HAMMER 61E/Many: Stabilization, Performance
[dragonfly.git] / sys / vm / vm_kern.c
bloba34711dd69f3fec458e4cb03531785d9f1182025
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
64 * $FreeBSD: src/sys/vm/vm_kern.c,v 1.61.2.2 2002/03/12 18:25:26 tegge Exp $
65 * $DragonFly: src/sys/vm/vm_kern.c,v 1.29 2007/06/07 23:14:29 dillon Exp $
69 * Kernel memory management.
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/malloc.h>
76 #include <sys/kernel.h>
77 #include <sys/sysctl.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_extern.h>
90 struct vm_map kernel_map;
91 struct vm_map clean_map;
92 struct vm_map buffer_map;
95 * kmem_alloc_pageable:
97 * Allocate pageable memory to the kernel's address map.
98 * "map" must be kernel_map or a submap of kernel_map.
100 vm_offset_t
101 kmem_alloc_pageable(vm_map_t map, vm_size_t size)
103 vm_offset_t addr;
104 int result;
106 size = round_page(size);
107 addr = vm_map_min(map);
108 result = vm_map_find(map, NULL, (vm_offset_t) 0,
109 &addr, size,
110 TRUE,
111 VM_MAPTYPE_NORMAL,
112 VM_PROT_ALL, VM_PROT_ALL,
114 if (result != KERN_SUCCESS) {
115 return (0);
117 return (addr);
121 * kmem_alloc_nofault:
123 * Same as kmem_alloc_pageable, except that it create a nofault entry.
125 vm_offset_t
126 kmem_alloc_nofault(vm_map_t map, vm_size_t size)
128 vm_offset_t addr;
129 int result;
131 size = round_page(size);
132 addr = vm_map_min(map);
133 result = vm_map_find(map, NULL, (vm_offset_t) 0,
134 &addr, size,
135 TRUE,
136 VM_MAPTYPE_NORMAL,
137 VM_PROT_ALL, VM_PROT_ALL,
138 MAP_NOFAULT);
139 if (result != KERN_SUCCESS) {
140 return (0);
142 return (addr);
146 * Allocate wired-down memory in the kernel's address map
147 * or a submap.
149 vm_offset_t
150 kmem_alloc3(vm_map_t map, vm_size_t size, int kmflags)
152 vm_offset_t addr;
153 vm_offset_t i;
154 int count;
156 size = round_page(size);
158 if (kmflags & KM_KRESERVE)
159 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
160 else
161 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
164 * Use the kernel object for wired-down kernel pages. Assume that no
165 * region of the kernel object is referenced more than once.
167 * Locate sufficient space in the map. This will give us the final
168 * virtual address for the new memory, and thus will tell us the
169 * offset within the kernel map.
171 vm_map_lock(map);
172 if (vm_map_findspace(map, vm_map_min(map), size, 1, &addr)) {
173 vm_map_unlock(map);
174 if (kmflags & KM_KRESERVE)
175 vm_map_entry_krelease(count);
176 else
177 vm_map_entry_release(count);
178 return (0);
180 vm_object_reference(&kernel_object);
181 vm_map_insert(map, &count,
182 &kernel_object, addr, addr, addr + size,
183 VM_MAPTYPE_NORMAL,
184 VM_PROT_ALL, VM_PROT_ALL,
186 vm_map_unlock(map);
187 if (kmflags & KM_KRESERVE)
188 vm_map_entry_krelease(count);
189 else
190 vm_map_entry_release(count);
193 * Guarantee that there are pages already in this object before
194 * calling vm_map_wire. This is to prevent the following
195 * scenario:
197 * 1) Threads have swapped out, so that there is a pager for the
198 * kernel_object. 2) The kmsg zone is empty, and so we are
199 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
200 * there is no page, but there is a pager, so we call
201 * pager_data_request. But the kmsg zone is empty, so we must
202 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
203 * we get the data back from the pager, it will be (very stale)
204 * non-zero data. kmem_alloc is defined to return zero-filled memory.
206 * We're intentionally not activating the pages we allocate to prevent a
207 * race with page-out. vm_map_wire will wire the pages.
210 for (i = 0; i < size; i += PAGE_SIZE) {
211 vm_page_t mem;
213 mem = vm_page_grab(&kernel_object, OFF_TO_IDX(addr + i),
214 VM_ALLOC_ZERO | VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
215 if ((mem->flags & PG_ZERO) == 0)
216 vm_page_zero_fill(mem);
217 mem->valid = VM_PAGE_BITS_ALL;
218 vm_page_flag_clear(mem, PG_ZERO);
219 vm_page_wakeup(mem);
223 * And finally, mark the data as non-pageable.
226 vm_map_wire(map, (vm_offset_t) addr, addr + size, kmflags);
228 return (addr);
232 * kmem_free:
234 * Release a region of kernel virtual memory allocated
235 * with kmem_alloc, and return the physical pages
236 * associated with that region.
238 * This routine may not block on kernel maps.
240 void
241 kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size)
243 vm_map_remove(map, trunc_page(addr), round_page(addr + size));
247 * kmem_suballoc:
249 * Used to break a system map into smaller maps, usually to reduce
250 * contention and to provide large KVA spaces for subsystems like the
251 * buffer cache.
253 * parent Map to take range from
254 * result
255 * size Size of range to find
256 * min, max Returned endpoints of map
257 * pageable Can the region be paged
259 void
260 kmem_suballoc(vm_map_t parent, vm_map_t result,
261 vm_offset_t *min, vm_offset_t *max, vm_size_t size)
263 int ret;
265 size = round_page(size);
267 *min = (vm_offset_t) vm_map_min(parent);
268 ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
269 min, size,
270 TRUE,
271 VM_MAPTYPE_UNSPECIFIED,
272 VM_PROT_ALL, VM_PROT_ALL,
274 if (ret != KERN_SUCCESS) {
275 kprintf("kmem_suballoc: bad status return of %d.\n", ret);
276 panic("kmem_suballoc");
278 *max = *min + size;
279 pmap_reference(vm_map_pmap(parent));
280 vm_map_init(result, *min, *max, vm_map_pmap(parent));
281 if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
282 panic("kmem_suballoc: unable to change range to submap");
286 * kmem_alloc_wait:
288 * Allocates pageable memory from a sub-map of the kernel. If the submap
289 * has no room, the caller sleeps waiting for more memory in the submap.
291 * This routine may block.
294 vm_offset_t
295 kmem_alloc_wait(vm_map_t map, vm_size_t size)
297 vm_offset_t addr;
298 int count;
300 size = round_page(size);
302 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
304 for (;;) {
306 * To make this work for more than one map, use the map's lock
307 * to lock out sleepers/wakers.
309 vm_map_lock(map);
310 if (vm_map_findspace(map, vm_map_min(map), size, 1, &addr) == 0)
311 break;
312 /* no space now; see if we can ever get space */
313 if (vm_map_max(map) - vm_map_min(map) < size) {
314 vm_map_entry_release(count);
315 vm_map_unlock(map);
316 return (0);
318 vm_map_unlock(map);
319 tsleep(map, 0, "kmaw", 0);
321 vm_map_insert(map, &count,
322 NULL, (vm_offset_t) 0,
323 addr, addr + size,
324 VM_MAPTYPE_NORMAL,
325 VM_PROT_ALL, VM_PROT_ALL,
327 vm_map_unlock(map);
328 vm_map_entry_release(count);
329 return (addr);
333 * kmem_free_wakeup:
335 * Returns memory to a submap of the kernel, and wakes up any processes
336 * waiting for memory in that map.
338 void
339 kmem_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
341 int count;
343 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
344 vm_map_lock(map);
345 vm_map_delete(map, trunc_page(addr), round_page(addr + size), &count);
346 wakeup(map);
347 vm_map_unlock(map);
348 vm_map_entry_release(count);
352 * kmem_init:
354 * Create the kernel_map and insert mappings to cover areas already
355 * allocated or reserved thus far. That is, the area (KvaStart,start)
356 * and (end,KvaEnd) must be marked as allocated.
358 * We could use a min_offset of 0 instead of KvaStart, but since the
359 * min_offset is not used for any calculations other then a bounds check
360 * it does not effect readability. KvaStart is more appropriate.
362 * Depend on the zalloc bootstrap cache to get our vm_map_entry_t.
364 void
365 kmem_init(vm_offset_t start, vm_offset_t end)
367 vm_map_t m;
368 int count;
370 m = vm_map_create(&kernel_map, &kernel_pmap, KvaStart, KvaEnd);
371 vm_map_lock(m);
372 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
373 m->system_map = 1;
374 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
375 if (KvaStart != start) {
376 vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
377 KvaStart, start,
378 VM_MAPTYPE_NORMAL,
379 VM_PROT_ALL, VM_PROT_ALL,
382 if (KvaEnd != end) {
383 vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
384 end, KvaEnd,
385 VM_MAPTYPE_NORMAL,
386 VM_PROT_ALL, VM_PROT_ALL,
389 /* ... and ending with the completion of the above `insert' */
390 vm_map_unlock(m);
391 vm_map_entry_release(count);
394 static int
395 kvm_size(SYSCTL_HANDLER_ARGS)
397 unsigned long ksize = KvaSize;
399 return sysctl_handle_long(oidp, &ksize, 0, req);
401 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
402 0, 0, kvm_size, "IU", "Size of KVM");
404 static int
405 kvm_free(SYSCTL_HANDLER_ARGS)
407 unsigned long kfree = virtual_end - kernel_vm_end;
409 return sysctl_handle_long(oidp, &kfree, 0, req);
411 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
412 0, 0, kvm_free, "IU", "Amount of KVM free");