one reference . paged out . shadows
1672 * another object . has a copy elsewhere (any of which mean that the
1673 * pages not mapped to prev_entry may be in use anyway)
1676 if (prev_object
->backing_object
!= NULL
) {
1680 prev_size
>>= PAGE_SHIFT
;
1681 next_size
>>= PAGE_SHIFT
;
1682 next_pindex
= prev_pindex
+ prev_size
;
1684 if ((prev_object
->ref_count
> 1) &&
1685 (prev_object
->size
!= next_pindex
)) {
1690 * Remove any pages that may still be in the object from a previous
1693 if (next_pindex
< prev_object
->size
) {
1694 vm_object_page_remove(prev_object
,
1696 next_pindex
+ next_size
, FALSE
);
1697 if (prev_object
->type
== OBJT_SWAP
)
1698 swap_pager_freespace(prev_object
,
1699 next_pindex
, next_size
);
1703 * Extend the object if necessary.
1705 if (next_pindex
+ next_size
> prev_object
->size
)
1706 prev_object
->size
= next_pindex
+ next_size
;
1712 vm_object_set_writeable_dirty(vm_object_t object
)
1716 vm_object_set_flag(object
, OBJ_WRITEABLE
|OBJ_MIGHTBEDIRTY
);
1717 if (object
->type
== OBJT_VNODE
&&
1718 (vp
= (struct vnode
*)object
->handle
) != NULL
) {
1719 if ((vp
->v_flag
& VOBJDIRTY
) == 0) {
1720 vsetflags(vp
, VOBJDIRTY
);
1727 #include "opt_ddb.h"
1729 #include <sys/kernel.h>
1731 #include <sys/cons.h>
1733 #include <ddb/ddb.h>
1735 static int _vm_object_in_map (vm_map_t map
, vm_object_t object
,
1736 vm_map_entry_t entry
);
1737 static int vm_object_in_map (vm_object_t object
);
1740 _vm_object_in_map(vm_map_t map
, vm_object_t object
, vm_map_entry_t entry
)
1743 vm_map_entry_t tmpe
;
1750 tmpe
= map
->header
.next
;
1751 entcount
= map
->nentries
;
1752 while (entcount
-- && (tmpe
!= &map
->header
)) {
1753 if( _vm_object_in_map(map
, object
, tmpe
)) {
1760 switch(entry
->maptype
) {
1761 case VM_MAPTYPE_SUBMAP
:
1762 tmpm
= entry
->object
.sub_map
;
1763 tmpe
= tmpm
->header
.next
;
1764 entcount
= tmpm
->nentries
;
1765 while (entcount
-- && tmpe
!= &tmpm
->header
) {
1766 if( _vm_object_in_map(tmpm
, object
, tmpe
)) {
1772 case VM_MAPTYPE_NORMAL
:
1773 case VM_MAPTYPE_VPAGETABLE
:
1774 obj
= entry
->object
.vm_object
;
1778 obj
= obj
->backing_object
;
1787 static int vm_object_in_map_callback(struct proc
*p
, void *data
);
1789 struct vm_object_in_map_info
{
1795 vm_object_in_map(vm_object_t object
)
1797 struct vm_object_in_map_info info
;
1800 info
.object
= object
;
1802 allproc_scan(vm_object_in_map_callback
, &info
);
1805 if( _vm_object_in_map(&kernel_map
, object
, 0))
1807 if( _vm_object_in_map(&pager_map
, object
, 0))
1809 if( _vm_object_in_map(&buffer_map
, object
, 0))
1815 vm_object_in_map_callback(struct proc
*p
, void *data
)
1817 struct vm_object_in_map_info
*info
= data
;
1820 if (_vm_object_in_map(&p
->p_vmspace
->vm_map
, info
->object
, 0)) {
1828 DB_SHOW_COMMAND(vmochk
, vm_object_check
)
1833 * make sure that internal objs are in a map somewhere
1834 * and none have zero ref counts.
1836 for (object
= TAILQ_FIRST(&vm_object_list
);
1838 object
= TAILQ_NEXT(object
, object_list
)) {
1839 if (object
->handle
== NULL
&&
1840 (object
->type
== OBJT_DEFAULT
|| object
->type
== OBJT_SWAP
)) {
1841 if (object
->ref_count
== 0) {
1842 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1843 (long)object
->size
);
1845 if (!vm_object_in_map(object
)) {
1847 "vmochk: internal obj is not in a map: "
1848 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1849 object
->ref_count
, (u_long
)object
->size
,
1850 (u_long
)object
->size
,
1851 (void *)object
->backing_object
);
1858 * vm_object_print: [ debug ]
1860 DB_SHOW_COMMAND(object
, vm_object_print_static
)
1862 /* XXX convert args. */
1863 vm_object_t object
= (vm_object_t
)addr
;
1864 boolean_t full
= have_addr
;
1868 /* XXX count is an (unused) arg. Avoid shadowing it. */
1869 #define count was_count
1877 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1878 object
, (int)object
->type
, (u_long
)object
->size
,
1879 object
->resident_page_count
, object
->ref_count
, object
->flags
);
1881 * XXX no %qd in kernel. Truncate object->backing_object_offset.
1883 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1884 object
->shadow_count
,
1885 object
->backing_object
? object
->backing_object
->ref_count
: 0,
1886 object
->backing_object
, (long)object
->backing_object_offset
);
1893 RB_FOREACH(p
, vm_page_rb_tree
, &object
->rb_memq
) {
1895 db_iprintf("memory:=");
1896 else if (count
== 6) {
1904 db_printf("(off=0x%lx,page=0x%lx)",
1905 (u_long
) p
->pindex
, (u_long
) VM_PAGE_TO_PHYS(p
));
1915 /* XXX need this non-static entry for calling from vm_map_print. */
1917 vm_object_print(/* db_expr_t */ long addr
,
1918 boolean_t have_addr
,
1919 /* db_expr_t */ long count
,
1922 vm_object_print_static(addr
, have_addr
, count
, modif
);
1925 DB_SHOW_COMMAND(vmopag
, vm_object_print_pages
)
1930 for (object
= TAILQ_FIRST(&vm_object_list
);
1932 object
= TAILQ_NEXT(object
, object_list
)) {
1933 vm_pindex_t idx
, fidx
;
1935 vm_paddr_t pa
= -1, padiff
;
1939 db_printf("new object: %p\n", (void *)object
);
1949 osize
= object
->size
;
1952 for (idx
= 0; idx
< osize
; idx
++) {
1953 m
= vm_page_lookup(object
, idx
);
1956 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1957 (long)fidx
, rcount
, (long)pa
);
1972 (VM_PAGE_TO_PHYS(m
) == pa
+ rcount
* PAGE_SIZE
)) {
1977 padiff
= pa
+ rcount
* PAGE_SIZE
- VM_PAGE_TO_PHYS(m
);
1978 padiff
>>= PAGE_SHIFT
;
1979 padiff
&= PQ_L2_MASK
;
1981 pa
= VM_PAGE_TO_PHYS(m
) - rcount
* PAGE_SIZE
;
1985 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1986 (long)fidx
, rcount
, (long)pa
);
1987 db_printf("pd(%ld)\n", (long)padiff
);
1997 pa
= VM_PAGE_TO_PHYS(m
);
2001 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2002 (long)fidx
, rcount
, (long)pa
);