select.2: timeout is restrict too.
[dragonfly.git] / contrib / gcc-4.7 / gcc / tree-cfg.c
blobcfdf7aa4dcefe628e08431470ef58de1db011930
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t *edge_to_cases;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs;
78 /* CFG statistics. */
79 struct cfg_stats_d
81 long num_merged_labels;
84 static struct cfg_stats_d cfg_stats;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
92 location_t locus;
93 int discriminator;
95 static htab_t discriminator_per_locus;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
113 /* Various helpers. */
114 static inline bool stmt_starts_bb_p (gimple, gimple);
115 static int gimple_verify_flow_info (void);
116 static void gimple_make_forwarder_block (edge);
117 static void gimple_cfg2vcg (FILE *);
118 static gimple first_non_label_stmt (basic_block);
119 static bool verify_gimple_transaction (gimple);
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
163 void
164 init_empty_tree_cfg (void)
166 init_empty_tree_cfg_for_function (cfun);
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
176 static void
177 build_gimple_cfg (gimple_seq seq)
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
184 init_empty_tree_cfg ();
186 found_computed_goto = 0;
187 make_blocks (seq);
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
220 /* Debugging dumps. */
222 /* Write the flowgraph to a VCG file. */
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
234 static unsigned int
235 execute_build_cfg (void)
237 gimple_seq body = gimple_body (current_function_decl);
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
246 return 0;
249 struct gimple_opt_pass pass_build_cfg =
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
269 /* Return true if T is a computed goto. */
271 static bool
272 computed_goto_p (gimple t)
274 return (gimple_code (t) == GIMPLE_GOTO
275 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
279 /* Search the CFG for any computed gotos. If found, factor them to a
280 common computed goto site. Also record the location of that site so
281 that we can un-factor the gotos after we have converted back to
282 normal form. */
284 static void
285 factor_computed_gotos (void)
287 basic_block bb;
288 tree factored_label_decl = NULL;
289 tree var = NULL;
290 gimple factored_computed_goto_label = NULL;
291 gimple factored_computed_goto = NULL;
293 /* We know there are one or more computed gotos in this function.
294 Examine the last statement in each basic block to see if the block
295 ends with a computed goto. */
297 FOR_EACH_BB (bb)
299 gimple_stmt_iterator gsi = gsi_last_bb (bb);
300 gimple last;
302 if (gsi_end_p (gsi))
303 continue;
305 last = gsi_stmt (gsi);
307 /* Ignore the computed goto we create when we factor the original
308 computed gotos. */
309 if (last == factored_computed_goto)
310 continue;
312 /* If the last statement is a computed goto, factor it. */
313 if (computed_goto_p (last))
315 gimple assignment;
317 /* The first time we find a computed goto we need to create
318 the factored goto block and the variable each original
319 computed goto will use for their goto destination. */
320 if (!factored_computed_goto)
322 basic_block new_bb = create_empty_bb (bb);
323 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325 /* Create the destination of the factored goto. Each original
326 computed goto will put its desired destination into this
327 variable and jump to the label we create immediately
328 below. */
329 var = create_tmp_var (ptr_type_node, "gotovar");
331 /* Build a label for the new block which will contain the
332 factored computed goto. */
333 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
334 factored_computed_goto_label
335 = gimple_build_label (factored_label_decl);
336 gsi_insert_after (&new_gsi, factored_computed_goto_label,
337 GSI_NEW_STMT);
339 /* Build our new computed goto. */
340 factored_computed_goto = gimple_build_goto (var);
341 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
344 /* Copy the original computed goto's destination into VAR. */
345 assignment = gimple_build_assign (var, gimple_goto_dest (last));
346 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348 /* And re-vector the computed goto to the new destination. */
349 gimple_goto_set_dest (last, factored_label_decl);
355 /* Build a flowgraph for the sequence of stmts SEQ. */
357 static void
358 make_blocks (gimple_seq seq)
360 gimple_stmt_iterator i = gsi_start (seq);
361 gimple stmt = NULL;
362 bool start_new_block = true;
363 bool first_stmt_of_seq = true;
364 basic_block bb = ENTRY_BLOCK_PTR;
366 while (!gsi_end_p (i))
368 gimple prev_stmt;
370 prev_stmt = stmt;
371 stmt = gsi_stmt (i);
373 /* If the statement starts a new basic block or if we have determined
374 in a previous pass that we need to create a new block for STMT, do
375 so now. */
376 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 if (!first_stmt_of_seq)
379 seq = gsi_split_seq_before (&i);
380 bb = create_basic_block (seq, NULL, bb);
381 start_new_block = false;
384 /* Now add STMT to BB and create the subgraphs for special statement
385 codes. */
386 gimple_set_bb (stmt, bb);
388 if (computed_goto_p (stmt))
389 found_computed_goto = true;
391 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
392 next iteration. */
393 if (stmt_ends_bb_p (stmt))
395 /* If the stmt can make abnormal goto use a new temporary
396 for the assignment to the LHS. This makes sure the old value
397 of the LHS is available on the abnormal edge. Otherwise
398 we will end up with overlapping life-ranges for abnormal
399 SSA names. */
400 if (gimple_has_lhs (stmt)
401 && stmt_can_make_abnormal_goto (stmt)
402 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 tree lhs = gimple_get_lhs (stmt);
405 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
406 gimple s = gimple_build_assign (lhs, tmp);
407 gimple_set_location (s, gimple_location (stmt));
408 gimple_set_block (s, gimple_block (stmt));
409 gimple_set_lhs (stmt, tmp);
410 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
411 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
412 DECL_GIMPLE_REG_P (tmp) = 1;
413 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 start_new_block = true;
418 gsi_next (&i);
419 first_stmt_of_seq = false;
424 /* Create and return a new empty basic block after bb AFTER. */
426 static basic_block
427 create_bb (void *h, void *e, basic_block after)
429 basic_block bb;
431 gcc_assert (!e);
433 /* Create and initialize a new basic block. Since alloc_block uses
434 GC allocation that clears memory to allocate a basic block, we do
435 not have to clear the newly allocated basic block here. */
436 bb = alloc_block ();
438 bb->index = last_basic_block;
439 bb->flags = BB_NEW;
440 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
441 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443 /* Add the new block to the linked list of blocks. */
444 link_block (bb, after);
446 /* Grow the basic block array if needed. */
447 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
450 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
453 /* Add the newly created block to the array. */
454 SET_BASIC_BLOCK (last_basic_block, bb);
456 n_basic_blocks++;
457 last_basic_block++;
459 return bb;
463 /*---------------------------------------------------------------------------
464 Edge creation
465 ---------------------------------------------------------------------------*/
467 /* Fold COND_EXPR_COND of each COND_EXPR. */
469 void
470 fold_cond_expr_cond (void)
472 basic_block bb;
474 FOR_EACH_BB (bb)
476 gimple stmt = last_stmt (bb);
478 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 location_t loc = gimple_location (stmt);
481 tree cond;
482 bool zerop, onep;
484 fold_defer_overflow_warnings ();
485 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
486 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
487 if (cond)
489 zerop = integer_zerop (cond);
490 onep = integer_onep (cond);
492 else
493 zerop = onep = false;
495 fold_undefer_overflow_warnings (zerop || onep,
496 stmt,
497 WARN_STRICT_OVERFLOW_CONDITIONAL);
498 if (zerop)
499 gimple_cond_make_false (stmt);
500 else if (onep)
501 gimple_cond_make_true (stmt);
506 /* Join all the blocks in the flowgraph. */
508 static void
509 make_edges (void)
511 basic_block bb;
512 struct omp_region *cur_region = NULL;
514 /* Create an edge from entry to the first block with executable
515 statements in it. */
516 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518 /* Traverse the basic block array placing edges. */
519 FOR_EACH_BB (bb)
521 gimple last = last_stmt (bb);
522 bool fallthru;
524 if (last)
526 enum gimple_code code = gimple_code (last);
527 switch (code)
529 case GIMPLE_GOTO:
530 make_goto_expr_edges (bb);
531 fallthru = false;
532 break;
533 case GIMPLE_RETURN:
534 make_edge (bb, EXIT_BLOCK_PTR, 0);
535 fallthru = false;
536 break;
537 case GIMPLE_COND:
538 make_cond_expr_edges (bb);
539 fallthru = false;
540 break;
541 case GIMPLE_SWITCH:
542 make_gimple_switch_edges (bb);
543 fallthru = false;
544 break;
545 case GIMPLE_RESX:
546 make_eh_edges (last);
547 fallthru = false;
548 break;
549 case GIMPLE_EH_DISPATCH:
550 fallthru = make_eh_dispatch_edges (last);
551 break;
553 case GIMPLE_CALL:
554 /* If this function receives a nonlocal goto, then we need to
555 make edges from this call site to all the nonlocal goto
556 handlers. */
557 if (stmt_can_make_abnormal_goto (last))
558 make_abnormal_goto_edges (bb, true);
560 /* If this statement has reachable exception handlers, then
561 create abnormal edges to them. */
562 make_eh_edges (last);
564 /* BUILTIN_RETURN is really a return statement. */
565 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
566 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
567 /* Some calls are known not to return. */
568 else
569 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
570 break;
572 case GIMPLE_ASSIGN:
573 /* A GIMPLE_ASSIGN may throw internally and thus be considered
574 control-altering. */
575 if (is_ctrl_altering_stmt (last))
576 make_eh_edges (last);
577 fallthru = true;
578 break;
580 case GIMPLE_ASM:
581 make_gimple_asm_edges (bb);
582 fallthru = true;
583 break;
585 case GIMPLE_OMP_PARALLEL:
586 case GIMPLE_OMP_TASK:
587 case GIMPLE_OMP_FOR:
588 case GIMPLE_OMP_SINGLE:
589 case GIMPLE_OMP_MASTER:
590 case GIMPLE_OMP_ORDERED:
591 case GIMPLE_OMP_CRITICAL:
592 case GIMPLE_OMP_SECTION:
593 cur_region = new_omp_region (bb, code, cur_region);
594 fallthru = true;
595 break;
597 case GIMPLE_OMP_SECTIONS:
598 cur_region = new_omp_region (bb, code, cur_region);
599 fallthru = true;
600 break;
602 case GIMPLE_OMP_SECTIONS_SWITCH:
603 fallthru = false;
604 break;
606 case GIMPLE_OMP_ATOMIC_LOAD:
607 case GIMPLE_OMP_ATOMIC_STORE:
608 fallthru = true;
609 break;
611 case GIMPLE_OMP_RETURN:
612 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
613 somewhere other than the next block. This will be
614 created later. */
615 cur_region->exit = bb;
616 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
617 cur_region = cur_region->outer;
618 break;
620 case GIMPLE_OMP_CONTINUE:
621 cur_region->cont = bb;
622 switch (cur_region->type)
624 case GIMPLE_OMP_FOR:
625 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
626 succs edges as abnormal to prevent splitting
627 them. */
628 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
629 /* Make the loopback edge. */
630 make_edge (bb, single_succ (cur_region->entry),
631 EDGE_ABNORMAL);
633 /* Create an edge from GIMPLE_OMP_FOR to exit, which
634 corresponds to the case that the body of the loop
635 is not executed at all. */
636 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
637 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
638 fallthru = false;
639 break;
641 case GIMPLE_OMP_SECTIONS:
642 /* Wire up the edges into and out of the nested sections. */
644 basic_block switch_bb = single_succ (cur_region->entry);
646 struct omp_region *i;
647 for (i = cur_region->inner; i ; i = i->next)
649 gcc_assert (i->type == GIMPLE_OMP_SECTION);
650 make_edge (switch_bb, i->entry, 0);
651 make_edge (i->exit, bb, EDGE_FALLTHRU);
654 /* Make the loopback edge to the block with
655 GIMPLE_OMP_SECTIONS_SWITCH. */
656 make_edge (bb, switch_bb, 0);
658 /* Make the edge from the switch to exit. */
659 make_edge (switch_bb, bb->next_bb, 0);
660 fallthru = false;
662 break;
664 default:
665 gcc_unreachable ();
667 break;
669 case GIMPLE_TRANSACTION:
671 tree abort_label = gimple_transaction_label (last);
672 if (abort_label)
673 make_edge (bb, label_to_block (abort_label), 0);
674 fallthru = true;
676 break;
678 default:
679 gcc_assert (!stmt_ends_bb_p (last));
680 fallthru = true;
683 else
684 fallthru = true;
686 if (fallthru)
688 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
689 if (last)
690 assign_discriminator (gimple_location (last), bb->next_bb);
694 if (root_omp_region)
695 free_omp_regions ();
697 /* Fold COND_EXPR_COND of each COND_EXPR. */
698 fold_cond_expr_cond ();
701 /* Trivial hash function for a location_t. ITEM is a pointer to
702 a hash table entry that maps a location_t to a discriminator. */
704 static unsigned int
705 locus_map_hash (const void *item)
707 return ((const struct locus_discrim_map *) item)->locus;
710 /* Equality function for the locus-to-discriminator map. VA and VB
711 point to the two hash table entries to compare. */
713 static int
714 locus_map_eq (const void *va, const void *vb)
716 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
717 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
718 return a->locus == b->locus;
721 /* Find the next available discriminator value for LOCUS. The
722 discriminator distinguishes among several basic blocks that
723 share a common locus, allowing for more accurate sample-based
724 profiling. */
726 static int
727 next_discriminator_for_locus (location_t locus)
729 struct locus_discrim_map item;
730 struct locus_discrim_map **slot;
732 item.locus = locus;
733 item.discriminator = 0;
734 slot = (struct locus_discrim_map **)
735 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
736 (hashval_t) locus, INSERT);
737 gcc_assert (slot);
738 if (*slot == HTAB_EMPTY_ENTRY)
740 *slot = XNEW (struct locus_discrim_map);
741 gcc_assert (*slot);
742 (*slot)->locus = locus;
743 (*slot)->discriminator = 0;
745 (*slot)->discriminator++;
746 return (*slot)->discriminator;
749 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
751 static bool
752 same_line_p (location_t locus1, location_t locus2)
754 expanded_location from, to;
756 if (locus1 == locus2)
757 return true;
759 from = expand_location (locus1);
760 to = expand_location (locus2);
762 if (from.line != to.line)
763 return false;
764 if (from.file == to.file)
765 return true;
766 return (from.file != NULL
767 && to.file != NULL
768 && filename_cmp (from.file, to.file) == 0);
771 /* Assign a unique discriminator value to block BB if it begins at the same
772 LOCUS as its predecessor block. */
774 static void
775 assign_discriminator (location_t locus, basic_block bb)
777 gimple first_in_to_bb, last_in_to_bb;
779 if (locus == 0 || bb->discriminator != 0)
780 return;
782 first_in_to_bb = first_non_label_stmt (bb);
783 last_in_to_bb = last_stmt (bb);
784 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
785 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
786 bb->discriminator = next_discriminator_for_locus (locus);
789 /* Create the edges for a GIMPLE_COND starting at block BB. */
791 static void
792 make_cond_expr_edges (basic_block bb)
794 gimple entry = last_stmt (bb);
795 gimple then_stmt, else_stmt;
796 basic_block then_bb, else_bb;
797 tree then_label, else_label;
798 edge e;
799 location_t entry_locus;
801 gcc_assert (entry);
802 gcc_assert (gimple_code (entry) == GIMPLE_COND);
804 entry_locus = gimple_location (entry);
806 /* Entry basic blocks for each component. */
807 then_label = gimple_cond_true_label (entry);
808 else_label = gimple_cond_false_label (entry);
809 then_bb = label_to_block (then_label);
810 else_bb = label_to_block (else_label);
811 then_stmt = first_stmt (then_bb);
812 else_stmt = first_stmt (else_bb);
814 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
815 assign_discriminator (entry_locus, then_bb);
816 e->goto_locus = gimple_location (then_stmt);
817 if (e->goto_locus)
818 e->goto_block = gimple_block (then_stmt);
819 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
820 if (e)
822 assign_discriminator (entry_locus, else_bb);
823 e->goto_locus = gimple_location (else_stmt);
824 if (e->goto_locus)
825 e->goto_block = gimple_block (else_stmt);
828 /* We do not need the labels anymore. */
829 gimple_cond_set_true_label (entry, NULL_TREE);
830 gimple_cond_set_false_label (entry, NULL_TREE);
834 /* Called for each element in the hash table (P) as we delete the
835 edge to cases hash table.
837 Clear all the TREE_CHAINs to prevent problems with copying of
838 SWITCH_EXPRs and structure sharing rules, then free the hash table
839 element. */
841 static bool
842 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
843 void *data ATTRIBUTE_UNUSED)
845 tree t, next;
847 for (t = (tree) *value; t; t = next)
849 next = CASE_CHAIN (t);
850 CASE_CHAIN (t) = NULL;
853 *value = NULL;
854 return true;
857 /* Start recording information mapping edges to case labels. */
859 void
860 start_recording_case_labels (void)
862 gcc_assert (edge_to_cases == NULL);
863 edge_to_cases = pointer_map_create ();
864 touched_switch_bbs = BITMAP_ALLOC (NULL);
867 /* Return nonzero if we are recording information for case labels. */
869 static bool
870 recording_case_labels_p (void)
872 return (edge_to_cases != NULL);
875 /* Stop recording information mapping edges to case labels and
876 remove any information we have recorded. */
877 void
878 end_recording_case_labels (void)
880 bitmap_iterator bi;
881 unsigned i;
882 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
883 pointer_map_destroy (edge_to_cases);
884 edge_to_cases = NULL;
885 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
887 basic_block bb = BASIC_BLOCK (i);
888 if (bb)
890 gimple stmt = last_stmt (bb);
891 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
892 group_case_labels_stmt (stmt);
895 BITMAP_FREE (touched_switch_bbs);
898 /* If we are inside a {start,end}_recording_cases block, then return
899 a chain of CASE_LABEL_EXPRs from T which reference E.
901 Otherwise return NULL. */
903 static tree
904 get_cases_for_edge (edge e, gimple t)
906 void **slot;
907 size_t i, n;
909 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
910 chains available. Return NULL so the caller can detect this case. */
911 if (!recording_case_labels_p ())
912 return NULL;
914 slot = pointer_map_contains (edge_to_cases, e);
915 if (slot)
916 return (tree) *slot;
918 /* If we did not find E in the hash table, then this must be the first
919 time we have been queried for information about E & T. Add all the
920 elements from T to the hash table then perform the query again. */
922 n = gimple_switch_num_labels (t);
923 for (i = 0; i < n; i++)
925 tree elt = gimple_switch_label (t, i);
926 tree lab = CASE_LABEL (elt);
927 basic_block label_bb = label_to_block (lab);
928 edge this_edge = find_edge (e->src, label_bb);
930 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
931 a new chain. */
932 slot = pointer_map_insert (edge_to_cases, this_edge);
933 CASE_CHAIN (elt) = (tree) *slot;
934 *slot = elt;
937 return (tree) *pointer_map_contains (edge_to_cases, e);
940 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
942 static void
943 make_gimple_switch_edges (basic_block bb)
945 gimple entry = last_stmt (bb);
946 location_t entry_locus;
947 size_t i, n;
949 entry_locus = gimple_location (entry);
951 n = gimple_switch_num_labels (entry);
953 for (i = 0; i < n; ++i)
955 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
956 basic_block label_bb = label_to_block (lab);
957 make_edge (bb, label_bb, 0);
958 assign_discriminator (entry_locus, label_bb);
963 /* Return the basic block holding label DEST. */
965 basic_block
966 label_to_block_fn (struct function *ifun, tree dest)
968 int uid = LABEL_DECL_UID (dest);
970 /* We would die hard when faced by an undefined label. Emit a label to
971 the very first basic block. This will hopefully make even the dataflow
972 and undefined variable warnings quite right. */
973 if (seen_error () && uid < 0)
975 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
976 gimple stmt;
978 stmt = gimple_build_label (dest);
979 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
980 uid = LABEL_DECL_UID (dest);
982 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
983 <= (unsigned int) uid)
984 return NULL;
985 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
988 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
989 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
991 void
992 make_abnormal_goto_edges (basic_block bb, bool for_call)
994 basic_block target_bb;
995 gimple_stmt_iterator gsi;
997 FOR_EACH_BB (target_bb)
998 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1000 gimple label_stmt = gsi_stmt (gsi);
1001 tree target;
1003 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1004 break;
1006 target = gimple_label_label (label_stmt);
1008 /* Make an edge to every label block that has been marked as a
1009 potential target for a computed goto or a non-local goto. */
1010 if ((FORCED_LABEL (target) && !for_call)
1011 || (DECL_NONLOCAL (target) && for_call))
1013 make_edge (bb, target_bb, EDGE_ABNORMAL);
1014 break;
1019 /* Create edges for a goto statement at block BB. */
1021 static void
1022 make_goto_expr_edges (basic_block bb)
1024 gimple_stmt_iterator last = gsi_last_bb (bb);
1025 gimple goto_t = gsi_stmt (last);
1027 /* A simple GOTO creates normal edges. */
1028 if (simple_goto_p (goto_t))
1030 tree dest = gimple_goto_dest (goto_t);
1031 basic_block label_bb = label_to_block (dest);
1032 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1033 e->goto_locus = gimple_location (goto_t);
1034 assign_discriminator (e->goto_locus, label_bb);
1035 if (e->goto_locus)
1036 e->goto_block = gimple_block (goto_t);
1037 gsi_remove (&last, true);
1038 return;
1041 /* A computed GOTO creates abnormal edges. */
1042 make_abnormal_goto_edges (bb, false);
1045 /* Create edges for an asm statement with labels at block BB. */
1047 static void
1048 make_gimple_asm_edges (basic_block bb)
1050 gimple stmt = last_stmt (bb);
1051 location_t stmt_loc = gimple_location (stmt);
1052 int i, n = gimple_asm_nlabels (stmt);
1054 for (i = 0; i < n; ++i)
1056 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1057 basic_block label_bb = label_to_block (label);
1058 make_edge (bb, label_bb, 0);
1059 assign_discriminator (stmt_loc, label_bb);
1063 /*---------------------------------------------------------------------------
1064 Flowgraph analysis
1065 ---------------------------------------------------------------------------*/
1067 /* Cleanup useless labels in basic blocks. This is something we wish
1068 to do early because it allows us to group case labels before creating
1069 the edges for the CFG, and it speeds up block statement iterators in
1070 all passes later on.
1071 We rerun this pass after CFG is created, to get rid of the labels that
1072 are no longer referenced. After then we do not run it any more, since
1073 (almost) no new labels should be created. */
1075 /* A map from basic block index to the leading label of that block. */
1076 static struct label_record
1078 /* The label. */
1079 tree label;
1081 /* True if the label is referenced from somewhere. */
1082 bool used;
1083 } *label_for_bb;
1085 /* Given LABEL return the first label in the same basic block. */
1087 static tree
1088 main_block_label (tree label)
1090 basic_block bb = label_to_block (label);
1091 tree main_label = label_for_bb[bb->index].label;
1093 /* label_to_block possibly inserted undefined label into the chain. */
1094 if (!main_label)
1096 label_for_bb[bb->index].label = label;
1097 main_label = label;
1100 label_for_bb[bb->index].used = true;
1101 return main_label;
1104 /* Clean up redundant labels within the exception tree. */
1106 static void
1107 cleanup_dead_labels_eh (void)
1109 eh_landing_pad lp;
1110 eh_region r;
1111 tree lab;
1112 int i;
1114 if (cfun->eh == NULL)
1115 return;
1117 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1118 if (lp && lp->post_landing_pad)
1120 lab = main_block_label (lp->post_landing_pad);
1121 if (lab != lp->post_landing_pad)
1123 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1124 EH_LANDING_PAD_NR (lab) = lp->index;
1128 FOR_ALL_EH_REGION (r)
1129 switch (r->type)
1131 case ERT_CLEANUP:
1132 case ERT_MUST_NOT_THROW:
1133 break;
1135 case ERT_TRY:
1137 eh_catch c;
1138 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1140 lab = c->label;
1141 if (lab)
1142 c->label = main_block_label (lab);
1145 break;
1147 case ERT_ALLOWED_EXCEPTIONS:
1148 lab = r->u.allowed.label;
1149 if (lab)
1150 r->u.allowed.label = main_block_label (lab);
1151 break;
1156 /* Cleanup redundant labels. This is a three-step process:
1157 1) Find the leading label for each block.
1158 2) Redirect all references to labels to the leading labels.
1159 3) Cleanup all useless labels. */
1161 void
1162 cleanup_dead_labels (void)
1164 basic_block bb;
1165 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1167 /* Find a suitable label for each block. We use the first user-defined
1168 label if there is one, or otherwise just the first label we see. */
1169 FOR_EACH_BB (bb)
1171 gimple_stmt_iterator i;
1173 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1175 tree label;
1176 gimple stmt = gsi_stmt (i);
1178 if (gimple_code (stmt) != GIMPLE_LABEL)
1179 break;
1181 label = gimple_label_label (stmt);
1183 /* If we have not yet seen a label for the current block,
1184 remember this one and see if there are more labels. */
1185 if (!label_for_bb[bb->index].label)
1187 label_for_bb[bb->index].label = label;
1188 continue;
1191 /* If we did see a label for the current block already, but it
1192 is an artificially created label, replace it if the current
1193 label is a user defined label. */
1194 if (!DECL_ARTIFICIAL (label)
1195 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1197 label_for_bb[bb->index].label = label;
1198 break;
1203 /* Now redirect all jumps/branches to the selected label.
1204 First do so for each block ending in a control statement. */
1205 FOR_EACH_BB (bb)
1207 gimple stmt = last_stmt (bb);
1208 tree label, new_label;
1210 if (!stmt)
1211 continue;
1213 switch (gimple_code (stmt))
1215 case GIMPLE_COND:
1216 label = gimple_cond_true_label (stmt);
1217 if (label)
1219 new_label = main_block_label (label);
1220 if (new_label != label)
1221 gimple_cond_set_true_label (stmt, new_label);
1224 label = gimple_cond_false_label (stmt);
1225 if (label)
1227 new_label = main_block_label (label);
1228 if (new_label != label)
1229 gimple_cond_set_false_label (stmt, new_label);
1231 break;
1233 case GIMPLE_SWITCH:
1235 size_t i, n = gimple_switch_num_labels (stmt);
1237 /* Replace all destination labels. */
1238 for (i = 0; i < n; ++i)
1240 tree case_label = gimple_switch_label (stmt, i);
1241 label = CASE_LABEL (case_label);
1242 new_label = main_block_label (label);
1243 if (new_label != label)
1244 CASE_LABEL (case_label) = new_label;
1246 break;
1249 case GIMPLE_ASM:
1251 int i, n = gimple_asm_nlabels (stmt);
1253 for (i = 0; i < n; ++i)
1255 tree cons = gimple_asm_label_op (stmt, i);
1256 tree label = main_block_label (TREE_VALUE (cons));
1257 TREE_VALUE (cons) = label;
1259 break;
1262 /* We have to handle gotos until they're removed, and we don't
1263 remove them until after we've created the CFG edges. */
1264 case GIMPLE_GOTO:
1265 if (!computed_goto_p (stmt))
1267 label = gimple_goto_dest (stmt);
1268 new_label = main_block_label (label);
1269 if (new_label != label)
1270 gimple_goto_set_dest (stmt, new_label);
1272 break;
1274 case GIMPLE_TRANSACTION:
1276 tree label = gimple_transaction_label (stmt);
1277 if (label)
1279 tree new_label = main_block_label (label);
1280 if (new_label != label)
1281 gimple_transaction_set_label (stmt, new_label);
1284 break;
1286 default:
1287 break;
1291 /* Do the same for the exception region tree labels. */
1292 cleanup_dead_labels_eh ();
1294 /* Finally, purge dead labels. All user-defined labels and labels that
1295 can be the target of non-local gotos and labels which have their
1296 address taken are preserved. */
1297 FOR_EACH_BB (bb)
1299 gimple_stmt_iterator i;
1300 tree label_for_this_bb = label_for_bb[bb->index].label;
1302 if (!label_for_this_bb)
1303 continue;
1305 /* If the main label of the block is unused, we may still remove it. */
1306 if (!label_for_bb[bb->index].used)
1307 label_for_this_bb = NULL;
1309 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1311 tree label;
1312 gimple stmt = gsi_stmt (i);
1314 if (gimple_code (stmt) != GIMPLE_LABEL)
1315 break;
1317 label = gimple_label_label (stmt);
1319 if (label == label_for_this_bb
1320 || !DECL_ARTIFICIAL (label)
1321 || DECL_NONLOCAL (label)
1322 || FORCED_LABEL (label))
1323 gsi_next (&i);
1324 else
1325 gsi_remove (&i, true);
1329 free (label_for_bb);
1332 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1333 the ones jumping to the same label.
1334 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1336 static void
1337 group_case_labels_stmt (gimple stmt)
1339 int old_size = gimple_switch_num_labels (stmt);
1340 int i, j, new_size = old_size;
1341 tree default_case = NULL_TREE;
1342 tree default_label = NULL_TREE;
1343 bool has_default;
1345 /* The default label is always the first case in a switch
1346 statement after gimplification if it was not optimized
1347 away */
1348 if (!CASE_LOW (gimple_switch_default_label (stmt))
1349 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1351 default_case = gimple_switch_default_label (stmt);
1352 default_label = CASE_LABEL (default_case);
1353 has_default = true;
1355 else
1356 has_default = false;
1358 /* Look for possible opportunities to merge cases. */
1359 if (has_default)
1360 i = 1;
1361 else
1362 i = 0;
1363 while (i < old_size)
1365 tree base_case, base_label, base_high;
1366 base_case = gimple_switch_label (stmt, i);
1368 gcc_assert (base_case);
1369 base_label = CASE_LABEL (base_case);
1371 /* Discard cases that have the same destination as the
1372 default case. */
1373 if (base_label == default_label)
1375 gimple_switch_set_label (stmt, i, NULL_TREE);
1376 i++;
1377 new_size--;
1378 continue;
1381 base_high = CASE_HIGH (base_case)
1382 ? CASE_HIGH (base_case)
1383 : CASE_LOW (base_case);
1384 i++;
1386 /* Try to merge case labels. Break out when we reach the end
1387 of the label vector or when we cannot merge the next case
1388 label with the current one. */
1389 while (i < old_size)
1391 tree merge_case = gimple_switch_label (stmt, i);
1392 tree merge_label = CASE_LABEL (merge_case);
1393 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1394 double_int_one);
1396 /* Merge the cases if they jump to the same place,
1397 and their ranges are consecutive. */
1398 if (merge_label == base_label
1399 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1400 bhp1))
1402 base_high = CASE_HIGH (merge_case) ?
1403 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1404 CASE_HIGH (base_case) = base_high;
1405 gimple_switch_set_label (stmt, i, NULL_TREE);
1406 new_size--;
1407 i++;
1409 else
1410 break;
1414 /* Compress the case labels in the label vector, and adjust the
1415 length of the vector. */
1416 for (i = 0, j = 0; i < new_size; i++)
1418 while (! gimple_switch_label (stmt, j))
1419 j++;
1420 gimple_switch_set_label (stmt, i,
1421 gimple_switch_label (stmt, j++));
1424 gcc_assert (new_size <= old_size);
1425 gimple_switch_set_num_labels (stmt, new_size);
1428 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1429 and scan the sorted vector of cases. Combine the ones jumping to the
1430 same label. */
1432 void
1433 group_case_labels (void)
1435 basic_block bb;
1437 FOR_EACH_BB (bb)
1439 gimple stmt = last_stmt (bb);
1440 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1441 group_case_labels_stmt (stmt);
1445 /* Checks whether we can merge block B into block A. */
1447 static bool
1448 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1450 gimple stmt;
1451 gimple_stmt_iterator gsi;
1452 gimple_seq phis;
1454 if (!single_succ_p (a))
1455 return false;
1457 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1458 return false;
1460 if (single_succ (a) != b)
1461 return false;
1463 if (!single_pred_p (b))
1464 return false;
1466 if (b == EXIT_BLOCK_PTR)
1467 return false;
1469 /* If A ends by a statement causing exceptions or something similar, we
1470 cannot merge the blocks. */
1471 stmt = last_stmt (a);
1472 if (stmt && stmt_ends_bb_p (stmt))
1473 return false;
1475 /* Do not allow a block with only a non-local label to be merged. */
1476 if (stmt
1477 && gimple_code (stmt) == GIMPLE_LABEL
1478 && DECL_NONLOCAL (gimple_label_label (stmt)))
1479 return false;
1481 /* Examine the labels at the beginning of B. */
1482 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1484 tree lab;
1485 stmt = gsi_stmt (gsi);
1486 if (gimple_code (stmt) != GIMPLE_LABEL)
1487 break;
1488 lab = gimple_label_label (stmt);
1490 /* Do not remove user forced labels or for -O0 any user labels. */
1491 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1492 return false;
1495 /* Protect the loop latches. */
1496 if (current_loops && b->loop_father->latch == b)
1497 return false;
1499 /* It must be possible to eliminate all phi nodes in B. If ssa form
1500 is not up-to-date and a name-mapping is registered, we cannot eliminate
1501 any phis. Symbols marked for renaming are never a problem though. */
1502 phis = phi_nodes (b);
1503 if (!gimple_seq_empty_p (phis)
1504 && name_mappings_registered_p ())
1505 return false;
1507 /* When not optimizing, don't merge if we'd lose goto_locus. */
1508 if (!optimize
1509 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1511 location_t goto_locus = single_succ_edge (a)->goto_locus;
1512 gimple_stmt_iterator prev, next;
1513 prev = gsi_last_nondebug_bb (a);
1514 next = gsi_after_labels (b);
1515 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1516 gsi_next_nondebug (&next);
1517 if ((gsi_end_p (prev)
1518 || gimple_location (gsi_stmt (prev)) != goto_locus)
1519 && (gsi_end_p (next)
1520 || gimple_location (gsi_stmt (next)) != goto_locus))
1521 return false;
1524 return true;
1527 /* Return true if the var whose chain of uses starts at PTR has no
1528 nondebug uses. */
1529 bool
1530 has_zero_uses_1 (const ssa_use_operand_t *head)
1532 const ssa_use_operand_t *ptr;
1534 for (ptr = head->next; ptr != head; ptr = ptr->next)
1535 if (!is_gimple_debug (USE_STMT (ptr)))
1536 return false;
1538 return true;
1541 /* Return true if the var whose chain of uses starts at PTR has a
1542 single nondebug use. Set USE_P and STMT to that single nondebug
1543 use, if so, or to NULL otherwise. */
1544 bool
1545 single_imm_use_1 (const ssa_use_operand_t *head,
1546 use_operand_p *use_p, gimple *stmt)
1548 ssa_use_operand_t *ptr, *single_use = 0;
1550 for (ptr = head->next; ptr != head; ptr = ptr->next)
1551 if (!is_gimple_debug (USE_STMT (ptr)))
1553 if (single_use)
1555 single_use = NULL;
1556 break;
1558 single_use = ptr;
1561 if (use_p)
1562 *use_p = single_use;
1564 if (stmt)
1565 *stmt = single_use ? single_use->loc.stmt : NULL;
1567 return !!single_use;
1570 /* Replaces all uses of NAME by VAL. */
1572 void
1573 replace_uses_by (tree name, tree val)
1575 imm_use_iterator imm_iter;
1576 use_operand_p use;
1577 gimple stmt;
1578 edge e;
1580 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1582 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1584 replace_exp (use, val);
1586 if (gimple_code (stmt) == GIMPLE_PHI)
1588 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1589 if (e->flags & EDGE_ABNORMAL)
1591 /* This can only occur for virtual operands, since
1592 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1593 would prevent replacement. */
1594 gcc_checking_assert (!is_gimple_reg (name));
1595 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1600 if (gimple_code (stmt) != GIMPLE_PHI)
1602 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1603 gimple orig_stmt = stmt;
1604 size_t i;
1606 /* Mark the block if we changed the last stmt in it. */
1607 if (cfgcleanup_altered_bbs
1608 && stmt_ends_bb_p (stmt))
1609 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1611 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1612 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1613 only change sth from non-invariant to invariant, and only
1614 when propagating constants. */
1615 if (is_gimple_min_invariant (val))
1616 for (i = 0; i < gimple_num_ops (stmt); i++)
1618 tree op = gimple_op (stmt, i);
1619 /* Operands may be empty here. For example, the labels
1620 of a GIMPLE_COND are nulled out following the creation
1621 of the corresponding CFG edges. */
1622 if (op && TREE_CODE (op) == ADDR_EXPR)
1623 recompute_tree_invariant_for_addr_expr (op);
1626 if (fold_stmt (&gsi))
1627 stmt = gsi_stmt (gsi);
1629 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1630 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1632 update_stmt (stmt);
1636 gcc_checking_assert (has_zero_uses (name));
1638 /* Also update the trees stored in loop structures. */
1639 if (current_loops)
1641 struct loop *loop;
1642 loop_iterator li;
1644 FOR_EACH_LOOP (li, loop, 0)
1646 substitute_in_loop_info (loop, name, val);
1651 /* Merge block B into block A. */
1653 static void
1654 gimple_merge_blocks (basic_block a, basic_block b)
1656 gimple_stmt_iterator last, gsi, psi;
1657 gimple_seq phis = phi_nodes (b);
1659 if (dump_file)
1660 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1662 /* Remove all single-valued PHI nodes from block B of the form
1663 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1664 gsi = gsi_last_bb (a);
1665 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1667 gimple phi = gsi_stmt (psi);
1668 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1669 gimple copy;
1670 bool may_replace_uses = !is_gimple_reg (def)
1671 || may_propagate_copy (def, use);
1673 /* In case we maintain loop closed ssa form, do not propagate arguments
1674 of loop exit phi nodes. */
1675 if (current_loops
1676 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1677 && is_gimple_reg (def)
1678 && TREE_CODE (use) == SSA_NAME
1679 && a->loop_father != b->loop_father)
1680 may_replace_uses = false;
1682 if (!may_replace_uses)
1684 gcc_assert (is_gimple_reg (def));
1686 /* Note that just emitting the copies is fine -- there is no problem
1687 with ordering of phi nodes. This is because A is the single
1688 predecessor of B, therefore results of the phi nodes cannot
1689 appear as arguments of the phi nodes. */
1690 copy = gimple_build_assign (def, use);
1691 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1692 remove_phi_node (&psi, false);
1694 else
1696 /* If we deal with a PHI for virtual operands, we can simply
1697 propagate these without fussing with folding or updating
1698 the stmt. */
1699 if (!is_gimple_reg (def))
1701 imm_use_iterator iter;
1702 use_operand_p use_p;
1703 gimple stmt;
1705 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1706 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1707 SET_USE (use_p, use);
1709 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1710 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1712 else
1713 replace_uses_by (def, use);
1715 remove_phi_node (&psi, true);
1719 /* Ensure that B follows A. */
1720 move_block_after (b, a);
1722 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1723 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1725 /* Remove labels from B and set gimple_bb to A for other statements. */
1726 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1728 gimple stmt = gsi_stmt (gsi);
1729 if (gimple_code (stmt) == GIMPLE_LABEL)
1731 tree label = gimple_label_label (stmt);
1732 int lp_nr;
1734 gsi_remove (&gsi, false);
1736 /* Now that we can thread computed gotos, we might have
1737 a situation where we have a forced label in block B
1738 However, the label at the start of block B might still be
1739 used in other ways (think about the runtime checking for
1740 Fortran assigned gotos). So we can not just delete the
1741 label. Instead we move the label to the start of block A. */
1742 if (FORCED_LABEL (label))
1744 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1745 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1747 /* Other user labels keep around in a form of a debug stmt. */
1748 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1750 gimple dbg = gimple_build_debug_bind (label,
1751 integer_zero_node,
1752 stmt);
1753 gimple_debug_bind_reset_value (dbg);
1754 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1757 lp_nr = EH_LANDING_PAD_NR (label);
1758 if (lp_nr)
1760 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1761 lp->post_landing_pad = NULL;
1764 else
1766 gimple_set_bb (stmt, a);
1767 gsi_next (&gsi);
1771 /* Merge the sequences. */
1772 last = gsi_last_bb (a);
1773 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1774 set_bb_seq (b, NULL);
1776 if (cfgcleanup_altered_bbs)
1777 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1781 /* Return the one of two successors of BB that is not reachable by a
1782 complex edge, if there is one. Else, return BB. We use
1783 this in optimizations that use post-dominators for their heuristics,
1784 to catch the cases in C++ where function calls are involved. */
1786 basic_block
1787 single_noncomplex_succ (basic_block bb)
1789 edge e0, e1;
1790 if (EDGE_COUNT (bb->succs) != 2)
1791 return bb;
1793 e0 = EDGE_SUCC (bb, 0);
1794 e1 = EDGE_SUCC (bb, 1);
1795 if (e0->flags & EDGE_COMPLEX)
1796 return e1->dest;
1797 if (e1->flags & EDGE_COMPLEX)
1798 return e0->dest;
1800 return bb;
1803 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1805 void
1806 notice_special_calls (gimple call)
1808 int flags = gimple_call_flags (call);
1810 if (flags & ECF_MAY_BE_ALLOCA)
1811 cfun->calls_alloca = true;
1812 if (flags & ECF_RETURNS_TWICE)
1813 cfun->calls_setjmp = true;
1817 /* Clear flags set by notice_special_calls. Used by dead code removal
1818 to update the flags. */
1820 void
1821 clear_special_calls (void)
1823 cfun->calls_alloca = false;
1824 cfun->calls_setjmp = false;
1827 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1829 static void
1830 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1832 /* Since this block is no longer reachable, we can just delete all
1833 of its PHI nodes. */
1834 remove_phi_nodes (bb);
1836 /* Remove edges to BB's successors. */
1837 while (EDGE_COUNT (bb->succs) > 0)
1838 remove_edge (EDGE_SUCC (bb, 0));
1842 /* Remove statements of basic block BB. */
1844 static void
1845 remove_bb (basic_block bb)
1847 gimple_stmt_iterator i;
1849 if (dump_file)
1851 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1852 if (dump_flags & TDF_DETAILS)
1854 dump_bb (bb, dump_file, 0);
1855 fprintf (dump_file, "\n");
1859 if (current_loops)
1861 struct loop *loop = bb->loop_father;
1863 /* If a loop gets removed, clean up the information associated
1864 with it. */
1865 if (loop->latch == bb
1866 || loop->header == bb)
1867 free_numbers_of_iterations_estimates_loop (loop);
1870 /* Remove all the instructions in the block. */
1871 if (bb_seq (bb) != NULL)
1873 /* Walk backwards so as to get a chance to substitute all
1874 released DEFs into debug stmts. See
1875 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1876 details. */
1877 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1879 gimple stmt = gsi_stmt (i);
1880 if (gimple_code (stmt) == GIMPLE_LABEL
1881 && (FORCED_LABEL (gimple_label_label (stmt))
1882 || DECL_NONLOCAL (gimple_label_label (stmt))))
1884 basic_block new_bb;
1885 gimple_stmt_iterator new_gsi;
1887 /* A non-reachable non-local label may still be referenced.
1888 But it no longer needs to carry the extra semantics of
1889 non-locality. */
1890 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1892 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1893 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1896 new_bb = bb->prev_bb;
1897 new_gsi = gsi_start_bb (new_bb);
1898 gsi_remove (&i, false);
1899 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1901 else
1903 /* Release SSA definitions if we are in SSA. Note that we
1904 may be called when not in SSA. For example,
1905 final_cleanup calls this function via
1906 cleanup_tree_cfg. */
1907 if (gimple_in_ssa_p (cfun))
1908 release_defs (stmt);
1910 gsi_remove (&i, true);
1913 if (gsi_end_p (i))
1914 i = gsi_last_bb (bb);
1915 else
1916 gsi_prev (&i);
1920 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1921 bb->il.gimple = NULL;
1925 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1926 predicate VAL, return the edge that will be taken out of the block.
1927 If VAL does not match a unique edge, NULL is returned. */
1929 edge
1930 find_taken_edge (basic_block bb, tree val)
1932 gimple stmt;
1934 stmt = last_stmt (bb);
1936 gcc_assert (stmt);
1937 gcc_assert (is_ctrl_stmt (stmt));
1939 if (val == NULL)
1940 return NULL;
1942 if (!is_gimple_min_invariant (val))
1943 return NULL;
1945 if (gimple_code (stmt) == GIMPLE_COND)
1946 return find_taken_edge_cond_expr (bb, val);
1948 if (gimple_code (stmt) == GIMPLE_SWITCH)
1949 return find_taken_edge_switch_expr (bb, val);
1951 if (computed_goto_p (stmt))
1953 /* Only optimize if the argument is a label, if the argument is
1954 not a label then we can not construct a proper CFG.
1956 It may be the case that we only need to allow the LABEL_REF to
1957 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1958 appear inside a LABEL_EXPR just to be safe. */
1959 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1960 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1961 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1962 return NULL;
1965 gcc_unreachable ();
1968 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1969 statement, determine which of the outgoing edges will be taken out of the
1970 block. Return NULL if either edge may be taken. */
1972 static edge
1973 find_taken_edge_computed_goto (basic_block bb, tree val)
1975 basic_block dest;
1976 edge e = NULL;
1978 dest = label_to_block (val);
1979 if (dest)
1981 e = find_edge (bb, dest);
1982 gcc_assert (e != NULL);
1985 return e;
1988 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1989 statement, determine which of the two edges will be taken out of the
1990 block. Return NULL if either edge may be taken. */
1992 static edge
1993 find_taken_edge_cond_expr (basic_block bb, tree val)
1995 edge true_edge, false_edge;
1997 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1999 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2000 return (integer_zerop (val) ? false_edge : true_edge);
2003 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2004 statement, determine which edge will be taken out of the block. Return
2005 NULL if any edge may be taken. */
2007 static edge
2008 find_taken_edge_switch_expr (basic_block bb, tree val)
2010 basic_block dest_bb;
2011 edge e;
2012 gimple switch_stmt;
2013 tree taken_case;
2015 switch_stmt = last_stmt (bb);
2016 taken_case = find_case_label_for_value (switch_stmt, val);
2017 dest_bb = label_to_block (CASE_LABEL (taken_case));
2019 e = find_edge (bb, dest_bb);
2020 gcc_assert (e);
2021 return e;
2025 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2026 We can make optimal use here of the fact that the case labels are
2027 sorted: We can do a binary search for a case matching VAL. */
2029 static tree
2030 find_case_label_for_value (gimple switch_stmt, tree val)
2032 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2033 tree default_case = gimple_switch_default_label (switch_stmt);
2035 for (low = 0, high = n; high - low > 1; )
2037 size_t i = (high + low) / 2;
2038 tree t = gimple_switch_label (switch_stmt, i);
2039 int cmp;
2041 /* Cache the result of comparing CASE_LOW and val. */
2042 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2044 if (cmp > 0)
2045 high = i;
2046 else
2047 low = i;
2049 if (CASE_HIGH (t) == NULL)
2051 /* A singe-valued case label. */
2052 if (cmp == 0)
2053 return t;
2055 else
2057 /* A case range. We can only handle integer ranges. */
2058 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2059 return t;
2063 return default_case;
2067 /* Dump a basic block on stderr. */
2069 void
2070 gimple_debug_bb (basic_block bb)
2072 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2076 /* Dump basic block with index N on stderr. */
2078 basic_block
2079 gimple_debug_bb_n (int n)
2081 gimple_debug_bb (BASIC_BLOCK (n));
2082 return BASIC_BLOCK (n);
2086 /* Dump the CFG on stderr.
2088 FLAGS are the same used by the tree dumping functions
2089 (see TDF_* in tree-pass.h). */
2091 void
2092 gimple_debug_cfg (int flags)
2094 gimple_dump_cfg (stderr, flags);
2098 /* Dump the program showing basic block boundaries on the given FILE.
2100 FLAGS are the same used by the tree dumping functions (see TDF_* in
2101 tree.h). */
2103 void
2104 gimple_dump_cfg (FILE *file, int flags)
2106 if (flags & TDF_DETAILS)
2108 dump_function_header (file, current_function_decl, flags);
2109 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2110 n_basic_blocks, n_edges, last_basic_block);
2112 brief_dump_cfg (file);
2113 fprintf (file, "\n");
2116 if (flags & TDF_STATS)
2117 dump_cfg_stats (file);
2119 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2123 /* Dump CFG statistics on FILE. */
2125 void
2126 dump_cfg_stats (FILE *file)
2128 static long max_num_merged_labels = 0;
2129 unsigned long size, total = 0;
2130 long num_edges;
2131 basic_block bb;
2132 const char * const fmt_str = "%-30s%-13s%12s\n";
2133 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2134 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2135 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2136 const char *funcname
2137 = lang_hooks.decl_printable_name (current_function_decl, 2);
2140 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2142 fprintf (file, "---------------------------------------------------------\n");
2143 fprintf (file, fmt_str, "", " Number of ", "Memory");
2144 fprintf (file, fmt_str, "", " instances ", "used ");
2145 fprintf (file, "---------------------------------------------------------\n");
2147 size = n_basic_blocks * sizeof (struct basic_block_def);
2148 total += size;
2149 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2150 SCALE (size), LABEL (size));
2152 num_edges = 0;
2153 FOR_EACH_BB (bb)
2154 num_edges += EDGE_COUNT (bb->succs);
2155 size = num_edges * sizeof (struct edge_def);
2156 total += size;
2157 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2159 fprintf (file, "---------------------------------------------------------\n");
2160 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2161 LABEL (total));
2162 fprintf (file, "---------------------------------------------------------\n");
2163 fprintf (file, "\n");
2165 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2166 max_num_merged_labels = cfg_stats.num_merged_labels;
2168 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2169 cfg_stats.num_merged_labels, max_num_merged_labels);
2171 fprintf (file, "\n");
2175 /* Dump CFG statistics on stderr. Keep extern so that it's always
2176 linked in the final executable. */
2178 DEBUG_FUNCTION void
2179 debug_cfg_stats (void)
2181 dump_cfg_stats (stderr);
2185 /* Dump the flowgraph to a .vcg FILE. */
2187 static void
2188 gimple_cfg2vcg (FILE *file)
2190 edge e;
2191 edge_iterator ei;
2192 basic_block bb;
2193 const char *funcname
2194 = lang_hooks.decl_printable_name (current_function_decl, 2);
2196 /* Write the file header. */
2197 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2198 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2199 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2201 /* Write blocks and edges. */
2202 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2204 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2205 e->dest->index);
2207 if (e->flags & EDGE_FAKE)
2208 fprintf (file, " linestyle: dotted priority: 10");
2209 else
2210 fprintf (file, " linestyle: solid priority: 100");
2212 fprintf (file, " }\n");
2214 fputc ('\n', file);
2216 FOR_EACH_BB (bb)
2218 enum gimple_code head_code, end_code;
2219 const char *head_name, *end_name;
2220 int head_line = 0;
2221 int end_line = 0;
2222 gimple first = first_stmt (bb);
2223 gimple last = last_stmt (bb);
2225 if (first)
2227 head_code = gimple_code (first);
2228 head_name = gimple_code_name[head_code];
2229 head_line = get_lineno (first);
2231 else
2232 head_name = "no-statement";
2234 if (last)
2236 end_code = gimple_code (last);
2237 end_name = gimple_code_name[end_code];
2238 end_line = get_lineno (last);
2240 else
2241 end_name = "no-statement";
2243 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2244 bb->index, bb->index, head_name, head_line, end_name,
2245 end_line);
2247 FOR_EACH_EDGE (e, ei, bb->succs)
2249 if (e->dest == EXIT_BLOCK_PTR)
2250 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2251 else
2252 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2254 if (e->flags & EDGE_FAKE)
2255 fprintf (file, " priority: 10 linestyle: dotted");
2256 else
2257 fprintf (file, " priority: 100 linestyle: solid");
2259 fprintf (file, " }\n");
2262 if (bb->next_bb != EXIT_BLOCK_PTR)
2263 fputc ('\n', file);
2266 fputs ("}\n\n", file);
2271 /*---------------------------------------------------------------------------
2272 Miscellaneous helpers
2273 ---------------------------------------------------------------------------*/
2275 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2276 flow. Transfers of control flow associated with EH are excluded. */
2278 static bool
2279 call_can_make_abnormal_goto (gimple t)
2281 /* If the function has no non-local labels, then a call cannot make an
2282 abnormal transfer of control. */
2283 if (!cfun->has_nonlocal_label)
2284 return false;
2286 /* Likewise if the call has no side effects. */
2287 if (!gimple_has_side_effects (t))
2288 return false;
2290 /* Likewise if the called function is leaf. */
2291 if (gimple_call_flags (t) & ECF_LEAF)
2292 return false;
2294 return true;
2298 /* Return true if T can make an abnormal transfer of control flow.
2299 Transfers of control flow associated with EH are excluded. */
2301 bool
2302 stmt_can_make_abnormal_goto (gimple t)
2304 if (computed_goto_p (t))
2305 return true;
2306 if (is_gimple_call (t))
2307 return call_can_make_abnormal_goto (t);
2308 return false;
2312 /* Return true if T represents a stmt that always transfers control. */
2314 bool
2315 is_ctrl_stmt (gimple t)
2317 switch (gimple_code (t))
2319 case GIMPLE_COND:
2320 case GIMPLE_SWITCH:
2321 case GIMPLE_GOTO:
2322 case GIMPLE_RETURN:
2323 case GIMPLE_RESX:
2324 return true;
2325 default:
2326 return false;
2331 /* Return true if T is a statement that may alter the flow of control
2332 (e.g., a call to a non-returning function). */
2334 bool
2335 is_ctrl_altering_stmt (gimple t)
2337 gcc_assert (t);
2339 switch (gimple_code (t))
2341 case GIMPLE_CALL:
2343 int flags = gimple_call_flags (t);
2345 /* A call alters control flow if it can make an abnormal goto. */
2346 if (call_can_make_abnormal_goto (t))
2347 return true;
2349 /* A call also alters control flow if it does not return. */
2350 if (flags & ECF_NORETURN)
2351 return true;
2353 /* TM ending statements have backedges out of the transaction.
2354 Return true so we split the basic block containing them.
2355 Note that the TM_BUILTIN test is merely an optimization. */
2356 if ((flags & ECF_TM_BUILTIN)
2357 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2358 return true;
2360 /* BUILT_IN_RETURN call is same as return statement. */
2361 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2362 return true;
2364 break;
2366 case GIMPLE_EH_DISPATCH:
2367 /* EH_DISPATCH branches to the individual catch handlers at
2368 this level of a try or allowed-exceptions region. It can
2369 fallthru to the next statement as well. */
2370 return true;
2372 case GIMPLE_ASM:
2373 if (gimple_asm_nlabels (t) > 0)
2374 return true;
2375 break;
2377 CASE_GIMPLE_OMP:
2378 /* OpenMP directives alter control flow. */
2379 return true;
2381 case GIMPLE_TRANSACTION:
2382 /* A transaction start alters control flow. */
2383 return true;
2385 default:
2386 break;
2389 /* If a statement can throw, it alters control flow. */
2390 return stmt_can_throw_internal (t);
2394 /* Return true if T is a simple local goto. */
2396 bool
2397 simple_goto_p (gimple t)
2399 return (gimple_code (t) == GIMPLE_GOTO
2400 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2404 /* Return true if STMT should start a new basic block. PREV_STMT is
2405 the statement preceding STMT. It is used when STMT is a label or a
2406 case label. Labels should only start a new basic block if their
2407 previous statement wasn't a label. Otherwise, sequence of labels
2408 would generate unnecessary basic blocks that only contain a single
2409 label. */
2411 static inline bool
2412 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2414 if (stmt == NULL)
2415 return false;
2417 /* Labels start a new basic block only if the preceding statement
2418 wasn't a label of the same type. This prevents the creation of
2419 consecutive blocks that have nothing but a single label. */
2420 if (gimple_code (stmt) == GIMPLE_LABEL)
2422 /* Nonlocal and computed GOTO targets always start a new block. */
2423 if (DECL_NONLOCAL (gimple_label_label (stmt))
2424 || FORCED_LABEL (gimple_label_label (stmt)))
2425 return true;
2427 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2429 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2430 return true;
2432 cfg_stats.num_merged_labels++;
2433 return false;
2435 else
2436 return true;
2439 return false;
2443 /* Return true if T should end a basic block. */
2445 bool
2446 stmt_ends_bb_p (gimple t)
2448 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2451 /* Remove block annotations and other data structures. */
2453 void
2454 delete_tree_cfg_annotations (void)
2456 label_to_block_map = NULL;
2460 /* Return the first statement in basic block BB. */
2462 gimple
2463 first_stmt (basic_block bb)
2465 gimple_stmt_iterator i = gsi_start_bb (bb);
2466 gimple stmt = NULL;
2468 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2470 gsi_next (&i);
2471 stmt = NULL;
2473 return stmt;
2476 /* Return the first non-label statement in basic block BB. */
2478 static gimple
2479 first_non_label_stmt (basic_block bb)
2481 gimple_stmt_iterator i = gsi_start_bb (bb);
2482 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2483 gsi_next (&i);
2484 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2487 /* Return the last statement in basic block BB. */
2489 gimple
2490 last_stmt (basic_block bb)
2492 gimple_stmt_iterator i = gsi_last_bb (bb);
2493 gimple stmt = NULL;
2495 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2497 gsi_prev (&i);
2498 stmt = NULL;
2500 return stmt;
2503 /* Return the last statement of an otherwise empty block. Return NULL
2504 if the block is totally empty, or if it contains more than one
2505 statement. */
2507 gimple
2508 last_and_only_stmt (basic_block bb)
2510 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2511 gimple last, prev;
2513 if (gsi_end_p (i))
2514 return NULL;
2516 last = gsi_stmt (i);
2517 gsi_prev_nondebug (&i);
2518 if (gsi_end_p (i))
2519 return last;
2521 /* Empty statements should no longer appear in the instruction stream.
2522 Everything that might have appeared before should be deleted by
2523 remove_useless_stmts, and the optimizers should just gsi_remove
2524 instead of smashing with build_empty_stmt.
2526 Thus the only thing that should appear here in a block containing
2527 one executable statement is a label. */
2528 prev = gsi_stmt (i);
2529 if (gimple_code (prev) == GIMPLE_LABEL)
2530 return last;
2531 else
2532 return NULL;
2535 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2537 static void
2538 reinstall_phi_args (edge new_edge, edge old_edge)
2540 edge_var_map_vector v;
2541 edge_var_map *vm;
2542 int i;
2543 gimple_stmt_iterator phis;
2545 v = redirect_edge_var_map_vector (old_edge);
2546 if (!v)
2547 return;
2549 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2550 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2551 i++, gsi_next (&phis))
2553 gimple phi = gsi_stmt (phis);
2554 tree result = redirect_edge_var_map_result (vm);
2555 tree arg = redirect_edge_var_map_def (vm);
2557 gcc_assert (result == gimple_phi_result (phi));
2559 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2562 redirect_edge_var_map_clear (old_edge);
2565 /* Returns the basic block after which the new basic block created
2566 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2567 near its "logical" location. This is of most help to humans looking
2568 at debugging dumps. */
2570 static basic_block
2571 split_edge_bb_loc (edge edge_in)
2573 basic_block dest = edge_in->dest;
2574 basic_block dest_prev = dest->prev_bb;
2576 if (dest_prev)
2578 edge e = find_edge (dest_prev, dest);
2579 if (e && !(e->flags & EDGE_COMPLEX))
2580 return edge_in->src;
2582 return dest_prev;
2585 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2586 Abort on abnormal edges. */
2588 static basic_block
2589 gimple_split_edge (edge edge_in)
2591 basic_block new_bb, after_bb, dest;
2592 edge new_edge, e;
2594 /* Abnormal edges cannot be split. */
2595 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2597 dest = edge_in->dest;
2599 after_bb = split_edge_bb_loc (edge_in);
2601 new_bb = create_empty_bb (after_bb);
2602 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2603 new_bb->count = edge_in->count;
2604 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2605 new_edge->probability = REG_BR_PROB_BASE;
2606 new_edge->count = edge_in->count;
2608 e = redirect_edge_and_branch (edge_in, new_bb);
2609 gcc_assert (e == edge_in);
2610 reinstall_phi_args (new_edge, e);
2612 return new_bb;
2616 /* Verify properties of the address expression T with base object BASE. */
2618 static tree
2619 verify_address (tree t, tree base)
2621 bool old_constant;
2622 bool old_side_effects;
2623 bool new_constant;
2624 bool new_side_effects;
2626 old_constant = TREE_CONSTANT (t);
2627 old_side_effects = TREE_SIDE_EFFECTS (t);
2629 recompute_tree_invariant_for_addr_expr (t);
2630 new_side_effects = TREE_SIDE_EFFECTS (t);
2631 new_constant = TREE_CONSTANT (t);
2633 if (old_constant != new_constant)
2635 error ("constant not recomputed when ADDR_EXPR changed");
2636 return t;
2638 if (old_side_effects != new_side_effects)
2640 error ("side effects not recomputed when ADDR_EXPR changed");
2641 return t;
2644 if (!(TREE_CODE (base) == VAR_DECL
2645 || TREE_CODE (base) == PARM_DECL
2646 || TREE_CODE (base) == RESULT_DECL))
2647 return NULL_TREE;
2649 if (DECL_GIMPLE_REG_P (base))
2651 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2652 return base;
2655 return NULL_TREE;
2658 /* Callback for walk_tree, check that all elements with address taken are
2659 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2660 inside a PHI node. */
2662 static tree
2663 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2665 tree t = *tp, x;
2667 if (TYPE_P (t))
2668 *walk_subtrees = 0;
2670 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2671 #define CHECK_OP(N, MSG) \
2672 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2673 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2675 switch (TREE_CODE (t))
2677 case SSA_NAME:
2678 if (SSA_NAME_IN_FREE_LIST (t))
2680 error ("SSA name in freelist but still referenced");
2681 return *tp;
2683 break;
2685 case INDIRECT_REF:
2686 error ("INDIRECT_REF in gimple IL");
2687 return t;
2689 case MEM_REF:
2690 x = TREE_OPERAND (t, 0);
2691 if (!POINTER_TYPE_P (TREE_TYPE (x))
2692 || !is_gimple_mem_ref_addr (x))
2694 error ("invalid first operand of MEM_REF");
2695 return x;
2697 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2698 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2700 error ("invalid offset operand of MEM_REF");
2701 return TREE_OPERAND (t, 1);
2703 if (TREE_CODE (x) == ADDR_EXPR
2704 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2705 return x;
2706 *walk_subtrees = 0;
2707 break;
2709 case ASSERT_EXPR:
2710 x = fold (ASSERT_EXPR_COND (t));
2711 if (x == boolean_false_node)
2713 error ("ASSERT_EXPR with an always-false condition");
2714 return *tp;
2716 break;
2718 case MODIFY_EXPR:
2719 error ("MODIFY_EXPR not expected while having tuples");
2720 return *tp;
2722 case ADDR_EXPR:
2724 tree tem;
2726 gcc_assert (is_gimple_address (t));
2728 /* Skip any references (they will be checked when we recurse down the
2729 tree) and ensure that any variable used as a prefix is marked
2730 addressable. */
2731 for (x = TREE_OPERAND (t, 0);
2732 handled_component_p (x);
2733 x = TREE_OPERAND (x, 0))
2736 if ((tem = verify_address (t, x)))
2737 return tem;
2739 if (!(TREE_CODE (x) == VAR_DECL
2740 || TREE_CODE (x) == PARM_DECL
2741 || TREE_CODE (x) == RESULT_DECL))
2742 return NULL;
2744 if (!TREE_ADDRESSABLE (x))
2746 error ("address taken, but ADDRESSABLE bit not set");
2747 return x;
2750 break;
2753 case COND_EXPR:
2754 x = COND_EXPR_COND (t);
2755 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2757 error ("non-integral used in condition");
2758 return x;
2760 if (!is_gimple_condexpr (x))
2762 error ("invalid conditional operand");
2763 return x;
2765 break;
2767 case NON_LVALUE_EXPR:
2768 case TRUTH_NOT_EXPR:
2769 gcc_unreachable ();
2771 CASE_CONVERT:
2772 case FIX_TRUNC_EXPR:
2773 case FLOAT_EXPR:
2774 case NEGATE_EXPR:
2775 case ABS_EXPR:
2776 case BIT_NOT_EXPR:
2777 CHECK_OP (0, "invalid operand to unary operator");
2778 break;
2780 case REALPART_EXPR:
2781 case IMAGPART_EXPR:
2782 case COMPONENT_REF:
2783 case ARRAY_REF:
2784 case ARRAY_RANGE_REF:
2785 case BIT_FIELD_REF:
2786 case VIEW_CONVERT_EXPR:
2787 /* We have a nest of references. Verify that each of the operands
2788 that determine where to reference is either a constant or a variable,
2789 verify that the base is valid, and then show we've already checked
2790 the subtrees. */
2791 while (handled_component_p (t))
2793 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2794 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2795 else if (TREE_CODE (t) == ARRAY_REF
2796 || TREE_CODE (t) == ARRAY_RANGE_REF)
2798 CHECK_OP (1, "invalid array index");
2799 if (TREE_OPERAND (t, 2))
2800 CHECK_OP (2, "invalid array lower bound");
2801 if (TREE_OPERAND (t, 3))
2802 CHECK_OP (3, "invalid array stride");
2804 else if (TREE_CODE (t) == BIT_FIELD_REF)
2806 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2807 || !host_integerp (TREE_OPERAND (t, 2), 1))
2809 error ("invalid position or size operand to BIT_FIELD_REF");
2810 return t;
2812 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2813 && (TYPE_PRECISION (TREE_TYPE (t))
2814 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2816 error ("integral result type precision does not match "
2817 "field size of BIT_FIELD_REF");
2818 return t;
2820 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2821 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2822 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2824 error ("mode precision of non-integral result does not "
2825 "match field size of BIT_FIELD_REF");
2826 return t;
2830 t = TREE_OPERAND (t, 0);
2833 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2835 error ("invalid reference prefix");
2836 return t;
2838 *walk_subtrees = 0;
2839 break;
2840 case PLUS_EXPR:
2841 case MINUS_EXPR:
2842 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2843 POINTER_PLUS_EXPR. */
2844 if (POINTER_TYPE_P (TREE_TYPE (t)))
2846 error ("invalid operand to plus/minus, type is a pointer");
2847 return t;
2849 CHECK_OP (0, "invalid operand to binary operator");
2850 CHECK_OP (1, "invalid operand to binary operator");
2851 break;
2853 case POINTER_PLUS_EXPR:
2854 /* Check to make sure the first operand is a pointer or reference type. */
2855 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2857 error ("invalid operand to pointer plus, first operand is not a pointer");
2858 return t;
2860 /* Check to make sure the second operand is a ptrofftype. */
2861 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2863 error ("invalid operand to pointer plus, second operand is not an "
2864 "integer type of appropriate width");
2865 return t;
2867 /* FALLTHROUGH */
2868 case LT_EXPR:
2869 case LE_EXPR:
2870 case GT_EXPR:
2871 case GE_EXPR:
2872 case EQ_EXPR:
2873 case NE_EXPR:
2874 case UNORDERED_EXPR:
2875 case ORDERED_EXPR:
2876 case UNLT_EXPR:
2877 case UNLE_EXPR:
2878 case UNGT_EXPR:
2879 case UNGE_EXPR:
2880 case UNEQ_EXPR:
2881 case LTGT_EXPR:
2882 case MULT_EXPR:
2883 case TRUNC_DIV_EXPR:
2884 case CEIL_DIV_EXPR:
2885 case FLOOR_DIV_EXPR:
2886 case ROUND_DIV_EXPR:
2887 case TRUNC_MOD_EXPR:
2888 case CEIL_MOD_EXPR:
2889 case FLOOR_MOD_EXPR:
2890 case ROUND_MOD_EXPR:
2891 case RDIV_EXPR:
2892 case EXACT_DIV_EXPR:
2893 case MIN_EXPR:
2894 case MAX_EXPR:
2895 case LSHIFT_EXPR:
2896 case RSHIFT_EXPR:
2897 case LROTATE_EXPR:
2898 case RROTATE_EXPR:
2899 case BIT_IOR_EXPR:
2900 case BIT_XOR_EXPR:
2901 case BIT_AND_EXPR:
2902 CHECK_OP (0, "invalid operand to binary operator");
2903 CHECK_OP (1, "invalid operand to binary operator");
2904 break;
2906 case CONSTRUCTOR:
2907 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2908 *walk_subtrees = 0;
2909 break;
2911 case CASE_LABEL_EXPR:
2912 if (CASE_CHAIN (t))
2914 error ("invalid CASE_CHAIN");
2915 return t;
2917 break;
2919 default:
2920 break;
2922 return NULL;
2924 #undef CHECK_OP
2928 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2929 Returns true if there is an error, otherwise false. */
2931 static bool
2932 verify_types_in_gimple_min_lval (tree expr)
2934 tree op;
2936 if (is_gimple_id (expr))
2937 return false;
2939 if (TREE_CODE (expr) != TARGET_MEM_REF
2940 && TREE_CODE (expr) != MEM_REF)
2942 error ("invalid expression for min lvalue");
2943 return true;
2946 /* TARGET_MEM_REFs are strange beasts. */
2947 if (TREE_CODE (expr) == TARGET_MEM_REF)
2948 return false;
2950 op = TREE_OPERAND (expr, 0);
2951 if (!is_gimple_val (op))
2953 error ("invalid operand in indirect reference");
2954 debug_generic_stmt (op);
2955 return true;
2957 /* Memory references now generally can involve a value conversion. */
2959 return false;
2962 /* Verify if EXPR is a valid GIMPLE reference expression. If
2963 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2964 if there is an error, otherwise false. */
2966 static bool
2967 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2969 while (handled_component_p (expr))
2971 tree op = TREE_OPERAND (expr, 0);
2973 if (TREE_CODE (expr) == ARRAY_REF
2974 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2976 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2977 || (TREE_OPERAND (expr, 2)
2978 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2979 || (TREE_OPERAND (expr, 3)
2980 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2982 error ("invalid operands to array reference");
2983 debug_generic_stmt (expr);
2984 return true;
2988 /* Verify if the reference array element types are compatible. */
2989 if (TREE_CODE (expr) == ARRAY_REF
2990 && !useless_type_conversion_p (TREE_TYPE (expr),
2991 TREE_TYPE (TREE_TYPE (op))))
2993 error ("type mismatch in array reference");
2994 debug_generic_stmt (TREE_TYPE (expr));
2995 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2996 return true;
2998 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2999 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3000 TREE_TYPE (TREE_TYPE (op))))
3002 error ("type mismatch in array range reference");
3003 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3004 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3005 return true;
3008 if ((TREE_CODE (expr) == REALPART_EXPR
3009 || TREE_CODE (expr) == IMAGPART_EXPR)
3010 && !useless_type_conversion_p (TREE_TYPE (expr),
3011 TREE_TYPE (TREE_TYPE (op))))
3013 error ("type mismatch in real/imagpart reference");
3014 debug_generic_stmt (TREE_TYPE (expr));
3015 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3016 return true;
3019 if (TREE_CODE (expr) == COMPONENT_REF
3020 && !useless_type_conversion_p (TREE_TYPE (expr),
3021 TREE_TYPE (TREE_OPERAND (expr, 1))))
3023 error ("type mismatch in component reference");
3024 debug_generic_stmt (TREE_TYPE (expr));
3025 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3026 return true;
3029 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3031 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3032 that their operand is not an SSA name or an invariant when
3033 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3034 bug). Otherwise there is nothing to verify, gross mismatches at
3035 most invoke undefined behavior. */
3036 if (require_lvalue
3037 && (TREE_CODE (op) == SSA_NAME
3038 || is_gimple_min_invariant (op)))
3040 error ("conversion of an SSA_NAME on the left hand side");
3041 debug_generic_stmt (expr);
3042 return true;
3044 else if (TREE_CODE (op) == SSA_NAME
3045 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3047 error ("conversion of register to a different size");
3048 debug_generic_stmt (expr);
3049 return true;
3051 else if (!handled_component_p (op))
3052 return false;
3055 expr = op;
3058 if (TREE_CODE (expr) == MEM_REF)
3060 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3062 error ("invalid address operand in MEM_REF");
3063 debug_generic_stmt (expr);
3064 return true;
3066 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3067 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3069 error ("invalid offset operand in MEM_REF");
3070 debug_generic_stmt (expr);
3071 return true;
3074 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3076 if (!TMR_BASE (expr)
3077 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3079 error ("invalid address operand in TARGET_MEM_REF");
3080 return true;
3082 if (!TMR_OFFSET (expr)
3083 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3084 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3086 error ("invalid offset operand in TARGET_MEM_REF");
3087 debug_generic_stmt (expr);
3088 return true;
3092 return ((require_lvalue || !is_gimple_min_invariant (expr))
3093 && verify_types_in_gimple_min_lval (expr));
3096 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3097 list of pointer-to types that is trivially convertible to DEST. */
3099 static bool
3100 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3102 tree src;
3104 if (!TYPE_POINTER_TO (src_obj))
3105 return true;
3107 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3108 if (useless_type_conversion_p (dest, src))
3109 return true;
3111 return false;
3114 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3115 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3117 static bool
3118 valid_fixed_convert_types_p (tree type1, tree type2)
3120 return (FIXED_POINT_TYPE_P (type1)
3121 && (INTEGRAL_TYPE_P (type2)
3122 || SCALAR_FLOAT_TYPE_P (type2)
3123 || FIXED_POINT_TYPE_P (type2)));
3126 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3127 is a problem, otherwise false. */
3129 static bool
3130 verify_gimple_call (gimple stmt)
3132 tree fn = gimple_call_fn (stmt);
3133 tree fntype, fndecl;
3134 unsigned i;
3136 if (gimple_call_internal_p (stmt))
3138 if (fn)
3140 error ("gimple call has two targets");
3141 debug_generic_stmt (fn);
3142 return true;
3145 else
3147 if (!fn)
3149 error ("gimple call has no target");
3150 return true;
3154 if (fn && !is_gimple_call_addr (fn))
3156 error ("invalid function in gimple call");
3157 debug_generic_stmt (fn);
3158 return true;
3161 if (fn
3162 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3163 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3164 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3166 error ("non-function in gimple call");
3167 return true;
3170 fndecl = gimple_call_fndecl (stmt);
3171 if (fndecl
3172 && TREE_CODE (fndecl) == FUNCTION_DECL
3173 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3174 && !DECL_PURE_P (fndecl)
3175 && !TREE_READONLY (fndecl))
3177 error ("invalid pure const state for function");
3178 return true;
3181 if (gimple_call_lhs (stmt)
3182 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3183 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3185 error ("invalid LHS in gimple call");
3186 return true;
3189 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3191 error ("LHS in noreturn call");
3192 return true;
3195 fntype = gimple_call_fntype (stmt);
3196 if (fntype
3197 && gimple_call_lhs (stmt)
3198 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3199 TREE_TYPE (fntype))
3200 /* ??? At least C++ misses conversions at assignments from
3201 void * call results.
3202 ??? Java is completely off. Especially with functions
3203 returning java.lang.Object.
3204 For now simply allow arbitrary pointer type conversions. */
3205 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3206 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3208 error ("invalid conversion in gimple call");
3209 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3210 debug_generic_stmt (TREE_TYPE (fntype));
3211 return true;
3214 if (gimple_call_chain (stmt)
3215 && !is_gimple_val (gimple_call_chain (stmt)))
3217 error ("invalid static chain in gimple call");
3218 debug_generic_stmt (gimple_call_chain (stmt));
3219 return true;
3222 /* If there is a static chain argument, this should not be an indirect
3223 call, and the decl should have DECL_STATIC_CHAIN set. */
3224 if (gimple_call_chain (stmt))
3226 if (!gimple_call_fndecl (stmt))
3228 error ("static chain in indirect gimple call");
3229 return true;
3231 fn = TREE_OPERAND (fn, 0);
3233 if (!DECL_STATIC_CHAIN (fn))
3235 error ("static chain with function that doesn%'t use one");
3236 return true;
3240 /* ??? The C frontend passes unpromoted arguments in case it
3241 didn't see a function declaration before the call. So for now
3242 leave the call arguments mostly unverified. Once we gimplify
3243 unit-at-a-time we have a chance to fix this. */
3245 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3247 tree arg = gimple_call_arg (stmt, i);
3248 if ((is_gimple_reg_type (TREE_TYPE (arg))
3249 && !is_gimple_val (arg))
3250 || (!is_gimple_reg_type (TREE_TYPE (arg))
3251 && !is_gimple_lvalue (arg)))
3253 error ("invalid argument to gimple call");
3254 debug_generic_expr (arg);
3255 return true;
3259 return false;
3262 /* Verifies the gimple comparison with the result type TYPE and
3263 the operands OP0 and OP1. */
3265 static bool
3266 verify_gimple_comparison (tree type, tree op0, tree op1)
3268 tree op0_type = TREE_TYPE (op0);
3269 tree op1_type = TREE_TYPE (op1);
3271 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3273 error ("invalid operands in gimple comparison");
3274 return true;
3277 /* For comparisons we do not have the operations type as the
3278 effective type the comparison is carried out in. Instead
3279 we require that either the first operand is trivially
3280 convertible into the second, or the other way around.
3281 Because we special-case pointers to void we allow
3282 comparisons of pointers with the same mode as well. */
3283 if (!useless_type_conversion_p (op0_type, op1_type)
3284 && !useless_type_conversion_p (op1_type, op0_type)
3285 && (!POINTER_TYPE_P (op0_type)
3286 || !POINTER_TYPE_P (op1_type)
3287 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3289 error ("mismatching comparison operand types");
3290 debug_generic_expr (op0_type);
3291 debug_generic_expr (op1_type);
3292 return true;
3295 /* The resulting type of a comparison may be an effective boolean type. */
3296 if (INTEGRAL_TYPE_P (type)
3297 && (TREE_CODE (type) == BOOLEAN_TYPE
3298 || TYPE_PRECISION (type) == 1))
3300 /* Or an integer vector type with the same size and element count
3301 as the comparison operand types. */
3302 else if (TREE_CODE (type) == VECTOR_TYPE
3303 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3305 if (TREE_CODE (op0_type) != VECTOR_TYPE
3306 || TREE_CODE (op1_type) != VECTOR_TYPE)
3308 error ("non-vector operands in vector comparison");
3309 debug_generic_expr (op0_type);
3310 debug_generic_expr (op1_type);
3311 return true;
3314 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3315 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3316 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3318 error ("invalid vector comparison resulting type");
3319 debug_generic_expr (type);
3320 return true;
3323 else
3325 error ("bogus comparison result type");
3326 debug_generic_expr (type);
3327 return true;
3330 return false;
3333 /* Verify a gimple assignment statement STMT with an unary rhs.
3334 Returns true if anything is wrong. */
3336 static bool
3337 verify_gimple_assign_unary (gimple stmt)
3339 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3340 tree lhs = gimple_assign_lhs (stmt);
3341 tree lhs_type = TREE_TYPE (lhs);
3342 tree rhs1 = gimple_assign_rhs1 (stmt);
3343 tree rhs1_type = TREE_TYPE (rhs1);
3345 if (!is_gimple_reg (lhs))
3347 error ("non-register as LHS of unary operation");
3348 return true;
3351 if (!is_gimple_val (rhs1))
3353 error ("invalid operand in unary operation");
3354 return true;
3357 /* First handle conversions. */
3358 switch (rhs_code)
3360 CASE_CONVERT:
3362 /* Allow conversions from pointer type to integral type only if
3363 there is no sign or zero extension involved.
3364 For targets were the precision of ptrofftype doesn't match that
3365 of pointers we need to allow arbitrary conversions to ptrofftype. */
3366 if ((POINTER_TYPE_P (lhs_type)
3367 && INTEGRAL_TYPE_P (rhs1_type))
3368 || (POINTER_TYPE_P (rhs1_type)
3369 && INTEGRAL_TYPE_P (lhs_type)
3370 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3371 || ptrofftype_p (sizetype))))
3372 return false;
3374 /* Allow conversion from integer to offset type and vice versa. */
3375 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3376 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3377 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3378 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3379 return false;
3381 /* Otherwise assert we are converting between types of the
3382 same kind. */
3383 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3385 error ("invalid types in nop conversion");
3386 debug_generic_expr (lhs_type);
3387 debug_generic_expr (rhs1_type);
3388 return true;
3391 return false;
3394 case ADDR_SPACE_CONVERT_EXPR:
3396 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3397 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3398 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3400 error ("invalid types in address space conversion");
3401 debug_generic_expr (lhs_type);
3402 debug_generic_expr (rhs1_type);
3403 return true;
3406 return false;
3409 case FIXED_CONVERT_EXPR:
3411 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3412 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3414 error ("invalid types in fixed-point conversion");
3415 debug_generic_expr (lhs_type);
3416 debug_generic_expr (rhs1_type);
3417 return true;
3420 return false;
3423 case FLOAT_EXPR:
3425 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3426 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3427 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3429 error ("invalid types in conversion to floating point");
3430 debug_generic_expr (lhs_type);
3431 debug_generic_expr (rhs1_type);
3432 return true;
3435 return false;
3438 case FIX_TRUNC_EXPR:
3440 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3441 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3442 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3444 error ("invalid types in conversion to integer");
3445 debug_generic_expr (lhs_type);
3446 debug_generic_expr (rhs1_type);
3447 return true;
3450 return false;
3453 case VEC_UNPACK_HI_EXPR:
3454 case VEC_UNPACK_LO_EXPR:
3455 case REDUC_MAX_EXPR:
3456 case REDUC_MIN_EXPR:
3457 case REDUC_PLUS_EXPR:
3458 case VEC_UNPACK_FLOAT_HI_EXPR:
3459 case VEC_UNPACK_FLOAT_LO_EXPR:
3460 /* FIXME. */
3461 return false;
3463 case NEGATE_EXPR:
3464 case ABS_EXPR:
3465 case BIT_NOT_EXPR:
3466 case PAREN_EXPR:
3467 case NON_LVALUE_EXPR:
3468 case CONJ_EXPR:
3469 break;
3471 default:
3472 gcc_unreachable ();
3475 /* For the remaining codes assert there is no conversion involved. */
3476 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3478 error ("non-trivial conversion in unary operation");
3479 debug_generic_expr (lhs_type);
3480 debug_generic_expr (rhs1_type);
3481 return true;
3484 return false;
3487 /* Verify a gimple assignment statement STMT with a binary rhs.
3488 Returns true if anything is wrong. */
3490 static bool
3491 verify_gimple_assign_binary (gimple stmt)
3493 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3494 tree lhs = gimple_assign_lhs (stmt);
3495 tree lhs_type = TREE_TYPE (lhs);
3496 tree rhs1 = gimple_assign_rhs1 (stmt);
3497 tree rhs1_type = TREE_TYPE (rhs1);
3498 tree rhs2 = gimple_assign_rhs2 (stmt);
3499 tree rhs2_type = TREE_TYPE (rhs2);
3501 if (!is_gimple_reg (lhs))
3503 error ("non-register as LHS of binary operation");
3504 return true;
3507 if (!is_gimple_val (rhs1)
3508 || !is_gimple_val (rhs2))
3510 error ("invalid operands in binary operation");
3511 return true;
3514 /* First handle operations that involve different types. */
3515 switch (rhs_code)
3517 case COMPLEX_EXPR:
3519 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3520 || !(INTEGRAL_TYPE_P (rhs1_type)
3521 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3522 || !(INTEGRAL_TYPE_P (rhs2_type)
3523 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3525 error ("type mismatch in complex expression");
3526 debug_generic_expr (lhs_type);
3527 debug_generic_expr (rhs1_type);
3528 debug_generic_expr (rhs2_type);
3529 return true;
3532 return false;
3535 case LSHIFT_EXPR:
3536 case RSHIFT_EXPR:
3537 case LROTATE_EXPR:
3538 case RROTATE_EXPR:
3540 /* Shifts and rotates are ok on integral types, fixed point
3541 types and integer vector types. */
3542 if ((!INTEGRAL_TYPE_P (rhs1_type)
3543 && !FIXED_POINT_TYPE_P (rhs1_type)
3544 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3545 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3546 || (!INTEGRAL_TYPE_P (rhs2_type)
3547 /* Vector shifts of vectors are also ok. */
3548 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3549 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3550 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3551 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3552 || !useless_type_conversion_p (lhs_type, rhs1_type))
3554 error ("type mismatch in shift expression");
3555 debug_generic_expr (lhs_type);
3556 debug_generic_expr (rhs1_type);
3557 debug_generic_expr (rhs2_type);
3558 return true;
3561 return false;
3564 case VEC_LSHIFT_EXPR:
3565 case VEC_RSHIFT_EXPR:
3567 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3568 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3569 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3570 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3571 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3572 || (!INTEGRAL_TYPE_P (rhs2_type)
3573 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3574 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3575 || !useless_type_conversion_p (lhs_type, rhs1_type))
3577 error ("type mismatch in vector shift expression");
3578 debug_generic_expr (lhs_type);
3579 debug_generic_expr (rhs1_type);
3580 debug_generic_expr (rhs2_type);
3581 return true;
3583 /* For shifting a vector of non-integral components we
3584 only allow shifting by a constant multiple of the element size. */
3585 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3586 && (TREE_CODE (rhs2) != INTEGER_CST
3587 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3588 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3590 error ("non-element sized vector shift of floating point vector");
3591 return true;
3594 return false;
3597 case WIDEN_LSHIFT_EXPR:
3599 if (!INTEGRAL_TYPE_P (lhs_type)
3600 || !INTEGRAL_TYPE_P (rhs1_type)
3601 || TREE_CODE (rhs2) != INTEGER_CST
3602 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3604 error ("type mismatch in widening vector shift expression");
3605 debug_generic_expr (lhs_type);
3606 debug_generic_expr (rhs1_type);
3607 debug_generic_expr (rhs2_type);
3608 return true;
3611 return false;
3614 case VEC_WIDEN_LSHIFT_HI_EXPR:
3615 case VEC_WIDEN_LSHIFT_LO_EXPR:
3617 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3618 || TREE_CODE (lhs_type) != VECTOR_TYPE
3619 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3620 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3621 || TREE_CODE (rhs2) != INTEGER_CST
3622 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3623 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3625 error ("type mismatch in widening vector shift expression");
3626 debug_generic_expr (lhs_type);
3627 debug_generic_expr (rhs1_type);
3628 debug_generic_expr (rhs2_type);
3629 return true;
3632 return false;
3635 case PLUS_EXPR:
3636 case MINUS_EXPR:
3638 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3639 ??? This just makes the checker happy and may not be what is
3640 intended. */
3641 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3642 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3644 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3645 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3647 error ("invalid non-vector operands to vector valued plus");
3648 return true;
3650 lhs_type = TREE_TYPE (lhs_type);
3651 rhs1_type = TREE_TYPE (rhs1_type);
3652 rhs2_type = TREE_TYPE (rhs2_type);
3653 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3654 the pointer to 2nd place. */
3655 if (POINTER_TYPE_P (rhs2_type))
3657 tree tem = rhs1_type;
3658 rhs1_type = rhs2_type;
3659 rhs2_type = tem;
3661 goto do_pointer_plus_expr_check;
3663 if (POINTER_TYPE_P (lhs_type)
3664 || POINTER_TYPE_P (rhs1_type)
3665 || POINTER_TYPE_P (rhs2_type))
3667 error ("invalid (pointer) operands to plus/minus");
3668 return true;
3671 /* Continue with generic binary expression handling. */
3672 break;
3675 case POINTER_PLUS_EXPR:
3677 do_pointer_plus_expr_check:
3678 if (!POINTER_TYPE_P (rhs1_type)
3679 || !useless_type_conversion_p (lhs_type, rhs1_type)
3680 || !ptrofftype_p (rhs2_type))
3682 error ("type mismatch in pointer plus expression");
3683 debug_generic_stmt (lhs_type);
3684 debug_generic_stmt (rhs1_type);
3685 debug_generic_stmt (rhs2_type);
3686 return true;
3689 return false;
3692 case TRUTH_ANDIF_EXPR:
3693 case TRUTH_ORIF_EXPR:
3694 case TRUTH_AND_EXPR:
3695 case TRUTH_OR_EXPR:
3696 case TRUTH_XOR_EXPR:
3698 gcc_unreachable ();
3700 case LT_EXPR:
3701 case LE_EXPR:
3702 case GT_EXPR:
3703 case GE_EXPR:
3704 case EQ_EXPR:
3705 case NE_EXPR:
3706 case UNORDERED_EXPR:
3707 case ORDERED_EXPR:
3708 case UNLT_EXPR:
3709 case UNLE_EXPR:
3710 case UNGT_EXPR:
3711 case UNGE_EXPR:
3712 case UNEQ_EXPR:
3713 case LTGT_EXPR:
3714 /* Comparisons are also binary, but the result type is not
3715 connected to the operand types. */
3716 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3718 case WIDEN_MULT_EXPR:
3719 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3720 return true;
3721 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3722 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3724 case WIDEN_SUM_EXPR:
3725 case VEC_WIDEN_MULT_HI_EXPR:
3726 case VEC_WIDEN_MULT_LO_EXPR:
3727 case VEC_PACK_TRUNC_EXPR:
3728 case VEC_PACK_SAT_EXPR:
3729 case VEC_PACK_FIX_TRUNC_EXPR:
3730 /* FIXME. */
3731 return false;
3733 case MULT_EXPR:
3734 case TRUNC_DIV_EXPR:
3735 case CEIL_DIV_EXPR:
3736 case FLOOR_DIV_EXPR:
3737 case ROUND_DIV_EXPR:
3738 case TRUNC_MOD_EXPR:
3739 case CEIL_MOD_EXPR:
3740 case FLOOR_MOD_EXPR:
3741 case ROUND_MOD_EXPR:
3742 case RDIV_EXPR:
3743 case EXACT_DIV_EXPR:
3744 case MIN_EXPR:
3745 case MAX_EXPR:
3746 case BIT_IOR_EXPR:
3747 case BIT_XOR_EXPR:
3748 case BIT_AND_EXPR:
3749 /* Continue with generic binary expression handling. */
3750 break;
3752 default:
3753 gcc_unreachable ();
3756 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3757 || !useless_type_conversion_p (lhs_type, rhs2_type))
3759 error ("type mismatch in binary expression");
3760 debug_generic_stmt (lhs_type);
3761 debug_generic_stmt (rhs1_type);
3762 debug_generic_stmt (rhs2_type);
3763 return true;
3766 return false;
3769 /* Verify a gimple assignment statement STMT with a ternary rhs.
3770 Returns true if anything is wrong. */
3772 static bool
3773 verify_gimple_assign_ternary (gimple stmt)
3775 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3776 tree lhs = gimple_assign_lhs (stmt);
3777 tree lhs_type = TREE_TYPE (lhs);
3778 tree rhs1 = gimple_assign_rhs1 (stmt);
3779 tree rhs1_type = TREE_TYPE (rhs1);
3780 tree rhs2 = gimple_assign_rhs2 (stmt);
3781 tree rhs2_type = TREE_TYPE (rhs2);
3782 tree rhs3 = gimple_assign_rhs3 (stmt);
3783 tree rhs3_type = TREE_TYPE (rhs3);
3785 if (!is_gimple_reg (lhs))
3787 error ("non-register as LHS of ternary operation");
3788 return true;
3791 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3792 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3793 || !is_gimple_val (rhs2)
3794 || !is_gimple_val (rhs3))
3796 error ("invalid operands in ternary operation");
3797 return true;
3800 /* First handle operations that involve different types. */
3801 switch (rhs_code)
3803 case WIDEN_MULT_PLUS_EXPR:
3804 case WIDEN_MULT_MINUS_EXPR:
3805 if ((!INTEGRAL_TYPE_P (rhs1_type)
3806 && !FIXED_POINT_TYPE_P (rhs1_type))
3807 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3808 || !useless_type_conversion_p (lhs_type, rhs3_type)
3809 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3810 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3812 error ("type mismatch in widening multiply-accumulate expression");
3813 debug_generic_expr (lhs_type);
3814 debug_generic_expr (rhs1_type);
3815 debug_generic_expr (rhs2_type);
3816 debug_generic_expr (rhs3_type);
3817 return true;
3819 break;
3821 case FMA_EXPR:
3822 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3823 || !useless_type_conversion_p (lhs_type, rhs2_type)
3824 || !useless_type_conversion_p (lhs_type, rhs3_type))
3826 error ("type mismatch in fused multiply-add expression");
3827 debug_generic_expr (lhs_type);
3828 debug_generic_expr (rhs1_type);
3829 debug_generic_expr (rhs2_type);
3830 debug_generic_expr (rhs3_type);
3831 return true;
3833 break;
3835 case COND_EXPR:
3836 case VEC_COND_EXPR:
3837 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3838 || !useless_type_conversion_p (lhs_type, rhs3_type))
3840 error ("type mismatch in conditional expression");
3841 debug_generic_expr (lhs_type);
3842 debug_generic_expr (rhs2_type);
3843 debug_generic_expr (rhs3_type);
3844 return true;
3846 break;
3848 case VEC_PERM_EXPR:
3849 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3850 || !useless_type_conversion_p (lhs_type, rhs2_type))
3852 error ("type mismatch in vector permute expression");
3853 debug_generic_expr (lhs_type);
3854 debug_generic_expr (rhs1_type);
3855 debug_generic_expr (rhs2_type);
3856 debug_generic_expr (rhs3_type);
3857 return true;
3860 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3861 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3862 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3864 error ("vector types expected in vector permute expression");
3865 debug_generic_expr (lhs_type);
3866 debug_generic_expr (rhs1_type);
3867 debug_generic_expr (rhs2_type);
3868 debug_generic_expr (rhs3_type);
3869 return true;
3872 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3873 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3874 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3875 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3876 != TYPE_VECTOR_SUBPARTS (lhs_type))
3878 error ("vectors with different element number found "
3879 "in vector permute expression");
3880 debug_generic_expr (lhs_type);
3881 debug_generic_expr (rhs1_type);
3882 debug_generic_expr (rhs2_type);
3883 debug_generic_expr (rhs3_type);
3884 return true;
3887 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3888 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3889 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3891 error ("invalid mask type in vector permute expression");
3892 debug_generic_expr (lhs_type);
3893 debug_generic_expr (rhs1_type);
3894 debug_generic_expr (rhs2_type);
3895 debug_generic_expr (rhs3_type);
3896 return true;
3899 return false;
3901 case DOT_PROD_EXPR:
3902 case REALIGN_LOAD_EXPR:
3903 /* FIXME. */
3904 return false;
3906 default:
3907 gcc_unreachable ();
3909 return false;
3912 /* Verify a gimple assignment statement STMT with a single rhs.
3913 Returns true if anything is wrong. */
3915 static bool
3916 verify_gimple_assign_single (gimple stmt)
3918 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3919 tree lhs = gimple_assign_lhs (stmt);
3920 tree lhs_type = TREE_TYPE (lhs);
3921 tree rhs1 = gimple_assign_rhs1 (stmt);
3922 tree rhs1_type = TREE_TYPE (rhs1);
3923 bool res = false;
3925 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3927 error ("non-trivial conversion at assignment");
3928 debug_generic_expr (lhs_type);
3929 debug_generic_expr (rhs1_type);
3930 return true;
3933 if (handled_component_p (lhs))
3934 res |= verify_types_in_gimple_reference (lhs, true);
3936 /* Special codes we cannot handle via their class. */
3937 switch (rhs_code)
3939 case ADDR_EXPR:
3941 tree op = TREE_OPERAND (rhs1, 0);
3942 if (!is_gimple_addressable (op))
3944 error ("invalid operand in unary expression");
3945 return true;
3948 /* Technically there is no longer a need for matching types, but
3949 gimple hygiene asks for this check. In LTO we can end up
3950 combining incompatible units and thus end up with addresses
3951 of globals that change their type to a common one. */
3952 if (!in_lto_p
3953 && !types_compatible_p (TREE_TYPE (op),
3954 TREE_TYPE (TREE_TYPE (rhs1)))
3955 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3956 TREE_TYPE (op)))
3958 error ("type mismatch in address expression");
3959 debug_generic_stmt (TREE_TYPE (rhs1));
3960 debug_generic_stmt (TREE_TYPE (op));
3961 return true;
3964 return verify_types_in_gimple_reference (op, true);
3967 /* tcc_reference */
3968 case INDIRECT_REF:
3969 error ("INDIRECT_REF in gimple IL");
3970 return true;
3972 case COMPONENT_REF:
3973 case BIT_FIELD_REF:
3974 case ARRAY_REF:
3975 case ARRAY_RANGE_REF:
3976 case VIEW_CONVERT_EXPR:
3977 case REALPART_EXPR:
3978 case IMAGPART_EXPR:
3979 case TARGET_MEM_REF:
3980 case MEM_REF:
3981 if (!is_gimple_reg (lhs)
3982 && is_gimple_reg_type (TREE_TYPE (lhs)))
3984 error ("invalid rhs for gimple memory store");
3985 debug_generic_stmt (lhs);
3986 debug_generic_stmt (rhs1);
3987 return true;
3989 return res || verify_types_in_gimple_reference (rhs1, false);
3991 /* tcc_constant */
3992 case SSA_NAME:
3993 case INTEGER_CST:
3994 case REAL_CST:
3995 case FIXED_CST:
3996 case COMPLEX_CST:
3997 case VECTOR_CST:
3998 case STRING_CST:
3999 return res;
4001 /* tcc_declaration */
4002 case CONST_DECL:
4003 return res;
4004 case VAR_DECL:
4005 case PARM_DECL:
4006 if (!is_gimple_reg (lhs)
4007 && !is_gimple_reg (rhs1)
4008 && is_gimple_reg_type (TREE_TYPE (lhs)))
4010 error ("invalid rhs for gimple memory store");
4011 debug_generic_stmt (lhs);
4012 debug_generic_stmt (rhs1);
4013 return true;
4015 return res;
4017 case CONSTRUCTOR:
4018 case OBJ_TYPE_REF:
4019 case ASSERT_EXPR:
4020 case WITH_SIZE_EXPR:
4021 /* FIXME. */
4022 return res;
4024 default:;
4027 return res;
4030 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4031 is a problem, otherwise false. */
4033 static bool
4034 verify_gimple_assign (gimple stmt)
4036 switch (gimple_assign_rhs_class (stmt))
4038 case GIMPLE_SINGLE_RHS:
4039 return verify_gimple_assign_single (stmt);
4041 case GIMPLE_UNARY_RHS:
4042 return verify_gimple_assign_unary (stmt);
4044 case GIMPLE_BINARY_RHS:
4045 return verify_gimple_assign_binary (stmt);
4047 case GIMPLE_TERNARY_RHS:
4048 return verify_gimple_assign_ternary (stmt);
4050 default:
4051 gcc_unreachable ();
4055 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4056 is a problem, otherwise false. */
4058 static bool
4059 verify_gimple_return (gimple stmt)
4061 tree op = gimple_return_retval (stmt);
4062 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4064 /* We cannot test for present return values as we do not fix up missing
4065 return values from the original source. */
4066 if (op == NULL)
4067 return false;
4069 if (!is_gimple_val (op)
4070 && TREE_CODE (op) != RESULT_DECL)
4072 error ("invalid operand in return statement");
4073 debug_generic_stmt (op);
4074 return true;
4077 if ((TREE_CODE (op) == RESULT_DECL
4078 && DECL_BY_REFERENCE (op))
4079 || (TREE_CODE (op) == SSA_NAME
4080 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4081 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4082 op = TREE_TYPE (op);
4084 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4086 error ("invalid conversion in return statement");
4087 debug_generic_stmt (restype);
4088 debug_generic_stmt (TREE_TYPE (op));
4089 return true;
4092 return false;
4096 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4097 is a problem, otherwise false. */
4099 static bool
4100 verify_gimple_goto (gimple stmt)
4102 tree dest = gimple_goto_dest (stmt);
4104 /* ??? We have two canonical forms of direct goto destinations, a
4105 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4106 if (TREE_CODE (dest) != LABEL_DECL
4107 && (!is_gimple_val (dest)
4108 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4110 error ("goto destination is neither a label nor a pointer");
4111 return true;
4114 return false;
4117 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4118 is a problem, otherwise false. */
4120 static bool
4121 verify_gimple_switch (gimple stmt)
4123 if (!is_gimple_val (gimple_switch_index (stmt)))
4125 error ("invalid operand to switch statement");
4126 debug_generic_stmt (gimple_switch_index (stmt));
4127 return true;
4130 return false;
4133 /* Verify a gimple debug statement STMT.
4134 Returns true if anything is wrong. */
4136 static bool
4137 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4139 /* There isn't much that could be wrong in a gimple debug stmt. A
4140 gimple debug bind stmt, for example, maps a tree, that's usually
4141 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4142 component or member of an aggregate type, to another tree, that
4143 can be an arbitrary expression. These stmts expand into debug
4144 insns, and are converted to debug notes by var-tracking.c. */
4145 return false;
4148 /* Verify a gimple label statement STMT.
4149 Returns true if anything is wrong. */
4151 static bool
4152 verify_gimple_label (gimple stmt)
4154 tree decl = gimple_label_label (stmt);
4155 int uid;
4156 bool err = false;
4158 if (TREE_CODE (decl) != LABEL_DECL)
4159 return true;
4161 uid = LABEL_DECL_UID (decl);
4162 if (cfun->cfg
4163 && (uid == -1
4164 || VEC_index (basic_block,
4165 label_to_block_map, uid) != gimple_bb (stmt)))
4167 error ("incorrect entry in label_to_block_map");
4168 err |= true;
4171 uid = EH_LANDING_PAD_NR (decl);
4172 if (uid)
4174 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4175 if (decl != lp->post_landing_pad)
4177 error ("incorrect setting of landing pad number");
4178 err |= true;
4182 return err;
4185 /* Verify the GIMPLE statement STMT. Returns true if there is an
4186 error, otherwise false. */
4188 static bool
4189 verify_gimple_stmt (gimple stmt)
4191 switch (gimple_code (stmt))
4193 case GIMPLE_ASSIGN:
4194 return verify_gimple_assign (stmt);
4196 case GIMPLE_LABEL:
4197 return verify_gimple_label (stmt);
4199 case GIMPLE_CALL:
4200 return verify_gimple_call (stmt);
4202 case GIMPLE_COND:
4203 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4205 error ("invalid comparison code in gimple cond");
4206 return true;
4208 if (!(!gimple_cond_true_label (stmt)
4209 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4210 || !(!gimple_cond_false_label (stmt)
4211 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4213 error ("invalid labels in gimple cond");
4214 return true;
4217 return verify_gimple_comparison (boolean_type_node,
4218 gimple_cond_lhs (stmt),
4219 gimple_cond_rhs (stmt));
4221 case GIMPLE_GOTO:
4222 return verify_gimple_goto (stmt);
4224 case GIMPLE_SWITCH:
4225 return verify_gimple_switch (stmt);
4227 case GIMPLE_RETURN:
4228 return verify_gimple_return (stmt);
4230 case GIMPLE_ASM:
4231 return false;
4233 case GIMPLE_TRANSACTION:
4234 return verify_gimple_transaction (stmt);
4236 /* Tuples that do not have tree operands. */
4237 case GIMPLE_NOP:
4238 case GIMPLE_PREDICT:
4239 case GIMPLE_RESX:
4240 case GIMPLE_EH_DISPATCH:
4241 case GIMPLE_EH_MUST_NOT_THROW:
4242 return false;
4244 CASE_GIMPLE_OMP:
4245 /* OpenMP directives are validated by the FE and never operated
4246 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4247 non-gimple expressions when the main index variable has had
4248 its address taken. This does not affect the loop itself
4249 because the header of an GIMPLE_OMP_FOR is merely used to determine
4250 how to setup the parallel iteration. */
4251 return false;
4253 case GIMPLE_DEBUG:
4254 return verify_gimple_debug (stmt);
4256 default:
4257 gcc_unreachable ();
4261 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4262 and false otherwise. */
4264 static bool
4265 verify_gimple_phi (gimple phi)
4267 bool err = false;
4268 unsigned i;
4269 tree phi_result = gimple_phi_result (phi);
4270 bool virtual_p;
4272 if (!phi_result)
4274 error ("invalid PHI result");
4275 return true;
4278 virtual_p = !is_gimple_reg (phi_result);
4279 if (TREE_CODE (phi_result) != SSA_NAME
4280 || (virtual_p
4281 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4283 error ("invalid PHI result");
4284 err = true;
4287 for (i = 0; i < gimple_phi_num_args (phi); i++)
4289 tree t = gimple_phi_arg_def (phi, i);
4291 if (!t)
4293 error ("missing PHI def");
4294 err |= true;
4295 continue;
4297 /* Addressable variables do have SSA_NAMEs but they
4298 are not considered gimple values. */
4299 else if ((TREE_CODE (t) == SSA_NAME
4300 && virtual_p != !is_gimple_reg (t))
4301 || (virtual_p
4302 && (TREE_CODE (t) != SSA_NAME
4303 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4304 || (!virtual_p
4305 && !is_gimple_val (t)))
4307 error ("invalid PHI argument");
4308 debug_generic_expr (t);
4309 err |= true;
4311 #ifdef ENABLE_TYPES_CHECKING
4312 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4314 error ("incompatible types in PHI argument %u", i);
4315 debug_generic_stmt (TREE_TYPE (phi_result));
4316 debug_generic_stmt (TREE_TYPE (t));
4317 err |= true;
4319 #endif
4322 return err;
4325 /* Verify the GIMPLE statements inside the sequence STMTS. */
4327 static bool
4328 verify_gimple_in_seq_2 (gimple_seq stmts)
4330 gimple_stmt_iterator ittr;
4331 bool err = false;
4333 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4335 gimple stmt = gsi_stmt (ittr);
4337 switch (gimple_code (stmt))
4339 case GIMPLE_BIND:
4340 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4341 break;
4343 case GIMPLE_TRY:
4344 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4345 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4346 break;
4348 case GIMPLE_EH_FILTER:
4349 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4350 break;
4352 case GIMPLE_EH_ELSE:
4353 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4354 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4355 break;
4357 case GIMPLE_CATCH:
4358 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4359 break;
4361 case GIMPLE_TRANSACTION:
4362 err |= verify_gimple_transaction (stmt);
4363 break;
4365 default:
4367 bool err2 = verify_gimple_stmt (stmt);
4368 if (err2)
4369 debug_gimple_stmt (stmt);
4370 err |= err2;
4375 return err;
4378 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4379 is a problem, otherwise false. */
4381 static bool
4382 verify_gimple_transaction (gimple stmt)
4384 tree lab = gimple_transaction_label (stmt);
4385 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4386 return true;
4387 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4391 /* Verify the GIMPLE statements inside the statement list STMTS. */
4393 DEBUG_FUNCTION void
4394 verify_gimple_in_seq (gimple_seq stmts)
4396 timevar_push (TV_TREE_STMT_VERIFY);
4397 if (verify_gimple_in_seq_2 (stmts))
4398 internal_error ("verify_gimple failed");
4399 timevar_pop (TV_TREE_STMT_VERIFY);
4402 /* Return true when the T can be shared. */
4404 bool
4405 tree_node_can_be_shared (tree t)
4407 if (IS_TYPE_OR_DECL_P (t)
4408 || is_gimple_min_invariant (t)
4409 || TREE_CODE (t) == SSA_NAME
4410 || t == error_mark_node
4411 || TREE_CODE (t) == IDENTIFIER_NODE)
4412 return true;
4414 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4415 return true;
4417 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4418 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4419 || TREE_CODE (t) == COMPONENT_REF
4420 || TREE_CODE (t) == REALPART_EXPR
4421 || TREE_CODE (t) == IMAGPART_EXPR)
4422 t = TREE_OPERAND (t, 0);
4424 if (DECL_P (t))
4425 return true;
4427 return false;
4430 /* Called via walk_gimple_stmt. Verify tree sharing. */
4432 static tree
4433 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4435 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4436 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4438 if (tree_node_can_be_shared (*tp))
4440 *walk_subtrees = false;
4441 return NULL;
4444 if (pointer_set_insert (visited, *tp))
4445 return *tp;
4447 return NULL;
4450 static bool eh_error_found;
4451 static int
4452 verify_eh_throw_stmt_node (void **slot, void *data)
4454 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4455 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4457 if (!pointer_set_contains (visited, node->stmt))
4459 error ("dead STMT in EH table");
4460 debug_gimple_stmt (node->stmt);
4461 eh_error_found = true;
4463 return 1;
4466 /* Verify the GIMPLE statements in the CFG of FN. */
4468 DEBUG_FUNCTION void
4469 verify_gimple_in_cfg (struct function *fn)
4471 basic_block bb;
4472 bool err = false;
4473 struct pointer_set_t *visited, *visited_stmts;
4475 timevar_push (TV_TREE_STMT_VERIFY);
4476 visited = pointer_set_create ();
4477 visited_stmts = pointer_set_create ();
4479 FOR_EACH_BB_FN (bb, fn)
4481 gimple_stmt_iterator gsi;
4483 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4485 gimple phi = gsi_stmt (gsi);
4486 bool err2 = false;
4487 unsigned i;
4489 pointer_set_insert (visited_stmts, phi);
4491 if (gimple_bb (phi) != bb)
4493 error ("gimple_bb (phi) is set to a wrong basic block");
4494 err2 = true;
4497 err2 |= verify_gimple_phi (phi);
4499 for (i = 0; i < gimple_phi_num_args (phi); i++)
4501 tree arg = gimple_phi_arg_def (phi, i);
4502 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4503 if (addr)
4505 error ("incorrect sharing of tree nodes");
4506 debug_generic_expr (addr);
4507 err2 |= true;
4511 if (err2)
4512 debug_gimple_stmt (phi);
4513 err |= err2;
4516 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4518 gimple stmt = gsi_stmt (gsi);
4519 bool err2 = false;
4520 struct walk_stmt_info wi;
4521 tree addr;
4522 int lp_nr;
4524 pointer_set_insert (visited_stmts, stmt);
4526 if (gimple_bb (stmt) != bb)
4528 error ("gimple_bb (stmt) is set to a wrong basic block");
4529 err2 = true;
4532 err2 |= verify_gimple_stmt (stmt);
4534 memset (&wi, 0, sizeof (wi));
4535 wi.info = (void *) visited;
4536 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4537 if (addr)
4539 error ("incorrect sharing of tree nodes");
4540 debug_generic_expr (addr);
4541 err2 |= true;
4544 /* ??? Instead of not checking these stmts at all the walker
4545 should know its context via wi. */
4546 if (!is_gimple_debug (stmt)
4547 && !is_gimple_omp (stmt))
4549 memset (&wi, 0, sizeof (wi));
4550 addr = walk_gimple_op (stmt, verify_expr, &wi);
4551 if (addr)
4553 debug_generic_expr (addr);
4554 inform (gimple_location (stmt), "in statement");
4555 err2 |= true;
4559 /* If the statement is marked as part of an EH region, then it is
4560 expected that the statement could throw. Verify that when we
4561 have optimizations that simplify statements such that we prove
4562 that they cannot throw, that we update other data structures
4563 to match. */
4564 lp_nr = lookup_stmt_eh_lp (stmt);
4565 if (lp_nr != 0)
4567 if (!stmt_could_throw_p (stmt))
4569 error ("statement marked for throw, but doesn%'t");
4570 err2 |= true;
4572 else if (lp_nr > 0
4573 && !gsi_one_before_end_p (gsi)
4574 && stmt_can_throw_internal (stmt))
4576 error ("statement marked for throw in middle of block");
4577 err2 |= true;
4581 if (err2)
4582 debug_gimple_stmt (stmt);
4583 err |= err2;
4587 eh_error_found = false;
4588 if (get_eh_throw_stmt_table (cfun))
4589 htab_traverse (get_eh_throw_stmt_table (cfun),
4590 verify_eh_throw_stmt_node,
4591 visited_stmts);
4593 if (err || eh_error_found)
4594 internal_error ("verify_gimple failed");
4596 pointer_set_destroy (visited);
4597 pointer_set_destroy (visited_stmts);
4598 verify_histograms ();
4599 timevar_pop (TV_TREE_STMT_VERIFY);
4603 /* Verifies that the flow information is OK. */
4605 static int
4606 gimple_verify_flow_info (void)
4608 int err = 0;
4609 basic_block bb;
4610 gimple_stmt_iterator gsi;
4611 gimple stmt;
4612 edge e;
4613 edge_iterator ei;
4615 if (ENTRY_BLOCK_PTR->il.gimple)
4617 error ("ENTRY_BLOCK has IL associated with it");
4618 err = 1;
4621 if (EXIT_BLOCK_PTR->il.gimple)
4623 error ("EXIT_BLOCK has IL associated with it");
4624 err = 1;
4627 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4628 if (e->flags & EDGE_FALLTHRU)
4630 error ("fallthru to exit from bb %d", e->src->index);
4631 err = 1;
4634 FOR_EACH_BB (bb)
4636 bool found_ctrl_stmt = false;
4638 stmt = NULL;
4640 /* Skip labels on the start of basic block. */
4641 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4643 tree label;
4644 gimple prev_stmt = stmt;
4646 stmt = gsi_stmt (gsi);
4648 if (gimple_code (stmt) != GIMPLE_LABEL)
4649 break;
4651 label = gimple_label_label (stmt);
4652 if (prev_stmt && DECL_NONLOCAL (label))
4654 error ("nonlocal label ");
4655 print_generic_expr (stderr, label, 0);
4656 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4657 bb->index);
4658 err = 1;
4661 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4663 error ("EH landing pad label ");
4664 print_generic_expr (stderr, label, 0);
4665 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4666 bb->index);
4667 err = 1;
4670 if (label_to_block (label) != bb)
4672 error ("label ");
4673 print_generic_expr (stderr, label, 0);
4674 fprintf (stderr, " to block does not match in bb %d",
4675 bb->index);
4676 err = 1;
4679 if (decl_function_context (label) != current_function_decl)
4681 error ("label ");
4682 print_generic_expr (stderr, label, 0);
4683 fprintf (stderr, " has incorrect context in bb %d",
4684 bb->index);
4685 err = 1;
4689 /* Verify that body of basic block BB is free of control flow. */
4690 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4692 gimple stmt = gsi_stmt (gsi);
4694 if (found_ctrl_stmt)
4696 error ("control flow in the middle of basic block %d",
4697 bb->index);
4698 err = 1;
4701 if (stmt_ends_bb_p (stmt))
4702 found_ctrl_stmt = true;
4704 if (gimple_code (stmt) == GIMPLE_LABEL)
4706 error ("label ");
4707 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4708 fprintf (stderr, " in the middle of basic block %d", bb->index);
4709 err = 1;
4713 gsi = gsi_last_bb (bb);
4714 if (gsi_end_p (gsi))
4715 continue;
4717 stmt = gsi_stmt (gsi);
4719 if (gimple_code (stmt) == GIMPLE_LABEL)
4720 continue;
4722 err |= verify_eh_edges (stmt);
4724 if (is_ctrl_stmt (stmt))
4726 FOR_EACH_EDGE (e, ei, bb->succs)
4727 if (e->flags & EDGE_FALLTHRU)
4729 error ("fallthru edge after a control statement in bb %d",
4730 bb->index);
4731 err = 1;
4735 if (gimple_code (stmt) != GIMPLE_COND)
4737 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4738 after anything else but if statement. */
4739 FOR_EACH_EDGE (e, ei, bb->succs)
4740 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4742 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4743 bb->index);
4744 err = 1;
4748 switch (gimple_code (stmt))
4750 case GIMPLE_COND:
4752 edge true_edge;
4753 edge false_edge;
4755 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4757 if (!true_edge
4758 || !false_edge
4759 || !(true_edge->flags & EDGE_TRUE_VALUE)
4760 || !(false_edge->flags & EDGE_FALSE_VALUE)
4761 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4762 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4763 || EDGE_COUNT (bb->succs) >= 3)
4765 error ("wrong outgoing edge flags at end of bb %d",
4766 bb->index);
4767 err = 1;
4770 break;
4772 case GIMPLE_GOTO:
4773 if (simple_goto_p (stmt))
4775 error ("explicit goto at end of bb %d", bb->index);
4776 err = 1;
4778 else
4780 /* FIXME. We should double check that the labels in the
4781 destination blocks have their address taken. */
4782 FOR_EACH_EDGE (e, ei, bb->succs)
4783 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4784 | EDGE_FALSE_VALUE))
4785 || !(e->flags & EDGE_ABNORMAL))
4787 error ("wrong outgoing edge flags at end of bb %d",
4788 bb->index);
4789 err = 1;
4792 break;
4794 case GIMPLE_CALL:
4795 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4796 break;
4797 /* ... fallthru ... */
4798 case GIMPLE_RETURN:
4799 if (!single_succ_p (bb)
4800 || (single_succ_edge (bb)->flags
4801 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4802 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4804 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4805 err = 1;
4807 if (single_succ (bb) != EXIT_BLOCK_PTR)
4809 error ("return edge does not point to exit in bb %d",
4810 bb->index);
4811 err = 1;
4813 break;
4815 case GIMPLE_SWITCH:
4817 tree prev;
4818 edge e;
4819 size_t i, n;
4821 n = gimple_switch_num_labels (stmt);
4823 /* Mark all the destination basic blocks. */
4824 for (i = 0; i < n; ++i)
4826 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4827 basic_block label_bb = label_to_block (lab);
4828 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4829 label_bb->aux = (void *)1;
4832 /* Verify that the case labels are sorted. */
4833 prev = gimple_switch_label (stmt, 0);
4834 for (i = 1; i < n; ++i)
4836 tree c = gimple_switch_label (stmt, i);
4837 if (!CASE_LOW (c))
4839 error ("found default case not at the start of "
4840 "case vector");
4841 err = 1;
4842 continue;
4844 if (CASE_LOW (prev)
4845 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4847 error ("case labels not sorted: ");
4848 print_generic_expr (stderr, prev, 0);
4849 fprintf (stderr," is greater than ");
4850 print_generic_expr (stderr, c, 0);
4851 fprintf (stderr," but comes before it.\n");
4852 err = 1;
4854 prev = c;
4856 /* VRP will remove the default case if it can prove it will
4857 never be executed. So do not verify there always exists
4858 a default case here. */
4860 FOR_EACH_EDGE (e, ei, bb->succs)
4862 if (!e->dest->aux)
4864 error ("extra outgoing edge %d->%d",
4865 bb->index, e->dest->index);
4866 err = 1;
4869 e->dest->aux = (void *)2;
4870 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4871 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4873 error ("wrong outgoing edge flags at end of bb %d",
4874 bb->index);
4875 err = 1;
4879 /* Check that we have all of them. */
4880 for (i = 0; i < n; ++i)
4882 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4883 basic_block label_bb = label_to_block (lab);
4885 if (label_bb->aux != (void *)2)
4887 error ("missing edge %i->%i", bb->index, label_bb->index);
4888 err = 1;
4892 FOR_EACH_EDGE (e, ei, bb->succs)
4893 e->dest->aux = (void *)0;
4895 break;
4897 case GIMPLE_EH_DISPATCH:
4898 err |= verify_eh_dispatch_edge (stmt);
4899 break;
4901 default:
4902 break;
4906 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4907 verify_dominators (CDI_DOMINATORS);
4909 return err;
4913 /* Updates phi nodes after creating a forwarder block joined
4914 by edge FALLTHRU. */
4916 static void
4917 gimple_make_forwarder_block (edge fallthru)
4919 edge e;
4920 edge_iterator ei;
4921 basic_block dummy, bb;
4922 tree var;
4923 gimple_stmt_iterator gsi;
4925 dummy = fallthru->src;
4926 bb = fallthru->dest;
4928 if (single_pred_p (bb))
4929 return;
4931 /* If we redirected a branch we must create new PHI nodes at the
4932 start of BB. */
4933 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4935 gimple phi, new_phi;
4937 phi = gsi_stmt (gsi);
4938 var = gimple_phi_result (phi);
4939 new_phi = create_phi_node (var, bb);
4940 SSA_NAME_DEF_STMT (var) = new_phi;
4941 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4942 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4943 UNKNOWN_LOCATION);
4946 /* Add the arguments we have stored on edges. */
4947 FOR_EACH_EDGE (e, ei, bb->preds)
4949 if (e == fallthru)
4950 continue;
4952 flush_pending_stmts (e);
4957 /* Return a non-special label in the head of basic block BLOCK.
4958 Create one if it doesn't exist. */
4960 tree
4961 gimple_block_label (basic_block bb)
4963 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4964 bool first = true;
4965 tree label;
4966 gimple stmt;
4968 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4970 stmt = gsi_stmt (i);
4971 if (gimple_code (stmt) != GIMPLE_LABEL)
4972 break;
4973 label = gimple_label_label (stmt);
4974 if (!DECL_NONLOCAL (label))
4976 if (!first)
4977 gsi_move_before (&i, &s);
4978 return label;
4982 label = create_artificial_label (UNKNOWN_LOCATION);
4983 stmt = gimple_build_label (label);
4984 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4985 return label;
4989 /* Attempt to perform edge redirection by replacing a possibly complex
4990 jump instruction by a goto or by removing the jump completely.
4991 This can apply only if all edges now point to the same block. The
4992 parameters and return values are equivalent to
4993 redirect_edge_and_branch. */
4995 static edge
4996 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4998 basic_block src = e->src;
4999 gimple_stmt_iterator i;
5000 gimple stmt;
5002 /* We can replace or remove a complex jump only when we have exactly
5003 two edges. */
5004 if (EDGE_COUNT (src->succs) != 2
5005 /* Verify that all targets will be TARGET. Specifically, the
5006 edge that is not E must also go to TARGET. */
5007 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5008 return NULL;
5010 i = gsi_last_bb (src);
5011 if (gsi_end_p (i))
5012 return NULL;
5014 stmt = gsi_stmt (i);
5016 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5018 gsi_remove (&i, true);
5019 e = ssa_redirect_edge (e, target);
5020 e->flags = EDGE_FALLTHRU;
5021 return e;
5024 return NULL;
5028 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5029 edge representing the redirected branch. */
5031 static edge
5032 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5034 basic_block bb = e->src;
5035 gimple_stmt_iterator gsi;
5036 edge ret;
5037 gimple stmt;
5039 if (e->flags & EDGE_ABNORMAL)
5040 return NULL;
5042 if (e->dest == dest)
5043 return NULL;
5045 if (e->flags & EDGE_EH)
5046 return redirect_eh_edge (e, dest);
5048 if (e->src != ENTRY_BLOCK_PTR)
5050 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5051 if (ret)
5052 return ret;
5055 gsi = gsi_last_bb (bb);
5056 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5058 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5060 case GIMPLE_COND:
5061 /* For COND_EXPR, we only need to redirect the edge. */
5062 break;
5064 case GIMPLE_GOTO:
5065 /* No non-abnormal edges should lead from a non-simple goto, and
5066 simple ones should be represented implicitly. */
5067 gcc_unreachable ();
5069 case GIMPLE_SWITCH:
5071 tree label = gimple_block_label (dest);
5072 tree cases = get_cases_for_edge (e, stmt);
5074 /* If we have a list of cases associated with E, then use it
5075 as it's a lot faster than walking the entire case vector. */
5076 if (cases)
5078 edge e2 = find_edge (e->src, dest);
5079 tree last, first;
5081 first = cases;
5082 while (cases)
5084 last = cases;
5085 CASE_LABEL (cases) = label;
5086 cases = CASE_CHAIN (cases);
5089 /* If there was already an edge in the CFG, then we need
5090 to move all the cases associated with E to E2. */
5091 if (e2)
5093 tree cases2 = get_cases_for_edge (e2, stmt);
5095 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5096 CASE_CHAIN (cases2) = first;
5098 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5100 else
5102 size_t i, n = gimple_switch_num_labels (stmt);
5104 for (i = 0; i < n; i++)
5106 tree elt = gimple_switch_label (stmt, i);
5107 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5108 CASE_LABEL (elt) = label;
5112 break;
5114 case GIMPLE_ASM:
5116 int i, n = gimple_asm_nlabels (stmt);
5117 tree label = NULL;
5119 for (i = 0; i < n; ++i)
5121 tree cons = gimple_asm_label_op (stmt, i);
5122 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5124 if (!label)
5125 label = gimple_block_label (dest);
5126 TREE_VALUE (cons) = label;
5130 /* If we didn't find any label matching the former edge in the
5131 asm labels, we must be redirecting the fallthrough
5132 edge. */
5133 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5135 break;
5137 case GIMPLE_RETURN:
5138 gsi_remove (&gsi, true);
5139 e->flags |= EDGE_FALLTHRU;
5140 break;
5142 case GIMPLE_OMP_RETURN:
5143 case GIMPLE_OMP_CONTINUE:
5144 case GIMPLE_OMP_SECTIONS_SWITCH:
5145 case GIMPLE_OMP_FOR:
5146 /* The edges from OMP constructs can be simply redirected. */
5147 break;
5149 case GIMPLE_EH_DISPATCH:
5150 if (!(e->flags & EDGE_FALLTHRU))
5151 redirect_eh_dispatch_edge (stmt, e, dest);
5152 break;
5154 case GIMPLE_TRANSACTION:
5155 /* The ABORT edge has a stored label associated with it, otherwise
5156 the edges are simply redirectable. */
5157 if (e->flags == 0)
5158 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5159 break;
5161 default:
5162 /* Otherwise it must be a fallthru edge, and we don't need to
5163 do anything besides redirecting it. */
5164 gcc_assert (e->flags & EDGE_FALLTHRU);
5165 break;
5168 /* Update/insert PHI nodes as necessary. */
5170 /* Now update the edges in the CFG. */
5171 e = ssa_redirect_edge (e, dest);
5173 return e;
5176 /* Returns true if it is possible to remove edge E by redirecting
5177 it to the destination of the other edge from E->src. */
5179 static bool
5180 gimple_can_remove_branch_p (const_edge e)
5182 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5183 return false;
5185 return true;
5188 /* Simple wrapper, as we can always redirect fallthru edges. */
5190 static basic_block
5191 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5193 e = gimple_redirect_edge_and_branch (e, dest);
5194 gcc_assert (e);
5196 return NULL;
5200 /* Splits basic block BB after statement STMT (but at least after the
5201 labels). If STMT is NULL, BB is split just after the labels. */
5203 static basic_block
5204 gimple_split_block (basic_block bb, void *stmt)
5206 gimple_stmt_iterator gsi;
5207 gimple_stmt_iterator gsi_tgt;
5208 gimple act;
5209 gimple_seq list;
5210 basic_block new_bb;
5211 edge e;
5212 edge_iterator ei;
5214 new_bb = create_empty_bb (bb);
5216 /* Redirect the outgoing edges. */
5217 new_bb->succs = bb->succs;
5218 bb->succs = NULL;
5219 FOR_EACH_EDGE (e, ei, new_bb->succs)
5220 e->src = new_bb;
5222 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5223 stmt = NULL;
5225 /* Move everything from GSI to the new basic block. */
5226 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5228 act = gsi_stmt (gsi);
5229 if (gimple_code (act) == GIMPLE_LABEL)
5230 continue;
5232 if (!stmt)
5233 break;
5235 if (stmt == act)
5237 gsi_next (&gsi);
5238 break;
5242 if (gsi_end_p (gsi))
5243 return new_bb;
5245 /* Split the statement list - avoid re-creating new containers as this
5246 brings ugly quadratic memory consumption in the inliner.
5247 (We are still quadratic since we need to update stmt BB pointers,
5248 sadly.) */
5249 list = gsi_split_seq_before (&gsi);
5250 set_bb_seq (new_bb, list);
5251 for (gsi_tgt = gsi_start (list);
5252 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5253 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5255 return new_bb;
5259 /* Moves basic block BB after block AFTER. */
5261 static bool
5262 gimple_move_block_after (basic_block bb, basic_block after)
5264 if (bb->prev_bb == after)
5265 return true;
5267 unlink_block (bb);
5268 link_block (bb, after);
5270 return true;
5274 /* Return true if basic_block can be duplicated. */
5276 static bool
5277 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5279 return true;
5282 /* Create a duplicate of the basic block BB. NOTE: This does not
5283 preserve SSA form. */
5285 static basic_block
5286 gimple_duplicate_bb (basic_block bb)
5288 basic_block new_bb;
5289 gimple_stmt_iterator gsi, gsi_tgt;
5290 gimple_seq phis = phi_nodes (bb);
5291 gimple phi, stmt, copy;
5293 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5295 /* Copy the PHI nodes. We ignore PHI node arguments here because
5296 the incoming edges have not been setup yet. */
5297 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5299 phi = gsi_stmt (gsi);
5300 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5301 create_new_def_for (gimple_phi_result (copy), copy,
5302 gimple_phi_result_ptr (copy));
5305 gsi_tgt = gsi_start_bb (new_bb);
5306 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5308 def_operand_p def_p;
5309 ssa_op_iter op_iter;
5310 tree lhs;
5312 stmt = gsi_stmt (gsi);
5313 if (gimple_code (stmt) == GIMPLE_LABEL)
5314 continue;
5316 /* Don't duplicate label debug stmts. */
5317 if (gimple_debug_bind_p (stmt)
5318 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5319 == LABEL_DECL)
5320 continue;
5322 /* Create a new copy of STMT and duplicate STMT's virtual
5323 operands. */
5324 copy = gimple_copy (stmt);
5325 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5327 maybe_duplicate_eh_stmt (copy, stmt);
5328 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5330 /* When copying around a stmt writing into a local non-user
5331 aggregate, make sure it won't share stack slot with other
5332 vars. */
5333 lhs = gimple_get_lhs (stmt);
5334 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5336 tree base = get_base_address (lhs);
5337 if (base
5338 && (TREE_CODE (base) == VAR_DECL
5339 || TREE_CODE (base) == RESULT_DECL)
5340 && DECL_IGNORED_P (base)
5341 && !TREE_STATIC (base)
5342 && !DECL_EXTERNAL (base)
5343 && (TREE_CODE (base) != VAR_DECL
5344 || !DECL_HAS_VALUE_EXPR_P (base)))
5345 DECL_NONSHAREABLE (base) = 1;
5348 /* Create new names for all the definitions created by COPY and
5349 add replacement mappings for each new name. */
5350 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5351 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5354 return new_bb;
5357 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5359 static void
5360 add_phi_args_after_copy_edge (edge e_copy)
5362 basic_block bb, bb_copy = e_copy->src, dest;
5363 edge e;
5364 edge_iterator ei;
5365 gimple phi, phi_copy;
5366 tree def;
5367 gimple_stmt_iterator psi, psi_copy;
5369 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5370 return;
5372 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5374 if (e_copy->dest->flags & BB_DUPLICATED)
5375 dest = get_bb_original (e_copy->dest);
5376 else
5377 dest = e_copy->dest;
5379 e = find_edge (bb, dest);
5380 if (!e)
5382 /* During loop unrolling the target of the latch edge is copied.
5383 In this case we are not looking for edge to dest, but to
5384 duplicated block whose original was dest. */
5385 FOR_EACH_EDGE (e, ei, bb->succs)
5387 if ((e->dest->flags & BB_DUPLICATED)
5388 && get_bb_original (e->dest) == dest)
5389 break;
5392 gcc_assert (e != NULL);
5395 for (psi = gsi_start_phis (e->dest),
5396 psi_copy = gsi_start_phis (e_copy->dest);
5397 !gsi_end_p (psi);
5398 gsi_next (&psi), gsi_next (&psi_copy))
5400 phi = gsi_stmt (psi);
5401 phi_copy = gsi_stmt (psi_copy);
5402 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5403 add_phi_arg (phi_copy, def, e_copy,
5404 gimple_phi_arg_location_from_edge (phi, e));
5409 /* Basic block BB_COPY was created by code duplication. Add phi node
5410 arguments for edges going out of BB_COPY. The blocks that were
5411 duplicated have BB_DUPLICATED set. */
5413 void
5414 add_phi_args_after_copy_bb (basic_block bb_copy)
5416 edge e_copy;
5417 edge_iterator ei;
5419 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5421 add_phi_args_after_copy_edge (e_copy);
5425 /* Blocks in REGION_COPY array of length N_REGION were created by
5426 duplication of basic blocks. Add phi node arguments for edges
5427 going from these blocks. If E_COPY is not NULL, also add
5428 phi node arguments for its destination.*/
5430 void
5431 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5432 edge e_copy)
5434 unsigned i;
5436 for (i = 0; i < n_region; i++)
5437 region_copy[i]->flags |= BB_DUPLICATED;
5439 for (i = 0; i < n_region; i++)
5440 add_phi_args_after_copy_bb (region_copy[i]);
5441 if (e_copy)
5442 add_phi_args_after_copy_edge (e_copy);
5444 for (i = 0; i < n_region; i++)
5445 region_copy[i]->flags &= ~BB_DUPLICATED;
5448 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5449 important exit edge EXIT. By important we mean that no SSA name defined
5450 inside region is live over the other exit edges of the region. All entry
5451 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5452 to the duplicate of the region. SSA form, dominance and loop information
5453 is updated. The new basic blocks are stored to REGION_COPY in the same
5454 order as they had in REGION, provided that REGION_COPY is not NULL.
5455 The function returns false if it is unable to copy the region,
5456 true otherwise. */
5458 bool
5459 gimple_duplicate_sese_region (edge entry, edge exit,
5460 basic_block *region, unsigned n_region,
5461 basic_block *region_copy)
5463 unsigned i;
5464 bool free_region_copy = false, copying_header = false;
5465 struct loop *loop = entry->dest->loop_father;
5466 edge exit_copy;
5467 VEC (basic_block, heap) *doms;
5468 edge redirected;
5469 int total_freq = 0, entry_freq = 0;
5470 gcov_type total_count = 0, entry_count = 0;
5472 if (!can_copy_bbs_p (region, n_region))
5473 return false;
5475 /* Some sanity checking. Note that we do not check for all possible
5476 missuses of the functions. I.e. if you ask to copy something weird,
5477 it will work, but the state of structures probably will not be
5478 correct. */
5479 for (i = 0; i < n_region; i++)
5481 /* We do not handle subloops, i.e. all the blocks must belong to the
5482 same loop. */
5483 if (region[i]->loop_father != loop)
5484 return false;
5486 if (region[i] != entry->dest
5487 && region[i] == loop->header)
5488 return false;
5491 set_loop_copy (loop, loop);
5493 /* In case the function is used for loop header copying (which is the primary
5494 use), ensure that EXIT and its copy will be new latch and entry edges. */
5495 if (loop->header == entry->dest)
5497 copying_header = true;
5498 set_loop_copy (loop, loop_outer (loop));
5500 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5501 return false;
5503 for (i = 0; i < n_region; i++)
5504 if (region[i] != exit->src
5505 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5506 return false;
5509 if (!region_copy)
5511 region_copy = XNEWVEC (basic_block, n_region);
5512 free_region_copy = true;
5515 gcc_assert (!need_ssa_update_p (cfun));
5517 /* Record blocks outside the region that are dominated by something
5518 inside. */
5519 doms = NULL;
5520 initialize_original_copy_tables ();
5522 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5524 if (entry->dest->count)
5526 total_count = entry->dest->count;
5527 entry_count = entry->count;
5528 /* Fix up corner cases, to avoid division by zero or creation of negative
5529 frequencies. */
5530 if (entry_count > total_count)
5531 entry_count = total_count;
5533 else
5535 total_freq = entry->dest->frequency;
5536 entry_freq = EDGE_FREQUENCY (entry);
5537 /* Fix up corner cases, to avoid division by zero or creation of negative
5538 frequencies. */
5539 if (total_freq == 0)
5540 total_freq = 1;
5541 else if (entry_freq > total_freq)
5542 entry_freq = total_freq;
5545 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5546 split_edge_bb_loc (entry));
5547 if (total_count)
5549 scale_bbs_frequencies_gcov_type (region, n_region,
5550 total_count - entry_count,
5551 total_count);
5552 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5553 total_count);
5555 else
5557 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5558 total_freq);
5559 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5562 if (copying_header)
5564 loop->header = exit->dest;
5565 loop->latch = exit->src;
5568 /* Redirect the entry and add the phi node arguments. */
5569 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5570 gcc_assert (redirected != NULL);
5571 flush_pending_stmts (entry);
5573 /* Concerning updating of dominators: We must recount dominators
5574 for entry block and its copy. Anything that is outside of the
5575 region, but was dominated by something inside needs recounting as
5576 well. */
5577 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5578 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5579 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5580 VEC_free (basic_block, heap, doms);
5582 /* Add the other PHI node arguments. */
5583 add_phi_args_after_copy (region_copy, n_region, NULL);
5585 /* Update the SSA web. */
5586 update_ssa (TODO_update_ssa);
5588 if (free_region_copy)
5589 free (region_copy);
5591 free_original_copy_tables ();
5592 return true;
5595 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5596 are stored to REGION_COPY in the same order in that they appear
5597 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5598 the region, EXIT an exit from it. The condition guarding EXIT
5599 is moved to ENTRY. Returns true if duplication succeeds, false
5600 otherwise.
5602 For example,
5604 some_code;
5605 if (cond)
5607 else
5610 is transformed to
5612 if (cond)
5614 some_code;
5617 else
5619 some_code;
5624 bool
5625 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5626 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5627 basic_block *region_copy ATTRIBUTE_UNUSED)
5629 unsigned i;
5630 bool free_region_copy = false;
5631 struct loop *loop = exit->dest->loop_father;
5632 struct loop *orig_loop = entry->dest->loop_father;
5633 basic_block switch_bb, entry_bb, nentry_bb;
5634 VEC (basic_block, heap) *doms;
5635 int total_freq = 0, exit_freq = 0;
5636 gcov_type total_count = 0, exit_count = 0;
5637 edge exits[2], nexits[2], e;
5638 gimple_stmt_iterator gsi;
5639 gimple cond_stmt;
5640 edge sorig, snew;
5641 basic_block exit_bb;
5642 gimple_stmt_iterator psi;
5643 gimple phi;
5644 tree def;
5646 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5647 exits[0] = exit;
5648 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5650 if (!can_copy_bbs_p (region, n_region))
5651 return false;
5653 initialize_original_copy_tables ();
5654 set_loop_copy (orig_loop, loop);
5655 duplicate_subloops (orig_loop, loop);
5657 if (!region_copy)
5659 region_copy = XNEWVEC (basic_block, n_region);
5660 free_region_copy = true;
5663 gcc_assert (!need_ssa_update_p (cfun));
5665 /* Record blocks outside the region that are dominated by something
5666 inside. */
5667 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5669 if (exit->src->count)
5671 total_count = exit->src->count;
5672 exit_count = exit->count;
5673 /* Fix up corner cases, to avoid division by zero or creation of negative
5674 frequencies. */
5675 if (exit_count > total_count)
5676 exit_count = total_count;
5678 else
5680 total_freq = exit->src->frequency;
5681 exit_freq = EDGE_FREQUENCY (exit);
5682 /* Fix up corner cases, to avoid division by zero or creation of negative
5683 frequencies. */
5684 if (total_freq == 0)
5685 total_freq = 1;
5686 if (exit_freq > total_freq)
5687 exit_freq = total_freq;
5690 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5691 split_edge_bb_loc (exit));
5692 if (total_count)
5694 scale_bbs_frequencies_gcov_type (region, n_region,
5695 total_count - exit_count,
5696 total_count);
5697 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5698 total_count);
5700 else
5702 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5703 total_freq);
5704 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5707 /* Create the switch block, and put the exit condition to it. */
5708 entry_bb = entry->dest;
5709 nentry_bb = get_bb_copy (entry_bb);
5710 if (!last_stmt (entry->src)
5711 || !stmt_ends_bb_p (last_stmt (entry->src)))
5712 switch_bb = entry->src;
5713 else
5714 switch_bb = split_edge (entry);
5715 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5717 gsi = gsi_last_bb (switch_bb);
5718 cond_stmt = last_stmt (exit->src);
5719 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5720 cond_stmt = gimple_copy (cond_stmt);
5722 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5724 sorig = single_succ_edge (switch_bb);
5725 sorig->flags = exits[1]->flags;
5726 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5728 /* Register the new edge from SWITCH_BB in loop exit lists. */
5729 rescan_loop_exit (snew, true, false);
5731 /* Add the PHI node arguments. */
5732 add_phi_args_after_copy (region_copy, n_region, snew);
5734 /* Get rid of now superfluous conditions and associated edges (and phi node
5735 arguments). */
5736 exit_bb = exit->dest;
5738 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5739 PENDING_STMT (e) = NULL;
5741 /* The latch of ORIG_LOOP was copied, and so was the backedge
5742 to the original header. We redirect this backedge to EXIT_BB. */
5743 for (i = 0; i < n_region; i++)
5744 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5746 gcc_assert (single_succ_edge (region_copy[i]));
5747 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5748 PENDING_STMT (e) = NULL;
5749 for (psi = gsi_start_phis (exit_bb);
5750 !gsi_end_p (psi);
5751 gsi_next (&psi))
5753 phi = gsi_stmt (psi);
5754 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5755 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5758 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5759 PENDING_STMT (e) = NULL;
5761 /* Anything that is outside of the region, but was dominated by something
5762 inside needs to update dominance info. */
5763 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5764 VEC_free (basic_block, heap, doms);
5765 /* Update the SSA web. */
5766 update_ssa (TODO_update_ssa);
5768 if (free_region_copy)
5769 free (region_copy);
5771 free_original_copy_tables ();
5772 return true;
5775 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5776 adding blocks when the dominator traversal reaches EXIT. This
5777 function silently assumes that ENTRY strictly dominates EXIT. */
5779 void
5780 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5781 VEC(basic_block,heap) **bbs_p)
5783 basic_block son;
5785 for (son = first_dom_son (CDI_DOMINATORS, entry);
5786 son;
5787 son = next_dom_son (CDI_DOMINATORS, son))
5789 VEC_safe_push (basic_block, heap, *bbs_p, son);
5790 if (son != exit)
5791 gather_blocks_in_sese_region (son, exit, bbs_p);
5795 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5796 The duplicates are recorded in VARS_MAP. */
5798 static void
5799 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5800 tree to_context)
5802 tree t = *tp, new_t;
5803 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5804 void **loc;
5806 if (DECL_CONTEXT (t) == to_context)
5807 return;
5809 loc = pointer_map_contains (vars_map, t);
5811 if (!loc)
5813 loc = pointer_map_insert (vars_map, t);
5815 if (SSA_VAR_P (t))
5817 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5818 add_local_decl (f, new_t);
5820 else
5822 gcc_assert (TREE_CODE (t) == CONST_DECL);
5823 new_t = copy_node (t);
5825 DECL_CONTEXT (new_t) = to_context;
5827 *loc = new_t;
5829 else
5830 new_t = (tree) *loc;
5832 *tp = new_t;
5836 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5837 VARS_MAP maps old ssa names and var_decls to the new ones. */
5839 static tree
5840 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5841 tree to_context)
5843 void **loc;
5844 tree new_name, decl = SSA_NAME_VAR (name);
5846 gcc_assert (is_gimple_reg (name));
5848 loc = pointer_map_contains (vars_map, name);
5850 if (!loc)
5852 replace_by_duplicate_decl (&decl, vars_map, to_context);
5854 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5855 if (gimple_in_ssa_p (cfun))
5856 add_referenced_var (decl);
5858 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5859 if (SSA_NAME_IS_DEFAULT_DEF (name))
5860 set_default_def (decl, new_name);
5861 pop_cfun ();
5863 loc = pointer_map_insert (vars_map, name);
5864 *loc = new_name;
5866 else
5867 new_name = (tree) *loc;
5869 return new_name;
5872 struct move_stmt_d
5874 tree orig_block;
5875 tree new_block;
5876 tree from_context;
5877 tree to_context;
5878 struct pointer_map_t *vars_map;
5879 htab_t new_label_map;
5880 struct pointer_map_t *eh_map;
5881 bool remap_decls_p;
5884 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5885 contained in *TP if it has been ORIG_BLOCK previously and change the
5886 DECL_CONTEXT of every local variable referenced in *TP. */
5888 static tree
5889 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5891 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5892 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5893 tree t = *tp;
5895 if (EXPR_P (t))
5896 /* We should never have TREE_BLOCK set on non-statements. */
5897 gcc_assert (!TREE_BLOCK (t));
5899 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5901 if (TREE_CODE (t) == SSA_NAME)
5902 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5903 else if (TREE_CODE (t) == LABEL_DECL)
5905 if (p->new_label_map)
5907 struct tree_map in, *out;
5908 in.base.from = t;
5909 out = (struct tree_map *)
5910 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5911 if (out)
5912 *tp = t = out->to;
5915 DECL_CONTEXT (t) = p->to_context;
5917 else if (p->remap_decls_p)
5919 /* Replace T with its duplicate. T should no longer appear in the
5920 parent function, so this looks wasteful; however, it may appear
5921 in referenced_vars, and more importantly, as virtual operands of
5922 statements, and in alias lists of other variables. It would be
5923 quite difficult to expunge it from all those places. ??? It might
5924 suffice to do this for addressable variables. */
5925 if ((TREE_CODE (t) == VAR_DECL
5926 && !is_global_var (t))
5927 || TREE_CODE (t) == CONST_DECL)
5928 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5930 if (SSA_VAR_P (t)
5931 && gimple_in_ssa_p (cfun))
5933 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5934 add_referenced_var (*tp);
5935 pop_cfun ();
5938 *walk_subtrees = 0;
5940 else if (TYPE_P (t))
5941 *walk_subtrees = 0;
5943 return NULL_TREE;
5946 /* Helper for move_stmt_r. Given an EH region number for the source
5947 function, map that to the duplicate EH regio number in the dest. */
5949 static int
5950 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5952 eh_region old_r, new_r;
5953 void **slot;
5955 old_r = get_eh_region_from_number (old_nr);
5956 slot = pointer_map_contains (p->eh_map, old_r);
5957 new_r = (eh_region) *slot;
5959 return new_r->index;
5962 /* Similar, but operate on INTEGER_CSTs. */
5964 static tree
5965 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5967 int old_nr, new_nr;
5969 old_nr = tree_low_cst (old_t_nr, 0);
5970 new_nr = move_stmt_eh_region_nr (old_nr, p);
5972 return build_int_cst (integer_type_node, new_nr);
5975 /* Like move_stmt_op, but for gimple statements.
5977 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5978 contained in the current statement in *GSI_P and change the
5979 DECL_CONTEXT of every local variable referenced in the current
5980 statement. */
5982 static tree
5983 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5984 struct walk_stmt_info *wi)
5986 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5987 gimple stmt = gsi_stmt (*gsi_p);
5988 tree block = gimple_block (stmt);
5990 if (p->orig_block == NULL_TREE
5991 || block == p->orig_block
5992 || block == NULL_TREE)
5993 gimple_set_block (stmt, p->new_block);
5994 #ifdef ENABLE_CHECKING
5995 else if (block != p->new_block)
5997 while (block && block != p->orig_block)
5998 block = BLOCK_SUPERCONTEXT (block);
5999 gcc_assert (block);
6001 #endif
6003 switch (gimple_code (stmt))
6005 case GIMPLE_CALL:
6006 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6008 tree r, fndecl = gimple_call_fndecl (stmt);
6009 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6010 switch (DECL_FUNCTION_CODE (fndecl))
6012 case BUILT_IN_EH_COPY_VALUES:
6013 r = gimple_call_arg (stmt, 1);
6014 r = move_stmt_eh_region_tree_nr (r, p);
6015 gimple_call_set_arg (stmt, 1, r);
6016 /* FALLTHRU */
6018 case BUILT_IN_EH_POINTER:
6019 case BUILT_IN_EH_FILTER:
6020 r = gimple_call_arg (stmt, 0);
6021 r = move_stmt_eh_region_tree_nr (r, p);
6022 gimple_call_set_arg (stmt, 0, r);
6023 break;
6025 default:
6026 break;
6029 break;
6031 case GIMPLE_RESX:
6033 int r = gimple_resx_region (stmt);
6034 r = move_stmt_eh_region_nr (r, p);
6035 gimple_resx_set_region (stmt, r);
6037 break;
6039 case GIMPLE_EH_DISPATCH:
6041 int r = gimple_eh_dispatch_region (stmt);
6042 r = move_stmt_eh_region_nr (r, p);
6043 gimple_eh_dispatch_set_region (stmt, r);
6045 break;
6047 case GIMPLE_OMP_RETURN:
6048 case GIMPLE_OMP_CONTINUE:
6049 break;
6050 default:
6051 if (is_gimple_omp (stmt))
6053 /* Do not remap variables inside OMP directives. Variables
6054 referenced in clauses and directive header belong to the
6055 parent function and should not be moved into the child
6056 function. */
6057 bool save_remap_decls_p = p->remap_decls_p;
6058 p->remap_decls_p = false;
6059 *handled_ops_p = true;
6061 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
6062 move_stmt_op, wi);
6064 p->remap_decls_p = save_remap_decls_p;
6066 break;
6069 return NULL_TREE;
6072 /* Move basic block BB from function CFUN to function DEST_FN. The
6073 block is moved out of the original linked list and placed after
6074 block AFTER in the new list. Also, the block is removed from the
6075 original array of blocks and placed in DEST_FN's array of blocks.
6076 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6077 updated to reflect the moved edges.
6079 The local variables are remapped to new instances, VARS_MAP is used
6080 to record the mapping. */
6082 static void
6083 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6084 basic_block after, bool update_edge_count_p,
6085 struct move_stmt_d *d)
6087 struct control_flow_graph *cfg;
6088 edge_iterator ei;
6089 edge e;
6090 gimple_stmt_iterator si;
6091 unsigned old_len, new_len;
6093 /* Remove BB from dominance structures. */
6094 delete_from_dominance_info (CDI_DOMINATORS, bb);
6095 if (current_loops)
6096 remove_bb_from_loops (bb);
6098 /* Link BB to the new linked list. */
6099 move_block_after (bb, after);
6101 /* Update the edge count in the corresponding flowgraphs. */
6102 if (update_edge_count_p)
6103 FOR_EACH_EDGE (e, ei, bb->succs)
6105 cfun->cfg->x_n_edges--;
6106 dest_cfun->cfg->x_n_edges++;
6109 /* Remove BB from the original basic block array. */
6110 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
6111 cfun->cfg->x_n_basic_blocks--;
6113 /* Grow DEST_CFUN's basic block array if needed. */
6114 cfg = dest_cfun->cfg;
6115 cfg->x_n_basic_blocks++;
6116 if (bb->index >= cfg->x_last_basic_block)
6117 cfg->x_last_basic_block = bb->index + 1;
6119 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
6120 if ((unsigned) cfg->x_last_basic_block >= old_len)
6122 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6123 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
6124 new_len);
6127 VEC_replace (basic_block, cfg->x_basic_block_info,
6128 bb->index, bb);
6130 /* Remap the variables in phi nodes. */
6131 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6133 gimple phi = gsi_stmt (si);
6134 use_operand_p use;
6135 tree op = PHI_RESULT (phi);
6136 ssa_op_iter oi;
6138 if (!is_gimple_reg (op))
6140 /* Remove the phi nodes for virtual operands (alias analysis will be
6141 run for the new function, anyway). */
6142 remove_phi_node (&si, true);
6143 continue;
6146 SET_PHI_RESULT (phi,
6147 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6148 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6150 op = USE_FROM_PTR (use);
6151 if (TREE_CODE (op) == SSA_NAME)
6152 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6155 gsi_next (&si);
6158 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6160 gimple stmt = gsi_stmt (si);
6161 struct walk_stmt_info wi;
6163 memset (&wi, 0, sizeof (wi));
6164 wi.info = d;
6165 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6167 if (gimple_code (stmt) == GIMPLE_LABEL)
6169 tree label = gimple_label_label (stmt);
6170 int uid = LABEL_DECL_UID (label);
6172 gcc_assert (uid > -1);
6174 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
6175 if (old_len <= (unsigned) uid)
6177 new_len = 3 * uid / 2 + 1;
6178 VEC_safe_grow_cleared (basic_block, gc,
6179 cfg->x_label_to_block_map, new_len);
6182 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
6183 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
6185 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6187 if (uid >= dest_cfun->cfg->last_label_uid)
6188 dest_cfun->cfg->last_label_uid = uid + 1;
6191 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6192 remove_stmt_from_eh_lp_fn (cfun, stmt);
6194 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6195 gimple_remove_stmt_histograms (cfun, stmt);
6197 /* We cannot leave any operands allocated from the operand caches of
6198 the current function. */
6199 free_stmt_operands (stmt);
6200 push_cfun (dest_cfun);
6201 update_stmt (stmt);
6202 pop_cfun ();
6205 FOR_EACH_EDGE (e, ei, bb->succs)
6206 if (e->goto_locus)
6208 tree block = e->goto_block;
6209 if (d->orig_block == NULL_TREE
6210 || block == d->orig_block)
6211 e->goto_block = d->new_block;
6212 #ifdef ENABLE_CHECKING
6213 else if (block != d->new_block)
6215 while (block && block != d->orig_block)
6216 block = BLOCK_SUPERCONTEXT (block);
6217 gcc_assert (block);
6219 #endif
6223 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6224 the outermost EH region. Use REGION as the incoming base EH region. */
6226 static eh_region
6227 find_outermost_region_in_block (struct function *src_cfun,
6228 basic_block bb, eh_region region)
6230 gimple_stmt_iterator si;
6232 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6234 gimple stmt = gsi_stmt (si);
6235 eh_region stmt_region;
6236 int lp_nr;
6238 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6239 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6240 if (stmt_region)
6242 if (region == NULL)
6243 region = stmt_region;
6244 else if (stmt_region != region)
6246 region = eh_region_outermost (src_cfun, stmt_region, region);
6247 gcc_assert (region != NULL);
6252 return region;
6255 static tree
6256 new_label_mapper (tree decl, void *data)
6258 htab_t hash = (htab_t) data;
6259 struct tree_map *m;
6260 void **slot;
6262 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6264 m = XNEW (struct tree_map);
6265 m->hash = DECL_UID (decl);
6266 m->base.from = decl;
6267 m->to = create_artificial_label (UNKNOWN_LOCATION);
6268 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6269 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6270 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6272 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6273 gcc_assert (*slot == NULL);
6275 *slot = m;
6277 return m->to;
6280 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6281 subblocks. */
6283 static void
6284 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6285 tree to_context)
6287 tree *tp, t;
6289 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6291 t = *tp;
6292 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6293 continue;
6294 replace_by_duplicate_decl (&t, vars_map, to_context);
6295 if (t != *tp)
6297 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6299 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6300 DECL_HAS_VALUE_EXPR_P (t) = 1;
6302 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6303 *tp = t;
6307 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6308 replace_block_vars_by_duplicates (block, vars_map, to_context);
6311 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6312 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6313 single basic block in the original CFG and the new basic block is
6314 returned. DEST_CFUN must not have a CFG yet.
6316 Note that the region need not be a pure SESE region. Blocks inside
6317 the region may contain calls to abort/exit. The only restriction
6318 is that ENTRY_BB should be the only entry point and it must
6319 dominate EXIT_BB.
6321 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6322 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6323 to the new function.
6325 All local variables referenced in the region are assumed to be in
6326 the corresponding BLOCK_VARS and unexpanded variable lists
6327 associated with DEST_CFUN. */
6329 basic_block
6330 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6331 basic_block exit_bb, tree orig_block)
6333 VEC(basic_block,heap) *bbs, *dom_bbs;
6334 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6335 basic_block after, bb, *entry_pred, *exit_succ, abb;
6336 struct function *saved_cfun = cfun;
6337 int *entry_flag, *exit_flag;
6338 unsigned *entry_prob, *exit_prob;
6339 unsigned i, num_entry_edges, num_exit_edges;
6340 edge e;
6341 edge_iterator ei;
6342 htab_t new_label_map;
6343 struct pointer_map_t *vars_map, *eh_map;
6344 struct loop *loop = entry_bb->loop_father;
6345 struct move_stmt_d d;
6347 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6348 region. */
6349 gcc_assert (entry_bb != exit_bb
6350 && (!exit_bb
6351 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6353 /* Collect all the blocks in the region. Manually add ENTRY_BB
6354 because it won't be added by dfs_enumerate_from. */
6355 bbs = NULL;
6356 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6357 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6359 /* The blocks that used to be dominated by something in BBS will now be
6360 dominated by the new block. */
6361 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6362 VEC_address (basic_block, bbs),
6363 VEC_length (basic_block, bbs));
6365 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6366 the predecessor edges to ENTRY_BB and the successor edges to
6367 EXIT_BB so that we can re-attach them to the new basic block that
6368 will replace the region. */
6369 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6370 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6371 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6372 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6373 i = 0;
6374 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6376 entry_prob[i] = e->probability;
6377 entry_flag[i] = e->flags;
6378 entry_pred[i++] = e->src;
6379 remove_edge (e);
6382 if (exit_bb)
6384 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6385 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6386 sizeof (basic_block));
6387 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6388 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6389 i = 0;
6390 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6392 exit_prob[i] = e->probability;
6393 exit_flag[i] = e->flags;
6394 exit_succ[i++] = e->dest;
6395 remove_edge (e);
6398 else
6400 num_exit_edges = 0;
6401 exit_succ = NULL;
6402 exit_flag = NULL;
6403 exit_prob = NULL;
6406 /* Switch context to the child function to initialize DEST_FN's CFG. */
6407 gcc_assert (dest_cfun->cfg == NULL);
6408 push_cfun (dest_cfun);
6410 init_empty_tree_cfg ();
6412 /* Initialize EH information for the new function. */
6413 eh_map = NULL;
6414 new_label_map = NULL;
6415 if (saved_cfun->eh)
6417 eh_region region = NULL;
6419 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6420 region = find_outermost_region_in_block (saved_cfun, bb, region);
6422 init_eh_for_function ();
6423 if (region != NULL)
6425 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6426 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6427 new_label_mapper, new_label_map);
6431 pop_cfun ();
6433 /* Move blocks from BBS into DEST_CFUN. */
6434 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6435 after = dest_cfun->cfg->x_entry_block_ptr;
6436 vars_map = pointer_map_create ();
6438 memset (&d, 0, sizeof (d));
6439 d.orig_block = orig_block;
6440 d.new_block = DECL_INITIAL (dest_cfun->decl);
6441 d.from_context = cfun->decl;
6442 d.to_context = dest_cfun->decl;
6443 d.vars_map = vars_map;
6444 d.new_label_map = new_label_map;
6445 d.eh_map = eh_map;
6446 d.remap_decls_p = true;
6448 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6450 /* No need to update edge counts on the last block. It has
6451 already been updated earlier when we detached the region from
6452 the original CFG. */
6453 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6454 after = bb;
6457 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6458 if (orig_block)
6460 tree block;
6461 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6462 == NULL_TREE);
6463 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6464 = BLOCK_SUBBLOCKS (orig_block);
6465 for (block = BLOCK_SUBBLOCKS (orig_block);
6466 block; block = BLOCK_CHAIN (block))
6467 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6468 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6471 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6472 vars_map, dest_cfun->decl);
6474 if (new_label_map)
6475 htab_delete (new_label_map);
6476 if (eh_map)
6477 pointer_map_destroy (eh_map);
6478 pointer_map_destroy (vars_map);
6480 /* Rewire the entry and exit blocks. The successor to the entry
6481 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6482 the child function. Similarly, the predecessor of DEST_FN's
6483 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6484 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6485 various CFG manipulation function get to the right CFG.
6487 FIXME, this is silly. The CFG ought to become a parameter to
6488 these helpers. */
6489 push_cfun (dest_cfun);
6490 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6491 if (exit_bb)
6492 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6493 pop_cfun ();
6495 /* Back in the original function, the SESE region has disappeared,
6496 create a new basic block in its place. */
6497 bb = create_empty_bb (entry_pred[0]);
6498 if (current_loops)
6499 add_bb_to_loop (bb, loop);
6500 for (i = 0; i < num_entry_edges; i++)
6502 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6503 e->probability = entry_prob[i];
6506 for (i = 0; i < num_exit_edges; i++)
6508 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6509 e->probability = exit_prob[i];
6512 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6513 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6514 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6515 VEC_free (basic_block, heap, dom_bbs);
6517 if (exit_bb)
6519 free (exit_prob);
6520 free (exit_flag);
6521 free (exit_succ);
6523 free (entry_prob);
6524 free (entry_flag);
6525 free (entry_pred);
6526 VEC_free (basic_block, heap, bbs);
6528 return bb;
6532 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6535 void
6536 dump_function_to_file (tree fn, FILE *file, int flags)
6538 tree arg, var;
6539 struct function *dsf;
6540 bool ignore_topmost_bind = false, any_var = false;
6541 basic_block bb;
6542 tree chain;
6543 bool tmclone = TREE_CODE (fn) == FUNCTION_DECL && decl_is_tm_clone (fn);
6545 fprintf (file, "%s %s(", lang_hooks.decl_printable_name (fn, 2),
6546 tmclone ? "[tm-clone] " : "");
6548 arg = DECL_ARGUMENTS (fn);
6549 while (arg)
6551 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6552 fprintf (file, " ");
6553 print_generic_expr (file, arg, dump_flags);
6554 if (flags & TDF_VERBOSE)
6555 print_node (file, "", arg, 4);
6556 if (DECL_CHAIN (arg))
6557 fprintf (file, ", ");
6558 arg = DECL_CHAIN (arg);
6560 fprintf (file, ")\n");
6562 if (flags & TDF_VERBOSE)
6563 print_node (file, "", fn, 2);
6565 dsf = DECL_STRUCT_FUNCTION (fn);
6566 if (dsf && (flags & TDF_EH))
6567 dump_eh_tree (file, dsf);
6569 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6571 dump_node (fn, TDF_SLIM | flags, file);
6572 return;
6575 /* Switch CFUN to point to FN. */
6576 push_cfun (DECL_STRUCT_FUNCTION (fn));
6578 /* When GIMPLE is lowered, the variables are no longer available in
6579 BIND_EXPRs, so display them separately. */
6580 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6582 unsigned ix;
6583 ignore_topmost_bind = true;
6585 fprintf (file, "{\n");
6586 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6588 print_generic_decl (file, var, flags);
6589 if (flags & TDF_VERBOSE)
6590 print_node (file, "", var, 4);
6591 fprintf (file, "\n");
6593 any_var = true;
6597 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6599 /* If the CFG has been built, emit a CFG-based dump. */
6600 check_bb_profile (ENTRY_BLOCK_PTR, file);
6601 if (!ignore_topmost_bind)
6602 fprintf (file, "{\n");
6604 if (any_var && n_basic_blocks)
6605 fprintf (file, "\n");
6607 FOR_EACH_BB (bb)
6608 gimple_dump_bb (bb, file, 2, flags);
6610 fprintf (file, "}\n");
6611 check_bb_profile (EXIT_BLOCK_PTR, file);
6613 else if (DECL_SAVED_TREE (fn) == NULL)
6615 /* The function is now in GIMPLE form but the CFG has not been
6616 built yet. Emit the single sequence of GIMPLE statements
6617 that make up its body. */
6618 gimple_seq body = gimple_body (fn);
6620 if (gimple_seq_first_stmt (body)
6621 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6622 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6623 print_gimple_seq (file, body, 0, flags);
6624 else
6626 if (!ignore_topmost_bind)
6627 fprintf (file, "{\n");
6629 if (any_var)
6630 fprintf (file, "\n");
6632 print_gimple_seq (file, body, 2, flags);
6633 fprintf (file, "}\n");
6636 else
6638 int indent;
6640 /* Make a tree based dump. */
6641 chain = DECL_SAVED_TREE (fn);
6643 if (chain && TREE_CODE (chain) == BIND_EXPR)
6645 if (ignore_topmost_bind)
6647 chain = BIND_EXPR_BODY (chain);
6648 indent = 2;
6650 else
6651 indent = 0;
6653 else
6655 if (!ignore_topmost_bind)
6656 fprintf (file, "{\n");
6657 indent = 2;
6660 if (any_var)
6661 fprintf (file, "\n");
6663 print_generic_stmt_indented (file, chain, flags, indent);
6664 if (ignore_topmost_bind)
6665 fprintf (file, "}\n");
6668 if (flags & TDF_ENUMERATE_LOCALS)
6669 dump_enumerated_decls (file, flags);
6670 fprintf (file, "\n\n");
6672 /* Restore CFUN. */
6673 pop_cfun ();
6677 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6679 DEBUG_FUNCTION void
6680 debug_function (tree fn, int flags)
6682 dump_function_to_file (fn, stderr, flags);
6686 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6688 static void
6689 print_pred_bbs (FILE *file, basic_block bb)
6691 edge e;
6692 edge_iterator ei;
6694 FOR_EACH_EDGE (e, ei, bb->preds)
6695 fprintf (file, "bb_%d ", e->src->index);
6699 /* Print on FILE the indexes for the successors of basic_block BB. */
6701 static void
6702 print_succ_bbs (FILE *file, basic_block bb)
6704 edge e;
6705 edge_iterator ei;
6707 FOR_EACH_EDGE (e, ei, bb->succs)
6708 fprintf (file, "bb_%d ", e->dest->index);
6711 /* Print to FILE the basic block BB following the VERBOSITY level. */
6713 void
6714 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6716 char *s_indent = (char *) alloca ((size_t) indent + 1);
6717 memset ((void *) s_indent, ' ', (size_t) indent);
6718 s_indent[indent] = '\0';
6720 /* Print basic_block's header. */
6721 if (verbosity >= 2)
6723 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6724 print_pred_bbs (file, bb);
6725 fprintf (file, "}, succs = {");
6726 print_succ_bbs (file, bb);
6727 fprintf (file, "})\n");
6730 /* Print basic_block's body. */
6731 if (verbosity >= 3)
6733 fprintf (file, "%s {\n", s_indent);
6734 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6735 fprintf (file, "%s }\n", s_indent);
6739 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6741 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6742 VERBOSITY level this outputs the contents of the loop, or just its
6743 structure. */
6745 static void
6746 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6748 char *s_indent;
6749 basic_block bb;
6751 if (loop == NULL)
6752 return;
6754 s_indent = (char *) alloca ((size_t) indent + 1);
6755 memset ((void *) s_indent, ' ', (size_t) indent);
6756 s_indent[indent] = '\0';
6758 /* Print loop's header. */
6759 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6760 loop->num, loop->header->index, loop->latch->index);
6761 fprintf (file, ", niter = ");
6762 print_generic_expr (file, loop->nb_iterations, 0);
6764 if (loop->any_upper_bound)
6766 fprintf (file, ", upper_bound = ");
6767 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6770 if (loop->any_estimate)
6772 fprintf (file, ", estimate = ");
6773 dump_double_int (file, loop->nb_iterations_estimate, true);
6775 fprintf (file, ")\n");
6777 /* Print loop's body. */
6778 if (verbosity >= 1)
6780 fprintf (file, "%s{\n", s_indent);
6781 FOR_EACH_BB (bb)
6782 if (bb->loop_father == loop)
6783 print_loops_bb (file, bb, indent, verbosity);
6785 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6786 fprintf (file, "%s}\n", s_indent);
6790 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6791 spaces. Following VERBOSITY level this outputs the contents of the
6792 loop, or just its structure. */
6794 static void
6795 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6797 if (loop == NULL)
6798 return;
6800 print_loop (file, loop, indent, verbosity);
6801 print_loop_and_siblings (file, loop->next, indent, verbosity);
6804 /* Follow a CFG edge from the entry point of the program, and on entry
6805 of a loop, pretty print the loop structure on FILE. */
6807 void
6808 print_loops (FILE *file, int verbosity)
6810 basic_block bb;
6812 bb = ENTRY_BLOCK_PTR;
6813 if (bb && bb->loop_father)
6814 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6818 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6820 DEBUG_FUNCTION void
6821 debug_loops (int verbosity)
6823 print_loops (stderr, verbosity);
6826 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6828 DEBUG_FUNCTION void
6829 debug_loop (struct loop *loop, int verbosity)
6831 print_loop (stderr, loop, 0, verbosity);
6834 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6835 level. */
6837 DEBUG_FUNCTION void
6838 debug_loop_num (unsigned num, int verbosity)
6840 debug_loop (get_loop (num), verbosity);
6843 /* Return true if BB ends with a call, possibly followed by some
6844 instructions that must stay with the call. Return false,
6845 otherwise. */
6847 static bool
6848 gimple_block_ends_with_call_p (basic_block bb)
6850 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6851 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6855 /* Return true if BB ends with a conditional branch. Return false,
6856 otherwise. */
6858 static bool
6859 gimple_block_ends_with_condjump_p (const_basic_block bb)
6861 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6862 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6866 /* Return true if we need to add fake edge to exit at statement T.
6867 Helper function for gimple_flow_call_edges_add. */
6869 static bool
6870 need_fake_edge_p (gimple t)
6872 tree fndecl = NULL_TREE;
6873 int call_flags = 0;
6875 /* NORETURN and LONGJMP calls already have an edge to exit.
6876 CONST and PURE calls do not need one.
6877 We don't currently check for CONST and PURE here, although
6878 it would be a good idea, because those attributes are
6879 figured out from the RTL in mark_constant_function, and
6880 the counter incrementation code from -fprofile-arcs
6881 leads to different results from -fbranch-probabilities. */
6882 if (is_gimple_call (t))
6884 fndecl = gimple_call_fndecl (t);
6885 call_flags = gimple_call_flags (t);
6888 if (is_gimple_call (t)
6889 && fndecl
6890 && DECL_BUILT_IN (fndecl)
6891 && (call_flags & ECF_NOTHROW)
6892 && !(call_flags & ECF_RETURNS_TWICE)
6893 /* fork() doesn't really return twice, but the effect of
6894 wrapping it in __gcov_fork() which calls __gcov_flush()
6895 and clears the counters before forking has the same
6896 effect as returning twice. Force a fake edge. */
6897 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6898 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6899 return false;
6901 if (is_gimple_call (t))
6903 edge_iterator ei;
6904 edge e;
6905 basic_block bb;
6907 if (!(call_flags & ECF_NORETURN))
6908 return true;
6910 bb = gimple_bb (t);
6911 FOR_EACH_EDGE (e, ei, bb->succs)
6912 if ((e->flags & EDGE_FAKE) == 0)
6913 return true;
6916 if (gimple_code (t) == GIMPLE_ASM
6917 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6918 return true;
6920 return false;
6924 /* Add fake edges to the function exit for any non constant and non
6925 noreturn calls (or noreturn calls with EH/abnormal edges),
6926 volatile inline assembly in the bitmap of blocks specified by BLOCKS
6927 or to the whole CFG if BLOCKS is zero. Return the number of blocks
6928 that were split.
6930 The goal is to expose cases in which entering a basic block does
6931 not imply that all subsequent instructions must be executed. */
6933 static int
6934 gimple_flow_call_edges_add (sbitmap blocks)
6936 int i;
6937 int blocks_split = 0;
6938 int last_bb = last_basic_block;
6939 bool check_last_block = false;
6941 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6942 return 0;
6944 if (! blocks)
6945 check_last_block = true;
6946 else
6947 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6949 /* In the last basic block, before epilogue generation, there will be
6950 a fallthru edge to EXIT. Special care is required if the last insn
6951 of the last basic block is a call because make_edge folds duplicate
6952 edges, which would result in the fallthru edge also being marked
6953 fake, which would result in the fallthru edge being removed by
6954 remove_fake_edges, which would result in an invalid CFG.
6956 Moreover, we can't elide the outgoing fake edge, since the block
6957 profiler needs to take this into account in order to solve the minimal
6958 spanning tree in the case that the call doesn't return.
6960 Handle this by adding a dummy instruction in a new last basic block. */
6961 if (check_last_block)
6963 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6964 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6965 gimple t = NULL;
6967 if (!gsi_end_p (gsi))
6968 t = gsi_stmt (gsi);
6970 if (t && need_fake_edge_p (t))
6972 edge e;
6974 e = find_edge (bb, EXIT_BLOCK_PTR);
6975 if (e)
6977 gsi_insert_on_edge (e, gimple_build_nop ());
6978 gsi_commit_edge_inserts ();
6983 /* Now add fake edges to the function exit for any non constant
6984 calls since there is no way that we can determine if they will
6985 return or not... */
6986 for (i = 0; i < last_bb; i++)
6988 basic_block bb = BASIC_BLOCK (i);
6989 gimple_stmt_iterator gsi;
6990 gimple stmt, last_stmt;
6992 if (!bb)
6993 continue;
6995 if (blocks && !TEST_BIT (blocks, i))
6996 continue;
6998 gsi = gsi_last_nondebug_bb (bb);
6999 if (!gsi_end_p (gsi))
7001 last_stmt = gsi_stmt (gsi);
7004 stmt = gsi_stmt (gsi);
7005 if (need_fake_edge_p (stmt))
7007 edge e;
7009 /* The handling above of the final block before the
7010 epilogue should be enough to verify that there is
7011 no edge to the exit block in CFG already.
7012 Calling make_edge in such case would cause us to
7013 mark that edge as fake and remove it later. */
7014 #ifdef ENABLE_CHECKING
7015 if (stmt == last_stmt)
7017 e = find_edge (bb, EXIT_BLOCK_PTR);
7018 gcc_assert (e == NULL);
7020 #endif
7022 /* Note that the following may create a new basic block
7023 and renumber the existing basic blocks. */
7024 if (stmt != last_stmt)
7026 e = split_block (bb, stmt);
7027 if (e)
7028 blocks_split++;
7030 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7032 gsi_prev (&gsi);
7034 while (!gsi_end_p (gsi));
7038 if (blocks_split)
7039 verify_flow_info ();
7041 return blocks_split;
7044 /* Removes edge E and all the blocks dominated by it, and updates dominance
7045 information. The IL in E->src needs to be updated separately.
7046 If dominance info is not available, only the edge E is removed.*/
7048 void
7049 remove_edge_and_dominated_blocks (edge e)
7051 VEC (basic_block, heap) *bbs_to_remove = NULL;
7052 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
7053 bitmap df, df_idom;
7054 edge f;
7055 edge_iterator ei;
7056 bool none_removed = false;
7057 unsigned i;
7058 basic_block bb, dbb;
7059 bitmap_iterator bi;
7061 if (!dom_info_available_p (CDI_DOMINATORS))
7063 remove_edge (e);
7064 return;
7067 /* No updating is needed for edges to exit. */
7068 if (e->dest == EXIT_BLOCK_PTR)
7070 if (cfgcleanup_altered_bbs)
7071 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7072 remove_edge (e);
7073 return;
7076 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7077 that is not dominated by E->dest, then this set is empty. Otherwise,
7078 all the basic blocks dominated by E->dest are removed.
7080 Also, to DF_IDOM we store the immediate dominators of the blocks in
7081 the dominance frontier of E (i.e., of the successors of the
7082 removed blocks, if there are any, and of E->dest otherwise). */
7083 FOR_EACH_EDGE (f, ei, e->dest->preds)
7085 if (f == e)
7086 continue;
7088 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7090 none_removed = true;
7091 break;
7095 df = BITMAP_ALLOC (NULL);
7096 df_idom = BITMAP_ALLOC (NULL);
7098 if (none_removed)
7099 bitmap_set_bit (df_idom,
7100 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7101 else
7103 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7104 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7106 FOR_EACH_EDGE (f, ei, bb->succs)
7108 if (f->dest != EXIT_BLOCK_PTR)
7109 bitmap_set_bit (df, f->dest->index);
7112 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7113 bitmap_clear_bit (df, bb->index);
7115 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7117 bb = BASIC_BLOCK (i);
7118 bitmap_set_bit (df_idom,
7119 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7123 if (cfgcleanup_altered_bbs)
7125 /* Record the set of the altered basic blocks. */
7126 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7127 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7130 /* Remove E and the cancelled blocks. */
7131 if (none_removed)
7132 remove_edge (e);
7133 else
7135 /* Walk backwards so as to get a chance to substitute all
7136 released DEFs into debug stmts. See
7137 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7138 details. */
7139 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
7140 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
7143 /* Update the dominance information. The immediate dominator may change only
7144 for blocks whose immediate dominator belongs to DF_IDOM:
7146 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7147 removal. Let Z the arbitrary block such that idom(Z) = Y and
7148 Z dominates X after the removal. Before removal, there exists a path P
7149 from Y to X that avoids Z. Let F be the last edge on P that is
7150 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7151 dominates W, and because of P, Z does not dominate W), and W belongs to
7152 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7153 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7155 bb = BASIC_BLOCK (i);
7156 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7157 dbb;
7158 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7159 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
7162 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7164 BITMAP_FREE (df);
7165 BITMAP_FREE (df_idom);
7166 VEC_free (basic_block, heap, bbs_to_remove);
7167 VEC_free (basic_block, heap, bbs_to_fix_dom);
7170 /* Purge dead EH edges from basic block BB. */
7172 bool
7173 gimple_purge_dead_eh_edges (basic_block bb)
7175 bool changed = false;
7176 edge e;
7177 edge_iterator ei;
7178 gimple stmt = last_stmt (bb);
7180 if (stmt && stmt_can_throw_internal (stmt))
7181 return false;
7183 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7185 if (e->flags & EDGE_EH)
7187 remove_edge_and_dominated_blocks (e);
7188 changed = true;
7190 else
7191 ei_next (&ei);
7194 return changed;
7197 /* Purge dead EH edges from basic block listed in BLOCKS. */
7199 bool
7200 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7202 bool changed = false;
7203 unsigned i;
7204 bitmap_iterator bi;
7206 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7208 basic_block bb = BASIC_BLOCK (i);
7210 /* Earlier gimple_purge_dead_eh_edges could have removed
7211 this basic block already. */
7212 gcc_assert (bb || changed);
7213 if (bb != NULL)
7214 changed |= gimple_purge_dead_eh_edges (bb);
7217 return changed;
7220 /* Purge dead abnormal call edges from basic block BB. */
7222 bool
7223 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7225 bool changed = false;
7226 edge e;
7227 edge_iterator ei;
7228 gimple stmt = last_stmt (bb);
7230 if (!cfun->has_nonlocal_label)
7231 return false;
7233 if (stmt && stmt_can_make_abnormal_goto (stmt))
7234 return false;
7236 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7238 if (e->flags & EDGE_ABNORMAL)
7240 remove_edge_and_dominated_blocks (e);
7241 changed = true;
7243 else
7244 ei_next (&ei);
7247 return changed;
7250 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7252 bool
7253 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7255 bool changed = false;
7256 unsigned i;
7257 bitmap_iterator bi;
7259 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7261 basic_block bb = BASIC_BLOCK (i);
7263 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7264 this basic block already. */
7265 gcc_assert (bb || changed);
7266 if (bb != NULL)
7267 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7270 return changed;
7273 /* This function is called whenever a new edge is created or
7274 redirected. */
7276 static void
7277 gimple_execute_on_growing_pred (edge e)
7279 basic_block bb = e->dest;
7281 if (!gimple_seq_empty_p (phi_nodes (bb)))
7282 reserve_phi_args_for_new_edge (bb);
7285 /* This function is called immediately before edge E is removed from
7286 the edge vector E->dest->preds. */
7288 static void
7289 gimple_execute_on_shrinking_pred (edge e)
7291 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7292 remove_phi_args (e);
7295 /*---------------------------------------------------------------------------
7296 Helper functions for Loop versioning
7297 ---------------------------------------------------------------------------*/
7299 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7300 of 'first'. Both of them are dominated by 'new_head' basic block. When
7301 'new_head' was created by 'second's incoming edge it received phi arguments
7302 on the edge by split_edge(). Later, additional edge 'e' was created to
7303 connect 'new_head' and 'first'. Now this routine adds phi args on this
7304 additional edge 'e' that new_head to second edge received as part of edge
7305 splitting. */
7307 static void
7308 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7309 basic_block new_head, edge e)
7311 gimple phi1, phi2;
7312 gimple_stmt_iterator psi1, psi2;
7313 tree def;
7314 edge e2 = find_edge (new_head, second);
7316 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7317 edge, we should always have an edge from NEW_HEAD to SECOND. */
7318 gcc_assert (e2 != NULL);
7320 /* Browse all 'second' basic block phi nodes and add phi args to
7321 edge 'e' for 'first' head. PHI args are always in correct order. */
7323 for (psi2 = gsi_start_phis (second),
7324 psi1 = gsi_start_phis (first);
7325 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7326 gsi_next (&psi2), gsi_next (&psi1))
7328 phi1 = gsi_stmt (psi1);
7329 phi2 = gsi_stmt (psi2);
7330 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7331 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7336 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7337 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7338 the destination of the ELSE part. */
7340 static void
7341 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7342 basic_block second_head ATTRIBUTE_UNUSED,
7343 basic_block cond_bb, void *cond_e)
7345 gimple_stmt_iterator gsi;
7346 gimple new_cond_expr;
7347 tree cond_expr = (tree) cond_e;
7348 edge e0;
7350 /* Build new conditional expr */
7351 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7352 NULL_TREE, NULL_TREE);
7354 /* Add new cond in cond_bb. */
7355 gsi = gsi_last_bb (cond_bb);
7356 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7358 /* Adjust edges appropriately to connect new head with first head
7359 as well as second head. */
7360 e0 = single_succ_edge (cond_bb);
7361 e0->flags &= ~EDGE_FALLTHRU;
7362 e0->flags |= EDGE_FALSE_VALUE;
7365 struct cfg_hooks gimple_cfg_hooks = {
7366 "gimple",
7367 gimple_verify_flow_info,
7368 gimple_dump_bb, /* dump_bb */
7369 create_bb, /* create_basic_block */
7370 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7371 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7372 gimple_can_remove_branch_p, /* can_remove_branch_p */
7373 remove_bb, /* delete_basic_block */
7374 gimple_split_block, /* split_block */
7375 gimple_move_block_after, /* move_block_after */
7376 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7377 gimple_merge_blocks, /* merge_blocks */
7378 gimple_predict_edge, /* predict_edge */
7379 gimple_predicted_by_p, /* predicted_by_p */
7380 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7381 gimple_duplicate_bb, /* duplicate_block */
7382 gimple_split_edge, /* split_edge */
7383 gimple_make_forwarder_block, /* make_forward_block */
7384 NULL, /* tidy_fallthru_edge */
7385 NULL, /* force_nonfallthru */
7386 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7387 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7388 gimple_flow_call_edges_add, /* flow_call_edges_add */
7389 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7390 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7391 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7392 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7393 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7394 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7395 flush_pending_stmts /* flush_pending_stmts */
7399 /* Split all critical edges. */
7401 unsigned int
7402 split_critical_edges (void)
7404 basic_block bb;
7405 edge e;
7406 edge_iterator ei;
7408 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7409 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7410 mappings around the calls to split_edge. */
7411 start_recording_case_labels ();
7412 FOR_ALL_BB (bb)
7414 FOR_EACH_EDGE (e, ei, bb->succs)
7416 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7417 split_edge (e);
7418 /* PRE inserts statements to edges and expects that
7419 since split_critical_edges was done beforehand, committing edge
7420 insertions will not split more edges. In addition to critical
7421 edges we must split edges that have multiple successors and
7422 end by control flow statements, such as RESX.
7423 Go ahead and split them too. This matches the logic in
7424 gimple_find_edge_insert_loc. */
7425 else if ((!single_pred_p (e->dest)
7426 || !gimple_seq_empty_p (phi_nodes (e->dest))
7427 || e->dest == EXIT_BLOCK_PTR)
7428 && e->src != ENTRY_BLOCK_PTR
7429 && !(e->flags & EDGE_ABNORMAL))
7431 gimple_stmt_iterator gsi;
7433 gsi = gsi_last_bb (e->src);
7434 if (!gsi_end_p (gsi)
7435 && stmt_ends_bb_p (gsi_stmt (gsi))
7436 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7437 && !gimple_call_builtin_p (gsi_stmt (gsi),
7438 BUILT_IN_RETURN)))
7439 split_edge (e);
7443 end_recording_case_labels ();
7444 return 0;
7447 struct gimple_opt_pass pass_split_crit_edges =
7450 GIMPLE_PASS,
7451 "crited", /* name */
7452 NULL, /* gate */
7453 split_critical_edges, /* execute */
7454 NULL, /* sub */
7455 NULL, /* next */
7456 0, /* static_pass_number */
7457 TV_TREE_SPLIT_EDGES, /* tv_id */
7458 PROP_cfg, /* properties required */
7459 PROP_no_crit_edges, /* properties_provided */
7460 0, /* properties_destroyed */
7461 0, /* todo_flags_start */
7462 TODO_verify_flow /* todo_flags_finish */
7467 /* Build a ternary operation and gimplify it. Emit code before GSI.
7468 Return the gimple_val holding the result. */
7470 tree
7471 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7472 tree type, tree a, tree b, tree c)
7474 tree ret;
7475 location_t loc = gimple_location (gsi_stmt (*gsi));
7477 ret = fold_build3_loc (loc, code, type, a, b, c);
7478 STRIP_NOPS (ret);
7480 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7481 GSI_SAME_STMT);
7484 /* Build a binary operation and gimplify it. Emit code before GSI.
7485 Return the gimple_val holding the result. */
7487 tree
7488 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7489 tree type, tree a, tree b)
7491 tree ret;
7493 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7494 STRIP_NOPS (ret);
7496 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7497 GSI_SAME_STMT);
7500 /* Build a unary operation and gimplify it. Emit code before GSI.
7501 Return the gimple_val holding the result. */
7503 tree
7504 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7505 tree a)
7507 tree ret;
7509 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7510 STRIP_NOPS (ret);
7512 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7513 GSI_SAME_STMT);
7518 /* Emit return warnings. */
7520 static unsigned int
7521 execute_warn_function_return (void)
7523 source_location location;
7524 gimple last;
7525 edge e;
7526 edge_iterator ei;
7528 /* If we have a path to EXIT, then we do return. */
7529 if (TREE_THIS_VOLATILE (cfun->decl)
7530 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7532 location = UNKNOWN_LOCATION;
7533 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7535 last = last_stmt (e->src);
7536 if ((gimple_code (last) == GIMPLE_RETURN
7537 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7538 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7539 break;
7541 if (location == UNKNOWN_LOCATION)
7542 location = cfun->function_end_locus;
7543 warning_at (location, 0, "%<noreturn%> function does return");
7546 /* If we see "return;" in some basic block, then we do reach the end
7547 without returning a value. */
7548 else if (warn_return_type
7549 && !TREE_NO_WARNING (cfun->decl)
7550 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7551 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7553 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7555 gimple last = last_stmt (e->src);
7556 if (gimple_code (last) == GIMPLE_RETURN
7557 && gimple_return_retval (last) == NULL
7558 && !gimple_no_warning_p (last))
7560 location = gimple_location (last);
7561 if (location == UNKNOWN_LOCATION)
7562 location = cfun->function_end_locus;
7563 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7564 TREE_NO_WARNING (cfun->decl) = 1;
7565 break;
7569 return 0;
7573 /* Given a basic block B which ends with a conditional and has
7574 precisely two successors, determine which of the edges is taken if
7575 the conditional is true and which is taken if the conditional is
7576 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7578 void
7579 extract_true_false_edges_from_block (basic_block b,
7580 edge *true_edge,
7581 edge *false_edge)
7583 edge e = EDGE_SUCC (b, 0);
7585 if (e->flags & EDGE_TRUE_VALUE)
7587 *true_edge = e;
7588 *false_edge = EDGE_SUCC (b, 1);
7590 else
7592 *false_edge = e;
7593 *true_edge = EDGE_SUCC (b, 1);
7597 struct gimple_opt_pass pass_warn_function_return =
7600 GIMPLE_PASS,
7601 "*warn_function_return", /* name */
7602 NULL, /* gate */
7603 execute_warn_function_return, /* execute */
7604 NULL, /* sub */
7605 NULL, /* next */
7606 0, /* static_pass_number */
7607 TV_NONE, /* tv_id */
7608 PROP_cfg, /* properties_required */
7609 0, /* properties_provided */
7610 0, /* properties_destroyed */
7611 0, /* todo_flags_start */
7612 0 /* todo_flags_finish */
7616 /* Emit noreturn warnings. */
7618 static unsigned int
7619 execute_warn_function_noreturn (void)
7621 if (!TREE_THIS_VOLATILE (current_function_decl)
7622 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7623 warn_function_noreturn (current_function_decl);
7624 return 0;
7627 static bool
7628 gate_warn_function_noreturn (void)
7630 return warn_suggest_attribute_noreturn;
7633 struct gimple_opt_pass pass_warn_function_noreturn =
7636 GIMPLE_PASS,
7637 "*warn_function_noreturn", /* name */
7638 gate_warn_function_noreturn, /* gate */
7639 execute_warn_function_noreturn, /* execute */
7640 NULL, /* sub */
7641 NULL, /* next */
7642 0, /* static_pass_number */
7643 TV_NONE, /* tv_id */
7644 PROP_cfg, /* properties_required */
7645 0, /* properties_provided */
7646 0, /* properties_destroyed */
7647 0, /* todo_flags_start */
7648 0 /* todo_flags_finish */
7653 /* Walk a gimplified function and warn for functions whose return value is
7654 ignored and attribute((warn_unused_result)) is set. This is done before
7655 inlining, so we don't have to worry about that. */
7657 static void
7658 do_warn_unused_result (gimple_seq seq)
7660 tree fdecl, ftype;
7661 gimple_stmt_iterator i;
7663 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7665 gimple g = gsi_stmt (i);
7667 switch (gimple_code (g))
7669 case GIMPLE_BIND:
7670 do_warn_unused_result (gimple_bind_body (g));
7671 break;
7672 case GIMPLE_TRY:
7673 do_warn_unused_result (gimple_try_eval (g));
7674 do_warn_unused_result (gimple_try_cleanup (g));
7675 break;
7676 case GIMPLE_CATCH:
7677 do_warn_unused_result (gimple_catch_handler (g));
7678 break;
7679 case GIMPLE_EH_FILTER:
7680 do_warn_unused_result (gimple_eh_filter_failure (g));
7681 break;
7683 case GIMPLE_CALL:
7684 if (gimple_call_lhs (g))
7685 break;
7686 if (gimple_call_internal_p (g))
7687 break;
7689 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7690 LHS. All calls whose value is ignored should be
7691 represented like this. Look for the attribute. */
7692 fdecl = gimple_call_fndecl (g);
7693 ftype = gimple_call_fntype (g);
7695 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7697 location_t loc = gimple_location (g);
7699 if (fdecl)
7700 warning_at (loc, OPT_Wunused_result,
7701 "ignoring return value of %qD, "
7702 "declared with attribute warn_unused_result",
7703 fdecl);
7704 else
7705 warning_at (loc, OPT_Wunused_result,
7706 "ignoring return value of function "
7707 "declared with attribute warn_unused_result");
7709 break;
7711 default:
7712 /* Not a container, not a call, or a call whose value is used. */
7713 break;
7718 static unsigned int
7719 run_warn_unused_result (void)
7721 do_warn_unused_result (gimple_body (current_function_decl));
7722 return 0;
7725 static bool
7726 gate_warn_unused_result (void)
7728 return flag_warn_unused_result;
7731 struct gimple_opt_pass pass_warn_unused_result =
7734 GIMPLE_PASS,
7735 "*warn_unused_result", /* name */
7736 gate_warn_unused_result, /* gate */
7737 run_warn_unused_result, /* execute */
7738 NULL, /* sub */
7739 NULL, /* next */
7740 0, /* static_pass_number */
7741 TV_NONE, /* tv_id */
7742 PROP_gimple_any, /* properties_required */
7743 0, /* properties_provided */
7744 0, /* properties_destroyed */
7745 0, /* todo_flags_start */
7746 0, /* todo_flags_finish */