1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity
= 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t
*edge_to_cases
;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs
;
81 long num_merged_labels
;
84 static struct cfg_stats_d cfg_stats
;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto
;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
95 static htab_t discriminator_per_locus
;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq
);
99 static void factor_computed_gotos (void);
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block
);
104 static void make_gimple_switch_edges (basic_block
);
105 static void make_goto_expr_edges (basic_block
);
106 static void make_gimple_asm_edges (basic_block
);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t
, basic_block
);
110 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
111 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
113 /* Various helpers. */
114 static inline bool stmt_starts_bb_p (gimple
, gimple
);
115 static int gimple_verify_flow_info (void);
116 static void gimple_make_forwarder_block (edge
);
117 static void gimple_cfg2vcg (FILE *);
118 static gimple
first_non_label_stmt (basic_block
);
119 static bool verify_gimple_transaction (gimple
);
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block
, basic_block
);
123 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
124 static void remove_bb (basic_block
);
125 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
126 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
127 static edge
find_taken_edge_switch_expr (basic_block
, tree
);
128 static tree
find_case_label_for_value (gimple
, tree
);
129 static void group_case_labels_stmt (gimple
);
132 init_empty_tree_cfg_for_function (struct function
*fn
)
134 /* Initialize the basic block array. */
136 profile_status_for_function (fn
) = PROFILE_ABSENT
;
137 n_basic_blocks_for_function (fn
) = NUM_FIXED_BLOCKS
;
138 last_basic_block_for_function (fn
) = NUM_FIXED_BLOCKS
;
139 basic_block_info_for_function (fn
)
140 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
141 VEC_safe_grow_cleared (basic_block
, gc
,
142 basic_block_info_for_function (fn
),
143 initial_cfg_capacity
);
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn
)
147 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
148 VEC_safe_grow_cleared (basic_block
, gc
,
149 label_to_block_map_for_function (fn
),
150 initial_cfg_capacity
);
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, ENTRY_BLOCK
,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, EXIT_BLOCK
,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
));
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn
);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
);
164 init_empty_tree_cfg (void)
166 init_empty_tree_cfg_for_function (cfun
);
169 /*---------------------------------------------------------------------------
171 ---------------------------------------------------------------------------*/
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
177 build_gimple_cfg (gimple_seq seq
)
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
182 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
184 init_empty_tree_cfg ();
186 found_computed_goto
= 0;
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto
)
195 factor_computed_gotos ();
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
199 create_empty_bb (ENTRY_BLOCK_PTR
);
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block
, basic_block_info
) < (size_t) n_basic_blocks
)
203 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, n_basic_blocks
);
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus
= htab_create (13, locus_map_hash
, locus_map_eq
,
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus
);
220 /* Debugging dumps. */
222 /* Write the flowgraph to a VCG file. */
224 int local_dump_flags
;
225 FILE *vcg_file
= dump_begin (TDI_vcg
, &local_dump_flags
);
228 gimple_cfg2vcg (vcg_file
);
229 dump_end (TDI_vcg
, vcg_file
);
235 execute_build_cfg (void)
237 gimple_seq body
= gimple_body (current_function_decl
);
239 build_gimple_cfg (body
);
240 gimple_set_body (current_function_decl
, NULL
);
241 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
243 fprintf (dump_file
, "Scope blocks:\n");
244 dump_scope_blocks (dump_file
, dump_flags
);
249 struct gimple_opt_pass pass_build_cfg
=
255 execute_build_cfg
, /* execute */
258 0, /* static_pass_number */
259 TV_TREE_CFG
, /* tv_id */
260 PROP_gimple_leh
, /* properties_required */
261 PROP_cfg
, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts
| TODO_cleanup_cfg
/* todo_flags_finish */
269 /* Return true if T is a computed goto. */
272 computed_goto_p (gimple t
)
274 return (gimple_code (t
) == GIMPLE_GOTO
275 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
279 /* Search the CFG for any computed gotos. If found, factor them to a
280 common computed goto site. Also record the location of that site so
281 that we can un-factor the gotos after we have converted back to
285 factor_computed_gotos (void)
288 tree factored_label_decl
= NULL
;
290 gimple factored_computed_goto_label
= NULL
;
291 gimple factored_computed_goto
= NULL
;
293 /* We know there are one or more computed gotos in this function.
294 Examine the last statement in each basic block to see if the block
295 ends with a computed goto. */
299 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
305 last
= gsi_stmt (gsi
);
307 /* Ignore the computed goto we create when we factor the original
309 if (last
== factored_computed_goto
)
312 /* If the last statement is a computed goto, factor it. */
313 if (computed_goto_p (last
))
317 /* The first time we find a computed goto we need to create
318 the factored goto block and the variable each original
319 computed goto will use for their goto destination. */
320 if (!factored_computed_goto
)
322 basic_block new_bb
= create_empty_bb (bb
);
323 gimple_stmt_iterator new_gsi
= gsi_start_bb (new_bb
);
325 /* Create the destination of the factored goto. Each original
326 computed goto will put its desired destination into this
327 variable and jump to the label we create immediately
329 var
= create_tmp_var (ptr_type_node
, "gotovar");
331 /* Build a label for the new block which will contain the
332 factored computed goto. */
333 factored_label_decl
= create_artificial_label (UNKNOWN_LOCATION
);
334 factored_computed_goto_label
335 = gimple_build_label (factored_label_decl
);
336 gsi_insert_after (&new_gsi
, factored_computed_goto_label
,
339 /* Build our new computed goto. */
340 factored_computed_goto
= gimple_build_goto (var
);
341 gsi_insert_after (&new_gsi
, factored_computed_goto
, GSI_NEW_STMT
);
344 /* Copy the original computed goto's destination into VAR. */
345 assignment
= gimple_build_assign (var
, gimple_goto_dest (last
));
346 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
348 /* And re-vector the computed goto to the new destination. */
349 gimple_goto_set_dest (last
, factored_label_decl
);
355 /* Build a flowgraph for the sequence of stmts SEQ. */
358 make_blocks (gimple_seq seq
)
360 gimple_stmt_iterator i
= gsi_start (seq
);
362 bool start_new_block
= true;
363 bool first_stmt_of_seq
= true;
364 basic_block bb
= ENTRY_BLOCK_PTR
;
366 while (!gsi_end_p (i
))
373 /* If the statement starts a new basic block or if we have determined
374 in a previous pass that we need to create a new block for STMT, do
376 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
378 if (!first_stmt_of_seq
)
379 seq
= gsi_split_seq_before (&i
);
380 bb
= create_basic_block (seq
, NULL
, bb
);
381 start_new_block
= false;
384 /* Now add STMT to BB and create the subgraphs for special statement
386 gimple_set_bb (stmt
, bb
);
388 if (computed_goto_p (stmt
))
389 found_computed_goto
= true;
391 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 if (stmt_ends_bb_p (stmt
))
395 /* If the stmt can make abnormal goto use a new temporary
396 for the assignment to the LHS. This makes sure the old value
397 of the LHS is available on the abnormal edge. Otherwise
398 we will end up with overlapping life-ranges for abnormal
400 if (gimple_has_lhs (stmt
)
401 && stmt_can_make_abnormal_goto (stmt
)
402 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
404 tree lhs
= gimple_get_lhs (stmt
);
405 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
406 gimple s
= gimple_build_assign (lhs
, tmp
);
407 gimple_set_location (s
, gimple_location (stmt
));
408 gimple_set_block (s
, gimple_block (stmt
));
409 gimple_set_lhs (stmt
, tmp
);
410 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
411 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
412 DECL_GIMPLE_REG_P (tmp
) = 1;
413 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
415 start_new_block
= true;
419 first_stmt_of_seq
= false;
424 /* Create and return a new empty basic block after bb AFTER. */
427 create_bb (void *h
, void *e
, basic_block after
)
433 /* Create and initialize a new basic block. Since alloc_block uses
434 GC allocation that clears memory to allocate a basic block, we do
435 not have to clear the newly allocated basic block here. */
438 bb
->index
= last_basic_block
;
440 bb
->il
.gimple
= ggc_alloc_cleared_gimple_bb_info ();
441 set_bb_seq (bb
, h
? (gimple_seq
) h
: gimple_seq_alloc ());
443 /* Add the new block to the linked list of blocks. */
444 link_block (bb
, after
);
446 /* Grow the basic block array if needed. */
447 if ((size_t) last_basic_block
== VEC_length (basic_block
, basic_block_info
))
449 size_t new_size
= last_basic_block
+ (last_basic_block
+ 3) / 4;
450 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, new_size
);
453 /* Add the newly created block to the array. */
454 SET_BASIC_BLOCK (last_basic_block
, bb
);
463 /*---------------------------------------------------------------------------
465 ---------------------------------------------------------------------------*/
467 /* Fold COND_EXPR_COND of each COND_EXPR. */
470 fold_cond_expr_cond (void)
476 gimple stmt
= last_stmt (bb
);
478 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
480 location_t loc
= gimple_location (stmt
);
484 fold_defer_overflow_warnings ();
485 cond
= fold_binary_loc (loc
, gimple_cond_code (stmt
), boolean_type_node
,
486 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
489 zerop
= integer_zerop (cond
);
490 onep
= integer_onep (cond
);
493 zerop
= onep
= false;
495 fold_undefer_overflow_warnings (zerop
|| onep
,
497 WARN_STRICT_OVERFLOW_CONDITIONAL
);
499 gimple_cond_make_false (stmt
);
501 gimple_cond_make_true (stmt
);
506 /* Join all the blocks in the flowgraph. */
512 struct omp_region
*cur_region
= NULL
;
514 /* Create an edge from entry to the first block with executable
516 make_edge (ENTRY_BLOCK_PTR
, BASIC_BLOCK (NUM_FIXED_BLOCKS
), EDGE_FALLTHRU
);
518 /* Traverse the basic block array placing edges. */
521 gimple last
= last_stmt (bb
);
526 enum gimple_code code
= gimple_code (last
);
530 make_goto_expr_edges (bb
);
534 make_edge (bb
, EXIT_BLOCK_PTR
, 0);
538 make_cond_expr_edges (bb
);
542 make_gimple_switch_edges (bb
);
546 make_eh_edges (last
);
549 case GIMPLE_EH_DISPATCH
:
550 fallthru
= make_eh_dispatch_edges (last
);
554 /* If this function receives a nonlocal goto, then we need to
555 make edges from this call site to all the nonlocal goto
557 if (stmt_can_make_abnormal_goto (last
))
558 make_abnormal_goto_edges (bb
, true);
560 /* If this statement has reachable exception handlers, then
561 create abnormal edges to them. */
562 make_eh_edges (last
);
564 /* BUILTIN_RETURN is really a return statement. */
565 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
566 make_edge (bb
, EXIT_BLOCK_PTR
, 0), fallthru
= false;
567 /* Some calls are known not to return. */
569 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
573 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 if (is_ctrl_altering_stmt (last
))
576 make_eh_edges (last
);
581 make_gimple_asm_edges (bb
);
585 case GIMPLE_OMP_PARALLEL
:
586 case GIMPLE_OMP_TASK
:
588 case GIMPLE_OMP_SINGLE
:
589 case GIMPLE_OMP_MASTER
:
590 case GIMPLE_OMP_ORDERED
:
591 case GIMPLE_OMP_CRITICAL
:
592 case GIMPLE_OMP_SECTION
:
593 cur_region
= new_omp_region (bb
, code
, cur_region
);
597 case GIMPLE_OMP_SECTIONS
:
598 cur_region
= new_omp_region (bb
, code
, cur_region
);
602 case GIMPLE_OMP_SECTIONS_SWITCH
:
606 case GIMPLE_OMP_ATOMIC_LOAD
:
607 case GIMPLE_OMP_ATOMIC_STORE
:
611 case GIMPLE_OMP_RETURN
:
612 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
613 somewhere other than the next block. This will be
615 cur_region
->exit
= bb
;
616 fallthru
= cur_region
->type
!= GIMPLE_OMP_SECTION
;
617 cur_region
= cur_region
->outer
;
620 case GIMPLE_OMP_CONTINUE
:
621 cur_region
->cont
= bb
;
622 switch (cur_region
->type
)
625 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
626 succs edges as abnormal to prevent splitting
628 single_succ_edge (cur_region
->entry
)->flags
|= EDGE_ABNORMAL
;
629 /* Make the loopback edge. */
630 make_edge (bb
, single_succ (cur_region
->entry
),
633 /* Create an edge from GIMPLE_OMP_FOR to exit, which
634 corresponds to the case that the body of the loop
635 is not executed at all. */
636 make_edge (cur_region
->entry
, bb
->next_bb
, EDGE_ABNORMAL
);
637 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
| EDGE_ABNORMAL
);
641 case GIMPLE_OMP_SECTIONS
:
642 /* Wire up the edges into and out of the nested sections. */
644 basic_block switch_bb
= single_succ (cur_region
->entry
);
646 struct omp_region
*i
;
647 for (i
= cur_region
->inner
; i
; i
= i
->next
)
649 gcc_assert (i
->type
== GIMPLE_OMP_SECTION
);
650 make_edge (switch_bb
, i
->entry
, 0);
651 make_edge (i
->exit
, bb
, EDGE_FALLTHRU
);
654 /* Make the loopback edge to the block with
655 GIMPLE_OMP_SECTIONS_SWITCH. */
656 make_edge (bb
, switch_bb
, 0);
658 /* Make the edge from the switch to exit. */
659 make_edge (switch_bb
, bb
->next_bb
, 0);
669 case GIMPLE_TRANSACTION
:
671 tree abort_label
= gimple_transaction_label (last
);
673 make_edge (bb
, label_to_block (abort_label
), 0);
679 gcc_assert (!stmt_ends_bb_p (last
));
688 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
690 assign_discriminator (gimple_location (last
), bb
->next_bb
);
697 /* Fold COND_EXPR_COND of each COND_EXPR. */
698 fold_cond_expr_cond ();
701 /* Trivial hash function for a location_t. ITEM is a pointer to
702 a hash table entry that maps a location_t to a discriminator. */
705 locus_map_hash (const void *item
)
707 return ((const struct locus_discrim_map
*) item
)->locus
;
710 /* Equality function for the locus-to-discriminator map. VA and VB
711 point to the two hash table entries to compare. */
714 locus_map_eq (const void *va
, const void *vb
)
716 const struct locus_discrim_map
*a
= (const struct locus_discrim_map
*) va
;
717 const struct locus_discrim_map
*b
= (const struct locus_discrim_map
*) vb
;
718 return a
->locus
== b
->locus
;
721 /* Find the next available discriminator value for LOCUS. The
722 discriminator distinguishes among several basic blocks that
723 share a common locus, allowing for more accurate sample-based
727 next_discriminator_for_locus (location_t locus
)
729 struct locus_discrim_map item
;
730 struct locus_discrim_map
**slot
;
733 item
.discriminator
= 0;
734 slot
= (struct locus_discrim_map
**)
735 htab_find_slot_with_hash (discriminator_per_locus
, (void *) &item
,
736 (hashval_t
) locus
, INSERT
);
738 if (*slot
== HTAB_EMPTY_ENTRY
)
740 *slot
= XNEW (struct locus_discrim_map
);
742 (*slot
)->locus
= locus
;
743 (*slot
)->discriminator
= 0;
745 (*slot
)->discriminator
++;
746 return (*slot
)->discriminator
;
749 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
752 same_line_p (location_t locus1
, location_t locus2
)
754 expanded_location from
, to
;
756 if (locus1
== locus2
)
759 from
= expand_location (locus1
);
760 to
= expand_location (locus2
);
762 if (from
.line
!= to
.line
)
764 if (from
.file
== to
.file
)
766 return (from
.file
!= NULL
768 && filename_cmp (from
.file
, to
.file
) == 0);
771 /* Assign a unique discriminator value to block BB if it begins at the same
772 LOCUS as its predecessor block. */
775 assign_discriminator (location_t locus
, basic_block bb
)
777 gimple first_in_to_bb
, last_in_to_bb
;
779 if (locus
== 0 || bb
->discriminator
!= 0)
782 first_in_to_bb
= first_non_label_stmt (bb
);
783 last_in_to_bb
= last_stmt (bb
);
784 if ((first_in_to_bb
&& same_line_p (locus
, gimple_location (first_in_to_bb
)))
785 || (last_in_to_bb
&& same_line_p (locus
, gimple_location (last_in_to_bb
))))
786 bb
->discriminator
= next_discriminator_for_locus (locus
);
789 /* Create the edges for a GIMPLE_COND starting at block BB. */
792 make_cond_expr_edges (basic_block bb
)
794 gimple entry
= last_stmt (bb
);
795 gimple then_stmt
, else_stmt
;
796 basic_block then_bb
, else_bb
;
797 tree then_label
, else_label
;
799 location_t entry_locus
;
802 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
804 entry_locus
= gimple_location (entry
);
806 /* Entry basic blocks for each component. */
807 then_label
= gimple_cond_true_label (entry
);
808 else_label
= gimple_cond_false_label (entry
);
809 then_bb
= label_to_block (then_label
);
810 else_bb
= label_to_block (else_label
);
811 then_stmt
= first_stmt (then_bb
);
812 else_stmt
= first_stmt (else_bb
);
814 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
815 assign_discriminator (entry_locus
, then_bb
);
816 e
->goto_locus
= gimple_location (then_stmt
);
818 e
->goto_block
= gimple_block (then_stmt
);
819 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
822 assign_discriminator (entry_locus
, else_bb
);
823 e
->goto_locus
= gimple_location (else_stmt
);
825 e
->goto_block
= gimple_block (else_stmt
);
828 /* We do not need the labels anymore. */
829 gimple_cond_set_true_label (entry
, NULL_TREE
);
830 gimple_cond_set_false_label (entry
, NULL_TREE
);
834 /* Called for each element in the hash table (P) as we delete the
835 edge to cases hash table.
837 Clear all the TREE_CHAINs to prevent problems with copying of
838 SWITCH_EXPRs and structure sharing rules, then free the hash table
842 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED
, void **value
,
843 void *data ATTRIBUTE_UNUSED
)
847 for (t
= (tree
) *value
; t
; t
= next
)
849 next
= CASE_CHAIN (t
);
850 CASE_CHAIN (t
) = NULL
;
857 /* Start recording information mapping edges to case labels. */
860 start_recording_case_labels (void)
862 gcc_assert (edge_to_cases
== NULL
);
863 edge_to_cases
= pointer_map_create ();
864 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
867 /* Return nonzero if we are recording information for case labels. */
870 recording_case_labels_p (void)
872 return (edge_to_cases
!= NULL
);
875 /* Stop recording information mapping edges to case labels and
876 remove any information we have recorded. */
878 end_recording_case_labels (void)
882 pointer_map_traverse (edge_to_cases
, edge_to_cases_cleanup
, NULL
);
883 pointer_map_destroy (edge_to_cases
);
884 edge_to_cases
= NULL
;
885 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
887 basic_block bb
= BASIC_BLOCK (i
);
890 gimple stmt
= last_stmt (bb
);
891 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
892 group_case_labels_stmt (stmt
);
895 BITMAP_FREE (touched_switch_bbs
);
898 /* If we are inside a {start,end}_recording_cases block, then return
899 a chain of CASE_LABEL_EXPRs from T which reference E.
901 Otherwise return NULL. */
904 get_cases_for_edge (edge e
, gimple t
)
909 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
910 chains available. Return NULL so the caller can detect this case. */
911 if (!recording_case_labels_p ())
914 slot
= pointer_map_contains (edge_to_cases
, e
);
918 /* If we did not find E in the hash table, then this must be the first
919 time we have been queried for information about E & T. Add all the
920 elements from T to the hash table then perform the query again. */
922 n
= gimple_switch_num_labels (t
);
923 for (i
= 0; i
< n
; i
++)
925 tree elt
= gimple_switch_label (t
, i
);
926 tree lab
= CASE_LABEL (elt
);
927 basic_block label_bb
= label_to_block (lab
);
928 edge this_edge
= find_edge (e
->src
, label_bb
);
930 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
932 slot
= pointer_map_insert (edge_to_cases
, this_edge
);
933 CASE_CHAIN (elt
) = (tree
) *slot
;
937 return (tree
) *pointer_map_contains (edge_to_cases
, e
);
940 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
943 make_gimple_switch_edges (basic_block bb
)
945 gimple entry
= last_stmt (bb
);
946 location_t entry_locus
;
949 entry_locus
= gimple_location (entry
);
951 n
= gimple_switch_num_labels (entry
);
953 for (i
= 0; i
< n
; ++i
)
955 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
956 basic_block label_bb
= label_to_block (lab
);
957 make_edge (bb
, label_bb
, 0);
958 assign_discriminator (entry_locus
, label_bb
);
963 /* Return the basic block holding label DEST. */
966 label_to_block_fn (struct function
*ifun
, tree dest
)
968 int uid
= LABEL_DECL_UID (dest
);
970 /* We would die hard when faced by an undefined label. Emit a label to
971 the very first basic block. This will hopefully make even the dataflow
972 and undefined variable warnings quite right. */
973 if (seen_error () && uid
< 0)
975 gimple_stmt_iterator gsi
= gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS
));
978 stmt
= gimple_build_label (dest
);
979 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
980 uid
= LABEL_DECL_UID (dest
);
982 if (VEC_length (basic_block
, ifun
->cfg
->x_label_to_block_map
)
983 <= (unsigned int) uid
)
985 return VEC_index (basic_block
, ifun
->cfg
->x_label_to_block_map
, uid
);
988 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
989 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
992 make_abnormal_goto_edges (basic_block bb
, bool for_call
)
994 basic_block target_bb
;
995 gimple_stmt_iterator gsi
;
997 FOR_EACH_BB (target_bb
)
998 for (gsi
= gsi_start_bb (target_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1000 gimple label_stmt
= gsi_stmt (gsi
);
1003 if (gimple_code (label_stmt
) != GIMPLE_LABEL
)
1006 target
= gimple_label_label (label_stmt
);
1008 /* Make an edge to every label block that has been marked as a
1009 potential target for a computed goto or a non-local goto. */
1010 if ((FORCED_LABEL (target
) && !for_call
)
1011 || (DECL_NONLOCAL (target
) && for_call
))
1013 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
1019 /* Create edges for a goto statement at block BB. */
1022 make_goto_expr_edges (basic_block bb
)
1024 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1025 gimple goto_t
= gsi_stmt (last
);
1027 /* A simple GOTO creates normal edges. */
1028 if (simple_goto_p (goto_t
))
1030 tree dest
= gimple_goto_dest (goto_t
);
1031 basic_block label_bb
= label_to_block (dest
);
1032 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1033 e
->goto_locus
= gimple_location (goto_t
);
1034 assign_discriminator (e
->goto_locus
, label_bb
);
1036 e
->goto_block
= gimple_block (goto_t
);
1037 gsi_remove (&last
, true);
1041 /* A computed GOTO creates abnormal edges. */
1042 make_abnormal_goto_edges (bb
, false);
1045 /* Create edges for an asm statement with labels at block BB. */
1048 make_gimple_asm_edges (basic_block bb
)
1050 gimple stmt
= last_stmt (bb
);
1051 location_t stmt_loc
= gimple_location (stmt
);
1052 int i
, n
= gimple_asm_nlabels (stmt
);
1054 for (i
= 0; i
< n
; ++i
)
1056 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1057 basic_block label_bb
= label_to_block (label
);
1058 make_edge (bb
, label_bb
, 0);
1059 assign_discriminator (stmt_loc
, label_bb
);
1063 /*---------------------------------------------------------------------------
1065 ---------------------------------------------------------------------------*/
1067 /* Cleanup useless labels in basic blocks. This is something we wish
1068 to do early because it allows us to group case labels before creating
1069 the edges for the CFG, and it speeds up block statement iterators in
1070 all passes later on.
1071 We rerun this pass after CFG is created, to get rid of the labels that
1072 are no longer referenced. After then we do not run it any more, since
1073 (almost) no new labels should be created. */
1075 /* A map from basic block index to the leading label of that block. */
1076 static struct label_record
1081 /* True if the label is referenced from somewhere. */
1085 /* Given LABEL return the first label in the same basic block. */
1088 main_block_label (tree label
)
1090 basic_block bb
= label_to_block (label
);
1091 tree main_label
= label_for_bb
[bb
->index
].label
;
1093 /* label_to_block possibly inserted undefined label into the chain. */
1096 label_for_bb
[bb
->index
].label
= label
;
1100 label_for_bb
[bb
->index
].used
= true;
1104 /* Clean up redundant labels within the exception tree. */
1107 cleanup_dead_labels_eh (void)
1114 if (cfun
->eh
== NULL
)
1117 for (i
= 1; VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, i
, lp
); ++i
)
1118 if (lp
&& lp
->post_landing_pad
)
1120 lab
= main_block_label (lp
->post_landing_pad
);
1121 if (lab
!= lp
->post_landing_pad
)
1123 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1124 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1128 FOR_ALL_EH_REGION (r
)
1132 case ERT_MUST_NOT_THROW
:
1138 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1142 c
->label
= main_block_label (lab
);
1147 case ERT_ALLOWED_EXCEPTIONS
:
1148 lab
= r
->u
.allowed
.label
;
1150 r
->u
.allowed
.label
= main_block_label (lab
);
1156 /* Cleanup redundant labels. This is a three-step process:
1157 1) Find the leading label for each block.
1158 2) Redirect all references to labels to the leading labels.
1159 3) Cleanup all useless labels. */
1162 cleanup_dead_labels (void)
1165 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block
);
1167 /* Find a suitable label for each block. We use the first user-defined
1168 label if there is one, or otherwise just the first label we see. */
1171 gimple_stmt_iterator i
;
1173 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1176 gimple stmt
= gsi_stmt (i
);
1178 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1181 label
= gimple_label_label (stmt
);
1183 /* If we have not yet seen a label for the current block,
1184 remember this one and see if there are more labels. */
1185 if (!label_for_bb
[bb
->index
].label
)
1187 label_for_bb
[bb
->index
].label
= label
;
1191 /* If we did see a label for the current block already, but it
1192 is an artificially created label, replace it if the current
1193 label is a user defined label. */
1194 if (!DECL_ARTIFICIAL (label
)
1195 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1197 label_for_bb
[bb
->index
].label
= label
;
1203 /* Now redirect all jumps/branches to the selected label.
1204 First do so for each block ending in a control statement. */
1207 gimple stmt
= last_stmt (bb
);
1208 tree label
, new_label
;
1213 switch (gimple_code (stmt
))
1216 label
= gimple_cond_true_label (stmt
);
1219 new_label
= main_block_label (label
);
1220 if (new_label
!= label
)
1221 gimple_cond_set_true_label (stmt
, new_label
);
1224 label
= gimple_cond_false_label (stmt
);
1227 new_label
= main_block_label (label
);
1228 if (new_label
!= label
)
1229 gimple_cond_set_false_label (stmt
, new_label
);
1235 size_t i
, n
= gimple_switch_num_labels (stmt
);
1237 /* Replace all destination labels. */
1238 for (i
= 0; i
< n
; ++i
)
1240 tree case_label
= gimple_switch_label (stmt
, i
);
1241 label
= CASE_LABEL (case_label
);
1242 new_label
= main_block_label (label
);
1243 if (new_label
!= label
)
1244 CASE_LABEL (case_label
) = new_label
;
1251 int i
, n
= gimple_asm_nlabels (stmt
);
1253 for (i
= 0; i
< n
; ++i
)
1255 tree cons
= gimple_asm_label_op (stmt
, i
);
1256 tree label
= main_block_label (TREE_VALUE (cons
));
1257 TREE_VALUE (cons
) = label
;
1262 /* We have to handle gotos until they're removed, and we don't
1263 remove them until after we've created the CFG edges. */
1265 if (!computed_goto_p (stmt
))
1267 label
= gimple_goto_dest (stmt
);
1268 new_label
= main_block_label (label
);
1269 if (new_label
!= label
)
1270 gimple_goto_set_dest (stmt
, new_label
);
1274 case GIMPLE_TRANSACTION
:
1276 tree label
= gimple_transaction_label (stmt
);
1279 tree new_label
= main_block_label (label
);
1280 if (new_label
!= label
)
1281 gimple_transaction_set_label (stmt
, new_label
);
1291 /* Do the same for the exception region tree labels. */
1292 cleanup_dead_labels_eh ();
1294 /* Finally, purge dead labels. All user-defined labels and labels that
1295 can be the target of non-local gotos and labels which have their
1296 address taken are preserved. */
1299 gimple_stmt_iterator i
;
1300 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1302 if (!label_for_this_bb
)
1305 /* If the main label of the block is unused, we may still remove it. */
1306 if (!label_for_bb
[bb
->index
].used
)
1307 label_for_this_bb
= NULL
;
1309 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1312 gimple stmt
= gsi_stmt (i
);
1314 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1317 label
= gimple_label_label (stmt
);
1319 if (label
== label_for_this_bb
1320 || !DECL_ARTIFICIAL (label
)
1321 || DECL_NONLOCAL (label
)
1322 || FORCED_LABEL (label
))
1325 gsi_remove (&i
, true);
1329 free (label_for_bb
);
1332 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1333 the ones jumping to the same label.
1334 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1337 group_case_labels_stmt (gimple stmt
)
1339 int old_size
= gimple_switch_num_labels (stmt
);
1340 int i
, j
, new_size
= old_size
;
1341 tree default_case
= NULL_TREE
;
1342 tree default_label
= NULL_TREE
;
1345 /* The default label is always the first case in a switch
1346 statement after gimplification if it was not optimized
1348 if (!CASE_LOW (gimple_switch_default_label (stmt
))
1349 && !CASE_HIGH (gimple_switch_default_label (stmt
)))
1351 default_case
= gimple_switch_default_label (stmt
);
1352 default_label
= CASE_LABEL (default_case
);
1356 has_default
= false;
1358 /* Look for possible opportunities to merge cases. */
1363 while (i
< old_size
)
1365 tree base_case
, base_label
, base_high
;
1366 base_case
= gimple_switch_label (stmt
, i
);
1368 gcc_assert (base_case
);
1369 base_label
= CASE_LABEL (base_case
);
1371 /* Discard cases that have the same destination as the
1373 if (base_label
== default_label
)
1375 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1381 base_high
= CASE_HIGH (base_case
)
1382 ? CASE_HIGH (base_case
)
1383 : CASE_LOW (base_case
);
1386 /* Try to merge case labels. Break out when we reach the end
1387 of the label vector or when we cannot merge the next case
1388 label with the current one. */
1389 while (i
< old_size
)
1391 tree merge_case
= gimple_switch_label (stmt
, i
);
1392 tree merge_label
= CASE_LABEL (merge_case
);
1393 double_int bhp1
= double_int_add (tree_to_double_int (base_high
),
1396 /* Merge the cases if they jump to the same place,
1397 and their ranges are consecutive. */
1398 if (merge_label
== base_label
1399 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case
)),
1402 base_high
= CASE_HIGH (merge_case
) ?
1403 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1404 CASE_HIGH (base_case
) = base_high
;
1405 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1414 /* Compress the case labels in the label vector, and adjust the
1415 length of the vector. */
1416 for (i
= 0, j
= 0; i
< new_size
; i
++)
1418 while (! gimple_switch_label (stmt
, j
))
1420 gimple_switch_set_label (stmt
, i
,
1421 gimple_switch_label (stmt
, j
++));
1424 gcc_assert (new_size
<= old_size
);
1425 gimple_switch_set_num_labels (stmt
, new_size
);
1428 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1429 and scan the sorted vector of cases. Combine the ones jumping to the
1433 group_case_labels (void)
1439 gimple stmt
= last_stmt (bb
);
1440 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1441 group_case_labels_stmt (stmt
);
1445 /* Checks whether we can merge block B into block A. */
1448 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1451 gimple_stmt_iterator gsi
;
1454 if (!single_succ_p (a
))
1457 if (single_succ_edge (a
)->flags
& (EDGE_ABNORMAL
| EDGE_EH
| EDGE_PRESERVE
))
1460 if (single_succ (a
) != b
)
1463 if (!single_pred_p (b
))
1466 if (b
== EXIT_BLOCK_PTR
)
1469 /* If A ends by a statement causing exceptions or something similar, we
1470 cannot merge the blocks. */
1471 stmt
= last_stmt (a
);
1472 if (stmt
&& stmt_ends_bb_p (stmt
))
1475 /* Do not allow a block with only a non-local label to be merged. */
1477 && gimple_code (stmt
) == GIMPLE_LABEL
1478 && DECL_NONLOCAL (gimple_label_label (stmt
)))
1481 /* Examine the labels at the beginning of B. */
1482 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1485 stmt
= gsi_stmt (gsi
);
1486 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1488 lab
= gimple_label_label (stmt
);
1490 /* Do not remove user forced labels or for -O0 any user labels. */
1491 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1495 /* Protect the loop latches. */
1496 if (current_loops
&& b
->loop_father
->latch
== b
)
1499 /* It must be possible to eliminate all phi nodes in B. If ssa form
1500 is not up-to-date and a name-mapping is registered, we cannot eliminate
1501 any phis. Symbols marked for renaming are never a problem though. */
1502 phis
= phi_nodes (b
);
1503 if (!gimple_seq_empty_p (phis
)
1504 && name_mappings_registered_p ())
1507 /* When not optimizing, don't merge if we'd lose goto_locus. */
1509 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1511 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1512 gimple_stmt_iterator prev
, next
;
1513 prev
= gsi_last_nondebug_bb (a
);
1514 next
= gsi_after_labels (b
);
1515 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1516 gsi_next_nondebug (&next
);
1517 if ((gsi_end_p (prev
)
1518 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1519 && (gsi_end_p (next
)
1520 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1527 /* Return true if the var whose chain of uses starts at PTR has no
1530 has_zero_uses_1 (const ssa_use_operand_t
*head
)
1532 const ssa_use_operand_t
*ptr
;
1534 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1535 if (!is_gimple_debug (USE_STMT (ptr
)))
1541 /* Return true if the var whose chain of uses starts at PTR has a
1542 single nondebug use. Set USE_P and STMT to that single nondebug
1543 use, if so, or to NULL otherwise. */
1545 single_imm_use_1 (const ssa_use_operand_t
*head
,
1546 use_operand_p
*use_p
, gimple
*stmt
)
1548 ssa_use_operand_t
*ptr
, *single_use
= 0;
1550 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1551 if (!is_gimple_debug (USE_STMT (ptr
)))
1562 *use_p
= single_use
;
1565 *stmt
= single_use
? single_use
->loc
.stmt
: NULL
;
1567 return !!single_use
;
1570 /* Replaces all uses of NAME by VAL. */
1573 replace_uses_by (tree name
, tree val
)
1575 imm_use_iterator imm_iter
;
1580 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1582 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1584 replace_exp (use
, val
);
1586 if (gimple_code (stmt
) == GIMPLE_PHI
)
1588 e
= gimple_phi_arg_edge (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
1589 if (e
->flags
& EDGE_ABNORMAL
)
1591 /* This can only occur for virtual operands, since
1592 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1593 would prevent replacement. */
1594 gcc_checking_assert (!is_gimple_reg (name
));
1595 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1600 if (gimple_code (stmt
) != GIMPLE_PHI
)
1602 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1603 gimple orig_stmt
= stmt
;
1606 /* Mark the block if we changed the last stmt in it. */
1607 if (cfgcleanup_altered_bbs
1608 && stmt_ends_bb_p (stmt
))
1609 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1611 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1612 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1613 only change sth from non-invariant to invariant, and only
1614 when propagating constants. */
1615 if (is_gimple_min_invariant (val
))
1616 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1618 tree op
= gimple_op (stmt
, i
);
1619 /* Operands may be empty here. For example, the labels
1620 of a GIMPLE_COND are nulled out following the creation
1621 of the corresponding CFG edges. */
1622 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1623 recompute_tree_invariant_for_addr_expr (op
);
1626 if (fold_stmt (&gsi
))
1627 stmt
= gsi_stmt (gsi
);
1629 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
1630 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
1636 gcc_checking_assert (has_zero_uses (name
));
1638 /* Also update the trees stored in loop structures. */
1644 FOR_EACH_LOOP (li
, loop
, 0)
1646 substitute_in_loop_info (loop
, name
, val
);
1651 /* Merge block B into block A. */
1654 gimple_merge_blocks (basic_block a
, basic_block b
)
1656 gimple_stmt_iterator last
, gsi
, psi
;
1657 gimple_seq phis
= phi_nodes (b
);
1660 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1662 /* Remove all single-valued PHI nodes from block B of the form
1663 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1664 gsi
= gsi_last_bb (a
);
1665 for (psi
= gsi_start (phis
); !gsi_end_p (psi
); )
1667 gimple phi
= gsi_stmt (psi
);
1668 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1670 bool may_replace_uses
= !is_gimple_reg (def
)
1671 || may_propagate_copy (def
, use
);
1673 /* In case we maintain loop closed ssa form, do not propagate arguments
1674 of loop exit phi nodes. */
1676 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1677 && is_gimple_reg (def
)
1678 && TREE_CODE (use
) == SSA_NAME
1679 && a
->loop_father
!= b
->loop_father
)
1680 may_replace_uses
= false;
1682 if (!may_replace_uses
)
1684 gcc_assert (is_gimple_reg (def
));
1686 /* Note that just emitting the copies is fine -- there is no problem
1687 with ordering of phi nodes. This is because A is the single
1688 predecessor of B, therefore results of the phi nodes cannot
1689 appear as arguments of the phi nodes. */
1690 copy
= gimple_build_assign (def
, use
);
1691 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1692 remove_phi_node (&psi
, false);
1696 /* If we deal with a PHI for virtual operands, we can simply
1697 propagate these without fussing with folding or updating
1699 if (!is_gimple_reg (def
))
1701 imm_use_iterator iter
;
1702 use_operand_p use_p
;
1705 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1706 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1707 SET_USE (use_p
, use
);
1709 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
1710 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
1713 replace_uses_by (def
, use
);
1715 remove_phi_node (&psi
, true);
1719 /* Ensure that B follows A. */
1720 move_block_after (b
, a
);
1722 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1723 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1725 /* Remove labels from B and set gimple_bb to A for other statements. */
1726 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1728 gimple stmt
= gsi_stmt (gsi
);
1729 if (gimple_code (stmt
) == GIMPLE_LABEL
)
1731 tree label
= gimple_label_label (stmt
);
1734 gsi_remove (&gsi
, false);
1736 /* Now that we can thread computed gotos, we might have
1737 a situation where we have a forced label in block B
1738 However, the label at the start of block B might still be
1739 used in other ways (think about the runtime checking for
1740 Fortran assigned gotos). So we can not just delete the
1741 label. Instead we move the label to the start of block A. */
1742 if (FORCED_LABEL (label
))
1744 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1745 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
1747 /* Other user labels keep around in a form of a debug stmt. */
1748 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_STMTS
)
1750 gimple dbg
= gimple_build_debug_bind (label
,
1753 gimple_debug_bind_reset_value (dbg
);
1754 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
1757 lp_nr
= EH_LANDING_PAD_NR (label
);
1760 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
1761 lp
->post_landing_pad
= NULL
;
1766 gimple_set_bb (stmt
, a
);
1771 /* Merge the sequences. */
1772 last
= gsi_last_bb (a
);
1773 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
1774 set_bb_seq (b
, NULL
);
1776 if (cfgcleanup_altered_bbs
)
1777 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
1781 /* Return the one of two successors of BB that is not reachable by a
1782 complex edge, if there is one. Else, return BB. We use
1783 this in optimizations that use post-dominators for their heuristics,
1784 to catch the cases in C++ where function calls are involved. */
1787 single_noncomplex_succ (basic_block bb
)
1790 if (EDGE_COUNT (bb
->succs
) != 2)
1793 e0
= EDGE_SUCC (bb
, 0);
1794 e1
= EDGE_SUCC (bb
, 1);
1795 if (e0
->flags
& EDGE_COMPLEX
)
1797 if (e1
->flags
& EDGE_COMPLEX
)
1803 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1806 notice_special_calls (gimple call
)
1808 int flags
= gimple_call_flags (call
);
1810 if (flags
& ECF_MAY_BE_ALLOCA
)
1811 cfun
->calls_alloca
= true;
1812 if (flags
& ECF_RETURNS_TWICE
)
1813 cfun
->calls_setjmp
= true;
1817 /* Clear flags set by notice_special_calls. Used by dead code removal
1818 to update the flags. */
1821 clear_special_calls (void)
1823 cfun
->calls_alloca
= false;
1824 cfun
->calls_setjmp
= false;
1827 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1830 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
1832 /* Since this block is no longer reachable, we can just delete all
1833 of its PHI nodes. */
1834 remove_phi_nodes (bb
);
1836 /* Remove edges to BB's successors. */
1837 while (EDGE_COUNT (bb
->succs
) > 0)
1838 remove_edge (EDGE_SUCC (bb
, 0));
1842 /* Remove statements of basic block BB. */
1845 remove_bb (basic_block bb
)
1847 gimple_stmt_iterator i
;
1851 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
1852 if (dump_flags
& TDF_DETAILS
)
1854 dump_bb (bb
, dump_file
, 0);
1855 fprintf (dump_file
, "\n");
1861 struct loop
*loop
= bb
->loop_father
;
1863 /* If a loop gets removed, clean up the information associated
1865 if (loop
->latch
== bb
1866 || loop
->header
== bb
)
1867 free_numbers_of_iterations_estimates_loop (loop
);
1870 /* Remove all the instructions in the block. */
1871 if (bb_seq (bb
) != NULL
)
1873 /* Walk backwards so as to get a chance to substitute all
1874 released DEFs into debug stmts. See
1875 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1877 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
1879 gimple stmt
= gsi_stmt (i
);
1880 if (gimple_code (stmt
) == GIMPLE_LABEL
1881 && (FORCED_LABEL (gimple_label_label (stmt
))
1882 || DECL_NONLOCAL (gimple_label_label (stmt
))))
1885 gimple_stmt_iterator new_gsi
;
1887 /* A non-reachable non-local label may still be referenced.
1888 But it no longer needs to carry the extra semantics of
1890 if (DECL_NONLOCAL (gimple_label_label (stmt
)))
1892 DECL_NONLOCAL (gimple_label_label (stmt
)) = 0;
1893 FORCED_LABEL (gimple_label_label (stmt
)) = 1;
1896 new_bb
= bb
->prev_bb
;
1897 new_gsi
= gsi_start_bb (new_bb
);
1898 gsi_remove (&i
, false);
1899 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
1903 /* Release SSA definitions if we are in SSA. Note that we
1904 may be called when not in SSA. For example,
1905 final_cleanup calls this function via
1906 cleanup_tree_cfg. */
1907 if (gimple_in_ssa_p (cfun
))
1908 release_defs (stmt
);
1910 gsi_remove (&i
, true);
1914 i
= gsi_last_bb (bb
);
1920 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
1921 bb
->il
.gimple
= NULL
;
1925 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1926 predicate VAL, return the edge that will be taken out of the block.
1927 If VAL does not match a unique edge, NULL is returned. */
1930 find_taken_edge (basic_block bb
, tree val
)
1934 stmt
= last_stmt (bb
);
1937 gcc_assert (is_ctrl_stmt (stmt
));
1942 if (!is_gimple_min_invariant (val
))
1945 if (gimple_code (stmt
) == GIMPLE_COND
)
1946 return find_taken_edge_cond_expr (bb
, val
);
1948 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1949 return find_taken_edge_switch_expr (bb
, val
);
1951 if (computed_goto_p (stmt
))
1953 /* Only optimize if the argument is a label, if the argument is
1954 not a label then we can not construct a proper CFG.
1956 It may be the case that we only need to allow the LABEL_REF to
1957 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1958 appear inside a LABEL_EXPR just to be safe. */
1959 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
1960 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
1961 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
1968 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1969 statement, determine which of the outgoing edges will be taken out of the
1970 block. Return NULL if either edge may be taken. */
1973 find_taken_edge_computed_goto (basic_block bb
, tree val
)
1978 dest
= label_to_block (val
);
1981 e
= find_edge (bb
, dest
);
1982 gcc_assert (e
!= NULL
);
1988 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1989 statement, determine which of the two edges will be taken out of the
1990 block. Return NULL if either edge may be taken. */
1993 find_taken_edge_cond_expr (basic_block bb
, tree val
)
1995 edge true_edge
, false_edge
;
1997 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1999 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
2000 return (integer_zerop (val
) ? false_edge
: true_edge
);
2003 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2004 statement, determine which edge will be taken out of the block. Return
2005 NULL if any edge may be taken. */
2008 find_taken_edge_switch_expr (basic_block bb
, tree val
)
2010 basic_block dest_bb
;
2015 switch_stmt
= last_stmt (bb
);
2016 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2017 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2019 e
= find_edge (bb
, dest_bb
);
2025 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2026 We can make optimal use here of the fact that the case labels are
2027 sorted: We can do a binary search for a case matching VAL. */
2030 find_case_label_for_value (gimple switch_stmt
, tree val
)
2032 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2033 tree default_case
= gimple_switch_default_label (switch_stmt
);
2035 for (low
= 0, high
= n
; high
- low
> 1; )
2037 size_t i
= (high
+ low
) / 2;
2038 tree t
= gimple_switch_label (switch_stmt
, i
);
2041 /* Cache the result of comparing CASE_LOW and val. */
2042 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2049 if (CASE_HIGH (t
) == NULL
)
2051 /* A singe-valued case label. */
2057 /* A case range. We can only handle integer ranges. */
2058 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2063 return default_case
;
2067 /* Dump a basic block on stderr. */
2070 gimple_debug_bb (basic_block bb
)
2072 gimple_dump_bb (bb
, stderr
, 0, TDF_VOPS
|TDF_MEMSYMS
);
2076 /* Dump basic block with index N on stderr. */
2079 gimple_debug_bb_n (int n
)
2081 gimple_debug_bb (BASIC_BLOCK (n
));
2082 return BASIC_BLOCK (n
);
2086 /* Dump the CFG on stderr.
2088 FLAGS are the same used by the tree dumping functions
2089 (see TDF_* in tree-pass.h). */
2092 gimple_debug_cfg (int flags
)
2094 gimple_dump_cfg (stderr
, flags
);
2098 /* Dump the program showing basic block boundaries on the given FILE.
2100 FLAGS are the same used by the tree dumping functions (see TDF_* in
2104 gimple_dump_cfg (FILE *file
, int flags
)
2106 if (flags
& TDF_DETAILS
)
2108 dump_function_header (file
, current_function_decl
, flags
);
2109 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2110 n_basic_blocks
, n_edges
, last_basic_block
);
2112 brief_dump_cfg (file
);
2113 fprintf (file
, "\n");
2116 if (flags
& TDF_STATS
)
2117 dump_cfg_stats (file
);
2119 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2123 /* Dump CFG statistics on FILE. */
2126 dump_cfg_stats (FILE *file
)
2128 static long max_num_merged_labels
= 0;
2129 unsigned long size
, total
= 0;
2132 const char * const fmt_str
= "%-30s%-13s%12s\n";
2133 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2134 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2135 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2136 const char *funcname
2137 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2140 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2142 fprintf (file
, "---------------------------------------------------------\n");
2143 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2144 fprintf (file
, fmt_str
, "", " instances ", "used ");
2145 fprintf (file
, "---------------------------------------------------------\n");
2147 size
= n_basic_blocks
* sizeof (struct basic_block_def
);
2149 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks
,
2150 SCALE (size
), LABEL (size
));
2154 num_edges
+= EDGE_COUNT (bb
->succs
);
2155 size
= num_edges
* sizeof (struct edge_def
);
2157 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2159 fprintf (file
, "---------------------------------------------------------\n");
2160 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2162 fprintf (file
, "---------------------------------------------------------\n");
2163 fprintf (file
, "\n");
2165 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2166 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2168 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2169 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2171 fprintf (file
, "\n");
2175 /* Dump CFG statistics on stderr. Keep extern so that it's always
2176 linked in the final executable. */
2179 debug_cfg_stats (void)
2181 dump_cfg_stats (stderr
);
2185 /* Dump the flowgraph to a .vcg FILE. */
2188 gimple_cfg2vcg (FILE *file
)
2193 const char *funcname
2194 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2196 /* Write the file header. */
2197 fprintf (file
, "graph: { title: \"%s\"\n", funcname
);
2198 fprintf (file
, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2199 fprintf (file
, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2201 /* Write blocks and edges. */
2202 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2204 fprintf (file
, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2207 if (e
->flags
& EDGE_FAKE
)
2208 fprintf (file
, " linestyle: dotted priority: 10");
2210 fprintf (file
, " linestyle: solid priority: 100");
2212 fprintf (file
, " }\n");
2218 enum gimple_code head_code
, end_code
;
2219 const char *head_name
, *end_name
;
2222 gimple first
= first_stmt (bb
);
2223 gimple last
= last_stmt (bb
);
2227 head_code
= gimple_code (first
);
2228 head_name
= gimple_code_name
[head_code
];
2229 head_line
= get_lineno (first
);
2232 head_name
= "no-statement";
2236 end_code
= gimple_code (last
);
2237 end_name
= gimple_code_name
[end_code
];
2238 end_line
= get_lineno (last
);
2241 end_name
= "no-statement";
2243 fprintf (file
, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2244 bb
->index
, bb
->index
, head_name
, head_line
, end_name
,
2247 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2249 if (e
->dest
== EXIT_BLOCK_PTR
)
2250 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb
->index
);
2252 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb
->index
, e
->dest
->index
);
2254 if (e
->flags
& EDGE_FAKE
)
2255 fprintf (file
, " priority: 10 linestyle: dotted");
2257 fprintf (file
, " priority: 100 linestyle: solid");
2259 fprintf (file
, " }\n");
2262 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
2266 fputs ("}\n\n", file
);
2271 /*---------------------------------------------------------------------------
2272 Miscellaneous helpers
2273 ---------------------------------------------------------------------------*/
2275 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2276 flow. Transfers of control flow associated with EH are excluded. */
2279 call_can_make_abnormal_goto (gimple t
)
2281 /* If the function has no non-local labels, then a call cannot make an
2282 abnormal transfer of control. */
2283 if (!cfun
->has_nonlocal_label
)
2286 /* Likewise if the call has no side effects. */
2287 if (!gimple_has_side_effects (t
))
2290 /* Likewise if the called function is leaf. */
2291 if (gimple_call_flags (t
) & ECF_LEAF
)
2298 /* Return true if T can make an abnormal transfer of control flow.
2299 Transfers of control flow associated with EH are excluded. */
2302 stmt_can_make_abnormal_goto (gimple t
)
2304 if (computed_goto_p (t
))
2306 if (is_gimple_call (t
))
2307 return call_can_make_abnormal_goto (t
);
2312 /* Return true if T represents a stmt that always transfers control. */
2315 is_ctrl_stmt (gimple t
)
2317 switch (gimple_code (t
))
2331 /* Return true if T is a statement that may alter the flow of control
2332 (e.g., a call to a non-returning function). */
2335 is_ctrl_altering_stmt (gimple t
)
2339 switch (gimple_code (t
))
2343 int flags
= gimple_call_flags (t
);
2345 /* A call alters control flow if it can make an abnormal goto. */
2346 if (call_can_make_abnormal_goto (t
))
2349 /* A call also alters control flow if it does not return. */
2350 if (flags
& ECF_NORETURN
)
2353 /* TM ending statements have backedges out of the transaction.
2354 Return true so we split the basic block containing them.
2355 Note that the TM_BUILTIN test is merely an optimization. */
2356 if ((flags
& ECF_TM_BUILTIN
)
2357 && is_tm_ending_fndecl (gimple_call_fndecl (t
)))
2360 /* BUILT_IN_RETURN call is same as return statement. */
2361 if (gimple_call_builtin_p (t
, BUILT_IN_RETURN
))
2366 case GIMPLE_EH_DISPATCH
:
2367 /* EH_DISPATCH branches to the individual catch handlers at
2368 this level of a try or allowed-exceptions region. It can
2369 fallthru to the next statement as well. */
2373 if (gimple_asm_nlabels (t
) > 0)
2378 /* OpenMP directives alter control flow. */
2381 case GIMPLE_TRANSACTION
:
2382 /* A transaction start alters control flow. */
2389 /* If a statement can throw, it alters control flow. */
2390 return stmt_can_throw_internal (t
);
2394 /* Return true if T is a simple local goto. */
2397 simple_goto_p (gimple t
)
2399 return (gimple_code (t
) == GIMPLE_GOTO
2400 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2404 /* Return true if STMT should start a new basic block. PREV_STMT is
2405 the statement preceding STMT. It is used when STMT is a label or a
2406 case label. Labels should only start a new basic block if their
2407 previous statement wasn't a label. Otherwise, sequence of labels
2408 would generate unnecessary basic blocks that only contain a single
2412 stmt_starts_bb_p (gimple stmt
, gimple prev_stmt
)
2417 /* Labels start a new basic block only if the preceding statement
2418 wasn't a label of the same type. This prevents the creation of
2419 consecutive blocks that have nothing but a single label. */
2420 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2422 /* Nonlocal and computed GOTO targets always start a new block. */
2423 if (DECL_NONLOCAL (gimple_label_label (stmt
))
2424 || FORCED_LABEL (gimple_label_label (stmt
)))
2427 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2429 if (DECL_NONLOCAL (gimple_label_label (prev_stmt
)))
2432 cfg_stats
.num_merged_labels
++;
2443 /* Return true if T should end a basic block. */
2446 stmt_ends_bb_p (gimple t
)
2448 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2451 /* Remove block annotations and other data structures. */
2454 delete_tree_cfg_annotations (void)
2456 label_to_block_map
= NULL
;
2460 /* Return the first statement in basic block BB. */
2463 first_stmt (basic_block bb
)
2465 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2468 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2476 /* Return the first non-label statement in basic block BB. */
2479 first_non_label_stmt (basic_block bb
)
2481 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2482 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2484 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2487 /* Return the last statement in basic block BB. */
2490 last_stmt (basic_block bb
)
2492 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2495 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2503 /* Return the last statement of an otherwise empty block. Return NULL
2504 if the block is totally empty, or if it contains more than one
2508 last_and_only_stmt (basic_block bb
)
2510 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2516 last
= gsi_stmt (i
);
2517 gsi_prev_nondebug (&i
);
2521 /* Empty statements should no longer appear in the instruction stream.
2522 Everything that might have appeared before should be deleted by
2523 remove_useless_stmts, and the optimizers should just gsi_remove
2524 instead of smashing with build_empty_stmt.
2526 Thus the only thing that should appear here in a block containing
2527 one executable statement is a label. */
2528 prev
= gsi_stmt (i
);
2529 if (gimple_code (prev
) == GIMPLE_LABEL
)
2535 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2538 reinstall_phi_args (edge new_edge
, edge old_edge
)
2540 edge_var_map_vector v
;
2543 gimple_stmt_iterator phis
;
2545 v
= redirect_edge_var_map_vector (old_edge
);
2549 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2550 VEC_iterate (edge_var_map
, v
, i
, vm
) && !gsi_end_p (phis
);
2551 i
++, gsi_next (&phis
))
2553 gimple phi
= gsi_stmt (phis
);
2554 tree result
= redirect_edge_var_map_result (vm
);
2555 tree arg
= redirect_edge_var_map_def (vm
);
2557 gcc_assert (result
== gimple_phi_result (phi
));
2559 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2562 redirect_edge_var_map_clear (old_edge
);
2565 /* Returns the basic block after which the new basic block created
2566 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2567 near its "logical" location. This is of most help to humans looking
2568 at debugging dumps. */
2571 split_edge_bb_loc (edge edge_in
)
2573 basic_block dest
= edge_in
->dest
;
2574 basic_block dest_prev
= dest
->prev_bb
;
2578 edge e
= find_edge (dest_prev
, dest
);
2579 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2580 return edge_in
->src
;
2585 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2586 Abort on abnormal edges. */
2589 gimple_split_edge (edge edge_in
)
2591 basic_block new_bb
, after_bb
, dest
;
2594 /* Abnormal edges cannot be split. */
2595 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2597 dest
= edge_in
->dest
;
2599 after_bb
= split_edge_bb_loc (edge_in
);
2601 new_bb
= create_empty_bb (after_bb
);
2602 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2603 new_bb
->count
= edge_in
->count
;
2604 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2605 new_edge
->probability
= REG_BR_PROB_BASE
;
2606 new_edge
->count
= edge_in
->count
;
2608 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2609 gcc_assert (e
== edge_in
);
2610 reinstall_phi_args (new_edge
, e
);
2616 /* Verify properties of the address expression T with base object BASE. */
2619 verify_address (tree t
, tree base
)
2622 bool old_side_effects
;
2624 bool new_side_effects
;
2626 old_constant
= TREE_CONSTANT (t
);
2627 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2629 recompute_tree_invariant_for_addr_expr (t
);
2630 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2631 new_constant
= TREE_CONSTANT (t
);
2633 if (old_constant
!= new_constant
)
2635 error ("constant not recomputed when ADDR_EXPR changed");
2638 if (old_side_effects
!= new_side_effects
)
2640 error ("side effects not recomputed when ADDR_EXPR changed");
2644 if (!(TREE_CODE (base
) == VAR_DECL
2645 || TREE_CODE (base
) == PARM_DECL
2646 || TREE_CODE (base
) == RESULT_DECL
))
2649 if (DECL_GIMPLE_REG_P (base
))
2651 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2658 /* Callback for walk_tree, check that all elements with address taken are
2659 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2660 inside a PHI node. */
2663 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2670 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2671 #define CHECK_OP(N, MSG) \
2672 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2673 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2675 switch (TREE_CODE (t
))
2678 if (SSA_NAME_IN_FREE_LIST (t
))
2680 error ("SSA name in freelist but still referenced");
2686 error ("INDIRECT_REF in gimple IL");
2690 x
= TREE_OPERAND (t
, 0);
2691 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2692 || !is_gimple_mem_ref_addr (x
))
2694 error ("invalid first operand of MEM_REF");
2697 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2698 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2700 error ("invalid offset operand of MEM_REF");
2701 return TREE_OPERAND (t
, 1);
2703 if (TREE_CODE (x
) == ADDR_EXPR
2704 && (x
= verify_address (x
, TREE_OPERAND (x
, 0))))
2710 x
= fold (ASSERT_EXPR_COND (t
));
2711 if (x
== boolean_false_node
)
2713 error ("ASSERT_EXPR with an always-false condition");
2719 error ("MODIFY_EXPR not expected while having tuples");
2726 gcc_assert (is_gimple_address (t
));
2728 /* Skip any references (they will be checked when we recurse down the
2729 tree) and ensure that any variable used as a prefix is marked
2731 for (x
= TREE_OPERAND (t
, 0);
2732 handled_component_p (x
);
2733 x
= TREE_OPERAND (x
, 0))
2736 if ((tem
= verify_address (t
, x
)))
2739 if (!(TREE_CODE (x
) == VAR_DECL
2740 || TREE_CODE (x
) == PARM_DECL
2741 || TREE_CODE (x
) == RESULT_DECL
))
2744 if (!TREE_ADDRESSABLE (x
))
2746 error ("address taken, but ADDRESSABLE bit not set");
2754 x
= COND_EXPR_COND (t
);
2755 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
2757 error ("non-integral used in condition");
2760 if (!is_gimple_condexpr (x
))
2762 error ("invalid conditional operand");
2767 case NON_LVALUE_EXPR
:
2768 case TRUTH_NOT_EXPR
:
2772 case FIX_TRUNC_EXPR
:
2777 CHECK_OP (0, "invalid operand to unary operator");
2784 case ARRAY_RANGE_REF
:
2786 case VIEW_CONVERT_EXPR
:
2787 /* We have a nest of references. Verify that each of the operands
2788 that determine where to reference is either a constant or a variable,
2789 verify that the base is valid, and then show we've already checked
2791 while (handled_component_p (t
))
2793 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
2794 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2795 else if (TREE_CODE (t
) == ARRAY_REF
2796 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
2798 CHECK_OP (1, "invalid array index");
2799 if (TREE_OPERAND (t
, 2))
2800 CHECK_OP (2, "invalid array lower bound");
2801 if (TREE_OPERAND (t
, 3))
2802 CHECK_OP (3, "invalid array stride");
2804 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
2806 if (!host_integerp (TREE_OPERAND (t
, 1), 1)
2807 || !host_integerp (TREE_OPERAND (t
, 2), 1))
2809 error ("invalid position or size operand to BIT_FIELD_REF");
2812 else if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
2813 && (TYPE_PRECISION (TREE_TYPE (t
))
2814 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2816 error ("integral result type precision does not match "
2817 "field size of BIT_FIELD_REF");
2820 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
2821 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
2822 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2824 error ("mode precision of non-integral result does not "
2825 "match field size of BIT_FIELD_REF");
2830 t
= TREE_OPERAND (t
, 0);
2833 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
2835 error ("invalid reference prefix");
2842 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2843 POINTER_PLUS_EXPR. */
2844 if (POINTER_TYPE_P (TREE_TYPE (t
)))
2846 error ("invalid operand to plus/minus, type is a pointer");
2849 CHECK_OP (0, "invalid operand to binary operator");
2850 CHECK_OP (1, "invalid operand to binary operator");
2853 case POINTER_PLUS_EXPR
:
2854 /* Check to make sure the first operand is a pointer or reference type. */
2855 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
2857 error ("invalid operand to pointer plus, first operand is not a pointer");
2860 /* Check to make sure the second operand is a ptrofftype. */
2861 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t
, 1))))
2863 error ("invalid operand to pointer plus, second operand is not an "
2864 "integer type of appropriate width");
2874 case UNORDERED_EXPR
:
2883 case TRUNC_DIV_EXPR
:
2885 case FLOOR_DIV_EXPR
:
2886 case ROUND_DIV_EXPR
:
2887 case TRUNC_MOD_EXPR
:
2889 case FLOOR_MOD_EXPR
:
2890 case ROUND_MOD_EXPR
:
2892 case EXACT_DIV_EXPR
:
2902 CHECK_OP (0, "invalid operand to binary operator");
2903 CHECK_OP (1, "invalid operand to binary operator");
2907 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2911 case CASE_LABEL_EXPR
:
2914 error ("invalid CASE_CHAIN");
2928 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2929 Returns true if there is an error, otherwise false. */
2932 verify_types_in_gimple_min_lval (tree expr
)
2936 if (is_gimple_id (expr
))
2939 if (TREE_CODE (expr
) != TARGET_MEM_REF
2940 && TREE_CODE (expr
) != MEM_REF
)
2942 error ("invalid expression for min lvalue");
2946 /* TARGET_MEM_REFs are strange beasts. */
2947 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2950 op
= TREE_OPERAND (expr
, 0);
2951 if (!is_gimple_val (op
))
2953 error ("invalid operand in indirect reference");
2954 debug_generic_stmt (op
);
2957 /* Memory references now generally can involve a value conversion. */
2962 /* Verify if EXPR is a valid GIMPLE reference expression. If
2963 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2964 if there is an error, otherwise false. */
2967 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
2969 while (handled_component_p (expr
))
2971 tree op
= TREE_OPERAND (expr
, 0);
2973 if (TREE_CODE (expr
) == ARRAY_REF
2974 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
2976 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
2977 || (TREE_OPERAND (expr
, 2)
2978 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
2979 || (TREE_OPERAND (expr
, 3)
2980 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
2982 error ("invalid operands to array reference");
2983 debug_generic_stmt (expr
);
2988 /* Verify if the reference array element types are compatible. */
2989 if (TREE_CODE (expr
) == ARRAY_REF
2990 && !useless_type_conversion_p (TREE_TYPE (expr
),
2991 TREE_TYPE (TREE_TYPE (op
))))
2993 error ("type mismatch in array reference");
2994 debug_generic_stmt (TREE_TYPE (expr
));
2995 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2998 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
2999 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3000 TREE_TYPE (TREE_TYPE (op
))))
3002 error ("type mismatch in array range reference");
3003 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3004 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3008 if ((TREE_CODE (expr
) == REALPART_EXPR
3009 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3010 && !useless_type_conversion_p (TREE_TYPE (expr
),
3011 TREE_TYPE (TREE_TYPE (op
))))
3013 error ("type mismatch in real/imagpart reference");
3014 debug_generic_stmt (TREE_TYPE (expr
));
3015 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3019 if (TREE_CODE (expr
) == COMPONENT_REF
3020 && !useless_type_conversion_p (TREE_TYPE (expr
),
3021 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3023 error ("type mismatch in component reference");
3024 debug_generic_stmt (TREE_TYPE (expr
));
3025 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3029 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3031 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3032 that their operand is not an SSA name or an invariant when
3033 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3034 bug). Otherwise there is nothing to verify, gross mismatches at
3035 most invoke undefined behavior. */
3037 && (TREE_CODE (op
) == SSA_NAME
3038 || is_gimple_min_invariant (op
)))
3040 error ("conversion of an SSA_NAME on the left hand side");
3041 debug_generic_stmt (expr
);
3044 else if (TREE_CODE (op
) == SSA_NAME
3045 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3047 error ("conversion of register to a different size");
3048 debug_generic_stmt (expr
);
3051 else if (!handled_component_p (op
))
3058 if (TREE_CODE (expr
) == MEM_REF
)
3060 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
3062 error ("invalid address operand in MEM_REF");
3063 debug_generic_stmt (expr
);
3066 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
3067 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3069 error ("invalid offset operand in MEM_REF");
3070 debug_generic_stmt (expr
);
3074 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3076 if (!TMR_BASE (expr
)
3077 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
3079 error ("invalid address operand in TARGET_MEM_REF");
3082 if (!TMR_OFFSET (expr
)
3083 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
3084 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3086 error ("invalid offset operand in TARGET_MEM_REF");
3087 debug_generic_stmt (expr
);
3092 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3093 && verify_types_in_gimple_min_lval (expr
));
3096 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3097 list of pointer-to types that is trivially convertible to DEST. */
3100 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3104 if (!TYPE_POINTER_TO (src_obj
))
3107 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3108 if (useless_type_conversion_p (dest
, src
))
3114 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3115 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3118 valid_fixed_convert_types_p (tree type1
, tree type2
)
3120 return (FIXED_POINT_TYPE_P (type1
)
3121 && (INTEGRAL_TYPE_P (type2
)
3122 || SCALAR_FLOAT_TYPE_P (type2
)
3123 || FIXED_POINT_TYPE_P (type2
)));
3126 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3127 is a problem, otherwise false. */
3130 verify_gimple_call (gimple stmt
)
3132 tree fn
= gimple_call_fn (stmt
);
3133 tree fntype
, fndecl
;
3136 if (gimple_call_internal_p (stmt
))
3140 error ("gimple call has two targets");
3141 debug_generic_stmt (fn
);
3149 error ("gimple call has no target");
3154 if (fn
&& !is_gimple_call_addr (fn
))
3156 error ("invalid function in gimple call");
3157 debug_generic_stmt (fn
);
3162 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3163 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3164 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3166 error ("non-function in gimple call");
3170 fndecl
= gimple_call_fndecl (stmt
);
3172 && TREE_CODE (fndecl
) == FUNCTION_DECL
3173 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3174 && !DECL_PURE_P (fndecl
)
3175 && !TREE_READONLY (fndecl
))
3177 error ("invalid pure const state for function");
3181 if (gimple_call_lhs (stmt
)
3182 && (!is_gimple_lvalue (gimple_call_lhs (stmt
))
3183 || verify_types_in_gimple_reference (gimple_call_lhs (stmt
), true)))
3185 error ("invalid LHS in gimple call");
3189 if (gimple_call_lhs (stmt
) && gimple_call_noreturn_p (stmt
))
3191 error ("LHS in noreturn call");
3195 fntype
= gimple_call_fntype (stmt
);
3197 && gimple_call_lhs (stmt
)
3198 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt
)),
3200 /* ??? At least C++ misses conversions at assignments from
3201 void * call results.
3202 ??? Java is completely off. Especially with functions
3203 returning java.lang.Object.
3204 For now simply allow arbitrary pointer type conversions. */
3205 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt
)))
3206 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3208 error ("invalid conversion in gimple call");
3209 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt
)));
3210 debug_generic_stmt (TREE_TYPE (fntype
));
3214 if (gimple_call_chain (stmt
)
3215 && !is_gimple_val (gimple_call_chain (stmt
)))
3217 error ("invalid static chain in gimple call");
3218 debug_generic_stmt (gimple_call_chain (stmt
));
3222 /* If there is a static chain argument, this should not be an indirect
3223 call, and the decl should have DECL_STATIC_CHAIN set. */
3224 if (gimple_call_chain (stmt
))
3226 if (!gimple_call_fndecl (stmt
))
3228 error ("static chain in indirect gimple call");
3231 fn
= TREE_OPERAND (fn
, 0);
3233 if (!DECL_STATIC_CHAIN (fn
))
3235 error ("static chain with function that doesn%'t use one");
3240 /* ??? The C frontend passes unpromoted arguments in case it
3241 didn't see a function declaration before the call. So for now
3242 leave the call arguments mostly unverified. Once we gimplify
3243 unit-at-a-time we have a chance to fix this. */
3245 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3247 tree arg
= gimple_call_arg (stmt
, i
);
3248 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3249 && !is_gimple_val (arg
))
3250 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3251 && !is_gimple_lvalue (arg
)))
3253 error ("invalid argument to gimple call");
3254 debug_generic_expr (arg
);
3262 /* Verifies the gimple comparison with the result type TYPE and
3263 the operands OP0 and OP1. */
3266 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3268 tree op0_type
= TREE_TYPE (op0
);
3269 tree op1_type
= TREE_TYPE (op1
);
3271 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3273 error ("invalid operands in gimple comparison");
3277 /* For comparisons we do not have the operations type as the
3278 effective type the comparison is carried out in. Instead
3279 we require that either the first operand is trivially
3280 convertible into the second, or the other way around.
3281 Because we special-case pointers to void we allow
3282 comparisons of pointers with the same mode as well. */
3283 if (!useless_type_conversion_p (op0_type
, op1_type
)
3284 && !useless_type_conversion_p (op1_type
, op0_type
)
3285 && (!POINTER_TYPE_P (op0_type
)
3286 || !POINTER_TYPE_P (op1_type
)
3287 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3289 error ("mismatching comparison operand types");
3290 debug_generic_expr (op0_type
);
3291 debug_generic_expr (op1_type
);
3295 /* The resulting type of a comparison may be an effective boolean type. */
3296 if (INTEGRAL_TYPE_P (type
)
3297 && (TREE_CODE (type
) == BOOLEAN_TYPE
3298 || TYPE_PRECISION (type
) == 1))
3300 /* Or an integer vector type with the same size and element count
3301 as the comparison operand types. */
3302 else if (TREE_CODE (type
) == VECTOR_TYPE
3303 && TREE_CODE (TREE_TYPE (type
)) == INTEGER_TYPE
)
3305 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3306 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3308 error ("non-vector operands in vector comparison");
3309 debug_generic_expr (op0_type
);
3310 debug_generic_expr (op1_type
);
3314 if (TYPE_VECTOR_SUBPARTS (type
) != TYPE_VECTOR_SUBPARTS (op0_type
)
3315 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type
)))
3316 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type
)))))
3318 error ("invalid vector comparison resulting type");
3319 debug_generic_expr (type
);
3325 error ("bogus comparison result type");
3326 debug_generic_expr (type
);
3333 /* Verify a gimple assignment statement STMT with an unary rhs.
3334 Returns true if anything is wrong. */
3337 verify_gimple_assign_unary (gimple stmt
)
3339 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3340 tree lhs
= gimple_assign_lhs (stmt
);
3341 tree lhs_type
= TREE_TYPE (lhs
);
3342 tree rhs1
= gimple_assign_rhs1 (stmt
);
3343 tree rhs1_type
= TREE_TYPE (rhs1
);
3345 if (!is_gimple_reg (lhs
))
3347 error ("non-register as LHS of unary operation");
3351 if (!is_gimple_val (rhs1
))
3353 error ("invalid operand in unary operation");
3357 /* First handle conversions. */
3362 /* Allow conversions from pointer type to integral type only if
3363 there is no sign or zero extension involved.
3364 For targets were the precision of ptrofftype doesn't match that
3365 of pointers we need to allow arbitrary conversions to ptrofftype. */
3366 if ((POINTER_TYPE_P (lhs_type
)
3367 && INTEGRAL_TYPE_P (rhs1_type
))
3368 || (POINTER_TYPE_P (rhs1_type
)
3369 && INTEGRAL_TYPE_P (lhs_type
)
3370 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3371 || ptrofftype_p (sizetype
))))
3374 /* Allow conversion from integer to offset type and vice versa. */
3375 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3376 && TREE_CODE (rhs1_type
) == INTEGER_TYPE
)
3377 || (TREE_CODE (lhs_type
) == INTEGER_TYPE
3378 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3381 /* Otherwise assert we are converting between types of the
3383 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3385 error ("invalid types in nop conversion");
3386 debug_generic_expr (lhs_type
);
3387 debug_generic_expr (rhs1_type
);
3394 case ADDR_SPACE_CONVERT_EXPR
:
3396 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3397 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3398 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3400 error ("invalid types in address space conversion");
3401 debug_generic_expr (lhs_type
);
3402 debug_generic_expr (rhs1_type
);
3409 case FIXED_CONVERT_EXPR
:
3411 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3412 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3414 error ("invalid types in fixed-point conversion");
3415 debug_generic_expr (lhs_type
);
3416 debug_generic_expr (rhs1_type
);
3425 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3426 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3427 || !VECTOR_FLOAT_TYPE_P(lhs_type
)))
3429 error ("invalid types in conversion to floating point");
3430 debug_generic_expr (lhs_type
);
3431 debug_generic_expr (rhs1_type
);
3438 case FIX_TRUNC_EXPR
:
3440 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3441 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3442 || !VECTOR_FLOAT_TYPE_P(rhs1_type
)))
3444 error ("invalid types in conversion to integer");
3445 debug_generic_expr (lhs_type
);
3446 debug_generic_expr (rhs1_type
);
3453 case VEC_UNPACK_HI_EXPR
:
3454 case VEC_UNPACK_LO_EXPR
:
3455 case REDUC_MAX_EXPR
:
3456 case REDUC_MIN_EXPR
:
3457 case REDUC_PLUS_EXPR
:
3458 case VEC_UNPACK_FLOAT_HI_EXPR
:
3459 case VEC_UNPACK_FLOAT_LO_EXPR
:
3467 case NON_LVALUE_EXPR
:
3475 /* For the remaining codes assert there is no conversion involved. */
3476 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3478 error ("non-trivial conversion in unary operation");
3479 debug_generic_expr (lhs_type
);
3480 debug_generic_expr (rhs1_type
);
3487 /* Verify a gimple assignment statement STMT with a binary rhs.
3488 Returns true if anything is wrong. */
3491 verify_gimple_assign_binary (gimple stmt
)
3493 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3494 tree lhs
= gimple_assign_lhs (stmt
);
3495 tree lhs_type
= TREE_TYPE (lhs
);
3496 tree rhs1
= gimple_assign_rhs1 (stmt
);
3497 tree rhs1_type
= TREE_TYPE (rhs1
);
3498 tree rhs2
= gimple_assign_rhs2 (stmt
);
3499 tree rhs2_type
= TREE_TYPE (rhs2
);
3501 if (!is_gimple_reg (lhs
))
3503 error ("non-register as LHS of binary operation");
3507 if (!is_gimple_val (rhs1
)
3508 || !is_gimple_val (rhs2
))
3510 error ("invalid operands in binary operation");
3514 /* First handle operations that involve different types. */
3519 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3520 || !(INTEGRAL_TYPE_P (rhs1_type
)
3521 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3522 || !(INTEGRAL_TYPE_P (rhs2_type
)
3523 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3525 error ("type mismatch in complex expression");
3526 debug_generic_expr (lhs_type
);
3527 debug_generic_expr (rhs1_type
);
3528 debug_generic_expr (rhs2_type
);
3540 /* Shifts and rotates are ok on integral types, fixed point
3541 types and integer vector types. */
3542 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3543 && !FIXED_POINT_TYPE_P (rhs1_type
)
3544 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3545 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3546 || (!INTEGRAL_TYPE_P (rhs2_type
)
3547 /* Vector shifts of vectors are also ok. */
3548 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3549 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3550 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3551 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3552 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3554 error ("type mismatch in shift expression");
3555 debug_generic_expr (lhs_type
);
3556 debug_generic_expr (rhs1_type
);
3557 debug_generic_expr (rhs2_type
);
3564 case VEC_LSHIFT_EXPR
:
3565 case VEC_RSHIFT_EXPR
:
3567 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3568 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3569 || POINTER_TYPE_P (TREE_TYPE (rhs1_type
))
3570 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type
))
3571 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3572 || (!INTEGRAL_TYPE_P (rhs2_type
)
3573 && (TREE_CODE (rhs2_type
) != VECTOR_TYPE
3574 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3575 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3577 error ("type mismatch in vector shift expression");
3578 debug_generic_expr (lhs_type
);
3579 debug_generic_expr (rhs1_type
);
3580 debug_generic_expr (rhs2_type
);
3583 /* For shifting a vector of non-integral components we
3584 only allow shifting by a constant multiple of the element size. */
3585 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3586 && (TREE_CODE (rhs2
) != INTEGER_CST
3587 || !div_if_zero_remainder (EXACT_DIV_EXPR
, rhs2
,
3588 TYPE_SIZE (TREE_TYPE (rhs1_type
)))))
3590 error ("non-element sized vector shift of floating point vector");
3597 case WIDEN_LSHIFT_EXPR
:
3599 if (!INTEGRAL_TYPE_P (lhs_type
)
3600 || !INTEGRAL_TYPE_P (rhs1_type
)
3601 || TREE_CODE (rhs2
) != INTEGER_CST
3602 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3604 error ("type mismatch in widening vector shift expression");
3605 debug_generic_expr (lhs_type
);
3606 debug_generic_expr (rhs1_type
);
3607 debug_generic_expr (rhs2_type
);
3614 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3615 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3617 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3618 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3619 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3620 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3621 || TREE_CODE (rhs2
) != INTEGER_CST
3622 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3623 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3625 error ("type mismatch in widening vector shift expression");
3626 debug_generic_expr (lhs_type
);
3627 debug_generic_expr (rhs1_type
);
3628 debug_generic_expr (rhs2_type
);
3638 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3639 ??? This just makes the checker happy and may not be what is
3641 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
3642 && POINTER_TYPE_P (TREE_TYPE (lhs_type
)))
3644 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3645 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3647 error ("invalid non-vector operands to vector valued plus");
3650 lhs_type
= TREE_TYPE (lhs_type
);
3651 rhs1_type
= TREE_TYPE (rhs1_type
);
3652 rhs2_type
= TREE_TYPE (rhs2_type
);
3653 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3654 the pointer to 2nd place. */
3655 if (POINTER_TYPE_P (rhs2_type
))
3657 tree tem
= rhs1_type
;
3658 rhs1_type
= rhs2_type
;
3661 goto do_pointer_plus_expr_check
;
3663 if (POINTER_TYPE_P (lhs_type
)
3664 || POINTER_TYPE_P (rhs1_type
)
3665 || POINTER_TYPE_P (rhs2_type
))
3667 error ("invalid (pointer) operands to plus/minus");
3671 /* Continue with generic binary expression handling. */
3675 case POINTER_PLUS_EXPR
:
3677 do_pointer_plus_expr_check
:
3678 if (!POINTER_TYPE_P (rhs1_type
)
3679 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3680 || !ptrofftype_p (rhs2_type
))
3682 error ("type mismatch in pointer plus expression");
3683 debug_generic_stmt (lhs_type
);
3684 debug_generic_stmt (rhs1_type
);
3685 debug_generic_stmt (rhs2_type
);
3692 case TRUTH_ANDIF_EXPR
:
3693 case TRUTH_ORIF_EXPR
:
3694 case TRUTH_AND_EXPR
:
3696 case TRUTH_XOR_EXPR
:
3706 case UNORDERED_EXPR
:
3714 /* Comparisons are also binary, but the result type is not
3715 connected to the operand types. */
3716 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3718 case WIDEN_MULT_EXPR
:
3719 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3721 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
3722 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3724 case WIDEN_SUM_EXPR
:
3725 case VEC_WIDEN_MULT_HI_EXPR
:
3726 case VEC_WIDEN_MULT_LO_EXPR
:
3727 case VEC_PACK_TRUNC_EXPR
:
3728 case VEC_PACK_SAT_EXPR
:
3729 case VEC_PACK_FIX_TRUNC_EXPR
:
3734 case TRUNC_DIV_EXPR
:
3736 case FLOOR_DIV_EXPR
:
3737 case ROUND_DIV_EXPR
:
3738 case TRUNC_MOD_EXPR
:
3740 case FLOOR_MOD_EXPR
:
3741 case ROUND_MOD_EXPR
:
3743 case EXACT_DIV_EXPR
:
3749 /* Continue with generic binary expression handling. */
3756 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3757 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3759 error ("type mismatch in binary expression");
3760 debug_generic_stmt (lhs_type
);
3761 debug_generic_stmt (rhs1_type
);
3762 debug_generic_stmt (rhs2_type
);
3769 /* Verify a gimple assignment statement STMT with a ternary rhs.
3770 Returns true if anything is wrong. */
3773 verify_gimple_assign_ternary (gimple stmt
)
3775 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3776 tree lhs
= gimple_assign_lhs (stmt
);
3777 tree lhs_type
= TREE_TYPE (lhs
);
3778 tree rhs1
= gimple_assign_rhs1 (stmt
);
3779 tree rhs1_type
= TREE_TYPE (rhs1
);
3780 tree rhs2
= gimple_assign_rhs2 (stmt
);
3781 tree rhs2_type
= TREE_TYPE (rhs2
);
3782 tree rhs3
= gimple_assign_rhs3 (stmt
);
3783 tree rhs3_type
= TREE_TYPE (rhs3
);
3785 if (!is_gimple_reg (lhs
))
3787 error ("non-register as LHS of ternary operation");
3791 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
3792 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
3793 || !is_gimple_val (rhs2
)
3794 || !is_gimple_val (rhs3
))
3796 error ("invalid operands in ternary operation");
3800 /* First handle operations that involve different types. */
3803 case WIDEN_MULT_PLUS_EXPR
:
3804 case WIDEN_MULT_MINUS_EXPR
:
3805 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3806 && !FIXED_POINT_TYPE_P (rhs1_type
))
3807 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
3808 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
3809 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
3810 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
3812 error ("type mismatch in widening multiply-accumulate expression");
3813 debug_generic_expr (lhs_type
);
3814 debug_generic_expr (rhs1_type
);
3815 debug_generic_expr (rhs2_type
);
3816 debug_generic_expr (rhs3_type
);
3822 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3823 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3824 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3826 error ("type mismatch in fused multiply-add expression");
3827 debug_generic_expr (lhs_type
);
3828 debug_generic_expr (rhs1_type
);
3829 debug_generic_expr (rhs2_type
);
3830 debug_generic_expr (rhs3_type
);
3837 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
3838 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3840 error ("type mismatch in conditional expression");
3841 debug_generic_expr (lhs_type
);
3842 debug_generic_expr (rhs2_type
);
3843 debug_generic_expr (rhs3_type
);
3849 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3850 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3852 error ("type mismatch in vector permute expression");
3853 debug_generic_expr (lhs_type
);
3854 debug_generic_expr (rhs1_type
);
3855 debug_generic_expr (rhs2_type
);
3856 debug_generic_expr (rhs3_type
);
3860 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3861 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
3862 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
3864 error ("vector types expected in vector permute expression");
3865 debug_generic_expr (lhs_type
);
3866 debug_generic_expr (rhs1_type
);
3867 debug_generic_expr (rhs2_type
);
3868 debug_generic_expr (rhs3_type
);
3872 if (TYPE_VECTOR_SUBPARTS (rhs1_type
) != TYPE_VECTOR_SUBPARTS (rhs2_type
)
3873 || TYPE_VECTOR_SUBPARTS (rhs2_type
)
3874 != TYPE_VECTOR_SUBPARTS (rhs3_type
)
3875 || TYPE_VECTOR_SUBPARTS (rhs3_type
)
3876 != TYPE_VECTOR_SUBPARTS (lhs_type
))
3878 error ("vectors with different element number found "
3879 "in vector permute expression");
3880 debug_generic_expr (lhs_type
);
3881 debug_generic_expr (rhs1_type
);
3882 debug_generic_expr (rhs2_type
);
3883 debug_generic_expr (rhs3_type
);
3887 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
3888 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type
)))
3889 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
))))
3891 error ("invalid mask type in vector permute expression");
3892 debug_generic_expr (lhs_type
);
3893 debug_generic_expr (rhs1_type
);
3894 debug_generic_expr (rhs2_type
);
3895 debug_generic_expr (rhs3_type
);
3902 case REALIGN_LOAD_EXPR
:
3912 /* Verify a gimple assignment statement STMT with a single rhs.
3913 Returns true if anything is wrong. */
3916 verify_gimple_assign_single (gimple stmt
)
3918 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3919 tree lhs
= gimple_assign_lhs (stmt
);
3920 tree lhs_type
= TREE_TYPE (lhs
);
3921 tree rhs1
= gimple_assign_rhs1 (stmt
);
3922 tree rhs1_type
= TREE_TYPE (rhs1
);
3925 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3927 error ("non-trivial conversion at assignment");
3928 debug_generic_expr (lhs_type
);
3929 debug_generic_expr (rhs1_type
);
3933 if (handled_component_p (lhs
))
3934 res
|= verify_types_in_gimple_reference (lhs
, true);
3936 /* Special codes we cannot handle via their class. */
3941 tree op
= TREE_OPERAND (rhs1
, 0);
3942 if (!is_gimple_addressable (op
))
3944 error ("invalid operand in unary expression");
3948 /* Technically there is no longer a need for matching types, but
3949 gimple hygiene asks for this check. In LTO we can end up
3950 combining incompatible units and thus end up with addresses
3951 of globals that change their type to a common one. */
3953 && !types_compatible_p (TREE_TYPE (op
),
3954 TREE_TYPE (TREE_TYPE (rhs1
)))
3955 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
3958 error ("type mismatch in address expression");
3959 debug_generic_stmt (TREE_TYPE (rhs1
));
3960 debug_generic_stmt (TREE_TYPE (op
));
3964 return verify_types_in_gimple_reference (op
, true);
3969 error ("INDIRECT_REF in gimple IL");
3975 case ARRAY_RANGE_REF
:
3976 case VIEW_CONVERT_EXPR
:
3979 case TARGET_MEM_REF
:
3981 if (!is_gimple_reg (lhs
)
3982 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3984 error ("invalid rhs for gimple memory store");
3985 debug_generic_stmt (lhs
);
3986 debug_generic_stmt (rhs1
);
3989 return res
|| verify_types_in_gimple_reference (rhs1
, false);
4001 /* tcc_declaration */
4006 if (!is_gimple_reg (lhs
)
4007 && !is_gimple_reg (rhs1
)
4008 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4010 error ("invalid rhs for gimple memory store");
4011 debug_generic_stmt (lhs
);
4012 debug_generic_stmt (rhs1
);
4020 case WITH_SIZE_EXPR
:
4030 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4031 is a problem, otherwise false. */
4034 verify_gimple_assign (gimple stmt
)
4036 switch (gimple_assign_rhs_class (stmt
))
4038 case GIMPLE_SINGLE_RHS
:
4039 return verify_gimple_assign_single (stmt
);
4041 case GIMPLE_UNARY_RHS
:
4042 return verify_gimple_assign_unary (stmt
);
4044 case GIMPLE_BINARY_RHS
:
4045 return verify_gimple_assign_binary (stmt
);
4047 case GIMPLE_TERNARY_RHS
:
4048 return verify_gimple_assign_ternary (stmt
);
4055 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4056 is a problem, otherwise false. */
4059 verify_gimple_return (gimple stmt
)
4061 tree op
= gimple_return_retval (stmt
);
4062 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4064 /* We cannot test for present return values as we do not fix up missing
4065 return values from the original source. */
4069 if (!is_gimple_val (op
)
4070 && TREE_CODE (op
) != RESULT_DECL
)
4072 error ("invalid operand in return statement");
4073 debug_generic_stmt (op
);
4077 if ((TREE_CODE (op
) == RESULT_DECL
4078 && DECL_BY_REFERENCE (op
))
4079 || (TREE_CODE (op
) == SSA_NAME
4080 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4081 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4082 op
= TREE_TYPE (op
);
4084 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4086 error ("invalid conversion in return statement");
4087 debug_generic_stmt (restype
);
4088 debug_generic_stmt (TREE_TYPE (op
));
4096 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4097 is a problem, otherwise false. */
4100 verify_gimple_goto (gimple stmt
)
4102 tree dest
= gimple_goto_dest (stmt
);
4104 /* ??? We have two canonical forms of direct goto destinations, a
4105 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4106 if (TREE_CODE (dest
) != LABEL_DECL
4107 && (!is_gimple_val (dest
)
4108 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4110 error ("goto destination is neither a label nor a pointer");
4117 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4118 is a problem, otherwise false. */
4121 verify_gimple_switch (gimple stmt
)
4123 if (!is_gimple_val (gimple_switch_index (stmt
)))
4125 error ("invalid operand to switch statement");
4126 debug_generic_stmt (gimple_switch_index (stmt
));
4133 /* Verify a gimple debug statement STMT.
4134 Returns true if anything is wrong. */
4137 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED
)
4139 /* There isn't much that could be wrong in a gimple debug stmt. A
4140 gimple debug bind stmt, for example, maps a tree, that's usually
4141 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4142 component or member of an aggregate type, to another tree, that
4143 can be an arbitrary expression. These stmts expand into debug
4144 insns, and are converted to debug notes by var-tracking.c. */
4148 /* Verify a gimple label statement STMT.
4149 Returns true if anything is wrong. */
4152 verify_gimple_label (gimple stmt
)
4154 tree decl
= gimple_label_label (stmt
);
4158 if (TREE_CODE (decl
) != LABEL_DECL
)
4161 uid
= LABEL_DECL_UID (decl
);
4164 || VEC_index (basic_block
,
4165 label_to_block_map
, uid
) != gimple_bb (stmt
)))
4167 error ("incorrect entry in label_to_block_map");
4171 uid
= EH_LANDING_PAD_NR (decl
);
4174 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4175 if (decl
!= lp
->post_landing_pad
)
4177 error ("incorrect setting of landing pad number");
4185 /* Verify the GIMPLE statement STMT. Returns true if there is an
4186 error, otherwise false. */
4189 verify_gimple_stmt (gimple stmt
)
4191 switch (gimple_code (stmt
))
4194 return verify_gimple_assign (stmt
);
4197 return verify_gimple_label (stmt
);
4200 return verify_gimple_call (stmt
);
4203 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4205 error ("invalid comparison code in gimple cond");
4208 if (!(!gimple_cond_true_label (stmt
)
4209 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4210 || !(!gimple_cond_false_label (stmt
)
4211 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4213 error ("invalid labels in gimple cond");
4217 return verify_gimple_comparison (boolean_type_node
,
4218 gimple_cond_lhs (stmt
),
4219 gimple_cond_rhs (stmt
));
4222 return verify_gimple_goto (stmt
);
4225 return verify_gimple_switch (stmt
);
4228 return verify_gimple_return (stmt
);
4233 case GIMPLE_TRANSACTION
:
4234 return verify_gimple_transaction (stmt
);
4236 /* Tuples that do not have tree operands. */
4238 case GIMPLE_PREDICT
:
4240 case GIMPLE_EH_DISPATCH
:
4241 case GIMPLE_EH_MUST_NOT_THROW
:
4245 /* OpenMP directives are validated by the FE and never operated
4246 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4247 non-gimple expressions when the main index variable has had
4248 its address taken. This does not affect the loop itself
4249 because the header of an GIMPLE_OMP_FOR is merely used to determine
4250 how to setup the parallel iteration. */
4254 return verify_gimple_debug (stmt
);
4261 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4262 and false otherwise. */
4265 verify_gimple_phi (gimple phi
)
4269 tree phi_result
= gimple_phi_result (phi
);
4274 error ("invalid PHI result");
4278 virtual_p
= !is_gimple_reg (phi_result
);
4279 if (TREE_CODE (phi_result
) != SSA_NAME
4281 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4283 error ("invalid PHI result");
4287 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4289 tree t
= gimple_phi_arg_def (phi
, i
);
4293 error ("missing PHI def");
4297 /* Addressable variables do have SSA_NAMEs but they
4298 are not considered gimple values. */
4299 else if ((TREE_CODE (t
) == SSA_NAME
4300 && virtual_p
!= !is_gimple_reg (t
))
4302 && (TREE_CODE (t
) != SSA_NAME
4303 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4305 && !is_gimple_val (t
)))
4307 error ("invalid PHI argument");
4308 debug_generic_expr (t
);
4311 #ifdef ENABLE_TYPES_CHECKING
4312 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4314 error ("incompatible types in PHI argument %u", i
);
4315 debug_generic_stmt (TREE_TYPE (phi_result
));
4316 debug_generic_stmt (TREE_TYPE (t
));
4325 /* Verify the GIMPLE statements inside the sequence STMTS. */
4328 verify_gimple_in_seq_2 (gimple_seq stmts
)
4330 gimple_stmt_iterator ittr
;
4333 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4335 gimple stmt
= gsi_stmt (ittr
);
4337 switch (gimple_code (stmt
))
4340 err
|= verify_gimple_in_seq_2 (gimple_bind_body (stmt
));
4344 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
4345 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
4348 case GIMPLE_EH_FILTER
:
4349 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
4352 case GIMPLE_EH_ELSE
:
4353 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt
));
4354 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt
));
4358 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (stmt
));
4361 case GIMPLE_TRANSACTION
:
4362 err
|= verify_gimple_transaction (stmt
);
4367 bool err2
= verify_gimple_stmt (stmt
);
4369 debug_gimple_stmt (stmt
);
4378 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4379 is a problem, otherwise false. */
4382 verify_gimple_transaction (gimple stmt
)
4384 tree lab
= gimple_transaction_label (stmt
);
4385 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4387 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
4391 /* Verify the GIMPLE statements inside the statement list STMTS. */
4394 verify_gimple_in_seq (gimple_seq stmts
)
4396 timevar_push (TV_TREE_STMT_VERIFY
);
4397 if (verify_gimple_in_seq_2 (stmts
))
4398 internal_error ("verify_gimple failed");
4399 timevar_pop (TV_TREE_STMT_VERIFY
);
4402 /* Return true when the T can be shared. */
4405 tree_node_can_be_shared (tree t
)
4407 if (IS_TYPE_OR_DECL_P (t
)
4408 || is_gimple_min_invariant (t
)
4409 || TREE_CODE (t
) == SSA_NAME
4410 || t
== error_mark_node
4411 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4414 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4417 while (((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
4418 && is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
4419 || TREE_CODE (t
) == COMPONENT_REF
4420 || TREE_CODE (t
) == REALPART_EXPR
4421 || TREE_CODE (t
) == IMAGPART_EXPR
)
4422 t
= TREE_OPERAND (t
, 0);
4430 /* Called via walk_gimple_stmt. Verify tree sharing. */
4433 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4435 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4436 struct pointer_set_t
*visited
= (struct pointer_set_t
*) wi
->info
;
4438 if (tree_node_can_be_shared (*tp
))
4440 *walk_subtrees
= false;
4444 if (pointer_set_insert (visited
, *tp
))
4450 static bool eh_error_found
;
4452 verify_eh_throw_stmt_node (void **slot
, void *data
)
4454 struct throw_stmt_node
*node
= (struct throw_stmt_node
*)*slot
;
4455 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4457 if (!pointer_set_contains (visited
, node
->stmt
))
4459 error ("dead STMT in EH table");
4460 debug_gimple_stmt (node
->stmt
);
4461 eh_error_found
= true;
4466 /* Verify the GIMPLE statements in the CFG of FN. */
4469 verify_gimple_in_cfg (struct function
*fn
)
4473 struct pointer_set_t
*visited
, *visited_stmts
;
4475 timevar_push (TV_TREE_STMT_VERIFY
);
4476 visited
= pointer_set_create ();
4477 visited_stmts
= pointer_set_create ();
4479 FOR_EACH_BB_FN (bb
, fn
)
4481 gimple_stmt_iterator gsi
;
4483 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4485 gimple phi
= gsi_stmt (gsi
);
4489 pointer_set_insert (visited_stmts
, phi
);
4491 if (gimple_bb (phi
) != bb
)
4493 error ("gimple_bb (phi) is set to a wrong basic block");
4497 err2
|= verify_gimple_phi (phi
);
4499 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4501 tree arg
= gimple_phi_arg_def (phi
, i
);
4502 tree addr
= walk_tree (&arg
, verify_node_sharing
, visited
, NULL
);
4505 error ("incorrect sharing of tree nodes");
4506 debug_generic_expr (addr
);
4512 debug_gimple_stmt (phi
);
4516 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4518 gimple stmt
= gsi_stmt (gsi
);
4520 struct walk_stmt_info wi
;
4524 pointer_set_insert (visited_stmts
, stmt
);
4526 if (gimple_bb (stmt
) != bb
)
4528 error ("gimple_bb (stmt) is set to a wrong basic block");
4532 err2
|= verify_gimple_stmt (stmt
);
4534 memset (&wi
, 0, sizeof (wi
));
4535 wi
.info
= (void *) visited
;
4536 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
4539 error ("incorrect sharing of tree nodes");
4540 debug_generic_expr (addr
);
4544 /* ??? Instead of not checking these stmts at all the walker
4545 should know its context via wi. */
4546 if (!is_gimple_debug (stmt
)
4547 && !is_gimple_omp (stmt
))
4549 memset (&wi
, 0, sizeof (wi
));
4550 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
4553 debug_generic_expr (addr
);
4554 inform (gimple_location (stmt
), "in statement");
4559 /* If the statement is marked as part of an EH region, then it is
4560 expected that the statement could throw. Verify that when we
4561 have optimizations that simplify statements such that we prove
4562 that they cannot throw, that we update other data structures
4564 lp_nr
= lookup_stmt_eh_lp (stmt
);
4567 if (!stmt_could_throw_p (stmt
))
4569 error ("statement marked for throw, but doesn%'t");
4573 && !gsi_one_before_end_p (gsi
)
4574 && stmt_can_throw_internal (stmt
))
4576 error ("statement marked for throw in middle of block");
4582 debug_gimple_stmt (stmt
);
4587 eh_error_found
= false;
4588 if (get_eh_throw_stmt_table (cfun
))
4589 htab_traverse (get_eh_throw_stmt_table (cfun
),
4590 verify_eh_throw_stmt_node
,
4593 if (err
|| eh_error_found
)
4594 internal_error ("verify_gimple failed");
4596 pointer_set_destroy (visited
);
4597 pointer_set_destroy (visited_stmts
);
4598 verify_histograms ();
4599 timevar_pop (TV_TREE_STMT_VERIFY
);
4603 /* Verifies that the flow information is OK. */
4606 gimple_verify_flow_info (void)
4610 gimple_stmt_iterator gsi
;
4615 if (ENTRY_BLOCK_PTR
->il
.gimple
)
4617 error ("ENTRY_BLOCK has IL associated with it");
4621 if (EXIT_BLOCK_PTR
->il
.gimple
)
4623 error ("EXIT_BLOCK has IL associated with it");
4627 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
4628 if (e
->flags
& EDGE_FALLTHRU
)
4630 error ("fallthru to exit from bb %d", e
->src
->index
);
4636 bool found_ctrl_stmt
= false;
4640 /* Skip labels on the start of basic block. */
4641 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4644 gimple prev_stmt
= stmt
;
4646 stmt
= gsi_stmt (gsi
);
4648 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4651 label
= gimple_label_label (stmt
);
4652 if (prev_stmt
&& DECL_NONLOCAL (label
))
4654 error ("nonlocal label ");
4655 print_generic_expr (stderr
, label
, 0);
4656 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4661 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
4663 error ("EH landing pad label ");
4664 print_generic_expr (stderr
, label
, 0);
4665 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4670 if (label_to_block (label
) != bb
)
4673 print_generic_expr (stderr
, label
, 0);
4674 fprintf (stderr
, " to block does not match in bb %d",
4679 if (decl_function_context (label
) != current_function_decl
)
4682 print_generic_expr (stderr
, label
, 0);
4683 fprintf (stderr
, " has incorrect context in bb %d",
4689 /* Verify that body of basic block BB is free of control flow. */
4690 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
4692 gimple stmt
= gsi_stmt (gsi
);
4694 if (found_ctrl_stmt
)
4696 error ("control flow in the middle of basic block %d",
4701 if (stmt_ends_bb_p (stmt
))
4702 found_ctrl_stmt
= true;
4704 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4707 print_generic_expr (stderr
, gimple_label_label (stmt
), 0);
4708 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
4713 gsi
= gsi_last_bb (bb
);
4714 if (gsi_end_p (gsi
))
4717 stmt
= gsi_stmt (gsi
);
4719 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4722 err
|= verify_eh_edges (stmt
);
4724 if (is_ctrl_stmt (stmt
))
4726 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4727 if (e
->flags
& EDGE_FALLTHRU
)
4729 error ("fallthru edge after a control statement in bb %d",
4735 if (gimple_code (stmt
) != GIMPLE_COND
)
4737 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4738 after anything else but if statement. */
4739 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4740 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
4742 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4748 switch (gimple_code (stmt
))
4755 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
4759 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
4760 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
4761 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4762 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4763 || EDGE_COUNT (bb
->succs
) >= 3)
4765 error ("wrong outgoing edge flags at end of bb %d",
4773 if (simple_goto_p (stmt
))
4775 error ("explicit goto at end of bb %d", bb
->index
);
4780 /* FIXME. We should double check that the labels in the
4781 destination blocks have their address taken. */
4782 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4783 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
4784 | EDGE_FALSE_VALUE
))
4785 || !(e
->flags
& EDGE_ABNORMAL
))
4787 error ("wrong outgoing edge flags at end of bb %d",
4795 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
4797 /* ... fallthru ... */
4799 if (!single_succ_p (bb
)
4800 || (single_succ_edge (bb
)->flags
4801 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
4802 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4804 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
4807 if (single_succ (bb
) != EXIT_BLOCK_PTR
)
4809 error ("return edge does not point to exit in bb %d",
4821 n
= gimple_switch_num_labels (stmt
);
4823 /* Mark all the destination basic blocks. */
4824 for (i
= 0; i
< n
; ++i
)
4826 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4827 basic_block label_bb
= label_to_block (lab
);
4828 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
4829 label_bb
->aux
= (void *)1;
4832 /* Verify that the case labels are sorted. */
4833 prev
= gimple_switch_label (stmt
, 0);
4834 for (i
= 1; i
< n
; ++i
)
4836 tree c
= gimple_switch_label (stmt
, i
);
4839 error ("found default case not at the start of "
4845 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
4847 error ("case labels not sorted: ");
4848 print_generic_expr (stderr
, prev
, 0);
4849 fprintf (stderr
," is greater than ");
4850 print_generic_expr (stderr
, c
, 0);
4851 fprintf (stderr
," but comes before it.\n");
4856 /* VRP will remove the default case if it can prove it will
4857 never be executed. So do not verify there always exists
4858 a default case here. */
4860 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4864 error ("extra outgoing edge %d->%d",
4865 bb
->index
, e
->dest
->index
);
4869 e
->dest
->aux
= (void *)2;
4870 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
4871 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4873 error ("wrong outgoing edge flags at end of bb %d",
4879 /* Check that we have all of them. */
4880 for (i
= 0; i
< n
; ++i
)
4882 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4883 basic_block label_bb
= label_to_block (lab
);
4885 if (label_bb
->aux
!= (void *)2)
4887 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
4892 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4893 e
->dest
->aux
= (void *)0;
4897 case GIMPLE_EH_DISPATCH
:
4898 err
|= verify_eh_dispatch_edge (stmt
);
4906 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
4907 verify_dominators (CDI_DOMINATORS
);
4913 /* Updates phi nodes after creating a forwarder block joined
4914 by edge FALLTHRU. */
4917 gimple_make_forwarder_block (edge fallthru
)
4921 basic_block dummy
, bb
;
4923 gimple_stmt_iterator gsi
;
4925 dummy
= fallthru
->src
;
4926 bb
= fallthru
->dest
;
4928 if (single_pred_p (bb
))
4931 /* If we redirected a branch we must create new PHI nodes at the
4933 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4935 gimple phi
, new_phi
;
4937 phi
= gsi_stmt (gsi
);
4938 var
= gimple_phi_result (phi
);
4939 new_phi
= create_phi_node (var
, bb
);
4940 SSA_NAME_DEF_STMT (var
) = new_phi
;
4941 gimple_phi_set_result (phi
, make_ssa_name (SSA_NAME_VAR (var
), phi
));
4942 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
4946 /* Add the arguments we have stored on edges. */
4947 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4952 flush_pending_stmts (e
);
4957 /* Return a non-special label in the head of basic block BLOCK.
4958 Create one if it doesn't exist. */
4961 gimple_block_label (basic_block bb
)
4963 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
4968 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
4970 stmt
= gsi_stmt (i
);
4971 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4973 label
= gimple_label_label (stmt
);
4974 if (!DECL_NONLOCAL (label
))
4977 gsi_move_before (&i
, &s
);
4982 label
= create_artificial_label (UNKNOWN_LOCATION
);
4983 stmt
= gimple_build_label (label
);
4984 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
4989 /* Attempt to perform edge redirection by replacing a possibly complex
4990 jump instruction by a goto or by removing the jump completely.
4991 This can apply only if all edges now point to the same block. The
4992 parameters and return values are equivalent to
4993 redirect_edge_and_branch. */
4996 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
4998 basic_block src
= e
->src
;
4999 gimple_stmt_iterator i
;
5002 /* We can replace or remove a complex jump only when we have exactly
5004 if (EDGE_COUNT (src
->succs
) != 2
5005 /* Verify that all targets will be TARGET. Specifically, the
5006 edge that is not E must also go to TARGET. */
5007 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5010 i
= gsi_last_bb (src
);
5014 stmt
= gsi_stmt (i
);
5016 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5018 gsi_remove (&i
, true);
5019 e
= ssa_redirect_edge (e
, target
);
5020 e
->flags
= EDGE_FALLTHRU
;
5028 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5029 edge representing the redirected branch. */
5032 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5034 basic_block bb
= e
->src
;
5035 gimple_stmt_iterator gsi
;
5039 if (e
->flags
& EDGE_ABNORMAL
)
5042 if (e
->dest
== dest
)
5045 if (e
->flags
& EDGE_EH
)
5046 return redirect_eh_edge (e
, dest
);
5048 if (e
->src
!= ENTRY_BLOCK_PTR
)
5050 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5055 gsi
= gsi_last_bb (bb
);
5056 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5058 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5061 /* For COND_EXPR, we only need to redirect the edge. */
5065 /* No non-abnormal edges should lead from a non-simple goto, and
5066 simple ones should be represented implicitly. */
5071 tree label
= gimple_block_label (dest
);
5072 tree cases
= get_cases_for_edge (e
, stmt
);
5074 /* If we have a list of cases associated with E, then use it
5075 as it's a lot faster than walking the entire case vector. */
5078 edge e2
= find_edge (e
->src
, dest
);
5085 CASE_LABEL (cases
) = label
;
5086 cases
= CASE_CHAIN (cases
);
5089 /* If there was already an edge in the CFG, then we need
5090 to move all the cases associated with E to E2. */
5093 tree cases2
= get_cases_for_edge (e2
, stmt
);
5095 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5096 CASE_CHAIN (cases2
) = first
;
5098 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5102 size_t i
, n
= gimple_switch_num_labels (stmt
);
5104 for (i
= 0; i
< n
; i
++)
5106 tree elt
= gimple_switch_label (stmt
, i
);
5107 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5108 CASE_LABEL (elt
) = label
;
5116 int i
, n
= gimple_asm_nlabels (stmt
);
5119 for (i
= 0; i
< n
; ++i
)
5121 tree cons
= gimple_asm_label_op (stmt
, i
);
5122 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
5125 label
= gimple_block_label (dest
);
5126 TREE_VALUE (cons
) = label
;
5130 /* If we didn't find any label matching the former edge in the
5131 asm labels, we must be redirecting the fallthrough
5133 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5138 gsi_remove (&gsi
, true);
5139 e
->flags
|= EDGE_FALLTHRU
;
5142 case GIMPLE_OMP_RETURN
:
5143 case GIMPLE_OMP_CONTINUE
:
5144 case GIMPLE_OMP_SECTIONS_SWITCH
:
5145 case GIMPLE_OMP_FOR
:
5146 /* The edges from OMP constructs can be simply redirected. */
5149 case GIMPLE_EH_DISPATCH
:
5150 if (!(e
->flags
& EDGE_FALLTHRU
))
5151 redirect_eh_dispatch_edge (stmt
, e
, dest
);
5154 case GIMPLE_TRANSACTION
:
5155 /* The ABORT edge has a stored label associated with it, otherwise
5156 the edges are simply redirectable. */
5158 gimple_transaction_set_label (stmt
, gimple_block_label (dest
));
5162 /* Otherwise it must be a fallthru edge, and we don't need to
5163 do anything besides redirecting it. */
5164 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
5168 /* Update/insert PHI nodes as necessary. */
5170 /* Now update the edges in the CFG. */
5171 e
= ssa_redirect_edge (e
, dest
);
5176 /* Returns true if it is possible to remove edge E by redirecting
5177 it to the destination of the other edge from E->src. */
5180 gimple_can_remove_branch_p (const_edge e
)
5182 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
5188 /* Simple wrapper, as we can always redirect fallthru edges. */
5191 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5193 e
= gimple_redirect_edge_and_branch (e
, dest
);
5200 /* Splits basic block BB after statement STMT (but at least after the
5201 labels). If STMT is NULL, BB is split just after the labels. */
5204 gimple_split_block (basic_block bb
, void *stmt
)
5206 gimple_stmt_iterator gsi
;
5207 gimple_stmt_iterator gsi_tgt
;
5214 new_bb
= create_empty_bb (bb
);
5216 /* Redirect the outgoing edges. */
5217 new_bb
->succs
= bb
->succs
;
5219 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5222 if (stmt
&& gimple_code ((gimple
) stmt
) == GIMPLE_LABEL
)
5225 /* Move everything from GSI to the new basic block. */
5226 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5228 act
= gsi_stmt (gsi
);
5229 if (gimple_code (act
) == GIMPLE_LABEL
)
5242 if (gsi_end_p (gsi
))
5245 /* Split the statement list - avoid re-creating new containers as this
5246 brings ugly quadratic memory consumption in the inliner.
5247 (We are still quadratic since we need to update stmt BB pointers,
5249 list
= gsi_split_seq_before (&gsi
);
5250 set_bb_seq (new_bb
, list
);
5251 for (gsi_tgt
= gsi_start (list
);
5252 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5253 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5259 /* Moves basic block BB after block AFTER. */
5262 gimple_move_block_after (basic_block bb
, basic_block after
)
5264 if (bb
->prev_bb
== after
)
5268 link_block (bb
, after
);
5274 /* Return true if basic_block can be duplicated. */
5277 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
5282 /* Create a duplicate of the basic block BB. NOTE: This does not
5283 preserve SSA form. */
5286 gimple_duplicate_bb (basic_block bb
)
5289 gimple_stmt_iterator gsi
, gsi_tgt
;
5290 gimple_seq phis
= phi_nodes (bb
);
5291 gimple phi
, stmt
, copy
;
5293 new_bb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
5295 /* Copy the PHI nodes. We ignore PHI node arguments here because
5296 the incoming edges have not been setup yet. */
5297 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5299 phi
= gsi_stmt (gsi
);
5300 copy
= create_phi_node (gimple_phi_result (phi
), new_bb
);
5301 create_new_def_for (gimple_phi_result (copy
), copy
,
5302 gimple_phi_result_ptr (copy
));
5305 gsi_tgt
= gsi_start_bb (new_bb
);
5306 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5308 def_operand_p def_p
;
5309 ssa_op_iter op_iter
;
5312 stmt
= gsi_stmt (gsi
);
5313 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5316 /* Don't duplicate label debug stmts. */
5317 if (gimple_debug_bind_p (stmt
)
5318 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
5322 /* Create a new copy of STMT and duplicate STMT's virtual
5324 copy
= gimple_copy (stmt
);
5325 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
5327 maybe_duplicate_eh_stmt (copy
, stmt
);
5328 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
5330 /* When copying around a stmt writing into a local non-user
5331 aggregate, make sure it won't share stack slot with other
5333 lhs
= gimple_get_lhs (stmt
);
5334 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
5336 tree base
= get_base_address (lhs
);
5338 && (TREE_CODE (base
) == VAR_DECL
5339 || TREE_CODE (base
) == RESULT_DECL
)
5340 && DECL_IGNORED_P (base
)
5341 && !TREE_STATIC (base
)
5342 && !DECL_EXTERNAL (base
)
5343 && (TREE_CODE (base
) != VAR_DECL
5344 || !DECL_HAS_VALUE_EXPR_P (base
)))
5345 DECL_NONSHAREABLE (base
) = 1;
5348 /* Create new names for all the definitions created by COPY and
5349 add replacement mappings for each new name. */
5350 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
5351 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
5357 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5360 add_phi_args_after_copy_edge (edge e_copy
)
5362 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
5365 gimple phi
, phi_copy
;
5367 gimple_stmt_iterator psi
, psi_copy
;
5369 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5372 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5374 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5375 dest
= get_bb_original (e_copy
->dest
);
5377 dest
= e_copy
->dest
;
5379 e
= find_edge (bb
, dest
);
5382 /* During loop unrolling the target of the latch edge is copied.
5383 In this case we are not looking for edge to dest, but to
5384 duplicated block whose original was dest. */
5385 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5387 if ((e
->dest
->flags
& BB_DUPLICATED
)
5388 && get_bb_original (e
->dest
) == dest
)
5392 gcc_assert (e
!= NULL
);
5395 for (psi
= gsi_start_phis (e
->dest
),
5396 psi_copy
= gsi_start_phis (e_copy
->dest
);
5398 gsi_next (&psi
), gsi_next (&psi_copy
))
5400 phi
= gsi_stmt (psi
);
5401 phi_copy
= gsi_stmt (psi_copy
);
5402 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5403 add_phi_arg (phi_copy
, def
, e_copy
,
5404 gimple_phi_arg_location_from_edge (phi
, e
));
5409 /* Basic block BB_COPY was created by code duplication. Add phi node
5410 arguments for edges going out of BB_COPY. The blocks that were
5411 duplicated have BB_DUPLICATED set. */
5414 add_phi_args_after_copy_bb (basic_block bb_copy
)
5419 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5421 add_phi_args_after_copy_edge (e_copy
);
5425 /* Blocks in REGION_COPY array of length N_REGION were created by
5426 duplication of basic blocks. Add phi node arguments for edges
5427 going from these blocks. If E_COPY is not NULL, also add
5428 phi node arguments for its destination.*/
5431 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
5436 for (i
= 0; i
< n_region
; i
++)
5437 region_copy
[i
]->flags
|= BB_DUPLICATED
;
5439 for (i
= 0; i
< n_region
; i
++)
5440 add_phi_args_after_copy_bb (region_copy
[i
]);
5442 add_phi_args_after_copy_edge (e_copy
);
5444 for (i
= 0; i
< n_region
; i
++)
5445 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
5448 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5449 important exit edge EXIT. By important we mean that no SSA name defined
5450 inside region is live over the other exit edges of the region. All entry
5451 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5452 to the duplicate of the region. SSA form, dominance and loop information
5453 is updated. The new basic blocks are stored to REGION_COPY in the same
5454 order as they had in REGION, provided that REGION_COPY is not NULL.
5455 The function returns false if it is unable to copy the region,
5459 gimple_duplicate_sese_region (edge entry
, edge exit
,
5460 basic_block
*region
, unsigned n_region
,
5461 basic_block
*region_copy
)
5464 bool free_region_copy
= false, copying_header
= false;
5465 struct loop
*loop
= entry
->dest
->loop_father
;
5467 VEC (basic_block
, heap
) *doms
;
5469 int total_freq
= 0, entry_freq
= 0;
5470 gcov_type total_count
= 0, entry_count
= 0;
5472 if (!can_copy_bbs_p (region
, n_region
))
5475 /* Some sanity checking. Note that we do not check for all possible
5476 missuses of the functions. I.e. if you ask to copy something weird,
5477 it will work, but the state of structures probably will not be
5479 for (i
= 0; i
< n_region
; i
++)
5481 /* We do not handle subloops, i.e. all the blocks must belong to the
5483 if (region
[i
]->loop_father
!= loop
)
5486 if (region
[i
] != entry
->dest
5487 && region
[i
] == loop
->header
)
5491 set_loop_copy (loop
, loop
);
5493 /* In case the function is used for loop header copying (which is the primary
5494 use), ensure that EXIT and its copy will be new latch and entry edges. */
5495 if (loop
->header
== entry
->dest
)
5497 copying_header
= true;
5498 set_loop_copy (loop
, loop_outer (loop
));
5500 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
5503 for (i
= 0; i
< n_region
; i
++)
5504 if (region
[i
] != exit
->src
5505 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
5511 region_copy
= XNEWVEC (basic_block
, n_region
);
5512 free_region_copy
= true;
5515 gcc_assert (!need_ssa_update_p (cfun
));
5517 /* Record blocks outside the region that are dominated by something
5520 initialize_original_copy_tables ();
5522 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5524 if (entry
->dest
->count
)
5526 total_count
= entry
->dest
->count
;
5527 entry_count
= entry
->count
;
5528 /* Fix up corner cases, to avoid division by zero or creation of negative
5530 if (entry_count
> total_count
)
5531 entry_count
= total_count
;
5535 total_freq
= entry
->dest
->frequency
;
5536 entry_freq
= EDGE_FREQUENCY (entry
);
5537 /* Fix up corner cases, to avoid division by zero or creation of negative
5539 if (total_freq
== 0)
5541 else if (entry_freq
> total_freq
)
5542 entry_freq
= total_freq
;
5545 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
5546 split_edge_bb_loc (entry
));
5549 scale_bbs_frequencies_gcov_type (region
, n_region
,
5550 total_count
- entry_count
,
5552 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
5557 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
5559 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
5564 loop
->header
= exit
->dest
;
5565 loop
->latch
= exit
->src
;
5568 /* Redirect the entry and add the phi node arguments. */
5569 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
5570 gcc_assert (redirected
!= NULL
);
5571 flush_pending_stmts (entry
);
5573 /* Concerning updating of dominators: We must recount dominators
5574 for entry block and its copy. Anything that is outside of the
5575 region, but was dominated by something inside needs recounting as
5577 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
5578 VEC_safe_push (basic_block
, heap
, doms
, get_bb_original (entry
->dest
));
5579 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5580 VEC_free (basic_block
, heap
, doms
);
5582 /* Add the other PHI node arguments. */
5583 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
5585 /* Update the SSA web. */
5586 update_ssa (TODO_update_ssa
);
5588 if (free_region_copy
)
5591 free_original_copy_tables ();
5595 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5596 are stored to REGION_COPY in the same order in that they appear
5597 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5598 the region, EXIT an exit from it. The condition guarding EXIT
5599 is moved to ENTRY. Returns true if duplication succeeds, false
5625 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
5626 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
5627 basic_block
*region_copy ATTRIBUTE_UNUSED
)
5630 bool free_region_copy
= false;
5631 struct loop
*loop
= exit
->dest
->loop_father
;
5632 struct loop
*orig_loop
= entry
->dest
->loop_father
;
5633 basic_block switch_bb
, entry_bb
, nentry_bb
;
5634 VEC (basic_block
, heap
) *doms
;
5635 int total_freq
= 0, exit_freq
= 0;
5636 gcov_type total_count
= 0, exit_count
= 0;
5637 edge exits
[2], nexits
[2], e
;
5638 gimple_stmt_iterator gsi
;
5641 basic_block exit_bb
;
5642 gimple_stmt_iterator psi
;
5646 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
5648 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
5650 if (!can_copy_bbs_p (region
, n_region
))
5653 initialize_original_copy_tables ();
5654 set_loop_copy (orig_loop
, loop
);
5655 duplicate_subloops (orig_loop
, loop
);
5659 region_copy
= XNEWVEC (basic_block
, n_region
);
5660 free_region_copy
= true;
5663 gcc_assert (!need_ssa_update_p (cfun
));
5665 /* Record blocks outside the region that are dominated by something
5667 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5669 if (exit
->src
->count
)
5671 total_count
= exit
->src
->count
;
5672 exit_count
= exit
->count
;
5673 /* Fix up corner cases, to avoid division by zero or creation of negative
5675 if (exit_count
> total_count
)
5676 exit_count
= total_count
;
5680 total_freq
= exit
->src
->frequency
;
5681 exit_freq
= EDGE_FREQUENCY (exit
);
5682 /* Fix up corner cases, to avoid division by zero or creation of negative
5684 if (total_freq
== 0)
5686 if (exit_freq
> total_freq
)
5687 exit_freq
= total_freq
;
5690 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
5691 split_edge_bb_loc (exit
));
5694 scale_bbs_frequencies_gcov_type (region
, n_region
,
5695 total_count
- exit_count
,
5697 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
5702 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
5704 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
5707 /* Create the switch block, and put the exit condition to it. */
5708 entry_bb
= entry
->dest
;
5709 nentry_bb
= get_bb_copy (entry_bb
);
5710 if (!last_stmt (entry
->src
)
5711 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
5712 switch_bb
= entry
->src
;
5714 switch_bb
= split_edge (entry
);
5715 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
5717 gsi
= gsi_last_bb (switch_bb
);
5718 cond_stmt
= last_stmt (exit
->src
);
5719 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
5720 cond_stmt
= gimple_copy (cond_stmt
);
5722 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
5724 sorig
= single_succ_edge (switch_bb
);
5725 sorig
->flags
= exits
[1]->flags
;
5726 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
5728 /* Register the new edge from SWITCH_BB in loop exit lists. */
5729 rescan_loop_exit (snew
, true, false);
5731 /* Add the PHI node arguments. */
5732 add_phi_args_after_copy (region_copy
, n_region
, snew
);
5734 /* Get rid of now superfluous conditions and associated edges (and phi node
5736 exit_bb
= exit
->dest
;
5738 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
5739 PENDING_STMT (e
) = NULL
;
5741 /* The latch of ORIG_LOOP was copied, and so was the backedge
5742 to the original header. We redirect this backedge to EXIT_BB. */
5743 for (i
= 0; i
< n_region
; i
++)
5744 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
5746 gcc_assert (single_succ_edge (region_copy
[i
]));
5747 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
5748 PENDING_STMT (e
) = NULL
;
5749 for (psi
= gsi_start_phis (exit_bb
);
5753 phi
= gsi_stmt (psi
);
5754 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
5755 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
5758 e
= redirect_edge_and_branch (nexits
[0], nexits
[1]->dest
);
5759 PENDING_STMT (e
) = NULL
;
5761 /* Anything that is outside of the region, but was dominated by something
5762 inside needs to update dominance info. */
5763 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5764 VEC_free (basic_block
, heap
, doms
);
5765 /* Update the SSA web. */
5766 update_ssa (TODO_update_ssa
);
5768 if (free_region_copy
)
5771 free_original_copy_tables ();
5775 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5776 adding blocks when the dominator traversal reaches EXIT. This
5777 function silently assumes that ENTRY strictly dominates EXIT. */
5780 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
5781 VEC(basic_block
,heap
) **bbs_p
)
5785 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
5787 son
= next_dom_son (CDI_DOMINATORS
, son
))
5789 VEC_safe_push (basic_block
, heap
, *bbs_p
, son
);
5791 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
5795 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5796 The duplicates are recorded in VARS_MAP. */
5799 replace_by_duplicate_decl (tree
*tp
, struct pointer_map_t
*vars_map
,
5802 tree t
= *tp
, new_t
;
5803 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
5806 if (DECL_CONTEXT (t
) == to_context
)
5809 loc
= pointer_map_contains (vars_map
, t
);
5813 loc
= pointer_map_insert (vars_map
, t
);
5817 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
5818 add_local_decl (f
, new_t
);
5822 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
5823 new_t
= copy_node (t
);
5825 DECL_CONTEXT (new_t
) = to_context
;
5830 new_t
= (tree
) *loc
;
5836 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5837 VARS_MAP maps old ssa names and var_decls to the new ones. */
5840 replace_ssa_name (tree name
, struct pointer_map_t
*vars_map
,
5844 tree new_name
, decl
= SSA_NAME_VAR (name
);
5846 gcc_assert (is_gimple_reg (name
));
5848 loc
= pointer_map_contains (vars_map
, name
);
5852 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
5854 push_cfun (DECL_STRUCT_FUNCTION (to_context
));
5855 if (gimple_in_ssa_p (cfun
))
5856 add_referenced_var (decl
);
5858 new_name
= make_ssa_name (decl
, SSA_NAME_DEF_STMT (name
));
5859 if (SSA_NAME_IS_DEFAULT_DEF (name
))
5860 set_default_def (decl
, new_name
);
5863 loc
= pointer_map_insert (vars_map
, name
);
5867 new_name
= (tree
) *loc
;
5878 struct pointer_map_t
*vars_map
;
5879 htab_t new_label_map
;
5880 struct pointer_map_t
*eh_map
;
5884 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5885 contained in *TP if it has been ORIG_BLOCK previously and change the
5886 DECL_CONTEXT of every local variable referenced in *TP. */
5889 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
5891 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5892 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5896 /* We should never have TREE_BLOCK set on non-statements. */
5897 gcc_assert (!TREE_BLOCK (t
));
5899 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
5901 if (TREE_CODE (t
) == SSA_NAME
)
5902 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
5903 else if (TREE_CODE (t
) == LABEL_DECL
)
5905 if (p
->new_label_map
)
5907 struct tree_map in
, *out
;
5909 out
= (struct tree_map
*)
5910 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
5915 DECL_CONTEXT (t
) = p
->to_context
;
5917 else if (p
->remap_decls_p
)
5919 /* Replace T with its duplicate. T should no longer appear in the
5920 parent function, so this looks wasteful; however, it may appear
5921 in referenced_vars, and more importantly, as virtual operands of
5922 statements, and in alias lists of other variables. It would be
5923 quite difficult to expunge it from all those places. ??? It might
5924 suffice to do this for addressable variables. */
5925 if ((TREE_CODE (t
) == VAR_DECL
5926 && !is_global_var (t
))
5927 || TREE_CODE (t
) == CONST_DECL
)
5928 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
5931 && gimple_in_ssa_p (cfun
))
5933 push_cfun (DECL_STRUCT_FUNCTION (p
->to_context
));
5934 add_referenced_var (*tp
);
5940 else if (TYPE_P (t
))
5946 /* Helper for move_stmt_r. Given an EH region number for the source
5947 function, map that to the duplicate EH regio number in the dest. */
5950 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
5952 eh_region old_r
, new_r
;
5955 old_r
= get_eh_region_from_number (old_nr
);
5956 slot
= pointer_map_contains (p
->eh_map
, old_r
);
5957 new_r
= (eh_region
) *slot
;
5959 return new_r
->index
;
5962 /* Similar, but operate on INTEGER_CSTs. */
5965 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
5969 old_nr
= tree_low_cst (old_t_nr
, 0);
5970 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
5972 return build_int_cst (integer_type_node
, new_nr
);
5975 /* Like move_stmt_op, but for gimple statements.
5977 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5978 contained in the current statement in *GSI_P and change the
5979 DECL_CONTEXT of every local variable referenced in the current
5983 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
5984 struct walk_stmt_info
*wi
)
5986 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5987 gimple stmt
= gsi_stmt (*gsi_p
);
5988 tree block
= gimple_block (stmt
);
5990 if (p
->orig_block
== NULL_TREE
5991 || block
== p
->orig_block
5992 || block
== NULL_TREE
)
5993 gimple_set_block (stmt
, p
->new_block
);
5994 #ifdef ENABLE_CHECKING
5995 else if (block
!= p
->new_block
)
5997 while (block
&& block
!= p
->orig_block
)
5998 block
= BLOCK_SUPERCONTEXT (block
);
6003 switch (gimple_code (stmt
))
6006 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6008 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6009 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
6010 switch (DECL_FUNCTION_CODE (fndecl
))
6012 case BUILT_IN_EH_COPY_VALUES
:
6013 r
= gimple_call_arg (stmt
, 1);
6014 r
= move_stmt_eh_region_tree_nr (r
, p
);
6015 gimple_call_set_arg (stmt
, 1, r
);
6018 case BUILT_IN_EH_POINTER
:
6019 case BUILT_IN_EH_FILTER
:
6020 r
= gimple_call_arg (stmt
, 0);
6021 r
= move_stmt_eh_region_tree_nr (r
, p
);
6022 gimple_call_set_arg (stmt
, 0, r
);
6033 int r
= gimple_resx_region (stmt
);
6034 r
= move_stmt_eh_region_nr (r
, p
);
6035 gimple_resx_set_region (stmt
, r
);
6039 case GIMPLE_EH_DISPATCH
:
6041 int r
= gimple_eh_dispatch_region (stmt
);
6042 r
= move_stmt_eh_region_nr (r
, p
);
6043 gimple_eh_dispatch_set_region (stmt
, r
);
6047 case GIMPLE_OMP_RETURN
:
6048 case GIMPLE_OMP_CONTINUE
:
6051 if (is_gimple_omp (stmt
))
6053 /* Do not remap variables inside OMP directives. Variables
6054 referenced in clauses and directive header belong to the
6055 parent function and should not be moved into the child
6057 bool save_remap_decls_p
= p
->remap_decls_p
;
6058 p
->remap_decls_p
= false;
6059 *handled_ops_p
= true;
6061 walk_gimple_seq (gimple_omp_body (stmt
), move_stmt_r
,
6064 p
->remap_decls_p
= save_remap_decls_p
;
6072 /* Move basic block BB from function CFUN to function DEST_FN. The
6073 block is moved out of the original linked list and placed after
6074 block AFTER in the new list. Also, the block is removed from the
6075 original array of blocks and placed in DEST_FN's array of blocks.
6076 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6077 updated to reflect the moved edges.
6079 The local variables are remapped to new instances, VARS_MAP is used
6080 to record the mapping. */
6083 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6084 basic_block after
, bool update_edge_count_p
,
6085 struct move_stmt_d
*d
)
6087 struct control_flow_graph
*cfg
;
6090 gimple_stmt_iterator si
;
6091 unsigned old_len
, new_len
;
6093 /* Remove BB from dominance structures. */
6094 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6096 remove_bb_from_loops (bb
);
6098 /* Link BB to the new linked list. */
6099 move_block_after (bb
, after
);
6101 /* Update the edge count in the corresponding flowgraphs. */
6102 if (update_edge_count_p
)
6103 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6105 cfun
->cfg
->x_n_edges
--;
6106 dest_cfun
->cfg
->x_n_edges
++;
6109 /* Remove BB from the original basic block array. */
6110 VEC_replace (basic_block
, cfun
->cfg
->x_basic_block_info
, bb
->index
, NULL
);
6111 cfun
->cfg
->x_n_basic_blocks
--;
6113 /* Grow DEST_CFUN's basic block array if needed. */
6114 cfg
= dest_cfun
->cfg
;
6115 cfg
->x_n_basic_blocks
++;
6116 if (bb
->index
>= cfg
->x_last_basic_block
)
6117 cfg
->x_last_basic_block
= bb
->index
+ 1;
6119 old_len
= VEC_length (basic_block
, cfg
->x_basic_block_info
);
6120 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
6122 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
6123 VEC_safe_grow_cleared (basic_block
, gc
, cfg
->x_basic_block_info
,
6127 VEC_replace (basic_block
, cfg
->x_basic_block_info
,
6130 /* Remap the variables in phi nodes. */
6131 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); )
6133 gimple phi
= gsi_stmt (si
);
6135 tree op
= PHI_RESULT (phi
);
6138 if (!is_gimple_reg (op
))
6140 /* Remove the phi nodes for virtual operands (alias analysis will be
6141 run for the new function, anyway). */
6142 remove_phi_node (&si
, true);
6146 SET_PHI_RESULT (phi
,
6147 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6148 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
6150 op
= USE_FROM_PTR (use
);
6151 if (TREE_CODE (op
) == SSA_NAME
)
6152 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6158 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6160 gimple stmt
= gsi_stmt (si
);
6161 struct walk_stmt_info wi
;
6163 memset (&wi
, 0, sizeof (wi
));
6165 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
6167 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6169 tree label
= gimple_label_label (stmt
);
6170 int uid
= LABEL_DECL_UID (label
);
6172 gcc_assert (uid
> -1);
6174 old_len
= VEC_length (basic_block
, cfg
->x_label_to_block_map
);
6175 if (old_len
<= (unsigned) uid
)
6177 new_len
= 3 * uid
/ 2 + 1;
6178 VEC_safe_grow_cleared (basic_block
, gc
,
6179 cfg
->x_label_to_block_map
, new_len
);
6182 VEC_replace (basic_block
, cfg
->x_label_to_block_map
, uid
, bb
);
6183 VEC_replace (basic_block
, cfun
->cfg
->x_label_to_block_map
, uid
, NULL
);
6185 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
6187 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
6188 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
6191 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
6192 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
6194 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
6195 gimple_remove_stmt_histograms (cfun
, stmt
);
6197 /* We cannot leave any operands allocated from the operand caches of
6198 the current function. */
6199 free_stmt_operands (stmt
);
6200 push_cfun (dest_cfun
);
6205 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6208 tree block
= e
->goto_block
;
6209 if (d
->orig_block
== NULL_TREE
6210 || block
== d
->orig_block
)
6211 e
->goto_block
= d
->new_block
;
6212 #ifdef ENABLE_CHECKING
6213 else if (block
!= d
->new_block
)
6215 while (block
&& block
!= d
->orig_block
)
6216 block
= BLOCK_SUPERCONTEXT (block
);
6223 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6224 the outermost EH region. Use REGION as the incoming base EH region. */
6227 find_outermost_region_in_block (struct function
*src_cfun
,
6228 basic_block bb
, eh_region region
)
6230 gimple_stmt_iterator si
;
6232 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6234 gimple stmt
= gsi_stmt (si
);
6235 eh_region stmt_region
;
6238 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
6239 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
6243 region
= stmt_region
;
6244 else if (stmt_region
!= region
)
6246 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
6247 gcc_assert (region
!= NULL
);
6256 new_label_mapper (tree decl
, void *data
)
6258 htab_t hash
= (htab_t
) data
;
6262 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
6264 m
= XNEW (struct tree_map
);
6265 m
->hash
= DECL_UID (decl
);
6266 m
->base
.from
= decl
;
6267 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
6268 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
6269 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
6270 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
6272 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
6273 gcc_assert (*slot
== NULL
);
6280 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6284 replace_block_vars_by_duplicates (tree block
, struct pointer_map_t
*vars_map
,
6289 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
6292 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
6294 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
6297 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
6299 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (*tp
));
6300 DECL_HAS_VALUE_EXPR_P (t
) = 1;
6302 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
6307 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
6308 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
6311 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6312 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6313 single basic block in the original CFG and the new basic block is
6314 returned. DEST_CFUN must not have a CFG yet.
6316 Note that the region need not be a pure SESE region. Blocks inside
6317 the region may contain calls to abort/exit. The only restriction
6318 is that ENTRY_BB should be the only entry point and it must
6321 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6322 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6323 to the new function.
6325 All local variables referenced in the region are assumed to be in
6326 the corresponding BLOCK_VARS and unexpanded variable lists
6327 associated with DEST_CFUN. */
6330 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
6331 basic_block exit_bb
, tree orig_block
)
6333 VEC(basic_block
,heap
) *bbs
, *dom_bbs
;
6334 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
6335 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
6336 struct function
*saved_cfun
= cfun
;
6337 int *entry_flag
, *exit_flag
;
6338 unsigned *entry_prob
, *exit_prob
;
6339 unsigned i
, num_entry_edges
, num_exit_edges
;
6342 htab_t new_label_map
;
6343 struct pointer_map_t
*vars_map
, *eh_map
;
6344 struct loop
*loop
= entry_bb
->loop_father
;
6345 struct move_stmt_d d
;
6347 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6349 gcc_assert (entry_bb
!= exit_bb
6351 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
6353 /* Collect all the blocks in the region. Manually add ENTRY_BB
6354 because it won't be added by dfs_enumerate_from. */
6356 VEC_safe_push (basic_block
, heap
, bbs
, entry_bb
);
6357 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
6359 /* The blocks that used to be dominated by something in BBS will now be
6360 dominated by the new block. */
6361 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
6362 VEC_address (basic_block
, bbs
),
6363 VEC_length (basic_block
, bbs
));
6365 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6366 the predecessor edges to ENTRY_BB and the successor edges to
6367 EXIT_BB so that we can re-attach them to the new basic block that
6368 will replace the region. */
6369 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
6370 entry_pred
= (basic_block
*) xcalloc (num_entry_edges
, sizeof (basic_block
));
6371 entry_flag
= (int *) xcalloc (num_entry_edges
, sizeof (int));
6372 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
6374 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
6376 entry_prob
[i
] = e
->probability
;
6377 entry_flag
[i
] = e
->flags
;
6378 entry_pred
[i
++] = e
->src
;
6384 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
6385 exit_succ
= (basic_block
*) xcalloc (num_exit_edges
,
6386 sizeof (basic_block
));
6387 exit_flag
= (int *) xcalloc (num_exit_edges
, sizeof (int));
6388 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
6390 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
6392 exit_prob
[i
] = e
->probability
;
6393 exit_flag
[i
] = e
->flags
;
6394 exit_succ
[i
++] = e
->dest
;
6406 /* Switch context to the child function to initialize DEST_FN's CFG. */
6407 gcc_assert (dest_cfun
->cfg
== NULL
);
6408 push_cfun (dest_cfun
);
6410 init_empty_tree_cfg ();
6412 /* Initialize EH information for the new function. */
6414 new_label_map
= NULL
;
6417 eh_region region
= NULL
;
6419 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
6420 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
6422 init_eh_for_function ();
6425 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
6426 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
6427 new_label_mapper
, new_label_map
);
6433 /* Move blocks from BBS into DEST_CFUN. */
6434 gcc_assert (VEC_length (basic_block
, bbs
) >= 2);
6435 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
6436 vars_map
= pointer_map_create ();
6438 memset (&d
, 0, sizeof (d
));
6439 d
.orig_block
= orig_block
;
6440 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
6441 d
.from_context
= cfun
->decl
;
6442 d
.to_context
= dest_cfun
->decl
;
6443 d
.vars_map
= vars_map
;
6444 d
.new_label_map
= new_label_map
;
6446 d
.remap_decls_p
= true;
6448 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
6450 /* No need to update edge counts on the last block. It has
6451 already been updated earlier when we detached the region from
6452 the original CFG. */
6453 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
6457 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6461 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6463 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6464 = BLOCK_SUBBLOCKS (orig_block
);
6465 for (block
= BLOCK_SUBBLOCKS (orig_block
);
6466 block
; block
= BLOCK_CHAIN (block
))
6467 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
6468 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
6471 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
6472 vars_map
, dest_cfun
->decl
);
6475 htab_delete (new_label_map
);
6477 pointer_map_destroy (eh_map
);
6478 pointer_map_destroy (vars_map
);
6480 /* Rewire the entry and exit blocks. The successor to the entry
6481 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6482 the child function. Similarly, the predecessor of DEST_FN's
6483 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6484 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6485 various CFG manipulation function get to the right CFG.
6487 FIXME, this is silly. The CFG ought to become a parameter to
6489 push_cfun (dest_cfun
);
6490 make_edge (ENTRY_BLOCK_PTR
, entry_bb
, EDGE_FALLTHRU
);
6492 make_edge (exit_bb
, EXIT_BLOCK_PTR
, 0);
6495 /* Back in the original function, the SESE region has disappeared,
6496 create a new basic block in its place. */
6497 bb
= create_empty_bb (entry_pred
[0]);
6499 add_bb_to_loop (bb
, loop
);
6500 for (i
= 0; i
< num_entry_edges
; i
++)
6502 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
6503 e
->probability
= entry_prob
[i
];
6506 for (i
= 0; i
< num_exit_edges
; i
++)
6508 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
6509 e
->probability
= exit_prob
[i
];
6512 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
6513 FOR_EACH_VEC_ELT (basic_block
, dom_bbs
, i
, abb
)
6514 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
6515 VEC_free (basic_block
, heap
, dom_bbs
);
6526 VEC_free (basic_block
, heap
, bbs
);
6532 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6536 dump_function_to_file (tree fn
, FILE *file
, int flags
)
6539 struct function
*dsf
;
6540 bool ignore_topmost_bind
= false, any_var
= false;
6543 bool tmclone
= TREE_CODE (fn
) == FUNCTION_DECL
&& decl_is_tm_clone (fn
);
6545 fprintf (file
, "%s %s(", lang_hooks
.decl_printable_name (fn
, 2),
6546 tmclone
? "[tm-clone] " : "");
6548 arg
= DECL_ARGUMENTS (fn
);
6551 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
6552 fprintf (file
, " ");
6553 print_generic_expr (file
, arg
, dump_flags
);
6554 if (flags
& TDF_VERBOSE
)
6555 print_node (file
, "", arg
, 4);
6556 if (DECL_CHAIN (arg
))
6557 fprintf (file
, ", ");
6558 arg
= DECL_CHAIN (arg
);
6560 fprintf (file
, ")\n");
6562 if (flags
& TDF_VERBOSE
)
6563 print_node (file
, "", fn
, 2);
6565 dsf
= DECL_STRUCT_FUNCTION (fn
);
6566 if (dsf
&& (flags
& TDF_EH
))
6567 dump_eh_tree (file
, dsf
);
6569 if (flags
& TDF_RAW
&& !gimple_has_body_p (fn
))
6571 dump_node (fn
, TDF_SLIM
| flags
, file
);
6575 /* Switch CFUN to point to FN. */
6576 push_cfun (DECL_STRUCT_FUNCTION (fn
));
6578 /* When GIMPLE is lowered, the variables are no longer available in
6579 BIND_EXPRs, so display them separately. */
6580 if (cfun
&& cfun
->decl
== fn
&& !VEC_empty (tree
, cfun
->local_decls
))
6583 ignore_topmost_bind
= true;
6585 fprintf (file
, "{\n");
6586 FOR_EACH_LOCAL_DECL (cfun
, ix
, var
)
6588 print_generic_decl (file
, var
, flags
);
6589 if (flags
& TDF_VERBOSE
)
6590 print_node (file
, "", var
, 4);
6591 fprintf (file
, "\n");
6597 if (cfun
&& cfun
->decl
== fn
&& cfun
->cfg
&& basic_block_info
)
6599 /* If the CFG has been built, emit a CFG-based dump. */
6600 check_bb_profile (ENTRY_BLOCK_PTR
, file
);
6601 if (!ignore_topmost_bind
)
6602 fprintf (file
, "{\n");
6604 if (any_var
&& n_basic_blocks
)
6605 fprintf (file
, "\n");
6608 gimple_dump_bb (bb
, file
, 2, flags
);
6610 fprintf (file
, "}\n");
6611 check_bb_profile (EXIT_BLOCK_PTR
, file
);
6613 else if (DECL_SAVED_TREE (fn
) == NULL
)
6615 /* The function is now in GIMPLE form but the CFG has not been
6616 built yet. Emit the single sequence of GIMPLE statements
6617 that make up its body. */
6618 gimple_seq body
= gimple_body (fn
);
6620 if (gimple_seq_first_stmt (body
)
6621 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
6622 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
6623 print_gimple_seq (file
, body
, 0, flags
);
6626 if (!ignore_topmost_bind
)
6627 fprintf (file
, "{\n");
6630 fprintf (file
, "\n");
6632 print_gimple_seq (file
, body
, 2, flags
);
6633 fprintf (file
, "}\n");
6640 /* Make a tree based dump. */
6641 chain
= DECL_SAVED_TREE (fn
);
6643 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
6645 if (ignore_topmost_bind
)
6647 chain
= BIND_EXPR_BODY (chain
);
6655 if (!ignore_topmost_bind
)
6656 fprintf (file
, "{\n");
6661 fprintf (file
, "\n");
6663 print_generic_stmt_indented (file
, chain
, flags
, indent
);
6664 if (ignore_topmost_bind
)
6665 fprintf (file
, "}\n");
6668 if (flags
& TDF_ENUMERATE_LOCALS
)
6669 dump_enumerated_decls (file
, flags
);
6670 fprintf (file
, "\n\n");
6677 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6680 debug_function (tree fn
, int flags
)
6682 dump_function_to_file (fn
, stderr
, flags
);
6686 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6689 print_pred_bbs (FILE *file
, basic_block bb
)
6694 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6695 fprintf (file
, "bb_%d ", e
->src
->index
);
6699 /* Print on FILE the indexes for the successors of basic_block BB. */
6702 print_succ_bbs (FILE *file
, basic_block bb
)
6707 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6708 fprintf (file
, "bb_%d ", e
->dest
->index
);
6711 /* Print to FILE the basic block BB following the VERBOSITY level. */
6714 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
6716 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
6717 memset ((void *) s_indent
, ' ', (size_t) indent
);
6718 s_indent
[indent
] = '\0';
6720 /* Print basic_block's header. */
6723 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
6724 print_pred_bbs (file
, bb
);
6725 fprintf (file
, "}, succs = {");
6726 print_succ_bbs (file
, bb
);
6727 fprintf (file
, "})\n");
6730 /* Print basic_block's body. */
6733 fprintf (file
, "%s {\n", s_indent
);
6734 gimple_dump_bb (bb
, file
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
6735 fprintf (file
, "%s }\n", s_indent
);
6739 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
6741 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6742 VERBOSITY level this outputs the contents of the loop, or just its
6746 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6754 s_indent
= (char *) alloca ((size_t) indent
+ 1);
6755 memset ((void *) s_indent
, ' ', (size_t) indent
);
6756 s_indent
[indent
] = '\0';
6758 /* Print loop's header. */
6759 fprintf (file
, "%sloop_%d (header = %d, latch = %d", s_indent
,
6760 loop
->num
, loop
->header
->index
, loop
->latch
->index
);
6761 fprintf (file
, ", niter = ");
6762 print_generic_expr (file
, loop
->nb_iterations
, 0);
6764 if (loop
->any_upper_bound
)
6766 fprintf (file
, ", upper_bound = ");
6767 dump_double_int (file
, loop
->nb_iterations_upper_bound
, true);
6770 if (loop
->any_estimate
)
6772 fprintf (file
, ", estimate = ");
6773 dump_double_int (file
, loop
->nb_iterations_estimate
, true);
6775 fprintf (file
, ")\n");
6777 /* Print loop's body. */
6780 fprintf (file
, "%s{\n", s_indent
);
6782 if (bb
->loop_father
== loop
)
6783 print_loops_bb (file
, bb
, indent
, verbosity
);
6785 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
6786 fprintf (file
, "%s}\n", s_indent
);
6790 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6791 spaces. Following VERBOSITY level this outputs the contents of the
6792 loop, or just its structure. */
6795 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6800 print_loop (file
, loop
, indent
, verbosity
);
6801 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
6804 /* Follow a CFG edge from the entry point of the program, and on entry
6805 of a loop, pretty print the loop structure on FILE. */
6808 print_loops (FILE *file
, int verbosity
)
6812 bb
= ENTRY_BLOCK_PTR
;
6813 if (bb
&& bb
->loop_father
)
6814 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
6818 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6821 debug_loops (int verbosity
)
6823 print_loops (stderr
, verbosity
);
6826 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6829 debug_loop (struct loop
*loop
, int verbosity
)
6831 print_loop (stderr
, loop
, 0, verbosity
);
6834 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6838 debug_loop_num (unsigned num
, int verbosity
)
6840 debug_loop (get_loop (num
), verbosity
);
6843 /* Return true if BB ends with a call, possibly followed by some
6844 instructions that must stay with the call. Return false,
6848 gimple_block_ends_with_call_p (basic_block bb
)
6850 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6851 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
6855 /* Return true if BB ends with a conditional branch. Return false,
6859 gimple_block_ends_with_condjump_p (const_basic_block bb
)
6861 gimple stmt
= last_stmt (CONST_CAST_BB (bb
));
6862 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
6866 /* Return true if we need to add fake edge to exit at statement T.
6867 Helper function for gimple_flow_call_edges_add. */
6870 need_fake_edge_p (gimple t
)
6872 tree fndecl
= NULL_TREE
;
6875 /* NORETURN and LONGJMP calls already have an edge to exit.
6876 CONST and PURE calls do not need one.
6877 We don't currently check for CONST and PURE here, although
6878 it would be a good idea, because those attributes are
6879 figured out from the RTL in mark_constant_function, and
6880 the counter incrementation code from -fprofile-arcs
6881 leads to different results from -fbranch-probabilities. */
6882 if (is_gimple_call (t
))
6884 fndecl
= gimple_call_fndecl (t
);
6885 call_flags
= gimple_call_flags (t
);
6888 if (is_gimple_call (t
)
6890 && DECL_BUILT_IN (fndecl
)
6891 && (call_flags
& ECF_NOTHROW
)
6892 && !(call_flags
& ECF_RETURNS_TWICE
)
6893 /* fork() doesn't really return twice, but the effect of
6894 wrapping it in __gcov_fork() which calls __gcov_flush()
6895 and clears the counters before forking has the same
6896 effect as returning twice. Force a fake edge. */
6897 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
6898 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
6901 if (is_gimple_call (t
))
6907 if (!(call_flags
& ECF_NORETURN
))
6911 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6912 if ((e
->flags
& EDGE_FAKE
) == 0)
6916 if (gimple_code (t
) == GIMPLE_ASM
6917 && (gimple_asm_volatile_p (t
) || gimple_asm_input_p (t
)))
6924 /* Add fake edges to the function exit for any non constant and non
6925 noreturn calls (or noreturn calls with EH/abnormal edges),
6926 volatile inline assembly in the bitmap of blocks specified by BLOCKS
6927 or to the whole CFG if BLOCKS is zero. Return the number of blocks
6930 The goal is to expose cases in which entering a basic block does
6931 not imply that all subsequent instructions must be executed. */
6934 gimple_flow_call_edges_add (sbitmap blocks
)
6937 int blocks_split
= 0;
6938 int last_bb
= last_basic_block
;
6939 bool check_last_block
= false;
6941 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
6945 check_last_block
= true;
6947 check_last_block
= TEST_BIT (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
6949 /* In the last basic block, before epilogue generation, there will be
6950 a fallthru edge to EXIT. Special care is required if the last insn
6951 of the last basic block is a call because make_edge folds duplicate
6952 edges, which would result in the fallthru edge also being marked
6953 fake, which would result in the fallthru edge being removed by
6954 remove_fake_edges, which would result in an invalid CFG.
6956 Moreover, we can't elide the outgoing fake edge, since the block
6957 profiler needs to take this into account in order to solve the minimal
6958 spanning tree in the case that the call doesn't return.
6960 Handle this by adding a dummy instruction in a new last basic block. */
6961 if (check_last_block
)
6963 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
6964 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6967 if (!gsi_end_p (gsi
))
6970 if (t
&& need_fake_edge_p (t
))
6974 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6977 gsi_insert_on_edge (e
, gimple_build_nop ());
6978 gsi_commit_edge_inserts ();
6983 /* Now add fake edges to the function exit for any non constant
6984 calls since there is no way that we can determine if they will
6986 for (i
= 0; i
< last_bb
; i
++)
6988 basic_block bb
= BASIC_BLOCK (i
);
6989 gimple_stmt_iterator gsi
;
6990 gimple stmt
, last_stmt
;
6995 if (blocks
&& !TEST_BIT (blocks
, i
))
6998 gsi
= gsi_last_nondebug_bb (bb
);
6999 if (!gsi_end_p (gsi
))
7001 last_stmt
= gsi_stmt (gsi
);
7004 stmt
= gsi_stmt (gsi
);
7005 if (need_fake_edge_p (stmt
))
7009 /* The handling above of the final block before the
7010 epilogue should be enough to verify that there is
7011 no edge to the exit block in CFG already.
7012 Calling make_edge in such case would cause us to
7013 mark that edge as fake and remove it later. */
7014 #ifdef ENABLE_CHECKING
7015 if (stmt
== last_stmt
)
7017 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
7018 gcc_assert (e
== NULL
);
7022 /* Note that the following may create a new basic block
7023 and renumber the existing basic blocks. */
7024 if (stmt
!= last_stmt
)
7026 e
= split_block (bb
, stmt
);
7030 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
7034 while (!gsi_end_p (gsi
));
7039 verify_flow_info ();
7041 return blocks_split
;
7044 /* Removes edge E and all the blocks dominated by it, and updates dominance
7045 information. The IL in E->src needs to be updated separately.
7046 If dominance info is not available, only the edge E is removed.*/
7049 remove_edge_and_dominated_blocks (edge e
)
7051 VEC (basic_block
, heap
) *bbs_to_remove
= NULL
;
7052 VEC (basic_block
, heap
) *bbs_to_fix_dom
= NULL
;
7056 bool none_removed
= false;
7058 basic_block bb
, dbb
;
7061 if (!dom_info_available_p (CDI_DOMINATORS
))
7067 /* No updating is needed for edges to exit. */
7068 if (e
->dest
== EXIT_BLOCK_PTR
)
7070 if (cfgcleanup_altered_bbs
)
7071 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7076 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7077 that is not dominated by E->dest, then this set is empty. Otherwise,
7078 all the basic blocks dominated by E->dest are removed.
7080 Also, to DF_IDOM we store the immediate dominators of the blocks in
7081 the dominance frontier of E (i.e., of the successors of the
7082 removed blocks, if there are any, and of E->dest otherwise). */
7083 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
7088 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
7090 none_removed
= true;
7095 df
= BITMAP_ALLOC (NULL
);
7096 df_idom
= BITMAP_ALLOC (NULL
);
7099 bitmap_set_bit (df_idom
,
7100 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
7103 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
7104 FOR_EACH_VEC_ELT (basic_block
, bbs_to_remove
, i
, bb
)
7106 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
7108 if (f
->dest
!= EXIT_BLOCK_PTR
)
7109 bitmap_set_bit (df
, f
->dest
->index
);
7112 FOR_EACH_VEC_ELT (basic_block
, bbs_to_remove
, i
, bb
)
7113 bitmap_clear_bit (df
, bb
->index
);
7115 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
7117 bb
= BASIC_BLOCK (i
);
7118 bitmap_set_bit (df_idom
,
7119 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
7123 if (cfgcleanup_altered_bbs
)
7125 /* Record the set of the altered basic blocks. */
7126 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7127 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
7130 /* Remove E and the cancelled blocks. */
7135 /* Walk backwards so as to get a chance to substitute all
7136 released DEFs into debug stmts. See
7137 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7139 for (i
= VEC_length (basic_block
, bbs_to_remove
); i
-- > 0; )
7140 delete_basic_block (VEC_index (basic_block
, bbs_to_remove
, i
));
7143 /* Update the dominance information. The immediate dominator may change only
7144 for blocks whose immediate dominator belongs to DF_IDOM:
7146 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7147 removal. Let Z the arbitrary block such that idom(Z) = Y and
7148 Z dominates X after the removal. Before removal, there exists a path P
7149 from Y to X that avoids Z. Let F be the last edge on P that is
7150 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7151 dominates W, and because of P, Z does not dominate W), and W belongs to
7152 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7153 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
7155 bb
= BASIC_BLOCK (i
);
7156 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
7158 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
7159 VEC_safe_push (basic_block
, heap
, bbs_to_fix_dom
, dbb
);
7162 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
7165 BITMAP_FREE (df_idom
);
7166 VEC_free (basic_block
, heap
, bbs_to_remove
);
7167 VEC_free (basic_block
, heap
, bbs_to_fix_dom
);
7170 /* Purge dead EH edges from basic block BB. */
7173 gimple_purge_dead_eh_edges (basic_block bb
)
7175 bool changed
= false;
7178 gimple stmt
= last_stmt (bb
);
7180 if (stmt
&& stmt_can_throw_internal (stmt
))
7183 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7185 if (e
->flags
& EDGE_EH
)
7187 remove_edge_and_dominated_blocks (e
);
7197 /* Purge dead EH edges from basic block listed in BLOCKS. */
7200 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
7202 bool changed
= false;
7206 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7208 basic_block bb
= BASIC_BLOCK (i
);
7210 /* Earlier gimple_purge_dead_eh_edges could have removed
7211 this basic block already. */
7212 gcc_assert (bb
|| changed
);
7214 changed
|= gimple_purge_dead_eh_edges (bb
);
7220 /* Purge dead abnormal call edges from basic block BB. */
7223 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
7225 bool changed
= false;
7228 gimple stmt
= last_stmt (bb
);
7230 if (!cfun
->has_nonlocal_label
)
7233 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
7236 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7238 if (e
->flags
& EDGE_ABNORMAL
)
7240 remove_edge_and_dominated_blocks (e
);
7250 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7253 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
7255 bool changed
= false;
7259 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7261 basic_block bb
= BASIC_BLOCK (i
);
7263 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7264 this basic block already. */
7265 gcc_assert (bb
|| changed
);
7267 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
7273 /* This function is called whenever a new edge is created or
7277 gimple_execute_on_growing_pred (edge e
)
7279 basic_block bb
= e
->dest
;
7281 if (!gimple_seq_empty_p (phi_nodes (bb
)))
7282 reserve_phi_args_for_new_edge (bb
);
7285 /* This function is called immediately before edge E is removed from
7286 the edge vector E->dest->preds. */
7289 gimple_execute_on_shrinking_pred (edge e
)
7291 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
7292 remove_phi_args (e
);
7295 /*---------------------------------------------------------------------------
7296 Helper functions for Loop versioning
7297 ---------------------------------------------------------------------------*/
7299 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7300 of 'first'. Both of them are dominated by 'new_head' basic block. When
7301 'new_head' was created by 'second's incoming edge it received phi arguments
7302 on the edge by split_edge(). Later, additional edge 'e' was created to
7303 connect 'new_head' and 'first'. Now this routine adds phi args on this
7304 additional edge 'e' that new_head to second edge received as part of edge
7308 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
7309 basic_block new_head
, edge e
)
7312 gimple_stmt_iterator psi1
, psi2
;
7314 edge e2
= find_edge (new_head
, second
);
7316 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7317 edge, we should always have an edge from NEW_HEAD to SECOND. */
7318 gcc_assert (e2
!= NULL
);
7320 /* Browse all 'second' basic block phi nodes and add phi args to
7321 edge 'e' for 'first' head. PHI args are always in correct order. */
7323 for (psi2
= gsi_start_phis (second
),
7324 psi1
= gsi_start_phis (first
);
7325 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
7326 gsi_next (&psi2
), gsi_next (&psi1
))
7328 phi1
= gsi_stmt (psi1
);
7329 phi2
= gsi_stmt (psi2
);
7330 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
7331 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
7336 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7337 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7338 the destination of the ELSE part. */
7341 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
7342 basic_block second_head ATTRIBUTE_UNUSED
,
7343 basic_block cond_bb
, void *cond_e
)
7345 gimple_stmt_iterator gsi
;
7346 gimple new_cond_expr
;
7347 tree cond_expr
= (tree
) cond_e
;
7350 /* Build new conditional expr */
7351 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
7352 NULL_TREE
, NULL_TREE
);
7354 /* Add new cond in cond_bb. */
7355 gsi
= gsi_last_bb (cond_bb
);
7356 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
7358 /* Adjust edges appropriately to connect new head with first head
7359 as well as second head. */
7360 e0
= single_succ_edge (cond_bb
);
7361 e0
->flags
&= ~EDGE_FALLTHRU
;
7362 e0
->flags
|= EDGE_FALSE_VALUE
;
7365 struct cfg_hooks gimple_cfg_hooks
= {
7367 gimple_verify_flow_info
,
7368 gimple_dump_bb
, /* dump_bb */
7369 create_bb
, /* create_basic_block */
7370 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
7371 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
7372 gimple_can_remove_branch_p
, /* can_remove_branch_p */
7373 remove_bb
, /* delete_basic_block */
7374 gimple_split_block
, /* split_block */
7375 gimple_move_block_after
, /* move_block_after */
7376 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
7377 gimple_merge_blocks
, /* merge_blocks */
7378 gimple_predict_edge
, /* predict_edge */
7379 gimple_predicted_by_p
, /* predicted_by_p */
7380 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
7381 gimple_duplicate_bb
, /* duplicate_block */
7382 gimple_split_edge
, /* split_edge */
7383 gimple_make_forwarder_block
, /* make_forward_block */
7384 NULL
, /* tidy_fallthru_edge */
7385 NULL
, /* force_nonfallthru */
7386 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
7387 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
7388 gimple_flow_call_edges_add
, /* flow_call_edges_add */
7389 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
7390 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
7391 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
7392 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
7393 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
7394 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
7395 flush_pending_stmts
/* flush_pending_stmts */
7399 /* Split all critical edges. */
7402 split_critical_edges (void)
7408 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7409 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7410 mappings around the calls to split_edge. */
7411 start_recording_case_labels ();
7414 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7416 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
7418 /* PRE inserts statements to edges and expects that
7419 since split_critical_edges was done beforehand, committing edge
7420 insertions will not split more edges. In addition to critical
7421 edges we must split edges that have multiple successors and
7422 end by control flow statements, such as RESX.
7423 Go ahead and split them too. This matches the logic in
7424 gimple_find_edge_insert_loc. */
7425 else if ((!single_pred_p (e
->dest
)
7426 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
7427 || e
->dest
== EXIT_BLOCK_PTR
)
7428 && e
->src
!= ENTRY_BLOCK_PTR
7429 && !(e
->flags
& EDGE_ABNORMAL
))
7431 gimple_stmt_iterator gsi
;
7433 gsi
= gsi_last_bb (e
->src
);
7434 if (!gsi_end_p (gsi
)
7435 && stmt_ends_bb_p (gsi_stmt (gsi
))
7436 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
7437 && !gimple_call_builtin_p (gsi_stmt (gsi
),
7443 end_recording_case_labels ();
7447 struct gimple_opt_pass pass_split_crit_edges
=
7451 "crited", /* name */
7453 split_critical_edges
, /* execute */
7456 0, /* static_pass_number */
7457 TV_TREE_SPLIT_EDGES
, /* tv_id */
7458 PROP_cfg
, /* properties required */
7459 PROP_no_crit_edges
, /* properties_provided */
7460 0, /* properties_destroyed */
7461 0, /* todo_flags_start */
7462 TODO_verify_flow
/* todo_flags_finish */
7467 /* Build a ternary operation and gimplify it. Emit code before GSI.
7468 Return the gimple_val holding the result. */
7471 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7472 tree type
, tree a
, tree b
, tree c
)
7475 location_t loc
= gimple_location (gsi_stmt (*gsi
));
7477 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
7480 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7484 /* Build a binary operation and gimplify it. Emit code before GSI.
7485 Return the gimple_val holding the result. */
7488 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7489 tree type
, tree a
, tree b
)
7493 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
7496 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7500 /* Build a unary operation and gimplify it. Emit code before GSI.
7501 Return the gimple_val holding the result. */
7504 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
7509 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
7512 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7518 /* Emit return warnings. */
7521 execute_warn_function_return (void)
7523 source_location location
;
7528 /* If we have a path to EXIT, then we do return. */
7529 if (TREE_THIS_VOLATILE (cfun
->decl
)
7530 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0)
7532 location
= UNKNOWN_LOCATION
;
7533 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7535 last
= last_stmt (e
->src
);
7536 if ((gimple_code (last
) == GIMPLE_RETURN
7537 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
7538 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
7541 if (location
== UNKNOWN_LOCATION
)
7542 location
= cfun
->function_end_locus
;
7543 warning_at (location
, 0, "%<noreturn%> function does return");
7546 /* If we see "return;" in some basic block, then we do reach the end
7547 without returning a value. */
7548 else if (warn_return_type
7549 && !TREE_NO_WARNING (cfun
->decl
)
7550 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0
7551 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
7553 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7555 gimple last
= last_stmt (e
->src
);
7556 if (gimple_code (last
) == GIMPLE_RETURN
7557 && gimple_return_retval (last
) == NULL
7558 && !gimple_no_warning_p (last
))
7560 location
= gimple_location (last
);
7561 if (location
== UNKNOWN_LOCATION
)
7562 location
= cfun
->function_end_locus
;
7563 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
7564 TREE_NO_WARNING (cfun
->decl
) = 1;
7573 /* Given a basic block B which ends with a conditional and has
7574 precisely two successors, determine which of the edges is taken if
7575 the conditional is true and which is taken if the conditional is
7576 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7579 extract_true_false_edges_from_block (basic_block b
,
7583 edge e
= EDGE_SUCC (b
, 0);
7585 if (e
->flags
& EDGE_TRUE_VALUE
)
7588 *false_edge
= EDGE_SUCC (b
, 1);
7593 *true_edge
= EDGE_SUCC (b
, 1);
7597 struct gimple_opt_pass pass_warn_function_return
=
7601 "*warn_function_return", /* name */
7603 execute_warn_function_return
, /* execute */
7606 0, /* static_pass_number */
7607 TV_NONE
, /* tv_id */
7608 PROP_cfg
, /* properties_required */
7609 0, /* properties_provided */
7610 0, /* properties_destroyed */
7611 0, /* todo_flags_start */
7612 0 /* todo_flags_finish */
7616 /* Emit noreturn warnings. */
7619 execute_warn_function_noreturn (void)
7621 if (!TREE_THIS_VOLATILE (current_function_decl
)
7622 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) == 0)
7623 warn_function_noreturn (current_function_decl
);
7628 gate_warn_function_noreturn (void)
7630 return warn_suggest_attribute_noreturn
;
7633 struct gimple_opt_pass pass_warn_function_noreturn
=
7637 "*warn_function_noreturn", /* name */
7638 gate_warn_function_noreturn
, /* gate */
7639 execute_warn_function_noreturn
, /* execute */
7642 0, /* static_pass_number */
7643 TV_NONE
, /* tv_id */
7644 PROP_cfg
, /* properties_required */
7645 0, /* properties_provided */
7646 0, /* properties_destroyed */
7647 0, /* todo_flags_start */
7648 0 /* todo_flags_finish */
7653 /* Walk a gimplified function and warn for functions whose return value is
7654 ignored and attribute((warn_unused_result)) is set. This is done before
7655 inlining, so we don't have to worry about that. */
7658 do_warn_unused_result (gimple_seq seq
)
7661 gimple_stmt_iterator i
;
7663 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
7665 gimple g
= gsi_stmt (i
);
7667 switch (gimple_code (g
))
7670 do_warn_unused_result (gimple_bind_body (g
));
7673 do_warn_unused_result (gimple_try_eval (g
));
7674 do_warn_unused_result (gimple_try_cleanup (g
));
7677 do_warn_unused_result (gimple_catch_handler (g
));
7679 case GIMPLE_EH_FILTER
:
7680 do_warn_unused_result (gimple_eh_filter_failure (g
));
7684 if (gimple_call_lhs (g
))
7686 if (gimple_call_internal_p (g
))
7689 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7690 LHS. All calls whose value is ignored should be
7691 represented like this. Look for the attribute. */
7692 fdecl
= gimple_call_fndecl (g
);
7693 ftype
= gimple_call_fntype (g
);
7695 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
7697 location_t loc
= gimple_location (g
);
7700 warning_at (loc
, OPT_Wunused_result
,
7701 "ignoring return value of %qD, "
7702 "declared with attribute warn_unused_result",
7705 warning_at (loc
, OPT_Wunused_result
,
7706 "ignoring return value of function "
7707 "declared with attribute warn_unused_result");
7712 /* Not a container, not a call, or a call whose value is used. */
7719 run_warn_unused_result (void)
7721 do_warn_unused_result (gimple_body (current_function_decl
));
7726 gate_warn_unused_result (void)
7728 return flag_warn_unused_result
;
7731 struct gimple_opt_pass pass_warn_unused_result
=
7735 "*warn_unused_result", /* name */
7736 gate_warn_unused_result
, /* gate */
7737 run_warn_unused_result
, /* execute */
7740 0, /* static_pass_number */
7741 TV_NONE
, /* tv_id */
7742 PROP_gimple_any
, /* properties_required */
7743 0, /* properties_provided */
7744 0, /* properties_destroyed */
7745 0, /* todo_flags_start */
7746 0, /* todo_flags_finish */