HAMMER 61E/Many: Stabilization, Performance
[dragonfly.git] / sys / dev / disk / advansys / adwlib.c
blobaa93d29f45dcf302163f17e86c74d61d6742af98
1 /*
2 * Low level routines for Second Generation
3 * Advanced Systems Inc. SCSI controllers chips
5 * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
24 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * $FreeBSD: src/sys/dev/advansys/adwlib.c,v 1.6.2.1 2000/04/14 13:32:50 nyan Exp $
33 * $DragonFly: src/sys/dev/disk/advansys/adwlib.c,v 1.6 2006/12/22 23:26:15 swildner Exp $
36 * Ported from:
37 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
39 * Copyright (c) 1995-1998 Advanced System Products, Inc.
40 * All Rights Reserved.
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that redistributions of source
44 * code retain the above copyright notice and this comment without
45 * modification.
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bus.h>
51 #include <sys/thread2.h>
53 #include <machine/clock.h>
55 #include <bus/cam/cam.h>
56 #include <bus/cam/cam_ccb.h>
57 #include <bus/cam/cam_sim.h>
58 #include <bus/cam/cam_xpt_sim.h>
59 #include <bus/cam/scsi/scsi_all.h>
61 #include "adwlib.h"
63 const struct adw_eeprom adw_asc3550_default_eeprom =
65 ADW_EEPROM_BIOS_ENABLE, /* cfg_lsw */
66 0x0000, /* cfg_msw */
67 0xFFFF, /* disc_enable */
68 0xFFFF, /* wdtr_able */
69 { 0xFFFF }, /* sdtr_able */
70 0xFFFF, /* start_motor */
71 0xFFFF, /* tagqng_able */
72 0xFFFF, /* bios_scan */
73 0, /* scam_tolerant */
74 7, /* adapter_scsi_id */
75 0, /* bios_boot_delay */
76 3, /* scsi_reset_delay */
77 0, /* bios_id_lun */
78 0, /* termination */
79 0, /* reserved1 */
80 0xFFE7, /* bios_ctrl */
81 { 0xFFFF }, /* ultra_able */
82 { 0 }, /* reserved2 */
83 ADW_DEF_MAX_HOST_QNG, /* max_host_qng */
84 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
85 0, /* dvc_cntl */
86 { 0 }, /* bug_fix */
87 { 0, 0, 0 }, /* serial_number */
88 0, /* check_sum */
89 { /* oem_name[16] */
90 0, 0, 0, 0, 0, 0, 0, 0,
91 0, 0, 0, 0, 0, 0, 0, 0
93 0, /* dvc_err_code */
94 0, /* adv_err_code */
95 0, /* adv_err_addr */
96 0, /* saved_dvc_err_code */
97 0, /* saved_adv_err_code */
98 0 /* saved_adv_err_addr */
101 const struct adw_eeprom adw_asc38C0800_default_eeprom =
103 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
104 0x0000, /* 01 cfg_msw */
105 0xFFFF, /* 02 disc_enable */
106 0xFFFF, /* 03 wdtr_able */
107 { 0x4444 }, /* 04 sdtr_speed1 */
108 0xFFFF, /* 05 start_motor */
109 0xFFFF, /* 06 tagqng_able */
110 0xFFFF, /* 07 bios_scan */
111 0, /* 08 scam_tolerant */
112 7, /* 09 adapter_scsi_id */
113 0, /* bios_boot_delay */
114 3, /* 10 scsi_reset_delay */
115 0, /* bios_id_lun */
116 0, /* 11 termination_se */
117 0, /* termination_lvd */
118 0xFFE7, /* 12 bios_ctrl */
119 { 0x4444 }, /* 13 sdtr_speed2 */
120 { 0x4444 }, /* 14 sdtr_speed3 */
121 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
122 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
123 0, /* 16 dvc_cntl */
124 { 0x4444 } , /* 17 sdtr_speed4 */
125 { 0, 0, 0 }, /* 18-20 serial_number */
126 0, /* 21 check_sum */
127 { /* 22-29 oem_name[16] */
128 0, 0, 0, 0, 0, 0, 0, 0,
129 0, 0, 0, 0, 0, 0, 0, 0
131 0, /* 30 dvc_err_code */
132 0, /* 31 adv_err_code */
133 0, /* 32 adv_err_addr */
134 0, /* 33 saved_dvc_err_code */
135 0, /* 34 saved_adv_err_code */
136 0, /* 35 saved_adv_err_addr */
137 { /* 36 - 55 reserved */
138 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
139 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
141 0, /* 56 cisptr_lsw */
142 0, /* 57 cisprt_msw */
143 /* 58-59 sub-id */
144 (PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
147 #define ADW_MC_SDTR_OFFSET_ULTRA2_DT 0
148 #define ADW_MC_SDTR_OFFSET_ULTRA2 1
149 #define ADW_MC_SDTR_OFFSET_ULTRA 2
150 const struct adw_syncrate adw_syncrates[] =
152 /* mc_sdtr period rate */
153 { ADW_MC_SDTR_80, 9, "80.0" },
154 { ADW_MC_SDTR_40, 10, "40.0" },
155 { ADW_MC_SDTR_20, 12, "20.0" },
156 { ADW_MC_SDTR_10, 25, "10.0" },
157 { ADW_MC_SDTR_5, 50, "5.0" },
158 { ADW_MC_SDTR_ASYNC, 0, "async" }
161 const int adw_num_syncrates = sizeof(adw_syncrates) / sizeof(adw_syncrates[0]);
163 static u_int16_t adw_eeprom_read_16(struct adw_softc *adw, int addr);
164 static void adw_eeprom_write_16(struct adw_softc *adw, int addr,
165 u_int data);
166 static void adw_eeprom_wait(struct adw_softc *adw);
169 adw_find_signature(struct adw_softc *adw)
171 if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
172 && adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
173 return (1);
174 return (0);
178 * Reset Chip.
180 void
181 adw_reset_chip(struct adw_softc *adw)
183 adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
184 DELAY(1000 * 100);
185 adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
188 * Initialize Chip registers.
190 adw_outw(adw, ADW_SCSI_CFG1,
191 adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
195 * Reset the SCSI bus.
198 adw_reset_bus(struct adw_softc *adw)
200 adw_idle_cmd_status_t status;
202 status =
203 adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
204 if (status != ADW_IDLE_CMD_SUCCESS) {
205 xpt_print_path(adw->path);
206 kprintf("Bus Reset start attempt failed\n");
207 return (1);
209 DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
210 status =
211 adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
212 if (status != ADW_IDLE_CMD_SUCCESS) {
213 xpt_print_path(adw->path);
214 kprintf("Bus Reset end attempt failed\n");
215 return (1);
217 return (0);
221 * Read the specified EEPROM location
223 static u_int16_t
224 adw_eeprom_read_16(struct adw_softc *adw, int addr)
226 adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
227 adw_eeprom_wait(adw);
228 return (adw_inw(adw, ADW_EEP_DATA));
231 static void
232 adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
234 adw_outw(adw, ADW_EEP_DATA, data);
235 adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
236 adw_eeprom_wait(adw);
240 * Wait for and EEPROM command to complete
242 static void
243 adw_eeprom_wait(struct adw_softc *adw)
245 int i;
247 for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
248 if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
249 break;
250 DELAY(1000);
252 if (i == ADW_EEP_DELAY_MS)
253 panic("%s: Timedout Reading EEPROM", adw_name(adw));
257 * Read EEPROM configuration into the specified buffer.
259 * Return a checksum based on the EEPROM configuration read.
261 u_int16_t
262 adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
264 u_int16_t *wbuf;
265 u_int16_t wval;
266 u_int16_t chksum;
267 int eep_addr;
269 wbuf = (u_int16_t *)eep_buf;
270 chksum = 0;
272 for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
273 eep_addr < ADW_EEP_DVC_CFG_END;
274 eep_addr++, wbuf++) {
275 wval = adw_eeprom_read_16(adw, eep_addr);
276 chksum += wval;
277 *wbuf = wval;
280 /* checksum field is not counted in the checksum */
281 *wbuf = adw_eeprom_read_16(adw, eep_addr);
282 wbuf++;
284 /* Driver seeprom variables are not included in the checksum */
285 for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
286 eep_addr < ADW_EEP_MAX_WORD_ADDR;
287 eep_addr++, wbuf++)
288 *wbuf = adw_eeprom_read_16(adw, eep_addr);
290 return (chksum);
293 void
294 adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
296 u_int16_t *wbuf;
297 u_int16_t addr;
298 u_int16_t chksum;
300 wbuf = (u_int16_t *)eep_buf;
301 chksum = 0;
303 adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
304 adw_eeprom_wait(adw);
307 * Write EEPROM until checksum.
309 for (addr = ADW_EEP_DVC_CFG_BEGIN;
310 addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
311 chksum += *wbuf;
312 adw_eeprom_write_16(adw, addr, *wbuf);
316 * Write calculated EEPROM checksum
318 adw_eeprom_write_16(adw, addr, chksum);
320 /* skip over buffer's checksum */
321 wbuf++;
324 * Write the rest.
326 for (addr = ADW_EEP_DVC_CTL_BEGIN;
327 addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
328 adw_eeprom_write_16(adw, addr, *wbuf);
330 adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
331 adw_eeprom_wait(adw);
335 adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
337 u_int8_t biosmem[ADW_MC_BIOSLEN];
338 const u_int16_t *word_table;
339 const u_int8_t *byte_codes;
340 const u_int8_t *byte_codes_end;
341 u_int bios_sig;
342 u_int bytes_downloaded;
343 u_int addr;
344 u_int end_addr;
345 u_int checksum;
346 u_int scsicfg1;
347 u_int tid;
350 * Save the RISC memory BIOS region before writing the microcode.
351 * The BIOS may already be loaded and using its RISC LRAM region
352 * so its region must be saved and restored.
354 for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
355 biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
358 * Save current per TID negotiated values if the BIOS has been
359 * loaded (BIOS signature is present). These will be used if
360 * we cannot get information from the EEPROM.
362 addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
363 bios_sig = biosmem[addr]
364 | (biosmem[addr + 1] << 8);
365 if (bios_sig == 0x55AA
366 && (adw->flags & ADW_EEPROM_FAILED) != 0) {
367 u_int major_ver;
368 u_int minor_ver;
369 u_int sdtr_able;
371 addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
372 minor_ver = biosmem[addr + 1] & 0xF;
373 major_ver = (biosmem[addr + 1] >> 4) & 0xF;
374 if ((adw->chip == ADW_CHIP_ASC3550)
375 && (major_ver <= 3
376 || (major_ver == 3 && minor_ver == 1))) {
378 * BIOS 3.1 and earlier location of
379 * 'wdtr_able' variable.
381 adw->user_wdtr =
382 adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
383 } else {
384 adw->user_wdtr =
385 adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
387 sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
388 for (tid = 0; tid < ADW_MAX_TID; tid++) {
389 u_int tid_mask;
390 u_int mc_sdtr;
392 tid_mask = 0x1 << tid;
393 if ((sdtr_able & tid_mask) == 0)
394 mc_sdtr = ADW_MC_SDTR_ASYNC;
395 else if ((adw->features & ADW_DT) != 0)
396 mc_sdtr = ADW_MC_SDTR_80;
397 else if ((adw->features & ADW_ULTRA2) != 0)
398 mc_sdtr = ADW_MC_SDTR_40;
399 else
400 mc_sdtr = ADW_MC_SDTR_20;
401 adw_set_user_sdtr(adw, tid, mc_sdtr);
403 adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
407 * Load the Microcode.
409 * Assume the following compressed format of the microcode buffer:
411 * 253 word (506 byte) table indexed by byte code followed
412 * by the following byte codes:
414 * 1-Byte Code:
415 * 00: Emit word 0 in table.
416 * 01: Emit word 1 in table.
418 * FD: Emit word 253 in table.
420 * Multi-Byte Code:
421 * FD RESEVED
423 * FE WW WW: (3 byte code)
424 * Word to emit is the next word WW WW.
425 * FF BB WW WW: (4 byte code)
426 * Emit BB count times next word WW WW.
429 bytes_downloaded = 0;
430 word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
431 byte_codes = (const u_int8_t *)&word_table[253];
432 byte_codes_end = adw->mcode_data->mcode_buf
433 + adw->mcode_data->mcode_size;
434 adw_outw(adw, ADW_RAM_ADDR, 0);
435 while (byte_codes < byte_codes_end) {
436 if (*byte_codes == 0xFF) {
437 u_int16_t value;
439 value = byte_codes[2]
440 | byte_codes[3] << 8;
441 adw_set_multi_2(adw, ADW_RAM_DATA,
442 value, byte_codes[1]);
443 bytes_downloaded += byte_codes[1];
444 byte_codes += 4;
445 } else if (*byte_codes == 0xFE) {
446 u_int16_t value;
448 value = byte_codes[1]
449 | byte_codes[2] << 8;
450 adw_outw(adw, ADW_RAM_DATA, value);
451 bytes_downloaded++;
452 byte_codes += 3;
453 } else {
454 adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
455 bytes_downloaded++;
456 byte_codes++;
459 /* Convert from words to bytes */
460 bytes_downloaded *= 2;
463 * Clear the rest of LRAM.
465 for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
466 adw_outw(adw, ADW_RAM_DATA, 0);
469 * Verify the microcode checksum.
471 checksum = 0;
472 adw_outw(adw, ADW_RAM_ADDR, 0);
473 for (addr = 0; addr < bytes_downloaded; addr += 2)
474 checksum += adw_inw(adw, ADW_RAM_DATA);
476 if (checksum != adw->mcode_data->mcode_chksum) {
477 kprintf("%s: Firmware load failed!\n", adw_name(adw));
478 return (EIO);
482 * Restore the RISC memory BIOS region.
484 for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
485 adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
488 * Calculate and write the microcode code checksum to
489 * the microcode code checksum location.
491 addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
492 end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
493 checksum = 0;
494 adw_outw(adw, ADW_RAM_ADDR, addr);
495 for (; addr < end_addr; addr += 2)
496 checksum += adw_inw(adw, ADW_RAM_DATA);
497 adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
500 * Tell the microcode what kind of chip it's running on.
502 adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
505 * Leave WDTR and SDTR negotiation disabled until the XPT has
506 * informed us of device capabilities, but do set the desired
507 * user rates in case we receive an SDTR request from the target
508 * before we negotiate. We turn on tagged queuing at the microcode
509 * level for all devices, and modulate this on a per command basis.
511 adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
512 adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
513 adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
514 adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
515 adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
516 for (tid = 0; tid < ADW_MAX_TID; tid++) {
517 /* Cam limits the maximum number of commands for us */
518 adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
519 adw->max_acbs);
521 adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
524 * Set SCSI_CFG0 Microcode Default Value.
526 * The microcode will set the SCSI_CFG0 register using this value
527 * after it is started.
529 adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
530 ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
531 ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
534 * Tell the MC about the memory size that
535 * was setup by the probe code.
537 adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
538 adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
541 * Determine SCSI_CFG1 Microcode Default Value.
543 * The microcode will set the SCSI_CFG1 register using this value
544 * after it is started below.
546 scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
549 * If the internal narrow cable is reversed all of the SCSI_CTRL
550 * register signals will be set. Check for and return an error if
551 * this condition is found.
553 if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
554 kprintf("%s: Illegal Cable Config!\n", adw_name(adw));
555 kprintf("%s: Internal cable is reversed!\n", adw_name(adw));
556 return (EIO);
560 * If this is a differential board and a single-ended device
561 * is attached to one of the connectors, return an error.
563 if ((adw->features & ADW_ULTRA) != 0) {
564 if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
565 && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
566 kprintf("%s: A Single Ended Device is attached to our "
567 "differential bus!\n", adw_name(adw));
568 return (EIO);
570 } else {
571 if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
572 kprintf("%s: A High Voltage Differential Device "
573 "is attached to this controller.\n",
574 adw_name(adw));
575 kprintf("%s: HVD devices are not supported.\n",
576 adw_name(adw));
577 return (EIO);
582 * Perform automatic termination control if desired.
584 if ((adw->features & ADW_ULTRA2) != 0) {
585 u_int cable_det;
588 * Ultra2 Chips require termination disabled to
589 * detect cable presence.
591 adw_outw(adw, ADW_SCSI_CFG1,
592 scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
593 cable_det = adw_inw(adw, ADW_SCSI_CFG1);
594 adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
596 /* SE Termination first if auto-term has been specified */
597 if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
600 * For all SE cable configurations, high byte
601 * termination is enabled.
603 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
604 if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
605 || (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
607 * If either cable is not present, the
608 * low byte must be terminated as well.
610 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
614 /* LVD auto-term */
615 if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
616 && (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
618 * If both cables are installed, termination
619 * is disabled. Otherwise it is enabled.
621 if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
622 || (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
624 term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
627 term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
628 } else {
629 /* Ultra Controller Termination */
630 if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
631 int cable_count;
632 int wide_cable_count;
634 cable_count = 0;
635 wide_cable_count = 0;
636 if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
637 cable_count++;
638 wide_cable_count++;
640 if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
641 cable_count++;
643 /* There is only one external port */
644 if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
645 cable_count++;
646 wide_cable_count++;
647 } else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
648 cable_count++;
650 if (cable_count == 3) {
651 kprintf("%s: Illegal Cable Config!\n",
652 adw_name(adw));
653 kprintf("%s: Only Two Ports may be used at "
654 "a time!\n", adw_name(adw));
655 } else if (cable_count <= 1) {
657 * At least two out of three cables missing.
658 * Terminate both bytes.
660 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
661 | ADW_SCSI_CFG1_TERM_CTL_L;
662 } else if (wide_cable_count <= 1) {
663 /* No two 16bit cables present. High on. */
664 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
669 /* Tell the user about our decission */
670 switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
671 case ADW_SCSI_CFG1_TERM_CTL_MASK:
672 kprintf("High & Low SE Term Enabled, ");
673 break;
674 case ADW_SCSI_CFG1_TERM_CTL_H:
675 kprintf("High SE Termination Enabled, ");
676 break;
677 case ADW_SCSI_CFG1_TERM_CTL_L:
678 kprintf("Low SE Term Enabled, ");
679 break;
680 default:
681 break;
684 if ((adw->features & ADW_ULTRA2) != 0
685 && (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
686 kprintf("LVD Term Enabled, ");
689 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
690 * set 'scsicfg1'. The TERM_POL bit does not need to be
691 * referenced, because the hardware internally inverts
692 * the Termination High and Low bits if TERM_POL is set.
694 if ((adw->features & ADW_ULTRA2) != 0) {
695 term_scsicfg1 = ~term_scsicfg1;
696 term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
697 | ADW2_SCSI_CFG1_TERM_CTL_LVD;
698 scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
699 |ADW2_SCSI_CFG1_TERM_CTL_LVD
700 |ADW_SCSI_CFG1_BIG_ENDIAN
701 |ADW_SCSI_CFG1_TERM_POL
702 |ADW2_SCSI_CFG1_DEV_DETECT);
703 scsicfg1 |= term_scsicfg1;
704 } else {
705 term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
706 scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
707 scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
708 scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
712 * Set SCSI_CFG1 Microcode Default Value
714 * The microcode will set the SCSI_CFG1 register using this value
715 * after it is started below.
717 adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
720 * Only accept selections on our initiator target id.
721 * This may change in target mode scenarios...
723 adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
724 (0x01 << adw->initiator_id));
727 * Tell the microcode where it can find our
728 * Initiator Command Queue (ICQ). It is
729 * currently empty hence the "stopper" address.
731 adw->commandq = adw->free_carriers;
732 adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
733 adw->commandq->next_ba = ADW_CQ_STOPPER;
734 adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
737 * Tell the microcode where it can find our
738 * Initiator Response Queue (IRQ). It too
739 * is currently empty.
741 adw->responseq = adw->free_carriers;
742 adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
743 adw->responseq->next_ba = ADW_CQ_STOPPER;
744 adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
746 adw_outb(adw, ADW_INTR_ENABLES,
747 ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
749 adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
751 return (0);
754 void
755 adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
757 adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
758 adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
759 mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
762 u_int
763 adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
765 u_int mc_sdtr;
767 mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
768 mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
769 mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
770 return (mc_sdtr);
773 void
774 adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
776 u_int mc_sdtr_offset;
777 u_int mc_sdtr;
779 mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
780 mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
781 mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
782 mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
783 mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
784 adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
787 u_int
788 adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
790 u_int mc_sdtr_offset;
791 u_int mc_sdtr;
793 mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
794 mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
795 mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
796 mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
797 mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
798 return (mc_sdtr);
801 u_int
802 adw_find_sdtr(struct adw_softc *adw, u_int period)
804 int i;
806 i = 0;
807 if ((adw->features & ADW_DT) == 0)
808 i = ADW_MC_SDTR_OFFSET_ULTRA2;
809 if ((adw->features & ADW_ULTRA2) == 0)
810 i = ADW_MC_SDTR_OFFSET_ULTRA;
811 if (period == 0)
812 return ADW_MC_SDTR_ASYNC;
814 for (; i < adw_num_syncrates; i++) {
815 if (period <= adw_syncrates[i].period)
816 return (adw_syncrates[i].mc_sdtr);
818 return ADW_MC_SDTR_ASYNC;
821 u_int
822 adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
824 int i;
826 for (i = 0; i < adw_num_syncrates; i++) {
827 if (mc_sdtr == adw_syncrates[i].mc_sdtr)
828 break;
830 return (adw_syncrates[i].period);
833 u_int
834 adw_hshk_cfg_period_factor(u_int tinfo)
836 tinfo &= ADW_HSHK_CFG_RATE_MASK;
837 tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
838 if (tinfo == 0x11)
839 /* 80MHz/DT */
840 return (9);
841 else if (tinfo == 0x10)
842 /* 40MHz */
843 return (10);
844 else
845 return (((tinfo * 25) + 50) / 4);
849 * Send an idle command to the chip and wait for completion.
851 adw_idle_cmd_status_t
852 adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
854 u_int timeout;
855 adw_idle_cmd_status_t status;
857 crit_enter();
860 * Clear the idle command status which is set by the microcode
861 * to a non-zero value to indicate when the command is completed.
863 adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
866 * Write the idle command value after the idle command parameter
867 * has been written to avoid a race condition. If the order is not
868 * followed, the microcode may process the idle command before the
869 * parameters have been written to LRAM.
871 adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
872 adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
875 * Tickle the RISC to tell it to process the idle command.
877 adw_tickle_risc(adw, ADW_TICKLE_B);
879 /* Wait for up to 10 seconds for the command to complete */
880 timeout = 5000000;
881 while (--timeout) {
882 status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
883 if (status != 0)
884 break;
885 DELAY(20);
888 if (timeout == 0)
889 panic("%s: Idle Command Timed Out!\n", adw_name(adw));
890 crit_exit();
891 return (status);